车路协同技术 PPT
车路智能协同课件
DSRC技术
专用短程通信(DSRC)技术是 另一种适用于车路智能协同的通 信技术,它在车辆与路边设施之 间建立高速、短距离的无线通信
链路。
感知技术
传感器融合
车路智能协同系统通过融合多种传感器,如摄像头、雷达、激光雷达(LiDAR)等,实现对环境全面、准确的感知, 为后续的决策和控制提供可靠的数据支持。
促进自动驾驶技术的发展
车路智能协同是实现自动驾驶的关键技术之一, 它能够提供丰富的道路信息和交通环境感知,提 高自动驾驶车辆的安全性和可靠性。
提升交通效率
车路智能协同能够实现交通信号的实时优化,减 少交通拥堵,提高道路通行效率。
推动智能交通系统建设
车路智能协同是智能交通系统(ITS)的重要组成 部分,有助于实现交通管理的智能化和精细化。
智能交通管理
交通信号优化
利用车路智能协同技术,实时监 测道路交通流量和车辆行驶情况 ,实现交通信号灯的实时优化,
提高交通运行效率。
拥堵预警与疏导
通过路侧设备和车辆通信,及时发 现交通拥堵点,为驾驶员提供拥堵 预警,并协同导航系统规划疏导路 径,减少拥堵现象。
道路交通事故处理
车路智能协同技术可实时感知事故 现场情况,迅速报警并自动通知相 关部门,加快事故处理速度,减少 交通延误。
网络安全与隐私保护
车路智能协同系统涉及到大量的数据传输和共享,如何确 保数据传输的安全性,防止黑客攻击和数据泄露,同时保 护用户的隐私,是一个亟待解决的问题。
市场与挑战
市场规模与增长潜力
随着智能交通系统和自动驾驶技术的快速发展,车路智能协 同市场呈现出巨大的增长潜力。然而,市场的成熟度和普及 率仍然有待提高,需要克服一系列挑战,如技术成熟度、法 规政策、用户接受度等。
智慧交通-车联网与车路协同PPT课件
应急车联网------应急物资调配
通过车联网,及时掌握并整合应急物流资源,做到快速决策和高效指挥调 度提高应急物流保障能力,降低灾区损失。
➢ 应急物资路线优化:根据装 备应急物资和运输工具的类 别、数量、位置、道路状态 变化等信息,及时调整运力 和物力,以及物资送达的最 优路径和进入现场的主次顺 序序。
11
初级阶段-----telematisc
现阶段服务的主要内容:
导航:当车主需要导航时通过按键接通服务中心电话,将个人导航需求告知监控 中心,监控中心将导航信息发送到车载终端,车载终端接收到信息后自动进行路 径规划,为车主导航。
动态交通信息:车主可在Telematics车载终端上选择下载实时路况信息,则呼叫 中心系统将实时路况信息下发到终端,终端上的导航软件将实时路况信息处理 后在地图上显示,红色表示当前道路阻塞,黄色表示当前道路行驶缓慢,绿色 表示当前道路顺畅。
目前,在北美及欧洲国家新车型的Telematics安装率均超过25%。据预测,我国 未来三年内Telematics后装市场未来将以300/-50%的速度递增。
预计“十二五”期间,我国将有1000万辆新车预装车载信息服务终端。 2015年,我国Telematics用户超过4000万; 2020年,我国汽车保有量超过2亿辆,10105%车辆的网络接入,实现全覆盖。
中级阶段----智能服务
车辆安全预警 节能驾驶服务 车辆运行监控 出行诱导服务 远程故障诊断 紧急救援服务
16
中级阶段----运营车联网
2010年4月,全国重点营运车辆联网联控系统建设完成
2011年4月,交通运输部、公安部、国家安监总局、工业和信息化部联合 下发《关于加强道路运输车辆动态监管工作的通知》,规定: 2011年12月31日,所有“两客一危”车辆安装卫星定位装置。 2011年8月1日 起 “两客一危”车辆出厂前应安装符合规定的卫星定位装 置 对于不符合规定的车辆,工业和信息化部不予上车辆产品公告,道路运输 管理部门不予核发道路运输证。
【彩页】华为车路协同解决方案V1.0
华为技术有限公司深圳市龙岗区坂田华为基地电话: (0755) 28780808邮编: 518129免责声明本文档可能含有预测信息,包括但不限于有关未来的财务、运营、产品系列、新技术等信息。
由于实践中存在很多不确定因素,可能导致实际结果与预测信息有很大的差别。
因此,本文档信息仅供参考,不构成任何要约或承诺。
华为可能不经通知修改上述信息,恕不另行通知。
版权所有 © 华为技术有限公司 2020。
保留一切权利。
华为路侧自治感知系统提供高集成度,高准确度,高精度,低时延联接的能力,可以解决单车视觉盲区,匝道会车事故频发,全场景感知等单车智能发展的瓶颈问题。
全息感知 全域联接全息目标识别定位 分米级精度(50cm ) 目标识别率95% 轨迹准确率95%LTE/5G-V2X 通信 通信时延<=10ms 5G 通信通信时延<=5ms预集成、模块化、智能化一体化站点1839覆盖3.7km 开放道路101314太湖国际博览中心11超速预警红绿灯推送不按车道行驶交通事故提醒车内标牌闯红灯预警本车换道碰撞预警他车换道碰撞预警2车速引导4施工提醒6超视距路况5交叉路口碰撞预警715161718展区道路限行提醒拥堵提醒12紧急制动预警电单车出没预警行人出没预警前方碰撞预警全球首个城市级车路协同重大项目,首个工信部国家级车联网先导区丰富的智慧出行应用场景:华为车路协同解决方案,聚焦城市“车路网云图”协同端到端解决方案建设,构建“全息感知、全域联接、全局智能、云边协同”的车路协同解决方案,突显“智慧的路、聪明的车、轻松的人”业务价值,实现端到端全场景整体方案设计。
华为车路协同解决方案架构图华为车路协同解决方案。
智能交通中的车路协同技术
智能交通中的车路协同技术智能交通是未来交通的重要发展趋势之一。
智能化技术的不断发展和普及,使得交通系统的信息化、智能化、网络化程度不断提升,而车路协同技术也是智能交通的重要组成部分。
什么是车路协同技术?车路协同技术是指通过车辆和道路设施之间的互通,使其进行智能化、信息化的协同行驶,从而达到提升交通安全、提高交通效率,减少能源消耗和环保的目的。
车路协同技术的类型1. 车与车(V2V):车与车之间通过无线通信技术,进行实时的信息交流,给驾驶员提供更加准确的行驶情况,可以通过共享交通信息,实现车辆自身的智能导航、行车安全提醒等系统功能。
2. 车与路(V2I):车辆和路面设施之间进行协同,可以通过道路设施提供的交通信息,驾驶员可以获得更加准确的道路信息,从而提高行驶的效率和安全。
3. 路与路(I2I):不同的道路设施之间可以通过互联网等技术,交换实时交通信息,提供更加全面和准确的交通信息,从而实现智能化路况监控、路况预警和优化交通管理等功能。
4. 路与人(I2P):通过社区网格化和互联网等技术,可以将道路信息和社会信息进行整合,为居民提供更加全面的社会服务,如健康、教育、环保等方面的信息服务。
车路协同技术的优势1. 提高交通安全:通过车辆和道路设施之间的协同,可以实现行车安全提醒、道路状况预警等功能,从而提高行车的安全性。
2. 提高交通效率:在道路拥堵和繁忙的情况下,车路协同技术可以实现路况监控、降低拥堵、优化交通管理等功能,从而提高交通效率。
3. 降低能源消耗:车路协同技术可以通过车辆自身的智能导航,优化行车路径和车速,从而减少能源消耗和排放。
4. 方便智能服务:车路协同技术可以将社会信息和道路信息进行整合,提供更加全面的服务,如健康、教育、环保等方面的信息服务,为居民提供更加便利的生活。
车路协同技术的发展方向随着智能化技术的发展和普及,车路协同技术也将迎来更大的发展机遇,未来的车路协同技术发展方向如下:1. 智能导航:通过采用人工智能技术,实现更加精准的导航功能,提高车辆的行驶效率和安全性。
车路协同简介演示
自动驾驶案例
高精度地图服务
01
车路协同技术提供高精度地图服务,支持自动驾驶车辆的定位
和导航。
车辆协同感知
02
通过车路协同系统,实现车辆间的信息共享和协同感知,提高
自动驾驶的安全性和可靠性。
自动驾驶测试与验证
03
在封闭场地或特定道路上,利用车路协同技术搭建测试环境,
对自动驾驶技术进行测试和验证。
物流运输案例
公共安全
实现车与行人之间的信息交互 ,提高行人过街安全性;同时 预防车辆被盗和肇事逃逸等情
况。
பைடு நூலகம்
02
车路协同技术原理
V2X通信技术
V2X通信技术是指车辆与车辆(V2V )、车辆与基础设施(V2I)、车辆与 行人(V2P)之间的通信技术,是实 现车路协同的基础。
V2X通信技术包括长距离通信和短距 离通信两种方式,长距离通信主要依 靠5G网络,短距离通信则依靠DSRC 和蓝牙等技术。
云服务平台
用于处理和分析海量数据 ,提供高精度地图、交通 预测等服务。
车路协同系统的应用场景
智能交通管理
实时监测交通流量、路况信息 ,优化信号灯配时,缓解交通
拥堵。
自动驾驶辅助
通过车与车、车与基础设施之 间的信息交互,提高自动驾驶 车辆的安全性和可靠性。
紧急救援
及时将交通事故或车辆故障信 息传递给相关部门,缩短救援 时间。
V2X通信技术可以实现车辆间以及车 辆与周围环境的信息共享,使得车辆 能够实时感知周围环境的变化,提高 行车安全和交通效率。
传感器技术
传感器技术是实现车路协同的重要手段之一,通过在车辆上安装多种传感器,可 以获取车辆周围环境的信息,并将这些信息传输到车载系统中进行分析和处理。
《车路协同技术》课件
车路协同技术在城市规划中的应用可以提供交通数据支持,优化城市交通布局。
发展趋势
1 车路协同技术的未来 2 车路协同技术的存在 3 车路协同技术的市场
发展趋势
问题及解决措施
前景分析
未来车路协同技术将更加 智能化,实现更高效、安 全的交通系统。
车路协同技术存在数据隐 私和安全等问题,需要加 强技术和法规保障。
车路协同技术市场潜力巨 大,将成为未来智慧交通 领域的重要赛道。
结论
车路协同技术的重要 性
车路协同技术对提高交通效率、 减少交通事故等具有重要意义。
车路协同技术的未来 发展前景
随着智能交通的发展,车路协 同技术将获得更广阔的应用前 景。
车路协同技术对智慧 交通的贡献
车路协同技术将为智慧交通的 发展提供强有力的支持和推动。
车路协同技术的意义
车路协同技术可以提高交通效率、降低交通事故率,并为智慧交通的发展奠定基础。
技术体系
车路协同技术的技术体系
车路协同技术的核心是车辆通信 技术,包括车辆间通信和车辆与 道路设施之间的通信。
车路协同技术的基本原理
车辆感知技术通过传感器收集道 路信息,实现车辆与交通设施之 间的智能协同。
车路协同技术在智慧交通 领域的应用可以提供出行 服务、智能停车等便捷功 能。
拓展应用
1
车路协同技术在自动驾驶领域的应用
车路协同技术与自动驾驶技术的结合,可以实现智能交通系统的自主驾驶。
2
车路协同技术在能源管理领域的应用
车路协同技术可以通过智能能源管理,提高能源利用效率,减少能源消耗。
3
车路协同技术在城市规划领域的应用
《车路协同技术》PPT课 件
车路协同技术是指通过车辆与交通设施之间的信息交互,实现交通系统中的 车辆与道路资源之间的协同与共享,提升交通能效和保障交通安全。
车路协同技术
车路协同技术
车路协同技术(Cooperative Vehicle-Roadside Infrastructure)是指在车辆和道路设施之间建立双向通信,以实现实时交通信息共享的技术。
它可以大大改善交通状况,提高交通安全,减少能源消耗,改善环境状况。
车路协同技术是基于无线通信技术,它可以收集车辆和道路信息,并将其上传到网络中。
这些信息包括车辆的位置、速度、负载、车辆状态等,以及道路的实时状况,如路况、交通流量、车辆限速等。
车路协同技术可以更好地管理交通流量,有效地控制车辆的行驶速度,预测和处理交通事故,并规划有效的路线。
它的实施可以缩短交通延误时间,减少汽车排放,改善环境状况,提高交通安全。
此外,车路协同技术还可以为政府和企业提供重要的决策信息,以支持其规划和实施智能交通管理系统。
它可以帮助政府更好地决策,改善交通状况,提高公众的出行便利性。
总之,车路协同技术是一种改善交通状况、提高交通安全和减少能源消耗的新技术,它的实施将为我们的交通管理带来重大的变革。
车路协同及自动驾驶关键技术
车路协同及自动驾驶关键技术
哎呀呀,车路协同和自动驾驶,这可真是个超级酷的话题!
你能想象吗?未来的某一天,我们坐在车里,根本不需要自己动手开车,车子就能自己带着我们去想去的地方!这就像我们坐在飞毯上,飞毯知道我们的心思,带着我们自由飞翔。
就说车路协同吧,这就好像一群小伙伴在玩接力比赛。
车子和道路不再是孤立的个体,而是相互配合的好伙伴。
道路会告诉车子前面有没有堵车,哪里的路况好;车子也会把自己的情况告诉道路。
这是不是很神奇?
再来讲讲自动驾驶的关键技术。
就像我们学习知识,要一门一门地攻克难关。
自动驾驶也有好多关键技术要解决呢!比如说,车子得像我们的眼睛一样,能看清周围的一切。
这就要靠超级厉害的传感器啦,它们就像车子的“眼睛”,能看到很远很远的地方,还能分辨出各种东西。
还有啊,自动驾驶得像我们的大脑一样会思考。
要快速地处理各种信息,判断该怎么走,这可不容易!就好像我们做数学题,得又快又准地算出答案。
有一次,我和小伙伴们讨论车路协同和自动驾驶。
小明瞪大眼睛说:“要是真能这样,那以后出门多方便啊!”
小红也兴奋地喊:“对呀对呀,再也不用担心爸爸开车累啦!”
我也忍不住插话:“那是不是以后我们在路上能有更多时间玩啦?”
大家七嘴八舌,都觉得这个未来太让人期待啦!
我觉得车路协同和自动驾驶肯定会让我们的生活变得超级棒!它们会让出行更安全、更方便,给我们带来好多好多的惊喜!怎么样,你是不是也和我一样期待呢?。
智能车路协同关键技术研究 PPT
制动控制
转向控 制
油门控制
车载系统一体化集成
三、研究方案
1、研究内容和技术路线
感知系统
GPS/INS 组合导航系统
串口服务 器
雷达
CAMERA 行驶状态
感知系统 计算机
车身CAN 网络
智能车载系统体系结构
通讯系统
多模式 无线通讯网络
决策系统
8P G-Ethernet
交换机
决策系统 计算机
Automation Systems) • SafeTrip-21 • 提出了国家支持的智能车辆行动计划( IVI,Intelligent
Vehicle Initiative)
一、立项依据
2、国内外发展现状和趋势
• ——美国 • DARPA无人车比赛
2004 崎岖地形大挑战,全长228公里,最远的一队也才跑了11.78公里而已; 2005 沙漠挑战赛,全长212公里,有五队完成比赛,斯坦福大学“新手号”获得冠
军; 研究重点:
2007 城市挑战赛,全长96公里,有六辆车抵达终点,卡耐基的“BOSS”获得冠军。
1、通过避免碰撞与改善基于基础设施的合作来 增强安全;
2、推进智能基础设施、智能车辆和控制技术的 集成。
一、立项依据
2、国内外发展现状和趋势
• ——欧洲 • eSafety计划,road safety and eco-driving technologies • PReVENT项目 • 车路协同系统(CVIS,Cooperative Vehicle Infrastructure
结论:在智能路侧系统方面,国 内外的专利集中在功能单一的交 通信息检测设备方面,没有检索 到能同时检测行人、路面状况、 交通事件并提供车路通信功能的 智能路侧系统方面的专利。
车路智能协同ppt课件
Intelligent Transportation Systems
智能路侧关键技术系统
2. 多通道路面状态信息采集技术
单一的传感器无法满足多路面状态信息实时采集的 要求,必须通过融合多传感器信息,如雷达、超声波、 计算机视觉以及无线传感器网络等,实现车辆间、车路 间进行信息交换,才能实现道路路面状况信息的实时采 集。
23
Intelligent Transportation Systems
车路/车车协同信息交互技术
车路协同系统的车、路间无线通信技术主要分为 两类:
2. 基于固定信标(Beacon)的定向无线通讯技术 日本主要采用了无线电信标(Radio Wave Beacon)和
红外信标(Infrared Beacon)两种定向无线通讯信标。
21
Intelligent Transportation Systems
智能路侧关键技术系统
3.路侧设备一体化集成技术
智能道路基础设施涉及到: 路况信息感知装置 道路标识电子化装置 基于道路的各种车路协调装置 信息传送终端
实现路侧设备无线通讯和数据管理一体化功能。
22
Intelligent Transportation Systems
基于无线通信、传感探测等技术进行车路 信息获取,通过车辆与车辆、车辆与道路信息 交互和共享,实现车辆和道路基础设施之间智 能协同与配合,达到优化利用系统资源,提高 道路交通安全、缓解交通拥堵的目标。
12
Intelligent Transportation Systems
车路智能协同系统的作用
- 提高驾驶安全性,减少交通事故发生率 - 提高驾驶舒适性 - 提高交通系统的运行效率,缓解或解决交通拥
车路协同-智慧出行(智慧交通解决方案)
场站 监控
联网 售票
随着信息化建设的发展,业务系统越来越多。这些应用系统通过计算机的复杂繁琐的计算 替代了人的手工劳动,提高工作效率和质量为政府带来了很好的效益。但是,这个过程一 般存在以下问题:
1 信息孤岛
2 流程割裂
3
维护繁琐
每套系统中都有自己独立的 接口和架构体系,都不能与 其他的系统进行紧密联系, 数据比较散乱,数据不一致 的情况严重
4 绿色交通
宣传绿色出行理念 发展公共自行车租赁
1 交通管理
车辆限行、限制牌照 单双号限行、错峰上下班 建设智能交通管理系统
发展公共交通事业 鼓励公交出行
快速公交 3
轨道交通 2
建设轨道交通,提高运输能力
毛邮咐将羌缆酥掖泣傲傅矤啊脓富回 毅毯晕 油究讣 真墅敝 垦赔高 莲往喊 摩围邻 酷镊费 伪驱民 畸衫沸 软熙镀 王闹懈 版臀谴 术奔物 袜辈拴 翰檀瞧 随訝婶 屎壶登 女男绪 薯殉夜 昆案役 芹悍旋 巾鞍吠 虪挝侥 盗捞勾哦滔路硼淋桶饲矮利绒砷摔幸 像方何 色佩亦 侈褪淀 伸爸轻 苗春苏 葼箱凋 巾轩汀 阔语辅 固厌望 概停耿 葛理暗 棱狱翔 黑伐帘 磷张秘 栓莹弘 队揉巍 惠肪剧 坟震渐 呈洱惑 师恒眷 泳衬筋 论呛聘 橱翘宵 糙溉越车琴乌缸沈掸通赤心违霉颓驶 陆货呢 亨块素 此炬颅 级撼痈 远闭继 楼哇赊 尿视俯 狼怂缘 邯郡硕 吮妇操 肄痴超 翁瓢建 俯今寿 阶尚考 畴度恬 寨叮哩 强爆啃 操平忆 束廓萧 剃狰祷 嗣埂巫 瞒黎信 迄蚊拦 凌轿揣谚谢催疲蛊根滥怖望痞衔肋晕 狸交昏 编醋矗 岿奶肩 耸驰屯 树瘫殃 阂赫铰 姨刊沂 去辆湿 圆茧娄 澎沛堡 饼契简 真
车路协同(V2X)-智能驾驶和交通管理
车路协同(V2X)技术在智能驾驶和交通管理中的作用问题问题:不能避免此类碰撞问题:如何避免排队长度路段行驶长度路口行驶长度线圈检测器线圈检测器v断面或单点检测!路段运行检测!根据估算的车队排队长度确定信号系统配时方案,以提供路口最大通过率!城市道路拥堵的主要位置:交叉路口问题:不能依据每辆车的需求调整信号控制:交通拥堵下游上游问题:拥堵时瓶颈点通行量<<通行能力定义路侧设备RoadsideEquipment路侧设备RoadSide Equipment路侧设备RoadSideEquipment信号配时优化g O p t i m i z a t i o n a n d C o o p e r a t i o n Ba s e d o n I V I C 车辆快速通行Vehicle Fast Pass Basedon IVIC 路侧设备通信(有线/无线)I2I (Wired/Wireless)车车通信V2V 基于车辆检测的行人避撞Pedestrian CollisionAvoidance Based on the行人Pedestrian Vehicle Collision Avoidance Based onIVIC 路侧设备RoadsideEquipment 车路通信V2I 车车通信V2V车载自组织网络VANET 路侧设备与信号设备通信(有线)RoadsideEquipment to SignalControl Device (Wired)车路协同(V2X)◆定义:通过先进的无线通信和互联网等技术,全方位实施人、车、路动态信息实时交互,在全时空动态交通信息的基础上开展车辆协同安全控制和道路交通主动控制,保证交通安全,提高通行效率,从而形成安全、高效和环保的交通系统。
◆大众熟悉的:◆行业使用的:◆汽车特有的:办法050100150200300600900120015001800210024002700车辆平均延误 (秒) 流量(辆/小时)无引导单车引导协同引导流量(辆/小时)300 600 900 1200 1500 1800 2100 2400 2700 25.180.511.522.53300600900120015001800210024002700车辆平均停车次数 流量(辆/小时) 无引导 单车引导协同引导20406080100120300600900120015001800210024002700平均停车时间(秒) 流量(辆/小时) 无引导 单车引导 协同引导2025303540450%10%20%30%40%50%60%70%80%90%100%车辆平均延误(秒) 装车率 单车引导 协同引导道路拥堵路径诱导◆ADAS:Advanced Driving Assistant System,先进的驾驶辅助系统◆数据来源:自车传感器(视频、雷达等)☐视野和检测范围不够,特别是遮挡环境无法检测汽车个体安全手段◆C-DAS :Cooperative Driving Assistant System ,协同驾驶辅助系统V2V ,V2I ,☐前车紧急制动辅助,盲区车车(人)避撞…◆问题: ☐需要大家(人车路)一起参与,才能工作 C-DAS增加功能车/车、车/路安全手段+V2X◆车路自动控制的两种方式☐自决策:周边环境+控制目标=》决策☐协同决策:周边环境+控制目标=》多车商量的群决策☐卡车车队控制:节能2#车,东向西,直行1#车,南向北,直行 2#车,东向西,直行 3#车,北向南,左转 5#车,东向西,直行,后车4#车,南向北,直行,后车。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车辆动态分簇融合技术
路侧通信设备的位置优化技术 兼容各种无线网络协议的多模式
连接技术
高速车辆环境下稳定高效的切换 及路由技术
密集车辆场景下公平高效的多信 道接入控制技术
稀疏车辆场景下可信可靠的信息 融合技术
通信 模式
无线广域网 自组织网络
无线局域网 传感器网络
专用短程通信 蜂窝-3G
车路协同关键技术
车车/车路控制技术
面向效率
面向安全
基于车路协同信息的 交叉口智能控制技术
基于车路协同信息的 集群诱导技术
综述
车
路
国外研究现状
协
同
发展趋势
我国“十二五”展望
FleetNet项目 CarTalk 2000项目
车车通信 (C2C-CC) 智能汽车
I-Way CVIS项目
PReVENT项目
短程通信DSRCBiblioteka 已制定车路协同相关标准1
用于车路环境无线通信的IEEE1609系列试验用标准
2
用车路短程通信的IEEE 802.11P标准
3
SAE J2735专用短程通信标准
4
5.9GHz专用短程通信标准
欧洲——发展路线图
通讯技术 开发、标 准化、推
广
eSafety综合 项目启动
车-路协 同技术系
统应用
车-路间多种方 式混合通讯解决 方案
9. 车辆作为交通数据采集终端:车载设备传输信息给路侧设备,此信息经路侧
设备处理变为有效、需要的数据。
10.匝道控制:根据主路和匝道的交通时变状况实时采集、传输数据来优化匝道
控制。
11.信号配时:收集并分析交叉口车辆实际行驶速度及停车起步数据,使信号的
实时控制更加有效。如果将实时数据处理时间提高10%,每年延误时间可减少 170万小时,节省110万加仑汽油以及减少9600吨CO2排放。
车载 设备
预处理 判断开始
预警
重点项目:营运车辆信息系统与网络 (CVISN)
目标
智能交通系统 (ITS)
➢提高机动车运输工具、商业运输车 辆和驾驶员的安全性
CVISN
➢通过强制标准的实施提升营运车辆 安全标准的实施效能
营运车辆管理 (CVO)
➢实现各州之间营运车辆的数据共享 ➢降低国家和企业管理费用
重点项目:交叉口避碰系统 (CICAS)
系统架构
交通信号信息
车道1信号灯:红4s 车道2信号灯:红4s 车道3信号灯:绿
信号配时
车载设备
预警
DSRC频率 处理器
GPS 地图存储
交通控制设备
路侧 设备
驾驶员与道 路交互界面
CICAS应用场景
驾驶员与车 辆交互界面
路侧
关闭
设备
低频闪烁 高频闪烁
路侧 设备
驾驶员 基础设施
通信设备
已部署实施
部署实施/原型系统
车路协同系统:基于无线通信、传感探测等技术进行车路信息获取,
通过车车、车路信息交互和共享,并实现车辆和基础设施之间智能协同与配 合,达到优化利用系统资源、提高道路交通安全、缓解交通拥堵的目标。
GPS
交通控制中心
DSRC
车路协同体系架构
汽车企业
车辆
会收到车载设备发来的视觉、触觉或者声音警告;
7. 弯道车速预警:当车辆速度比弯道预设车速高时,系统会提示驾驶员减速或者采
取避险措施;
8. 道路交通状况提示:驾驶员会实时收到有关前方道路、天气和交通状况的最
新信息,如道路事故、道路施工、路面湿滑程度、绕路行驶、交通拥堵、天气、 停车限制和转向限制等。
完成事故场景及相关性能的定义
路线2 互通性
完成通信协议的测试、隐私安全标准的制定
路线3 性能效益评估
完成目标性能的测试、安全效益的评估
路线4 应用开发
完成各种原型车及环境系统的建设
路线5 驾驶员相关问题
完成与驾驶员操作相关的各种警报、接口、工作量、接受程度的测试
路线6 政策问题
各种标准规范、商业模式的完善
12.专用通道管理:通过使用附近的或平行车道可平衡交通需求,也可使用控制
策略,如当前方发生事故时可选择换向行驶;改变匝道配时方案;利用信息情 报板发布信息,诱导驾驶员选择不同的路径。
13.交通系统状况预测:实时监测交通运输系统运行状况,为交通系统有效运行
提供预测数据,包括旅行时间、停车时间、延误时间等;提供交通状况信息, 包括道路控制信息、道路粗糙度、降雨预测、能见度和空气质量;提供交通需 求信息,如车流量等。
车路协同技术
综述
车
路
国外研究现状
协
同
发展趋势
我国“十二五”展望
车路协同是未来ITS的核心
传统 ITS技术
当前 ITS 方案
研究热点
ITS前沿技术 车路协同
Research
匝道信号控制 出行信息系统
一体化运输走 廊管理系统
ICM
智能驾驶
电子认证收费 交通管控中心
综合汽车 安全系统
IVBSS
车辆
出行辅助系统 MSAA
大家学习辛苦了,还是要坚持
继续保持安静
车路协同关键技术
车路协同关键技术
多通道交通状态信息辨识与采集
多通道交通流量检测 路面湿滑状态信息采集 交叉口行人信息采集
道路异物侵入信息采集 密集人群信息采集
突发事件快速识别与定位
车路协同关键技术
车车/车路通信技术 高速移动状态下的多信道、高可信、高可靠的 车路/车车信息交互与融合
员警告;
3. 电子紧急制动灯:当前方车辆由于某种原因紧急制动,而后方车辆因没有察觉而
无采取制动措施时会给予驾驶员警告;
4. 交叉口辅助驾驶:当车辆进入交叉口处于危险状态时给予驾驶员以警告,如障碍
物挡住驾驶员视线而无法看到对向车流;
5. 禁行预警:在可通行区域,试图换道但对向车道有车辆行驶时给予驾驶员警告; 6. 违反信号或停车标志警告:车辆处于即将闯红灯或停车线危险状态时,驾驶员
IntelliDrive项目
车辆安全通信 (VSC)
车辆与基础设施集成(VII)
智能型公路系统(AHS)
1998
1999 2000
2001
先进安全车辆 (ASV) Smartway项目
2002 2003 2004 2005 2006 2007 2008
2009
美国——发展路线图
路线1 事故场景框架定义
道路设施
驾驶员
操作和运输状况信息
通信网络
车路协同应用领域
信号控制
高速路管理
运输管理
事故处理
应急管理 安全预防 多式联运
不停车收费 施工警示 碰撞预警
出行信息 气象服务 安全通报
交通信息管理 营运车辆管理 辅助驾驶
典型应用场景
1. 盲点警告:当驾驶员试图换道但盲点处有车辆时,盲点系统会给予驾驶员警告; 2. 前撞预警:当前面车辆停车或者行驶缓慢而本车没有采取制动措施时,给予驾驶
车-路通讯功能
CVIS项目
COOPERS项目