(新)高中数学三角函数知识点及试题总结

合集下载

高中数学必修一第五章三角函数知识点归纳总结(精华版)(带答案)

高中数学必修一第五章三角函数知识点归纳总结(精华版)(带答案)

高中数学必修一第五章三角函数知识点归纳总结(精华版)单选题1、若sin (π7+α)=12,则sin (3π14−2α)=( ) A .35B .−12C .12D .13答案:C分析:令θ=π7+α可得α=θ−π7,再代入sin (3π14−2α),结合诱导公式与二倍角公式求解即可令θ=π7+α可得α=θ−π7,故sinθ=12,则sin (3π14−2α)=sin (3π14−2(θ−π7)) =sin (π2−2θ)=cos2θ=1−2sin 2θ=12故选:C2、若sin(π−α)+cos(−α)=15,α∈(0,π),则tan (32π−α)的值为( ) A .−43或−34B .−43C .−34D .34答案:C分析:根据同角三角函数的基本关系及诱导公式求解. 由sin(π−α)+cos(−α)=15可得:sinα+cosα=15,平方得:sin 2α+2sinαcosα+cos 2α=125 所以tan 2α+2tanα+1tan 2α+1=125,解得tanα=−43或tanα=−34, 又sinα+cosα=15,所以|sinα|>|cosα|, 故tanα=−43, 故选:C3、已知函数f(x)=cos 2ωx 2+√32sinωx −12(ω>0,x ∈R),若函数f(x)在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,512]B .(0,56)C .(0,512]∪[56,1112]D .(0,512]∪(56,1112] 答案:C分析:先化简函数解析式,由π<x <2π得,求得πω+π6<ωx +π6<2πω+π6,利用正弦函数图象的性质可得2πω+π6≤π或{2πω+π6≤2ππω+π6≥π,求解即可. f(x)=cosωx+12+√32sinωx −12=√32sinωx +12cosωx =sin(ωx +π6).由π<x <2π得,πω+π6<ωx +π6<2πω+π6, ∵函数f(x)在区间(π,2π)内没有零点,且πω+π6>π6, ∴2πω+π6≤π或{2πω+π6≤2ππω+π6≥π , 解得0<ω⩽512或56⩽ω⩽1112,则ω的取值范围是(0,512]∪[56,1112].故选:C .4、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( )A .1B .−1C .√32D .−√32答案:A分析:由正弦函数的性质,先求出当y 取得最小值时x 的取值,从而求出tanx . 函数y =√2sin(x +π4),当y 取得最小值时,有x +π4=2kπ+3π2,故x =2kπ+5π4,k ∈Z .∴tanx =tan (2kπ+5π4)=tan (π4)=1,k ∈Z . 故选:A .5、已知tanθ=2,则sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ)=( )A .2B .-2C .0D .23 答案:B分析:根据tanθ=2,利用诱导公式和商数关系求解. 因为tanθ=2, 所以sin(π2+θ)−cos(π−θ)cosθ−sin(π−θ),=2cosθcosθ−sinθ, =21−tanθ=−2,故选:B6、要得到函数y =sin (2x +π6)的图象,可以将函数y =cos (2x −π6)的图象( ) A .向右平移π12个单位长度B .向左平移π12个单位长度C .向右平移π6个单位长度D .向左平移π6个单位长度 答案:A分析:利用诱导公式将平移前的函数化简得到y =sin (2x +π3),进而结合平移变换即可求出结果.因为y =cos (2x −π6)=sin (2x −π6+π2)=sin (2x +π3),而y =sin [2(x −π12)+π3],故将函数y =cos (2x −π6)的图象向右平移π12个单位长度即可, 故选:A. 7、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57. 又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时,sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β) =2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去; 当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误. 8、若tanθ=2,则sinθ(1−sin2θ)sinθ−cosθ=( )A .25B .−25C .65D .−65 答案:A分析:由二倍角正弦公式和同角关系将sinθ(1−sin2θ)sinθ−cosθ转化为含tanθ的表达式,由此可得其值. sinθ(1−sin2θ)sinθ−cosθ=sinθ(sin 2θ+cos 2θ−sin2θ)sinθ−cosθ=sinθ(sinθ−cosθ)2sinθ−cosθ=sin 2θ−sinθcosθsin 2θ+cos 2θ=tan 2θ−tanθtan 2θ+1=25.故选:A. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、下列各式中,值为12的是( )A .cos 2π12−sin 2π12B .tan22.5∘1−tan 222.5∘C .2sin195°cos195°D .√1+cos π62答案:BC分析:运用二倍角公式,结合诱导公式和特殊角的三角函数值的求法即可得到答案. 选项A ,cos 2π12−sin 2π12=cos (2×π12)=cos π6=√32,错误; 选项B ,tan22.5°1−tan 222.5°=12⋅2tan22.5°1−tan 222.5°=12tan45°=12,正确;选项C ,2sin195∘cos195∘=sin390∘=sin (360∘+30∘)=sin30∘=12,正确;选项D ,√1+cos π62=√1+√322=√2+√32,错误.故选:BC.11、(多选)已知θ∈(0,π),sinθ+cosθ=15,则( )A .θ∈(π2,π)B .cosθ=−35 C .tanθ=−34D .sinθ−cosθ=75答案:ABD分析:已知式平方求得sinθcosθ,从而可确定θ的范围,然后求得sinθ−cosθ,再与已知结合求得sinθ,cosθ,由商数关系得tanθ,从而可判断各选项.因为sinθ+cosθ=15①,所以(sinθ+cosθ)2=sin 2θ+2sinθcosθ+cos 2θ=125,所以2sinθcosθ=−2425.又θ∈(0,π),所以sinθ>0,所以cosθ<0,即θ∈(π2,π),故A 正确.(sinθ−cosθ)2=1−2sinθcosθ=4925,所以sinθ−cosθ=75②,故D 正确.由①②,得sinθ=45,cosθ=−35,故B 正确.tanθ=sinθcosθ=−43,故C 错误. 故选:ABD . 填空题12、当θ∈(0,π2)时,若cos (5π6−θ)=−12,则sin (θ+π6)的值为_________.答案:√32##12√3 分析:先由已知条件求出sin (5π6−θ),然后利用诱导公式可求得结果. ∵θ∈(0,π2),∴5π6−θ∈(π3,5π6), ∴sin (5π6−θ)=√1−cos 2(5π6−θ)=√32, ∴sin (θ+π6)=sin [π−(5π6−θ)]=sin (5π6−θ)=√32. 所以答案是:√3213、已知sinα=2cosα,则sin 2α+2sinαcosα=______. 答案:85##1.6分析:根据题意,由同角三角函数关系可得tanα的值,而sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α,最后利用齐次式化成关于tanα的分式即可解.解:由sinα=2cosα,得tanα=sinαcosα=2, 则sin 2α+2sinαcosα1=sin 2α+2sinαcosαsin 2α+cos 2α=tan 2α+2tanαtan 2α+1=22+2×222+1=85.所以答案是:85.14、已知f (x )=sin (ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω=______.答案:143分析:由题意可得函数的图象关于直线x=π4对称,再根据f(x)在区间(π6,π3)上有最小值,无最大值,可得π4ω+π3=2kπ+3π2(k∈Z),由此求得ω的值.依题意,当x=π6+π32=π4时,y有最小值,即sin(π4ω+π3)=−1,则π4ω+π3=2kπ+3π2(k∈Z),所以ω=8k+143(k∈Z).因为f(x)在区间(π6,π3)上有最小值,无最大值,所以π3−π4≤T2=πω,即ω≤12,令k=0,得ω=143.所以答案是:143解答题15、已知函数f(x)=2sinxcosx−2√3sin2x+√3.(1)求函数f(x)的最小正周期及其单调递增区间;(2)当x∈[−π6,π6],时,a−f(x)≤0恒成立,求a的最大值.答案:(1)最小正周期π,单调递增区间为[kπ−5π12,kπ+π12],k∈Z(2)最大值为0分析:(1)根据正弦和余弦的二倍角公式以及辅助角公式即可化简f(x)为f(x)=2sin(2x+π3),然后根据周期公式可求周期,整体代入法求单调增区间,(2)根据x的范围可求2x+π3∈[0,2π3],进而可求f(x)的值域,故可求a的范围.(1)f(x)=2sinxcosx−2√3sin2x+√3=sin2x+√3cos2x=2sin(2x+π3)故函数f(x)的最小正周期T=2π2=π.由2kπ-π2≤2x+π3≤2kπ+π2得kπ−5π12≤x≤kπ+π12(k∈Z).∴函数f(x)的单调递增区间为[kπ−5π12,kπ+π12],k∈Z.(2)∵x∈[−π6,π6],∴2x+π3∈[0,2π3],∴sin (2x +π3)∈[0,1],f (x )=2sin (2x +π3)∈[0,2].由a −f (x )≤0恒成立,得a ≤(f (x ))min ,即a ≤0.故a 的最大值为0.。

2024届全国新高考数学精准复习三角函数知识点总结

2024届全国新高考数学精准复习三角函数知识点总结

千里之行,始于足下。

2024届全国新高考数学精准复习三角函数知识点总结2024届全国新高考数学考试中,三角函数是一个重要的知识点。

以下是三角函数的主要内容和考点总结:1. 基本概念:- 弧度与角度的转换:1弧度=180°/π,1度=π/180弧度。

- 正弦、余弦、正切、余切、正割、余割的定义与关系。

2. 三角函数的图像与性质:- 正弦函数和余弦函数的图像特点:周期为2π,在x轴上的零点为kπ,振幅为1。

- 正切函数的图像特点:周期为π,在x轴上的零点为kπ,无振幅。

- 三角函数的奇偶性:正弦函数是奇函数、余弦函数是偶函数、正切函数是奇函数。

- 三角函数的周期性:正弦、余弦函数的周期为2π,正切函数的周期为π。

3. 三角函数的性质与关系:- 三角函数的基本关系:tanx=sinx/cosx,cotx=1/tanx,secx=1/cosx,cscx=1/sinx。

- 三角函数的倒数关系:sinx=1/cscx,cosx=1/secx,tanx=1/cotx。

- 三角函数的平方关系:sin^2x+cos^2x=1,1+tan^2x=sec^2x,1+cot^2x=csc^2x。

4. 三角函数的性质与特殊值:- 正弦函数和余弦函数的取值范围:-1≤sinx≤1,-1≤cosx≤1。

第1页/共2页锲而不舍,金石可镂。

- 正切函数和余切函数的取值范围:tanx属于R,cotx属于R。

- 三角函数的特殊值:sin0=0,cos0=1,sin90°=1,cos90°=0,tan45°=1,cot45°=1。

5. 三角函数的解析式与性质:- sin(x±y)=sinxcosy±cosxsiny。

- cos(x±y)=cosxcosy∓sinxsiny。

- tan(x±y)=(tanx±tany)/(1∓tanxtany)。

((完整版))高中数学三角函数知识点总结和常见题类型归纳,推荐文档

((完整版))高中数学三角函数知识点总结和常见题类型归纳,推荐文档

高中数学三角函数常见习题类型及解法高考试题中出现的三角函数问题,难度相对较低,重点突出。

该类试题集中在第15题的位置,共分为两种考察形式:解三角形和三角函数变换。

因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质,以及化简、求函数值和最值等重点内容的复习;又要注重三角知识的工具性,突出三角与代数、几何的综合联系,以及三角知识的应用意识。

一、知识整合1.熟练掌握三角变换公式,理解每个公式的含义以及常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能灵活应用这些方法进行三角函数的求值、化简;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题。

2.熟练掌握正弦函数、余弦函数、正切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数的图象特点,会用五点作图法画出函数y=Asin( x+ )的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化。

3.熟练掌握三角形中的正弦定理和余弦定理,明确两个定理的应用条件。

能够依托题目给的不同已知条件,灵活运用两个定理解决实际问题。

二、高考考点分析近些年北京高考中本部分所占分值大约是13-18分,主要以解答题的形式出现,少数时候会有填空题。

主要考察内容按难度分,我认为有以下两个层次:第一层次:通过对诱导公式和倍角公式等公式的灵活运用,解决有关三角函数基本性质的问题,如判断符号、求值、求周期、判断奇偶性等;通过正弦定理和余弦定理的灵活运用,解决有关三角形的简单问题,如求角、边长等。

第二层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题,如:求复合函数值域。

三、方法技巧(1)常数的代换:特别是:1=cos2θ+sin2θ。

(2)项的分拆与角的配凑。

(3)降幂扩角法和升幂半角法。

部编版高中数学必修一第五章三角函数带答案知识点总结全面整理

部编版高中数学必修一第五章三角函数带答案知识点总结全面整理

(名师选题)部编版高中数学必修一第五章三角函数带答案知识点总结全面整理单选题1、函数f(x)=sin (2x −π3)的一个对称中心的坐标是( ) A .(0,0)B .(0,−√32)C .(π2,0)D .(π6,0) 2、已知tanα=−2,则2sinα+cosαcosα−sinα=( )A .−4B .−12C .−1D .−13 3、已知sinαcosα=12,则tanα+1tanα的值为( )A .12B .−12C .−2D .24、已知函数y =√2sin(x +π4),当y 取得最小值时,tanx 等于( ) A .1B .−1C .√32D .−√325、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .36、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π37、sin (3π2+α)=( )A .sinαB .−sinαC .cosαD .−cosα8、函数f (x )=2sin (ωx +φ)(ω>0)图像上一点P (s,t )(−2<t <2)向右平移2π个单位,得到的点Q 也在f (x )图像上,线段PQ 与函数f (x )的图像有5个交点,且满足f (π4−x)=f (x ),f (−π2)>f (0),若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为( ) A .(−2,−√2]B .[−2,−√2]C .[√2,2)D .[√2,2]多选题9、已知函数f(x)=3sin(ωx +π3)(ω>0)的图象对称轴与对称中心的最小距离为π4,则下列结论正确的是( )A .f(x)的最小正周期为2πB .f(x)的图象关于(−π6,0)对称 C .f(x)在(−5π12,π12)上单调递减 D .f(x)的图象关于直线x =7π12对称 10、下列不等式中成立的是( ) A .sin1<sin π3B .cos2π3>cos2C .cos (−70∘)>sin18∘D .sin4π5>sin17π611、已知函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,则( ) A .函数f (x +π12)为偶函数B .函数f(x)在[π12,π6]上单调递增C .若|f (x 1)−f (x 2)|=2,则|x 1−x 2|的最小值为π3D .将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(x +φ)的图象 填空题12、若sin (θ+π8)=13,则sin (2θ−π4)=________.13、若cosα=−35, α为第二象限的角,则sin(π−α)=__________.部编版高中数学必修一第五章三角函数带答案(四十二)参考答案1、答案:D分析:解方程2x−π3=kπ,k∈Z即得解.解:令2x−π3=kπ,k∈Z,∴x=12kπ+π6,令k=0,∴x=π6,所以函数f(x)=sin(2x−π3)的一个对称中心的坐标是(π6,0).故选:D2、答案:C分析:利用齐次化可求三角函数式的值.2sinα+cosαcosα−sinα=2tanα+11−tanα=−4+11−(−2)=−1,故选:C.3、答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果.∵sinαcosα=12,∴tanα+1tanα=sinαcosα+cosαsinα=sin2α+cos2αsinαcosα=112=2,故选:D.4、答案:A分析:由正弦函数的性质,先求出当y取得最小值时x的取值,从而求出tanx.函数y=√2sin(x+π4),当y取得最小值时,有x+π4=2kπ+3π2,故x=2kπ+5π4,k∈Z.∴tanx=tan(2kπ+5π4)=tan(π4)=1,k∈Z.故选:A.5、答案:B分析:根据f(π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B 6、答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3),∵y =2sin (x +m +π3)图象关于原点对称,∴m +π3=kπ(k ∈Z ),解得:m =−π3+kπ(k ∈Z ),又m >0, ∴当k =1时,m 取得最小值2π3. 故选:D. 7、答案:D分析:利用诱导公式sin (π+α)=−sinα,sin (π2+α)=cos α代入计算. sin (3π2+α)=sin (π+π2+α)=−sin (π2+α)=−cos α. 故选:D . 8、答案:A分析:首先根据已知条件分析出|PQ |=2π=2T ,可得ω=2,再由f (π4−x)=f (x )可得y =f (x )对称轴为x =π8,利用f (−π2)>f (0)可以求出符合题意的一个φ的值,进而得出f (x )的解析式,再由数形结合的方法求a 的取值范围即可.如图假设P(0,0),线段PQ与函数f(x)的图像有5个交点,则|PQ|=2π,所以由分析可得|PQ|=2π=2T,所以T=π,可得ω=2πT =2ππ=2,因为f(π4−x)=f(x)所以f[π4−(π8+x)]=f(π8+x),即f(π8−x)=f(π8+x),所以x=π8是f(x)的对称轴,所以2×π8+φ=π2+kπ(k∈Z),即φ=π4+kπ(k∈Z),f(−π2)=2sin(−π+φ)=−2sinφ>f(0)=2sinφ,所以sinφ<0,可令k=−1得φ=−3π4,所以f(x)=2sin(2x−3π4),当x∈[0,π2]时,令2x−3π4=t∈[−3π4,π4],则f(t)=2sint,t∈[−3π4,π4]作f(t)图象如图所示:当t=−3π4即x=0时y=−√2,当t=−π2即x=π8时,y=−2,由图知若y =f (x ),x ∈[0,π2]与y =a 有两个交点,则a 的取值范围为(−2,−√2], 故选:A小提示:关键点点睛:本题解题的关键是取特殊点P (0,0)便于分体问题,利用已知条件结合三角函数图象的特点,以及三角函数的性质求出f (x )的解析式,再利用数形结合的思想求解a 的取值范围. 9、答案:BD分析:先利用f(x)的图象对称轴与对称中心的最小距离和周期的关系求出ω值,再利用整体思想求其周期、单调性和对称轴.因为f(x)的图象对称轴与对称中心的最小距离为π4,所以T 4=π4,即T =π,即选项A 错误; 由T =2πω=π,得ω=2,即f(x)=3sin(2x +π3),因为f(−π6)=3sin(−π3+π3)=3sin0=0,所以f(x)的图象关于(−π6,0)对称,即选项B 正确; 当−5π12<x <π12时,则−π2<2x +π3<π2,所以f(x)=3sin(2x +π3)在(−5π12,π12)上单调递增,即选项C 错误;因为f(7π12)=3sin(7π6+π3)=3sin 3π2=−3,所以f(x)的图象关于直线x =7π12对称,即选项D 正确. 故选:BD. 10、答案:ACD分析:结合诱导公式,根据y =sinx 和y =cosx 的单调性依次判断各个选项即可得到结果. 对于A ,∵y =sinx 在(0,π2)上单调递增,又0<1<π3<π2,∴sin1<sin π3,A 正确; 对于B ,∵y =cosx 在(π2,π)上单调递减,又π2<2<2π3<π,∴cos2π3<cos2,B 错误;对于C ,∵cos (−70∘)=cos70∘=sin20∘,又sin20∘>sin18∘,∴cos (−70∘)>sin18∘,C 正确; 对于D ,∵sin4π5=sin (π−π5)=sin π5,sin17π6=sin (3π−π6)=sin π6,又sin π6<sin π5,∴sin 4π5>sin17π6,D 正确.故选:ACD. 11、答案:BC分析:根据函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称,由3×π4+φ=kπ+π2,k ∈Z 求得函数的解析式,再逐项判断.因为函数f(x)=sin(3x +φ)(−π2<φ<π2)的图象关于直线x =π4对称, 所以3×π4+φ=kπ+π2,k ∈Z ,即φ=kπ−π4,k ∈Z , 又因为−π2<φ<π2,则φ=−π4, 所以f(x)=sin(3x −π4),A.函数f (x +π12)=sin(3(x +π12)−π4)=sin3x 为奇函数,故错误;B. 因为x ∈[π12,π6],则3x −π4∈[0,π4],又y =sinx 在[0,π4]上递增,所以函数f(x)在[π12,π6]上单调递增,故正确; C. T =2π3因为|f (x 1)−f (x 2)|=2,则f (x 1),f (x 2) 分别为函数的最大值和最小值,则|x 1−x 2|的最小值为T 2=π3,故正确;D.将函数f(x)图象上所有点的横坐标缩小为原来的13,得到函数y =sin(9x −π4)的图象,故错误; 故选:BC 12、答案:−79分析:由题知2(θ+π8)−π2=(2θ−π4),进而根据诱导公式与二倍角公式求解即可.解:因为2(θ+π8)−(2θ−π4)=π2,所以sin (2θ−π4)=sin [2(θ+π8)−π2]=−cos [2(θ+π8)] =2sin 2(θ+π8)−1=2×(13)2−1=−79. 所以答案是:−7913、答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α).,α为第二象限的角,∵cosα=−35,∴sinα=√1−cos2α=45∴sin(π−α)=sinα=4.5.所以答案是:45小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题.。

新高考三角函数知识点归纳总结

新高考三角函数知识点归纳总结

新高考三角函数知识点归纳总结三角函数在新高考数学考试中扮演着重要的角色。

掌握三角函数的相关知识点,不仅可以帮助我们解决各类与角度、长度及图形性质相关的问题,还能够为以后的高等数学学习打下坚实的基础。

本文将对新高考中的三角函数知识点进行归纳总结,以帮助同学们更好地复习和应对考试。

一、三角函数的基本概念和性质三角函数包括正弦函数、余弦函数和正切函数,它们都是角的函数,表示角与某一边的长度的比值。

1. 正弦函数(sin):在直角三角形中,正弦值等于对边与斜边的比值,即sin(A) = a/c。

2. 余弦函数(cos):在直角三角形中,余弦值等于邻边与斜边的比值,即cos(A) = b/c。

3. 正切函数(tan):在直角三角形中,正切值等于对边与邻边的比值,即tan(A) = a/b。

此外,我们还需了解三角函数在单位圆上的定义和性质:4. 单位圆的角度:单位圆的半径为1,角度以弧度制表示,其中360°等于2π弧度。

5. 弧度与角度的转换关系:1弧度约等于57.3°,即1弧度≈ 57.3°。

6. 三角函数的周期性:正弦函数和余弦函数的周期为2π,而正切函数的周期为π。

二、三角函数的基本关系及推导1. 三角函数之间的基本关系:根据三角恒等式,我们可以推导出三角函数之间的基本关系。

例如,sin²A + cos²A = 1,tanA = sinA/cosA等。

2. 三角函数的和差化积公式:通过和差化积公式,我们可以将两个三角函数的和差表示为一个三角函数的乘积。

三、三角函数的图像和性质1. 正弦函数的图像和性质:正弦函数的图像是一条连续的波浪线,振幅为1,在0~2π的区间内周期性重复。

2. 余弦函数的图像和性质:余弦函数的图像也是一条连续的波浪线,振幅为1,在0~2π的区间内周期性重复,与正弦函数的图像相位差90°。

3. 正切函数的图像和性质:正切函数的图像有无数个渐近线,它在每个π的整数倍处有一个垂直渐近线,且在每个π/2的整数倍处有一个水平渐近线。

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)

高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。

高中数学第五章三角函数重点知识点大全(带答案)

高中数学第五章三角函数重点知识点大全(带答案)

高中数学第五章三角函数重点知识点大全单选题1、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( ) A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3,于是tan (α+π4)=tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.2、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解.由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A3、记函数f(x)=sin (ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f (π2)=( ) A .1B .32C .52D .3答案:A分析:由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2,所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin (52x +π4)+2, 所以f (π2)=sin (54π+π4)+2=1. 故选:A4、已知tanα=cosα2−sinα,则sinα=( ) A .√154B .12C .√32D .14答案:B分析:利用田家四季歌的基本关系得到sinαcosα=cosα2−sinα,整理可得2sinα=cos 2α+sin 2α,再根据平方关系计算可得;解:由tanα=cosα2−sinα,得sinαcosα=cosα2−sinα,即cos 2α=2sinα−sin 2α,∴2sinα=cos 2α+sin 2α=1, 解得sinα=12, 故选:B.5、已知sinαcosα=−16,π4<α<3π4,则sinα−cosα的值等于( )A .2√33B .−2√33C .−√63D .43答案:A分析:结合同角三角函数的基本关系式,利用平方的方法求得正确结论. 由于sinαcosα=−16,π4<α<3π4,所以sinα>0,cosα<0,故sinα−cosα>0,所以sinα−cosα=√(sinα−cosα)2=√1−2sinαcosα=√1+13=2√33. 故选:A6、√3tan26∘tan34∘+tan26∘+tan34∘= ( ) A .√33B .−√3C .√3D .−√33答案:C解析:利用两角和的正切公式,特殊角的三角函数值化简已知即可求解.解:√3tan26°tan34°+tan26°+tan34°=√3tan26°tan34°+tan(26°+34°)(1−tan26°tan34°)=√3tan26°tan34°+√3(1−tan26°tan34°) =√3tan26°tan34°+√3−√3tan26°tan34°=√3. 故选:C .7、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( ) A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题.8、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π3答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3),∵y=2sin(x+m+π3)图象关于原点对称,∴m+π3=kπ(k∈Z),解得:m=−π3+kπ(k∈Z),又m>0,∴当k=1时,m取得最小值2π3.故选:D.多选题9、已知tanθ=2,则下列结论正确的是()A.tan(π−θ)=−2B.tan(π+θ)=−2C.sinθ−3cosθ2sinθ+3cosθ=−17D.sin2θ=45答案:ACD分析:对于A,B利用诱导公式可求解;对于C,D利用齐次式化简可判断. 对于A选项,tan(π−θ)=−tanθ=−2,故A选项正确;对于B选项,tan(π+θ)=tanθ=2,故B选项错误;对于C选项,sinθ−3cosθ2sinθ+3cosθ=tanθ−32tanθ+3=2−34+3=−17,故C选项正确;对于D选项,sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=44+1=45,故D选项正确.故选:ACD10、下列选项中,与sin(−330∘)的值相等的是()A.2cos215∘B.cos18∘cos42∘−sin18∘sin42∘C.2sin15∘sin75∘D.tan30∘+tan15∘+tan30∘tan15∘答案:BC分析:求出sin(−330∘)的值以及各选项中代数式的值,由此可得出合适的选项.sin(−330∘)=sin(360∘−330∘)=sin30∘=12.对于A选项,2cos215∘=2×1+cos30∘2=1+cos30∘=1+√32;对于B选项,cos18∘cos42∘−sin18∘sin42∘=cos(18∘+42∘)=cos60∘=12;对于C选项,2sin15∘sin75∘=2sin15∘sin(90∘−15∘)=2sin15∘cos15∘=sin30∘=12;对于D选项,∵tan45∘=tan(30∘+15∘)=tan30∘+tan15∘1−tan30∘tan15∘=1,化简可得tan30∘+tan15∘+tan30∘tan15∘=1.故选:BC.11、已知tanα=4,tanβ=−14,则( )A .tan(−α)tanβ=1B .α为锐角C .tan(β+π4)=35D .tan2α=tan2β 答案:ACD分析:由诱导公式可判断A ,由正切函数的定义可判断B ,由正切函数的两角和公式可判断C ,由二倍角公式可判断D.对于A ,∵tanα=4,tanβ=−14,∴tan(−α)tanβ=−tanαtanβ=1,故A 正确;对于B ,∵tanα=4>0,∴α为第一象限角或第三象限角,故B 错误; 对于C ,∵tanβ=−14,∴tan(β+π4)=1+tanβ1−tanβ=35,故C 正确;对于D ,∵tanα=4,tanβ=−14,∴tan2α=2tanα1−tan 2α=2×41−42=−815,tan2β=2×(−14)1−(−14)2=−815,故D 正确.故选:ACD12、设α是第三象限角,则α2所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:BD解析:用不等式表示第三象限角α,再利用不等式的性质求出α2满足的不等式,从而确定α2的终边所在的象限.∵α是第三象限角,∴k ⋅360°+180°<α<k ⋅360°+270°,k ∈Z , 则k ⋅180°+90°<α2<k ⋅180°+135°,k ∈Z ,令k =2n ,n ∈Z 有n ⋅360°+90°<α2<n ⋅360°+135°,n ∈Z ;在二象限;k =2n +1,n ∈z , 有n ⋅360°+270°<α2<n ⋅360°+315°,n ∈Z ;在四象限;故选:B D .小提示:本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限,属于容易题.13、下列化简正确的是A.tan(π+1)=tan1B.sin(−α)tan(360∘−α)=cosαC.sin(π−α)cos(π+α)=tanαD.cos(π−α)tan(−π−α)sin(2π−α)=1答案:AB解析:利用诱导公式,及tanα=sinαcosα,依次分析即得解利用诱导公式,及tanα=sinαcosαA选项:tan(π+1)=tan1,故A正确;B选项:sin(−α)tan(360o−α)=−sinα−tanα=sinαsinαcosα=cosα,故B正确;C选项:sin(π−α)cos(π+α)=sinα−cosα=−tanα,故C不正确;D选项:cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−cosα⋅sinαcosαsinα=−1,故D不正确故选:AB小提示:本题考查了诱导公式和同角三角函数关系的应用,考查了学生概念理解,转化划归,数学运算能力,属于基础题.填空题14、已知函数f(x)=3sin(ωx+π6)(ω>0)在(0,π12)上单调递增,则ω的最大值是____.答案:4分析:根据正弦型函数的单调性即可求解.由函数f(x)=3sin(ωx+π6)(ω>0)在区间(0,π12)上单调递增,可得ω⋅π12+π6≤π2,求得ω≤4,故ω的最大值为4,所以答案是:415、已知f(x)=2sin(2x+π3),若∃x1,x2,x3[0,3π2],使得f(x1)=f(x2)=f(x3),若x1+x2+x3的最大值为M,最小值为N,则M+N=___________.答案:23π6分析:作出f(x)在[0,3π2]上的图象,x1,x2,x3为f(x)的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒作出f(x)=2sin(2x+π3)在[0,3π2]上的图象(如图所示)因为f(0)=2sinπ3=√3,f(3π2)=2sin(π+π3)=−√3,所以当f(x)的图象与直线y=√3相交时,由函数图象可得,设前三个交点横坐标依次为x1、x2、x3,此时和最小为N,由2sin(2x+π3)=√3,得sin(2x+π3)=√32,则x1=0,x2=π6,x3=π,N=7π6;当f(x)的图象与直线y=−√3相交时,设三个交点横坐标依次为x1、x2、x3,此时和最大为M,由2sin(2x+π3)=−√3,得sin(2x+π3)=−√32,则x1+x2=7π6,x3=3π2,M=8π3;所以M+N=23π6.所以答案是:23π6.16、已知角α终边落在直线y=34x上,求值:sinα+1cosα=_______.答案:2或−12解析:由题意利用任意角的三角函数的定义,同角三角函数的基本关系,分类讨论,分别求得sinα和cosα的值,可得要求式子的值.解:当角α终边落在直线y =34x(x ⩾0)上,α为锐角,sinαcosα均为正值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=35,cosα=45, 则sinα+1cosα=35+145=2.当角α终边落在直线y =34x(x <0)上,α∈(π,3π2),sinαcosα均为负值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=−35,cosα=−45, 则sinα+1cosα=−35+1−45=−12,所以答案是:2或−12.小提示:本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,考查运算能力,属于基础题. 解答题17、已知0<α<π2,cos (α+π4)=13.(1)求sinα的值;(2)若−π2<β<0,cos (β2−π4)=√33,求α−β的值.答案:(1)4−√26(2)α−β=π4分析:(1)利用同角三角函数的基本关系结合两角差的正弦公式可求得sinα的值;(2)利用二倍角的余弦公式可求得sinβ的值,利用同角三角函数的基本关系以及两角差的余弦公式求出cos (α−β)的值,结合角α−β的取值范围可求得结果. (1)解:因为0<α<π2,∴π4<α+π4<3π4,又cos(α+π4)=13,所以sin(α+π4)=√1−(13)2=2√23,所以sinα=sin[(α+π4)−π4]=sin(α+π4)cosπ4−cos(α+π4)cosπ4=√22(2√23−13)=4−√26.(2)解:因为cos(β2−π4)=√33,sinβ=cos(β−π2)=cos[2(β2−π4)]=2cos2(β2−π4)−1=2×13−1=−13,又因为−π2<β<0,所以cosβ=√1−sin2β=2√23,由(1)知,cosα=cos[(α+π4)−π4]=cos(α+π4)cosπ4+sin(α+π4)sinπ4=4+√26,所以cos(α−β)=cosαcosβ+sinαsinβ=4+√26×2√23+4−√26×(−13)=√22.因为0<α<π2,−π2<β<0,则0<α−β<π,所以α−β=π4.18、已知函数f(x)=2sinxsin(π3−x)+2cos2x−12.(1)求函数f(x)的单调增区间;(2)当x∈(−π6,π4)时,函数g(x)=f2(x)−2mf(x)+m2−116有四个零点,求实数m的取值范围.答案:(1)[kπ−5π12,kπ+π12],k∈Z(2)2√3+14<m<4√3−14分析:(1)化简f(x)的解析式,根据正弦函数的增区间可得结果;(2)转化为ℎ(t)=t2−2mt+m2−116在(√32,√3)内有两个零点,根据二次函数列式可得结果.(1)f(x)=2sinxsin(π3−x)+2cos2x−12=2sinx(sinπ3cosx−cosπ3sinx)+1+cos2x−12 =√3sinxcosx−sin2x+1+cos2x−12=√32sin2x+cos2x+cos2x−12=√32sin2x+1+cos2x2+cos2x−12=√32sin2x+32cos2x=√3sin(2x +π3),由2kπ−π2≤2x +π3≤2kπ+π2,k ∈Z , 得kπ−512π≤x ≤kπ+π12,k ∈Z ,所以函数f (x )的单调增区间为[kπ−5π12,kπ+π12],k ∈Z . (2)当x ∈(−π6,π4)时,2x +π3∈(0,5π6),f(x)=√3sin(2x +π3)∈(0,√3],因为函数g (x )=f 2(x )−2mf (x )+m 2−116有四个零点,令t =f(x),则t ∈(0,√3)且ℎ(t)=t 2−2mt +m 2−116在(√32,√3)内有两个零点, 所以{Δ=4m 2−4(m 2−116)>0√32<m <√3ℎ(√32)>0ℎ(√3)>0,即{ √32<m <√334−√3m +m 2−16>03−2√3m +m 2−16>0,解得{√32<m <√3m 〈2√3−14或m 〉2√3+14m 〈4√3−14或m 〉4√3+14,解得2√3+14<m <4√3−14,所以实数m 的取值范围是2√3+14<m <4√3−14. 小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结

(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。

- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。

即:sinA = 对边/斜边。

- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。

即:cosA = 邻边/斜边。

- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。

即:tanA = 对边/邻边。

2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

- 三角函数的同角关系:sinA/cosA = tanA。

- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。

3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。

- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。

- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。

4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。

- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。

以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。

高中数学三角函数知识点及试题总结

高中数学三角函数知识点及试题总结

高考三角函数1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=3.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。

r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy (2)各象限的符号:sin α cos α tan αxy+O— —+x yO — +— +y O— + + —5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。

(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式: 降幂公式: 1+cos α=2cos 22αcos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-= 9.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(完整版)高中数学三角函数复习专题

(完整版)高中数学三角函数复习专题

高中数学三角函数复习专题一、知识点整理 :1、角的看法的推行:正负,范围,象限角,坐标轴上的角;2、角的会集的表示:①终边为一射线的角的会集:x x2k, k Z=|k 360o, k Z②终边为向来线的角的会集:x x k, k Z;③两射线介定的地域上的角的会集:x 2k x2k, k Z④两直线介定的地域上的角的会集:x k x k, k Z;3、任意角的三角函数:(1)弧长公式: l a R R 为圆弧的半径,a为圆心角弧度数, l 为弧长。

(2)扇形的面积公式:S 1lR R 为圆弧的半径, l 为弧长。

2(3)三角函数定义:角中边上任意一点 P 为 ( x, y) ,设 | OP |r 则:sin y, cos x ,tan y r= a 2b2 r r x反过来,角的终边上到原点的距离为r 的点P的坐标可写为:P r cos, r sin 比如:公式 cos()cos cossin sin的证明(4)特别角的三角函数值α032 64322sin α012310-10222cosα13210-101222tan α0313不存不存0 3在在(5)三角函数符号规律:第一象限全正,二正三切四余弦。

(6)三角函数线:(判断正负、比较大小,解方程或不等式等)y T 如图,角的终边与单位圆交于点P,过点 P 作 x 轴的垂线,P 垂足为 M ,则Ao 过点 A(1,0)作 x 轴的切线,交角终边OP 于点 T,则M x。

(7)同角三角函数关系式:①倒数关系: tana cot a 1sin a ②商数关系: tan acosa③平方关系: sin 2 a cos2 a1( 8)引诱公试sin cos tan三角函数值等于的同名三角函数值,前方-- sin+ cos- tan加上一个把看作锐角时,原三角函数值的- tan-+ sin- cos符号;即:函数名不变,符号看象限+- sin- cos+ tan2-- sin+ cos- tan2k++ sin+ cos+ tansin con tan2+ cos+ sin+ cot三角函数值等于的异名三角函数值,前方2+ cos- sin- cot加上一个把看作锐角时,原三角函数值的3- cos- sin+ cot2符号 ;3- cos+ sin- cot2即:函数名改变,符号看象限 : sin x cos x cos x比方444cos x sin x444.两角和与差的三角函数:(1)两角和与差公式:cos() cos a cos sin a sin sin( a) sin a coscosa sintan a(atan a tan注:公式的逆用也许变形)1 tan a tan.........(2)二倍角公式:sin 2a 2sin acosa cos 2a cos2 a sin 2 a12 sin2 a 2 cos2 a 12 tan atan 2a1 tan2 a(3)几个派生公式:①辅助角公式:a sinx bcosx a2b2 sin(x)a22 cos()b x比方: sinα± cosα= 2 sin4= 2 cos4.sinα±3 cosα= 2sin3=2cos3等.②降次公式: (sin cos) 21sin 2cos21cos2,sin 21cos222③ tan tan tan()(1 tan tan)5、三角函数的图像和性质:(此中 k z )三角函数y sin x定义域(- ∞, +∞)值域[-1,1]最小正周期T2奇偶性奇[ 2k,2k]22单调性单调递加[ 2k,2k3 ]22单调递减x k对称性2(k ,0)零值点x ky cosx(- ∞, +∞)[-1,1]T 2偶[( 2k 1) ,2k ]单调递加[( 2k , (2k 1) ]单调递减x k(k,0)2x k2y tan xx k2(-∞,+∞)T奇(k,k)22单调递加k(,0)x kx k2x 2 k,最值点y max1ymax 1;无x k2x(2k 1) ,y min1y min1 6、 .函数y Asin( x) 的图像与性质:(本节知识观察一般能化成形如y Asin( x) 图像及性质)( 1)函数 y Asin( x) 和 y Acos( x2 ) 的周期都是T( 2)函数y A tan( x) 和 y Acot( x) 的周期都是T( 3)五点法作y Asin( x) 的简图,设t x,取0、、、3、2来求相应x22的值以及对应的y 值再描点作图。

高中数学第五章三角函数知识点归纳超级精简版(带答案)

高中数学第五章三角函数知识点归纳超级精简版(带答案)

高中数学第五章三角函数知识点归纳超级精简版单选题1、所有与角α的终边相同的角可以表示为k⋅360°+α(k∈Z),其中角α()A.一定是小于90°的角B.一定是第一象限的角C.一定是正角D.可以是任意角答案:D分析:由终边相同的角的表示的结论的适用范围可得正确选项.因为结论与角α的终边相同的角可以表示为k⋅360°+α(k∈Z)适用于任意角,所以D正确,故选:D.2、已知函数f(x)=sin2x+2√3sinxcosx−cos2x,x∈R,则()A.f(x)的最大值为1B.f(x)在区间(0,π)上只有1个零点C.f(x)的最小正周期为π2D.x=π3为f(x)图象的一条对称轴答案:D分析:首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;解:函数f(x)=sin2x+2√3sinxcosx−cos2x=√3sin2x−cos2x=2(√32sin2x−12cos2x)=2sin(2x−π6),可得f(x)的最大值为2,最小正周期为T=2π2=π,故A、C错误;由f(x)=0可得2x−π6=kπ,k∈Z,即x=kπ2+π12,k∈Z,可知f(x)在区间(0,π)上的零点为π12,7π12,故B错误;由f(π3)=2sin(2π3−π6)=2,可知x=π3为f(x)图象的一条对称轴,故D正确.故选:D3、某公园有一摩天轮,其直径为110米,逆时针匀速旋转一周所需时间约为28分钟,最高处距离地面120米,能够看到方圆40公里以内的景致.某乘客观光3分钟时看到一个与其视线水平的建筑物,试估计建筑物多高?()(参考数据:√2≈1.414,√3≈1.732) A .50B .38C .27D .15 答案:C分析:作出简图,求出3分钟走过的角度,从而求出三分钟后距摩天轮最低点的高度,进而求出建筑物的高度.设走了3分钟到达B (如图所示),走过的圆心角为θ=2π×328=3π14,OE =Rcos 3π14=55cos 3π14, 因为π6<3π14<π4 ,所以√22<cos 3π14<√32, 所以38.885<55cos 3π14<47.63所以AE =55−55cos3π14∈(7.73,21.145),所以建筑物的高度:55(1−cos 3π14)+10∈(17.73,31.145)故选:C4、三个数cos 32,sin 110,sin 74的大小关系是( ) A .cos 32>sin110>sin 74B .cos 32>sin 74>sin 110C .cos 32<sin 110<sin 74D .sin 74>cos 32>sin 110 答案:C分析:诱导公式化余弦为正弦,然后由正弦函数的单调性比较大小.cos32=sin(π2−32),sin74=sin(π−74).∵π2−32≈0.07,110=0.1,π−74≈1.39,∴π2>π−74>π2−32>0.又∵y=sinx在(0,π2)上是增函数,∴cos32<sin110<sin74.故选:C.5、海水受日月的引力,在一定的时候发生涨落的现象叫潮汐.一般早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋.下面是某港口在某季节每天的时间与水深值(单位:m)记录表的距离)为4m,安全条例规定至少要有2m的安全间隙(船底与海底的距离),该船计划在中午12点之后按规定驶入港口,并开始卸货,卸货时,其吃水深度以每小时0.25m的速度减小,4小时卸完,则其在港口最多能停放()A.4小时B.5小时C.6小时D.7小时答案:B分析:由已知表格中数据求得f(x)=2sinπ6x+5,根据驶入港口f(x)大于等于6,离开时f(x)大于等于5,分析即可得答案.由表格中的数据可知,f(x)max=7,f(x)min=3,则A=f(x)max−f(x)min2=7−32=2,B=f(x)max+f(x)min2=7+32=5.由T=12,∴ω=2πT =π6,故f(x)=2sin(π6x+φ)+5,当x=3时,f(x)=7,则2sin(π6x+φ)+5=7∴2cosφ=2,即cosφ=1,得.∴f(x)=2sinπ6x+5.由f(x)=2sinπ6x+5=6,得sinπ6x=12,ϕ=即π6x =π6+2kπ,k ∈Z 或π6x =5π6+2kπ,k ∈Z∴x =12k +1,k ∈Z 或x =12k +5,k ∈Z . 又该船计划在中午12点之后按规定驶入港口, ∴k =1时,x =13,即该船应在13点入港并开始卸货,卸货时,其吃水深度以每小时0.25m 的速度减小,4小时卸完,卸完后的吃水深度为4−0.25×4=3, 所以该货船需要的安全水深为3+2=5米,由f (x )=2sin π6x +5=5,得sin π6x =0,即π6x =0+2kπ,k ∈Z 或π6x =π+2kπ,k ∈Z∴x =12k,k ∈Z 或x =12k +6,k ∈Z .所以可以停留到18点,此时水深为5米,货船需要离港,则其在港口最多能停放5小时. 故选:B6、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +rsin∠BPO =5,所以r +rsin1=5, 所以r =5sin11+sin1,故选:C.7、已知α ∈(0,π2),2sin2α=cos2α+1,则sinα= A .15B .√55C .√33D .2√55答案:B分析:利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. ∵2sin2α=cos2α+1,∴4sinα⋅cosα=2cos 2α.∵α∈(0,π2),∴cosα>0.sinα>0,∴sinα=cosα,又sin 2α+cos 2α=1,∴5sin 2α=1,sin 2α=15,又sinα>0,∴sinα=√55,故选B .小提示:本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉. 8、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( )A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3,于是tan (α+π4)=tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C. 多选题9、若α是第二象限的角,则下列各式中成立的是( ) A .tanα=−sinαcosαB .√1−2sinαcosα=sinα−cosαC .cosα=−√1−sin 2αD .√1+2sinαcosα=sinα+cosαE .sinα=−√1−cos 2α 答案:BC解析:利用sin 2α+cos 2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A ,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A 错;对B ,C ,D ,E ,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B ,C 正确;D ,E 错. 故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力. 10、如图是函数y =Asin(ωx +φ)(x ∈R)在区间[−π6,5π6]上的图象.为了得到这个函数的图象,只要将y =sinx(x ∈R)的图象上所有的点( ).A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变 B .向左平移π6个单位长度,再把所得各点的横坐标仲长到原来的12,纵坐标不变C .把所得各点的横坐标缩短到原来的12,纵坐标不变,再向左平移π6个单位长度 D .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案:AC分析:先根据图象求函数解析式,应先观察图象,确定“振幅”“周期”,再通过计算求φ,再借助图象变换规则即可得出结果.由图象知,A=1,T=π,所以ω=2,y=sin (2x+φ),将(−π6,0)代入得:sin(φ−π3)=0,所以φ−π3=kπ,k ∈z ,取φ=π3,得y=sin (2x+π3),y =sinx 向左平移π3,得y =sin (x +π3).然后各点的横坐标缩短到原来的12,得y =sin (2x +π3).故A 正确. y =sinx 各点的横坐标缩短到原来的12,得y =sin2x .然后向左平移π6个单位,得y =sin2(x +π6)=sin (2x +π3).故C 正确.故选:AC小提示:本题主要考查了三角函数的图象变换及三角函数性质,图象的伸缩变换的规律:(1)把函数y =f (ωx )的图像向左平移ℎ(ℎ>0)个单位长度,则所得图像对应的解析式为y =f [ω(x +ℎ)],遵循“左加右减”;(2)把函数y =f (x )图像上点的纵坐标保持不变,横坐标变为原来的ω倍(ω>0),那么所得图像对应的解析式为y =f (1ωx),属于中档题.11、(多选题)已知tan 2x −2tan 2y −1=0,则下列式子成立的是( )A .sin 2y =2sin 2x +1B .sin 2y =−2sin 2x −1C .sin 2y =2sin 2x −1D .sin 2y =1−2cos 2x 答案:CD解析:对原式进行切化弦,整理可得:sin 2x ⋅cos 2y −2sin 2y ⋅cos 2x =cos 2y ⋅cos 2x ,结合因式分解代数式变形可得选项.∵tan 2x −2tan 2y −1=0, sin 2xcos 2x −2⋅sin 2ycos 2y −1=0,整理得sin 2x ⋅cos 2y −2sin 2y ⋅cos 2x =cos 2y ⋅cos 2x ,∴(1−cos 2x )(1−sin 2y )−sin 2y ⋅cos 2x =(cos 2y +sin 2y )cos 2x , 即1−cos 2x −sin 2y +sin 2y ⋅cos 2x −sin 2y ⋅cos 2x =cos 2x , 即sin 2y =1−2cos 2x =2sin 2x −1,∴C 、D 正确. 故选:CD小提示:此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.12、下列化简正确的是()A.tan(π+1)=tan1B.sin(−α)tan(360°−α)=cosαC.sin(π−α)cos(π+α)=tanαD.cos(π−α)tan(−π−α)sin(2π−α)=1E.若θ∈(π2,π),则√1−2sin(π+θ)sin(3π2−θ)=sinθ−cosθ答案:ABE解析:根据三角函数的诱导公式及同角三角函数关系,对A,B,C,D,E五个选项进行化简即可求出答案. 对于A,根据三角函数的诱导公式可知,故A正确;对于B,sin(−α)tan(360°−α)=−sinα−tanα=cosα,故B正确;对于C,sin(π−α)cos(π+α)=sinα−cosα=−tanα,故C错误;对于D,cos(π−α)tan(−π−α)sin(2π−α)=(−cosα)(−tanα)−sinα=−1,故D错误;对于E,√1−2sin(π+θ)sin(3π2−θ)=√1−2sinθcosθ=√(sinθ−cosθ)2=|sinθ−cosθ|.∵θ∈(π2,π)∴sinθ>0,cosθ<0,∴√1−2sin(π+θ)sin(3π2−θ)=sinθ−cosθ,故E正确.故选:ABE.小提示:本题考查三角函数的诱导公式,同角三角函数间的基本关系,以及三角函数值的符号,熟练掌握诱导公式及同角三角函数关系是解答本题的关键.13、摩天轮常被当作一个城市的地标性建筑,如深圳前海的“湾区之光”摩天轮,如图所示,某摩天轮最高点离地面高度128米,转盘直径为120米,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针匀速旋转t分钟,当t=15时,游客随舱旋转至距离地面最远处.以下关于摩天轮的说法中,正确的为()A.摩天轮离地面最近的距离为4米B.若旋转t分钟后,游客距离地面的高度为ℎ米,则ℎ=−60cos(π15t)+68C.若在t1,t2时刻,游客距离地面的高度相等,则t1+t2的最小值为30D.∃t1,t2∈[0,20],使得游客在该时刻距离地面的高度均为90米答案:BC分析:易知摩天轮离地面最近的距离,从而可判断A;求出t分钟后,转过的角度,即可求出ℎ关于t的表达式,即可判断B;由余弦型函数的性质可求出t1+t2的最小值即可判断C;求出ℎ在t∈[0,20]上的单调性,结合当t=20时,ℎ=98>90即可判断D.解:由题意知,摩天轮离地面最近的距离为128−120=8米,故A不正确;t分钟后,转过的角度为π15t,则ℎ=60−60cosπ15t+8=−60cosπ15t+68,B正确;ℎ=−60cosπ15t+68周期为2ππ15=30,由余弦型函数的性质可知,若t1+t2取最小值,则t1,t2∈[0,30],又高度相等,则t1,t2关于t=15对称,则t1+t22=15,则t1+t2=30;令0≤π15t≤π,解得0≤t≤15,令π≤π15t≤2π,解得15≤t≤30,则ℎ在t∈[0,15]上单调递增,在t∈[15,20]上单调递减,当t=15时,ℎmax=128,当t=20时,ℎ=−60cosπ15×20+68=98>90,所以ℎ=90在t∈[0,20]只有一个解;故选:BC.小提示:关键点睛:本题的关键是求出ℎ关于t的表达式,结合三角函数的性质进行判断.填空题14、已知函数f (x )=Asinωx (A >0,ω>0),若至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A ,则实数ω的取值范围是________. 答案:[94,52]∪[134,+∞)分析:当π>2T 时,易知必满足题意;当π<2T 时,根据x ∈[π,2π]可得ωx ∈[πω,2πω],由最大值点的个数可构造不等式组,结合ω>0确定具体范围.∵至少存在两个不相等的实数x 1,x 2∈[π,2π],使得f (x 1)+f (x 2)=2A , ∴当π>2T =4πω,即ω>4时,必存在两个不相等的实数x 1,x 2∈[π,2π]满足题意;当π<2T ,即0<ω<4时,ωx ∈[πω,2πω], ∴{πω≤π2+2kπ2πω≥5π2+2kπ(k ∈Z ),∴{ω≤12+2kω≥54+k(k ∈Z ); 当k ≤0时,解集为∅,不合题意;令k =1,则94≤ω≤52;令k =2,则134≤ω<4; 综上所述:实数ω的取值范围为[94,52]∪[134,+∞).所以答案是:[94,52]∪[134,+∞).小提示:关键点点睛:本题考查根据正弦型函数最值点的个数求解参数范围的问题,解题关键是能够采用整体对应的方式,根据πω的范围所需满足的条件来构造不等式组,解不等式组求得结果. 15、若α∈(0,π2),且cos 2α+cos (π2−2α)=710,则tan2α=____答案:−34分析:利用诱导公式、二倍角正弦公式,将题设条件转化为1+2tanαtan 2α+1=710,结合角的范围求tanα值,再应用二倍角正切公式求tan2α即可.∵cos 2α+cos (π2−2α)=cos 2α+sin2α=cos 2α+2sinαcosαsin 2α+cos 2α=1+2tanαtan 2α+1=710,∴tanα=3或tanα=−17,又α∈(0,π2), ∴tanα=3,则tan2α=2tanα1−tan 2α=−34. 所以答案是:−3416、若sinx =−23,则cos2x =__________. 答案:19 分析:直接利用余弦的二倍角公式进行运算求解即可.cos2x =1−2sin 2x =1−2×(−23)2=1−89=19. 所以答案是:19.小提示:本题考查了余弦的二倍角公式的应用,属于基础题.解答题17、(1)已知sinα+cosα=√2,求sinα⋅cosα及sin 4α+cos 4α的值;(2)已知sinα+cosα=15(0<α<π),求tanα的值.答案:(1)sinα⋅cosα=12,sin 4α+cos 4α=12;(2)−43.分析:(1)把已知等式平方,结合平方关系可得sinαcosα,再把1=sin 2α+cos 2α平方可求得sin 4α+cos 2α;(2)已知等式平方求得sinαcosα确定出sinα,cosα的正负,求出sinα−cosα,与已知式联立求得sinα,cosα后可得tanα.解:(1)∵sinα+cosα=√2;1+2sinαcosα=2∴sinα⋅cosα=12sin 4α+cos 4α=(sin 2α+cos 2α)2−2sin 2αcos 2α=1−2⋅(12)2=12(2)∵sinα+cosα=15,①∴(sinα+cosα)2+2sinαcosα=125∴2sinαcosα=−2425. ∵0<α<π,∴π2<α<π,∴sinα>0,cosα<0,∴sinα−cosα>0,∴sinα−cosα=√(sinα−cosα)2=75.②由①,②得sinα=45,cosα=−35,∴tanα=−4318、已知函数f(x)=sin4x+cos4x+√32sin2xcos2x,f(x)的图像先向右平移π6,再纵坐标不变横坐标伸长为原来的2倍,得到g(x)的图像.(1)求f(x)的对称中心;(2)当x∈[−π6,π3]时,求g(x)的取值范围答案:(1)(k4π−π24,34)(k∈Z)(2)[14,1]分析:(1)由f(x)=12sin(4x+π6)+34,令4x+π6=kπ,k∈Z求解;(2)由g(x)=12sin(2x−π2)+34=−12cos2x+34,利用余弦函数的性质求解.(1)解:f(x)=(sin2x+cos2x)2−2sin2xcos2x+√34sin4x,=1−12sin22x+√34sin4x=1−14(1−cos4x)+√34sin4x,=14cos4x+√34sin4x+34=12sin(4x+π6)+34,令4x+π6=kπ,x=k4π−π24(k∈Z),所以f(x)的对称中心为(k4π−π24,34)(k∈Z).(2)g(x)=12sin(2x−π2)+34=−12cos2x+34,因为x∈[−π6,π3],所以2x∈[−π3,2π3],故cos2x∈[−12,1],g(x)的取值范围为[1,1].4。

三角函数性质与应用例题和知识点总结

三角函数性质与应用例题和知识点总结

三角函数性质与应用例题和知识点总结一、三角函数的基本定义在直角三角形中,正弦(sin)、余弦(cos)和正切(tan)分别定义为:正弦:对边与斜边的比值,即sinθ =对边/斜边。

余弦:邻边与斜边的比值,即cosθ =邻边/斜边。

正切:对边与邻边的比值,即tanθ =对边/邻边。

二、三角函数的性质1、周期性正弦函数和余弦函数的周期都是2π,即 sin(x +2π) = sin(x),cos(x +2π) = cos(x);正切函数的周期是π,即 tan(x +π) = tan(x)。

2、奇偶性正弦函数是奇函数,即 sin(x) = sin(x);余弦函数是偶函数,即cos(x) = cos(x)。

3、值域正弦函数和余弦函数的值域都是-1, 1,正切函数的值域是 R(全体实数)。

4、单调性正弦函数在π/2 +2kπ, π/2 +2kπ 上单调递增,在π/2 +2kπ, 3π/2 +2kπ 上单调递减(k∈Z)。

余弦函数在2kπ, π +2kπ 上单调递减,在π +2kπ, 2π +2kπ 上单调递增(k∈Z)。

正切函数在(π/2 +kπ, π/2 +kπ) 上单调递增(k∈Z)。

三、三角函数的应用例题例 1:已知一个直角三角形的一个锐角为 30°,斜边为 2,求这个直角三角形的两条直角边的长度。

解:因为一个锐角为 30°,所以 sin30°= 1/2,cos30°=√3/2。

设 30°角所对的直角边为 a,邻边为 b,则:a = 2×sin30°= 2×(1/2) = 1b = 2×cos30°= 2×(√3/2) =√3例 2:求函数 y = 2sin(2x +π/3) 的最大值和最小值,并求出取得最值时 x 的值。

解:因为正弦函数的值域为-1, 1,所以 2sin(2x +π/3) 的值域为-2, 2。

高中数学《三角函数》知识点及题型总结(最全)—精品文档

高中数学《三角函数》知识点及题型总结(最全)—精品文档

P xyAOM T 高中数学《三角函数》知识点及题型总结(最全)一、知识点汇编A斜边 π-α (0,r) α 邻边 B 对边 C (∠A=) (﹣r,0) (r , 0)A 1π+α (0,﹣r) ﹣α(∠A=∠B=45°) B 1 CA2 ∠A=30°,∠B=60°)=,=,=一、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+> 则sin y r α=,cos x r α=,()tan 0yx xα=≠.(任意角α的三角函数值只与α有关,而与点P 的位置无关)二、三角函数值在各象限的符号函数值 第一象限第二象限第三象限第四象限Sin α+ + ﹣ ﹣ Cos α+﹣﹣+Otan α+﹣+ ﹣三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yx ySin α Cos α tan α注:①三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. ②正弦的符号决定于纵坐标y 的符号 ③余弦的符号决定于横坐标x 的符号④正切是纵坐标y ,横坐标x 共同决定,同号(+),异号(-)三、特殊角的三角函数值1.常见角函数值30 45 6090° 180° 270° 360°1-11-111不存在不存在2.特殊角函数值15° 75° 105°2-2+-2-四、三角函数诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2k π+α)=sin α cos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)=-sin α cos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot α 公式三:任意角α与 -α的三角函数值之间的关系: sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α cot (-α)=-cot α 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α cot (π-α)=-cot α 公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sin α cos (2π-α)=cos α tan (2π-α)=-tan α cot (2π-α)=-cot α 公式六:(π/2)±α与α的三角函数值之间的关系:五、角与角之间的转换⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-;ααπsin )21cos(=-ααπcos )21sin(=-ααπcos )21sin(=+ααπsin )21cos(-=+⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ , ()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- , ()()tan tan tan 1tan tan αβαβαβ+=+-).六、二倍角的正弦、余弦和正切公式⑴sin 22sin cos ααα=. ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=- 七、公式变形2cos 21cos 2αα+=21cos 2sin 2αα-=1+= 1-=a b = (a)八、正弦、余弦定理的比较正弦定理余弦定理内容A a sin =B b sin =Ccsin =2R (外接圆直径);a 2=b 2+c 2-2bccosA . c 2=a 2+b 2-2abcosC . b 2=a 2+c 2-2accosB .变形形式①边化角⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2②角化边RcC R b B R a A 2sin ,2sin ,2sin ===. ③ a ∶b ∶c =sin A ∶sin B ∶sin C . ④aSinB=bSinA;bSinC=cSinB ;aSinC=cSinA解决问题①已知两角和任一边,求其他两边及一角.②已知两边和其中一边对角,求另一边的对角.(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.九、常用面积公式1. S=a(表示a 边上的高) 2.S=ab=ac=bc3.S=r (a+b+c ) (r 为内切圆的半径)十.三角函数图像sin y x =cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R函数性 质最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2π π奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭ 无对称轴十一,函数f(x)=Asin(ωx+φ)的图像与性质Y =Asin(ωx+φ)+b周期是ωπ2=T ; 对称轴ωx+φ=k +得x= ;对称中心:ωx+φ= k 得x=,所以对称中心为(,0)A 0 , ω0A 0 , ω0单调性单增 2kωx+φ2k π+单减2k π+ωx+φ2k π+单增2k π+ωx+φ2k π+单减2k ωx+φ2k π+ωx+φ=2k π+ωx+φ=2kωx+φ=2k ωx+φ=2k π+值域Y =Acos (ωx+φ)+b周期是ωπ2=T ; 对称轴ωx+φ=k 得x=;对称中心:ωx+φ= k +得x= ,所以对称中心为(,0)A 0 , ω0A 0 , ω0 单调性单增 2k -ωx+φ2k π单减2k πωx+φ2k π+单增2k πωx+φ2k π+ 单减 2k -ωx+φ2k πωx+φ=2k ωx+φ=2k +ωx+φ=2k+ωx+φ=2k值域十二、图像变化Y=Asin(ωx+φ)+b1.向上(下)平移K个单位,得Y=Asin(ωx+φ)+b k2.向左(右)平移K个单位,得Y=Asin+b3.横坐标不变,纵坐标变为原来的K倍,得Y=k4.纵坐标不变,横坐标变为原来的K倍,得Y=Asin(ω+φ)+b解题方法:1.求一个角的大小,通常求余弦值2.已知一个角的大小时,马上求出另外两角之和3.看见两角之和,马上变为减去第三个角4.看见,马上想到:=得到5.当有边的一次关系时,用正弦定理(边化角:a=2RsinA…角化边:sinA=…)6.已知角与对边关系,用正弦定理7.既有边的平方关系,又有边的乘积关系时,用余弦定理8.已知角与邻边关系时,用余弦定理9. 已知面积S=ab =ac =bc ,求出两边之积10. 2cos 21cos 2αα+=, 21cos 2sin 2αα-= ,11. a b=(a)y =A sin(ωx +φ)+B 的图象求其解析式的问题,主要从以下四个方面来考虑:①A 的确定:根据图象的最高点和最低点,即A =最高点-最低点2;②B 的确定:根据图象的最高点和最低点,即B =最高点+最低点2;③ω的确定:结合图象,先求出周期,然后由T =2πω(ω>0)来确定ω;④φ的确定:把图像上的点的坐标带入解析式y =A sin(ωx +φ)+B ,代入最高点或最低点题型分类剖析一、求三角函数求值1. 已知sin cos 2αα-=,α∈(0,π),则sin 2α=2.3sincos 2αα==若,则 3.已知sin2α=,则cos 2(α+)=4.若α∈⎝⎛⎭⎪⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于5.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+= 6.已知π4cos sin 365αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值的大小 7.已知:1tan()3πα+=-,22sin 2()4cos 2tan()10cos sin 2παααβαα-++=-.(1)求tan()αβ+的值; (2)求tan β的值.二、求三角形中的函数值8.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c.若a 2-b 2=3bc ,sinC =23sinB ,求角A 的大小。

高中数学必修一三角函数概念知识点总结及练习题

高中数学必修一三角函数概念知识点总结及练习题

高中数学必修一三角函数概念知识点总结及练习题一、正弦函数与余弦函数1. 什么是正弦函数?正弦函数是指以单位圆为基础,对应于某个角的正弦值与其对边的比例。

2. 什么是余弦函数?余弦函数是指以单位圆为基础,对应于某个角的余弦值与其邻边的比例。

3. 正弦函数和余弦函数之间有什么关系?正弦函数和余弦函数是相互关联的,它们的图像相互对称,即正弦函数的图像沿y轴对称于余弦函数的图像。

二、三角函数的性质1. 三角函数的周期性是什么意思?三角函数的周期性指的是三角函数在一定范围内的值呈现出重复的规律。

2. 三角函数的奇偶性是什么意思?三角函数的奇偶性指的是在关于原点对称的图像中,函数值的变化规律。

3. 三角函数的单调性是什么意思?三角函数的单调性指的是在一定范围内,函数值的增减规律。

三、三角函数的图像1. 正弦函数的图像特点是什么?正弦函数的图像是一条连续的曲线,它在[-π/2, π/2]范围内在y 轴的正半轴上递增,在[π/2, 3π/2]范围内在y轴的负半轴上递减。

2. 余弦函数的图像特点是什么?余弦函数的图像是一条连续的曲线,它在[0, π]范围内在y轴的正半轴上递减,在[π, 2π]范围内在y轴的负半轴上递增。

四、三角函数的性质应用练题1. 求下列各式中所给的角度的正弦值:a) sin(30°)b) sin(60°)c) sin(45°)d) sin(90°)2. 求下列各式中所给的角度的余弦值:a) cos(0°)b) cos(180°)c) cos(270°)d) cos(360°)3. 判断下列各式是正弦函数还是余弦函数:a) f(x) = sin(x)b) f(x) = cos(x)4. 比较下列各式的大小:a) sin(30°) 与 cos(60°)b) sin(45°) 与 cos(45°)五、解答1. 求下列各式中所给的角度的正弦值:a) sin(30°) = 0.5b) sin(60°) = √3/2c) sin(45°) = √2/2d) sin(90°) = 12. 求下列各式中所给的角度的余弦值:a) cos(0°) = 1b) cos(180°) = -1c) cos(270°) = 0d) cos(360°) = 13. 判断下列各式是正弦函数还是余弦函数:a) f(x) = sin(x)(正弦函数)b) f(x) = cos(x)(余弦函数)4. 比较下列各式的大小:a) sin(30°) 与 cos(60°)(sin(30°) < cos(60°))b) sin(45°) 与 cos(45°)(sin(45°) = cos(45°))。

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档

高中数学必修4三角函数知识点总结§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合:.α{}Z k k ∈+=,2παββ§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .rl =α3、弧长公式:.R Rn l απ==1804、扇形面积公式:.lR R n S 213602==π§1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:α()y x P ,xyx y ===αααtan ,cos ,sin 2、 设点为角终边上任意一点,那么:(设)(),A x yαr =,,,sin y r α=cos x r α=tan yx α=cot x yα=3、 ,,在四个象限的符号和三角函数线的画法.αsin αcos αtan 正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.α6π4π3π2π23π34ππ32π2πsin αcos αtan α§1.2.2、同角三角函数的基本关系式1、 平方关系:.1cos sin 22=+αα2、 商数关系:.αααcos sin tan =3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)Z k ∈1、 诱导公式一: (其中:(),cos 2cos ,sin 2sin απααπα=+=+k k )Z k ∈2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: sin y x =[0,2]x π∈30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有()x f x ,那么函数就叫做周期函数,非零常数T 叫做这个函数的周期.()()x f T x f =+()x f图表归纳:正弦、余弦、正切函数的图像及其性质xysin =xycos =xy tan =图象定义域RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性π2=T π2=T π=T 奇偶性奇偶奇单调性Zk ∈在上单调递增[2,2]22k k ππππ-+在上单调递减3[2,2]22k k ππππ++在上单调递增[2,2]k k πππ-在上单调递减[2,2]k k πππ+在上单调递(,)22k k ππππ-+增对称性Zk ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π=对称中心(,0)2k ππ+无对称轴对称中心,0)(2k π§1.5、函数的图象()ϕω+=x A y sin 1、对于函数:有:振幅A ,周期,初相,相位,频率()()sin 0,0y A x B A ωφω=++>>2T πω=ϕϕω+x .πω21==Tf 2、能够讲出函数的图象与x y sin =的图象之间的平移伸缩变换关系.()sin y A x B ωϕ=++①先平移后伸缩:平移个单位sin y x =||ϕ()sin y x ϕ=+()sin y A x ϕ=+纵坐标变为原来的A 倍()sin y A x ωϕ=+横坐标变为原来的倍1||ω()sin A x Bωϕ=++(上加下减)②先伸缩后平移:sin y =sin y A x =纵坐标变为原来的A 倍sin y A xω=横坐标变为原来的倍1||ω()sin A x ωϕ=+()sin A x Bωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数,x∈R 及函数,x∈R(A,,为常数,且A ≠0)的周期;sin()y x ωϕ=+cos()y x ωϕ=+ωϕ2||T πω=函数,(A,ω,为常数,且A ≠0)的周期.tan()y x ωϕ=+,2x k k Z ππ≠+∈ϕ||T πω=对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωϕ=+cos()y A x ωϕ=+求函数图像的对称轴与对称中心,只需令与sin()y A x ωϕ=+()2x k k Z πωϕπ+=+∈()x k k Z ωϕπ+=∈解出即可.余弦函数可与正弦函数类比可得.x 4、由图像确定三角函数的解析式利用图像特征:,.max min 2y y A -=max min2y y B +=要根据周期来求,要用图像的关键点来求.ωϕ§1.6、三角函数模型的简单应用1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:ααsin αcos αtan 12π426-426+32-§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、.()tan tan 1tan tan tan αβαβαβ+-+=6、.()tan tan 1tan tan tan αβαβαβ-+-=§3.1.3、二倍角的正弦、余弦、正切公式1、,αααcos sin 22sin =.12sin cos sin 2ααα=2、ααα22sin cos 2cos -=1cos 22-=α.α2sin 21-=变形如下:升幂公式:222cos 1cos 22sin ααα=⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、.ααα2tan 1tan 22tan -=4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角所在象限由点的象限决定, ).ϕ(,)a b tan b aϕ=第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度AB AB AB等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2§2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.a a2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规λa a λ定如下: ⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.0>λa λa 0<λa λa 2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.()0≠a a b λa b λ=§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,21,e e a 有且只有一对实数,使.21,λλ2211e e a λλ+=§2.3.2、平面向量的正交分解及坐标表示1、 .()y x j y i x a ,=+=§2.3.3、平面向量的坐标运算1、 设,则:()()2211,,,y x b y x a == ⑴,()2121,y y x x b a ++=+⑵,()2121,y y x x b a --=-⑶,()11,y x a λλλ=⑷.1221//y x y x b a =⇔2、 设,则:()()2211,,,y x B y x A .()1212,y y x x AB --=§2.3.4、平面向量共线的坐标表示1、设,则()()()332211,,,,,y x C y x B y x A ⑴线段AB 中点坐标为,()222121,y y x x ++⑵△ABC 的重心坐标为.()33321321,y y y x x x ++++§2.4.1、平面向量数量积的物理背景及其含义1、 .θb a ⋅2、 在.a b θ34.5、 .0=⋅⇔⊥b a b a §2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:()()2211,,,y x b y x a ==⑴2121y y x x b a +=⋅2121y x +⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设,则:()()2211,,,y x B y x A3、两向量的夹角公式cos a ba bθ⋅==4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,(,)P x y (,)P x y '''(,)PP h k '=则.x x hy y k '=+⎧⎨'=+⎩ 函数的图像按向量平移后的图像的解析式为()y f x =(,)a h k =().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是l AB l AB直线的方向向量.l ⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量nααn α⊥ n α⊥ 叫做平面的法向量.nα⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面的法向量为.α(,,)n x y z =③求出平面内两个不共线向量的坐标.123123(,,),(,,)a a a a b b b b ==④根据法向量定义建立方程组.n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ⑤解方程组,取其中一组解,即得平面的法向量.α(如图)建议收藏下载本文,以便随时学习!2、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即.12,l l a b 、1l 2l a b ()a kb k R =∈ 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即l a αul αa u ⊥ .0a u ⋅= 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.αu βv αβu vu v λ= 即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.12,l l a b、12l l ⊥a b ⊥ 0a b ⋅= 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即l a αu l α⊥a u.a u λ= ②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若l a αm n 、0,.a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.αuβv αβ⊥u v ⊥ 0u v ⋅= 即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,,a b ,a b ,a b θ 则cos .AC BDAC BDθ⋅=9⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为l a αu θa u , 则为的余角或的补角ϕθϕϕ的余角.即有:cos s .in a u a uϕθ⋅== ⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O ,分别在两个半平面内作射线βα--l ,则为二面角的平面角.l BO l AO ⊥⊥,AOB ∠βα--l 如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角l αβ--m n 、m n 、ϕ的平面角为,则二面角为的夹角或其补角l αβ--θθm n 、ϕ.πϕ-根据具体图形确定是锐角或是钝角:θ◆如果是锐角,则,θcos cos m n m nθϕ⋅== 即;arccos m n m nθ⋅= ◆如果是钝角,则,θcos cos m n m nθϕ⋅=-=- 即.arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭5、利用法向量求空间距离⑴点Q 到直线距离l 若Q 为直线外的一点,在直线上,为直线的方向向量,=,则点Q 到直线距离为l P l a l b PQ l h =⑵点A 到平面的距离α若点P 为平面外一点,点M 为平面内任一点,αα平面的法向量为,则P 到平面的距离就等于在法向量方向上的投影的绝对值.αn αMP n 即cos ,d MP n MP=10n MP MP n MP ⋅=⋅ n MP n⋅= ⑶直线与平面之间的距离a α 当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n ⋅= ⑷两平行平面之间的距离,αβ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅= ⑸异面直线间的距离设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方n ,a b ,,M a P b ∈∈,a b d MP n 向上投影的绝对值. 即.n MP d n⋅= 6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PAa a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AOa a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面内的任一条直线,AD 是的一条斜线AB 在内的射影,且BD⊥AD,垂足为D.设AB ααα与 α(AD)所成的角为, AD 与AC 所成的角为, AB 与AC 所1θ2θ11成的角为.则.θ12cos cos cos θθθ=8、 面积射影定理已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与β()S S 原α()S S '射α平面所成的二面角的大小为锐二面角,则βθ 'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则l 123l l l 、、123θθθ、、有 .2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=(立体几何中长方体对角线长的公式是其特例).。

(完整版)三角函数知识点及题型归纳,推荐文档

(完整版)三角函数知识点及题型归纳,推荐文档
2 2.把函数 y sin x ( x R )的图象上所有点向左平行移动 个单位长度,再把所得图象上所有点的横坐标缩短
3 1
到原来的 倍(纵坐标不变),得到的图象所表示的函数是
2
3.将函数 y sin 2x 的图象向左平移 个单位, 再向上平移 1 个单位,所得图象的函数解析式是 4
4.(1)要得到函数
三角函数高考题型分类总结
一.求值
1.若 sin 4 , tan 0 ,则 cos
.
5
2. 是第三象限角, sin( ) 1 ,则 cos = 2
3.若角 的终边经过点 P(1, 2) ,则 cos =
cos(5 ) = 2
tan 2 =
4.下列各式中,值为 3 的是 2
()
(A) 2 sin15 cos15 (B) cos2 15 sin 2 15 (C) 2 sin 2 15 1 (D) sin 2 15 cos2 15
2 3
,7 6
上是增函数
B.在区间

2
上是减函数
C.在区间
3

4
上是增函数
D.在区间
3
,5 6
上是减函数
5.函数 y 2 cos2 x 的一个单调增区间是
()
A. ( , ) 44
B. (0, )
2
3 C. ( , )
44
D.
(
,
)
2
6.若函数 f(x)同时具有以下两个性质:①f(x)是偶函数,②对任意实数 x,都有 f( x )= 4
y
sin
x
的图象,只需将函数
y
cos
x
的图象向
平移 个单位

高中数学第五章三角函数知识点总结归纳(带答案)

高中数学第五章三角函数知识点总结归纳(带答案)

高中数学第五章三角函数知识点总结归纳单选题1、sin1860°等于( ) A .12B .-12C .√32D .-√32答案:C分析:用诱导公式先化简后求值.sin1860°=sin (5×360°+60°)=sin60°=√32, 故选: C2、若y =f (x )的图像与y =cosx 的图象关于x 轴对称,则y =f (x )的解析式为( ) A .y =cos (−x )B .y =−cosx C .y =cos |x |D .y =|cosx | 答案:B分析:根据f (−x )、−f (x )、f (|x |)与|f (x )|的图象特征依次判断即可得到结果. 对于A ,y =cos (−x )=cosx ,图象与y =cosx 重合,A 错误;对于B ,∵y =f (x )与y =−f (x )图象关于x 轴对称,∴y =−cosx 与y =cosx 图象关于x 轴对称,B 正确; 对于C ,当x ≥0时,y =cos |x |=cosx ,可知其图象不可能与y =cosx 关于x 轴对称,C 错误;对于D ,将y =cosx 位于x 轴下方的图象翻折到x 轴上方,就可以得到y =|cosx |的图象,可知其图象与y =cosx 的图象不关于x 轴对称,D 错误. 故选:B.3、所有与角α的终边相同的角可以表示为k ⋅360°+α(k ∈Z ),其中角α( ) A .一定是小于90°的角B .一定是第一象限的角 C .一定是正角D .可以是任意角 答案:D分析:由终边相同的角的表示的结论的适用范围可得正确选项.因为结论与角α的终边相同的角可以表示为k ⋅360°+α(k ∈Z )适用于任意角,所以D 正确,故选:D.4、已知函数f (x )=sin 2x +2√3sinxcosx −cos 2x ,x ∈R ,则( ) A .f (x )的最大值为1B .f (x )在区间(0,π)上只有1个零点 C .f (x )的最小正周期为π2D .x =π3为f (x )图象的一条对称轴答案:D分析:首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得; 解:函数f (x )=sin 2x +2√3sinxcosx −cos 2x =√3sin2x −cos2x =2(√32sin2x −12cos2x)=2sin(2x −π6), 可得f(x)的最大值为2,最小正周期为T =2π2=π,故A 、C 错误; 由f(x)=0可得2x −π6=kπ,k ∈Z ,即x =kπ2+π12,k ∈Z ,可知f (x )在区间(0,π)上的零点为π12,7π12,故B 错误;由f(π3)=2sin(2π3−π6)=2,可知x =π3为f (x )图象的一条对称轴,故D 正确. 故选:D 5、已知sinα=2√67,cos (α−β)=√105,且0<α<3π4,0<β<3π4,则sinβ=( )A .9√1535B .11√1035C .√1535D .√1035答案:A解析:易知sinβ=sin(α−(α−β)),利用角的范围和同角三角函数关系可求得cosα和sin (α−β),分别在sin (α−β)=√155和−√155两种情况下,利用两角和差正弦公式求得sinβ,结合β的范围可确定最终结果. ∵sinα=2√67<√22且0<α<3π4,∴0<α<π4,∴cosα=√1−sin 2α=57.又0<β<3π4,∴−3π4<α−β<π4,∴sin (α−β)=±√1−cos 2(α−β)=±√155. 当sin (α−β)=√155时, sinβ=sin(α−(α−β))=sinαcos (α−β)−cosαsin (α−β)=2√67×√105−57×√155=−√1535, ∵0<β<3π4,∴sinβ>0,∴sinβ=−√1535不合题意,舍去;当sin (α−β)=−√155,同理可求得sinβ=9√1535,符合题意.综上所述:sinβ=9√1535.故选:A .小提示:易错点睛:本题中求解cosα时,易忽略sinα的值所确定的α的更小的范围,从而误认为cosα的取值也有两种不同的可能性,造成求解错误.6、关于函数y =sinx(sinx +cosx)描述正确的是( ) A .最小正周期是2πB .最大值是√2C .一条对称轴是x =π4D .一个对称中心是(π8,12) 答案:D分析:利用三角恒等变换化简y 得解析式,再利用正弦型函数的图像和性质得出结论. 解:由题意得:∵y =sinx(sinx +cosx) =sin 2x +12sin2x=1−cos2x 2+12sin2x =√22sin(2x −π4)+12选项A :函数的最小正周期为T min =2πω=2π2=π,故A 错误;选项B :由于−1≤sin(2x −π4)≤1,函数的最大值为√22+12,故B 错误;选项C :函数的对称轴满足2x −π4=kπ+π2,x =k2π+3π8,当x =π4时,k =−14∉Z ,故C 错误; 选项D :令x =π8,代入函数的f(π8)=√22sin(2×π8−π4)+12=12,故(π8,12)为函数的一个对称中心,故D 正确;故选:D7、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1 答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r的等式,由此求解出r的值.设扇形的半径为R,圆心角为α,面积为S,因为2R+αR=20,所以S=12αR2=(10−R)R≤(10−R+R2)2=25,取等号时10−R=R,即R=5,所以面积取最大值时R=5,α=2,如下图所示:设内切圆圆心为O,扇形过点O的半径为AP,B为圆与半径的切点,因为AO+OP=R=5,所以r+rsin∠BPO =5,所以r+rsin1=5,所以r=5sin11+sin1,故选:C.8、已知角A、B、C为△ABC的三个内角,若sin(A+B−C2)=sin(A−B+C2),则△ABC一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等腰或直角三角形答案:C分析:根据诱导公式以及内角和定理得出B=C,从而判断三角形的形状.由sin(A+B−C2)=sin(A−B+C2)可得sin(π−2C2)=sin(π−2B2),sin(π2−C)=sin(π2−B),cosC=cosB,即B=C,故该三角形一定为等腰三角形. 故选:C多选题9、将函数f(x)=cos2x−sin2x的图象向左平移m个单位后,所得图象关于y轴对称,则实数m的值可能为()A.π8B.3π8C.5π8D.7π8答案:BD分析:利用辅助角公式可得f(x)=√2cos(2x+π4),根据图象平移有g(x)=f(x+m),确定平移后的解析式,根据对称性得到m的表达式,即可知可能值.由题意,得:f(x)=cos2x−sin2x=√2cos(2x+π4),图象向左平移m个单位,∴g(x)=f(x+m)=√2cos(2x+2m+π4)关于y轴对称,∴2m+π4=kπ,即m=kπ2−π8(k∈Z),故当k=1时,m=3π8;当k=2时,m=7π8;故选:BD10、若α是第二象限的角,则下列各式中成立的是()A.tanα=−sinαcosαB.√1−2sinαcosα=sinα−cosαC.cosα=−√1−sin2αD.√1+2sinαcosα=sinα+cosαE.sinα=−√1−cos2α答案:BC解析:利用sin2α+cos2α=1,tanα=sinαcosα,结合三角函数在各个象限的符号,代入每个式子进行化简、求值.对A,由同角三角函数的基本关系式,知tanα=sinαcosα,所以A错;对B,C,D,E,因为α是第二象限角,所以sinα>0,cosα<0,所以sinα−cosα>0,sinα+cosα的符号不确定,所以√1−2sinαcosα=√(sinα−cosα)2=sinα−cosα,所以B,C正确;D,E错.故选:BC.小提示:本题考查同角三角函数的基本关系、三角函数在各个象限的符号,考查运算求解能力.11、如图是函数y =Asin(ωx +φ)(x ∈R)在区间[−π6,5π6]上的图象.为了得到这个函数的图象,只要将y =sinx(x ∈R)的图象上所有的点( ).A .向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变 B .向左平移π6个单位长度,再把所得各点的横坐标仲长到原来的12,纵坐标不变 C .把所得各点的横坐标缩短到原来的12,纵坐标不变,再向左平移π6个单位长度D .向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变答案:AC分析:先根据图象求函数解析式,应先观察图象,确定“振幅”“周期”,再通过计算求φ,再借助图象变换规则即可得出结果.由图象知,A=1,T=π,所以ω=2,y=sin (2x+φ),将(−π6,0)代入得:sin(φ−π3)=0,所以φ−π3=kπ,k ∈z ,取φ=π3,得y=sin (2x+π3),y =sinx 向左平移π3,得y =sin (x +π3).然后各点的横坐标缩短到原来的12,得y =sin (2x +π3).故A 正确.y =sinx 各点的横坐标缩短到原来的12,得y =sin2x .然后向左平移π6个单位,得y =sin2(x +π6)=sin (2x +π3).故C 正确. 故选:AC小提示:本题主要考查了三角函数的图象变换及三角函数性质,图象的伸缩变换的规律:(1)把函数y =f (ωx )的图像向左平移ℎ(ℎ>0)个单位长度,则所得图像对应的解析式为y =f [ω(x +ℎ)],遵循“左加右减”;(2)把函数y =f (x )图像上点的纵坐标保持不变,横坐标变为原来的ω倍(ω>0),那么所得图像对应的解析式为y =f (1ωx),属于中档题.12、下列函数中周期为π且为奇函数的是( )A.y=sin(2x+π2)B.y=cos(2x+π2)C.y=tanx D.y=cos(2x−π2)答案:BCD解析:利用诱导公式可将A、B、D分别化为y=cos2x、y=−sin2x、y=sin2x即可判断周期及其奇偶性,进而判断选项正误.A中,y=sin(2x+π2)=cos2x,周期为π且为偶函数,错误;B中,y=cos(2x+π2)=−sin2x,周期为π且为奇函数,正确;C中,y=tanx,周期为π且为奇函数,正确;D中,y=cos(2x−π2)=sin2x,周期为π且为奇函数,正确;故选:BCD.13、摩天轮常被当作一个城市的地标性建筑,如深圳前海的“湾区之光”摩天轮,如图所示,某摩天轮最高点离地面高度128米,转盘直径为120米,设置若干个座舱,游客从离地面最近的位置进舱,开启后按逆时针匀速旋转t分钟,当t=15时,游客随舱旋转至距离地面最远处.以下关于摩天轮的说法中,正确的为()A.摩天轮离地面最近的距离为4米B.若旋转t分钟后,游客距离地面的高度为ℎ米,则ℎ=−60cos(π15t)+68C.若在t1,t2时刻,游客距离地面的高度相等,则t1+t2的最小值为30D.∃t1,t2∈[0,20],使得游客在该时刻距离地面的高度均为90米答案:BC分析:易知摩天轮离地面最近的距离,从而可判断A;求出t分钟后,转过的角度,即可求出ℎ关于t的表达式,即可判断B;由余弦型函数的性质可求出t1+t2的最小值即可判断C;求出ℎ在t∈[0,20]上的单调性,结合当t=20时,ℎ=98>90即可判断D.解:由题意知,摩天轮离地面最近的距离为128−120=8米,故A不正确;t分钟后,转过的角度为π15t,则ℎ=60−60cosπ15t+8=−60cosπ15t+68,B正确;ℎ=−60cosπ15t+68周期为2ππ15=30,由余弦型函数的性质可知,若t1+t2取最小值,则t1,t2∈[0,30],又高度相等,则t1,t2关于t=15对称,则t1+t22=15,则t1+t2=30;令0≤π15t≤π,解得0≤t≤15,令π≤π15t≤2π,解得15≤t≤30,则ℎ在t∈[0,15]上单调递增,在t∈[15,20]上单调递减,当t=15时,ℎmax=128,当t=20时,ℎ=−60cosπ15×20+68=98>90,所以ℎ=90在t∈[0,20]只有一个解;故选:BC.小提示:关键点睛:本题的关键是求出ℎ关于t的表达式,结合三角函数的性质进行判断.填空题14、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)15、若α∈(0,π2),且cos2α+cos(π2−2α)=710,则tan2α=____答案:−34分析:利用诱导公式、二倍角正弦公式,将题设条件转化为1+2tanαtan 2α+1=710,结合角的范围求tanα值,再应用二倍角正切公式求tan2α即可.∵cos 2α+cos (π2−2α)=cos 2α+sin2α=cos 2α+2sinαcosαsin 2α+cos 2α=1+2tanαtan 2α+1=710,∴tanα=3或tanα=−17,又α∈(0,π2), ∴tanα=3,则tan2α=2tanα1−tan 2α=−34.所以答案是:−3416、若sinx =−23,则cos2x =__________.答案:19分析:直接利用余弦的二倍角公式进行运算求解即可. cos2x =1−2sin 2x =1−2×(−23)2=1−89=19.所以答案是:19.小提示:本题考查了余弦的二倍角公式的应用,属于基础题. 解答题17、(1)已知sinα+cosα=√2,求sinα⋅cosα及sin 4α+cos 4α的值; (2)已知sinα+cosα=15(0<α<π),求tanα的值.答案:(1)sinα⋅cosα=12,sin 4α+cos 4α=12;(2)−43.分析:(1)把已知等式平方,结合平方关系可得sinαcosα,再把1=sin 2α+cos 2α平方可求得sin 4α+cos 2α;(2)已知等式平方求得sinαcosα确定出sinα,cosα的正负,求出sinα−cosα,与已知式联立求得sinα,cosα后可得tanα.解:(1)∵sinα+cosα=√2;1+2sinαcosα=2 ∴sinα⋅cosα=12sin 4α+cos 4α=(sin 2α+cos 2α)2−2sin 2αcos 2α=1−2⋅(12)2=12(2)∵sinα+cosα=15,① ∴(sinα+cosα)2+2sinαcosα=125∴2sinαcosα=−2425.∵0<α<π,∴π2<α<π,∴sinα>0,cosα<0,∴sinα−cosα>0, ∴sinα−cosα=√(sinα−cosα)2=75.②由①,②得sinα=45,cosα=−35,∴tanα=−4318、已知函数f(x)=sin 4x +cos 4x +√32sin2xcos2x ,f(x)的图像先向右平移π6,再纵坐标不变横坐标伸长为原来的2倍,得到g(x)的图像. (1)求f(x)的对称中心;(2)当x ∈[−π6,π3]时,求g(x)的取值范围 答案:(1)(k4π−π24,34)(k ∈Z) (2)[14,1]分析:(1)由f (x )=12sin(4x +π6)+34,令4x +π6=kπ,k ∈Z 求解; (2)由g(x)=12sin(2x −π2)+34=−12cos2x +34,利用余弦函数的性质求解. (1)解:f(x)=(sin 2x +cos 2x )2−2sin 2xcos 2x +√34sin4x , =1−12sin 22x +√34sin4x =1−14(1−cos4x )+√34sin4x , =14cos4x +√34sin4x +34=12sin(4x +π6)+34,令4x +π6=kπ,x =k4π−π24(k ∈Z),所以f(x)的对称中心为(k4π−π24,34)(k∈Z).(2)g(x)=12sin(2x−π2)+34=−12cos2x+34,因为x∈[−π6,π3],所以2x∈[−π3,2π3],故cos2x∈[−12,1],g(x)的取值范围为[14,1].。

(新)高中数学三角函数知识点及试题总结

(新)高中数学三角函数知识点及试题总结

1.特殊角的三角函数值:sin 00 = 0 C0cos 0 = 1 tan 00 = 0sin3 00=—200V3 cos30 =-----------------2tan3 00= 3.或022sin 45 = -----2/二0<2cos 45 = ------2tan 450 =1sin6 00=立2 en 01cos60 =一2tan6 0 = V3sin9 00 =1 C0 cos9 0 =0 tan9 00无意义2.角度制与弧度制的互化:3600 2 , 180000300/仁045600 900 1200 1350 1500 1800 27 00 36006 4 3 2233 45 63 223.弧长及扇形面积公式 弧长公式:l .r扇形面积公式:S=1l.r2—是圆心角且为弧度制.r —是扇形半径4任意角的三角函数设 是一个任意角,它的终边上一点 p (x,y) , r= x x 2y 2+ ------ ►xsin cos tan高考三角函数 (1)正弦 sin =- r(2)各象限的符号:余弦cos =x r正切tan =- x5.同角三角函数的根本关系:,k z)看象限.7正弦函数、余弦函数和正切函数的图象与性质(1)平方关系:sin 2 + cos 2=1. (2)商数关系:s^ =tancos6.诱导公式: 记忆口诀:把.2的三角函数化为 的三角函数,概括为:奇变偶不变,符号1 sin 2k sin ,cos2 k cos , tan 2k tan k2 sin sin ,cos cos , tantan3 sin sin ,coscos , tantan4 sinsin , cos cos , tantan口诀:函数名称不变, 符号看象限.5 sin 一2 coscos 一2 sin6 sin 一2coscos 一2sin口诀:正弦与余弦互换,符号看象限.>=cosr定义裁 (―mF麋大[小) 值【一皿 当 r —— 时・Fmw —* Fm®: — 1J当 x= 2An-] 时,1yiuri = - 1奇属性 奇函数 偶函敕 奇函数周期性7=如 廿M A N有界性有界育界无界单调性gm在[?h1一 y ,y ]上都 是噌函数,在[2腌+ -, 2 +y ]上都 是激函数在[(求一1沆珈l ]上都是噌函 载, 在即(2H-1) n ],t者E 是谶函数 在也一卷.)内都 是增函缴降哥公式:升哥公式:a b sin A sin B 余弦定理:2.22 ab c.2 2 2bca22. 2cab2bc cos A ; 2ca cos B ;2abcosC .三角形面积定理.S 1 absin C 1bcsin A 」casinB . 2 221 .直角三角形中各元素间的关系: 如图,在^ ABC 中,C = 90° , AB=c, AC=b, BC= a .1+cos =2cos 2一21-cos =2sin 2— 29 正弦定理cos 2 sin 21 cos2 2 1 cos228、三角函数公式: 两角和与差的三角函数关系 尸sin cos cos sin尸cos cossin sintan tan1 tan tansin( cos(tan(sin2 cos2 ■, ■1tan 2=2sin cos=cos 2 -sin 2=2cos 2 -1=1-2sin 22 tan 1 tan 2c sinC2R .(1)三边之间的关系:a2 + b2= c2o(勾股定理)(2)锐角之间的关系: A+B=90° ;(3)边角之间的关系:(锐角三角函数定义)sinA= cosB = —, cosA=sinB= —, tanA= — o c c b 2 .斜三角形中各元素间的关系:在△ ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示 A 、B 、C 的对边. (1)三角形内角和:A+ B + C=n .(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等a b csin A sin B sin C(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的 余弦的积的两倍. a 2 = b 2 + c 2 — 2bccosA; b 2=c 2+a 2—2cacosB; c 2= a 2+b 2 —2abcosC . 3 .三角形的面积公式:人 1 11 △ = — absinC= — bcsinA= — acsinB;222222人 a sinBsinC b sinCsinA c sin Asin B △= ---------------- = ---------------- = ----------------2sin(B C) 2sin(C A) 2sin(A B)△ = 2R 2sinAsinBsinC .(R 为外接圆半径)1 ••(6) △= Js(s a)(s b)(s c) ; s — (a b c);2(7)△ = r , s .4 .解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少 有一个是边)求其他未知元素的问题叫做解三角形. 广义地,这里所说的元素还可以包括三 角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般 可分为下面两种情形:假设给出的三角形是直角三角形,那么称为解直角三角形; 假设给出的三角形是斜三角形,那么称为解斜三角形-解斜三角形的主要依据是:设△ ABC 的三边为a 、b 、c,对应的三个角为 A 、B 、C .(1)角与角关系:A+B+C =兀;(2)边与边关系: a + b > c, b + c > a, c + a > b, a — b < c, b — c < a, c — a > b; (3)边与角关系:abc正弦定理 ——————2R (R 为外接圆半径);sin A sin B sin C余弦定理 c 2 = a 2+b 2— 2bccosC, b 2 = a 2+c 2— 2accosB, a 2 = b 2+c 2—2bccosA;5 .三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的 特点.(1)角的变换由于在△ ABC 中,A+B+C=兀,所以 sin(A+B)=sinC ; cos(A+B)= — cosC; tan(A+B)=—2R .(1) △=—ah a= — bh b= — ch c2 2 2h a 、h b 、h c 分别表示 a 、b 、c 上的高);(2) (3) (4)(5) △=abc4R它们的变形形式有:a = 2R sinA,sin A sin B a 〃 一 ,cos Ab.222b c ao2bcA B CAB C tanC .sin ------- cos —, cos sin 一 ;2 2 2 2(2)三角形边、角关系定理及面积公式,正弦定理,余弦定理.r 为三角形内切圆半径,p 为周长之半. B=60° ; AABC 是正三角形的充分必要条件是/A, /B, / C 成等差数列且a, b, c 成等比数列.四.【典例解析】3,一',二'八 ,八0A. . 30% B .1501C. 150答案 C例 1. (1)在 ABC 中, A 32.0°, B 81.8°, a 42.9cm,解三角形;(2)在 ABC 中,a 20cm, b 28cm, A 40.,解三角形(角度精确到 10 ,边长精确到1cm).例2. (1)在 ABC 中,a 2卮 c 疾 J 2, B 600,求b 及A ;(2)在 ABC 中, a 134.6cm , b 87.8cm , c 161.7cm ,解三角形 解析:(1) --- b 2 a 2 c 22accosB二(2.3)2 ( .6 .2)2 2 2 3 (.6 .2) cos 450=12 ( 6 2)2 4 3( 3 1)=8b 2,2.求A 可以利用余弦定理,也可以利用正弦定理:(2)由余弦定理的推论得: A 56 020 ;B 32053 ;面积公式: S = y ah 4 = absinC = r■i—■* P=#S ㈤①⑴卬其中(3)在4ABC 中,熟记并会证实:/ A,/ B, / C 成等差数列的充分必要条件是/题型1:正、余弦定理(2021岳阳一中第四次月考).△ ABC 中,篇a,或b,ab15 4― 0 ____ 0D. 30〃 或解法cos A2bc(2 2)2 ( 62 )2 (2 /3)2222(-6 、5)cos A2bc__22__2 87.82 161.72 134.622 87.8 161.70.5543,cos B 222cab2ca134.62 161.72 87.822 134.6 161.70.8398,(A B) 1800 (56020 32053) 90047..2一 一ABC 中,sinA cosA —, AC 2, AB 3,求 tanA 的值和 ABC2A且满足cos A2C 1800 例3.在的面积.sin A cos A .2 cos(A 45 ) —2 2cos(A 45 )18045; 60、, A 105.tan A 力tan(45. 60;)2 3,sinA sin105 sin(45 60 ) sin45 cos60 cos45 sin60八1 .S ABC AC AB sin A 2例4. 〔2021湖南卷文〕在锐角ABC 中,BC 1,B一一 AC2A,那么的值等于cosAAC 的取值范围为答案 2(23)解析,由正弦定理得AC BC AC AC 2.sin 2sin2coscos由锐角ABC 得 0: 290; 0'1又0:180: 390'3060'' ,故3045:1a2 cosAC 2cos(、2,、3).例5. 〔2021浙江理〕〔此题总分值14分〕ABC 中, 角A,B,C 所对的边分别为a,b,c,2\5 53.〔I 〕求 ABC 的面积; 〔II 〕假设b c 6,求a 的值.1 .得 bccosA 3, bc 5, S ABC — bcsin A 22(2)对于bc 5,又b c 6, b 5,c 1或b 1,c 5,由余弦定理得ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c,22a c 2b,且 sin AcosC 3cos Asin C,求 b解法一:在 ABC 中:sin AcosC 3cos Asin C,那么由正弦定理及余弦定理2 22222有:af —2b0 3 ---- 5——|c,化简并整理得: 2〔a 2 c 2〕 b 2.又由a 2 c 2 2b 4b b 2.解得 b 4或 b 0〔舍〕. 一,B C例7. ABC 的二个内角为 A B C ,求当A 为何值时,cosA 2cos --------------------------- 取得最2大值,并求出这个最大值.解析:由A+B+C=兀,得B2C4 -p 所以有cosB2C =踹.cosA+2cos^2^ =cosA+2sin=1 — 2sin 22_ + 2sin^= — 2(sin^ — 2)2+ 2;当sinA = 1-,即A= ? 时,cosA+2cosB+C 取得最大值为 !. 2 2 3 2 2 例8. 〔2021浙江文〕〔此题总分值14分〕在 ABC 中,角A,B,C 所对的边分别为a,b,c ,II且满足 cos — —— , AB AC 3.2 5〔I 〕求 ABC 的面积;〔II 〕假设c 1,求a 的值.…、2A 25 23 解(I) cosA 2cos 1 2 (——)1 —25 5又 A (0, ) , sin A V 1 cos 2 A ",而 AB.AC511 4 以bc 5,所以 ABC 的面积为:1 bcsin A 15f2 25(n)由(i)知 bc 5 ,而c 1,所以b 5解 〔1〕由于cosA 空5, 25 cos A-,sin A ',又由重 AC 3 5 52 .2 2a b c 2bccosA 20,a 2 , 15例6. 〔2021全国卷I 理〕在— -- 3 AB.AC .cosA -bc53,所所以 a ,b 2 c 2 2bccosA 25 1 2 3 2 5例9.在△ ABC 中,a 、b 、c 分别是/ A 、/ B 、/ C 的对边长, a 、b 、c 成等比数 列,且a 2— c 2=ac-bc,求/ A 的大小及bsin B 的值. c,「a 、b 、c 成等比数列,,b 2=ac . 又 a 2- c 2=ac-bc,b 2+c 2—a 2=bc .,222,1b c a bc 1 cosA= == - , .•/ A=60 .2bc 2bc 2sinB=b^nJA , .. b 2=ac, ZA=60° ,a2. bsinB b sin 60- --------- --------------- =sin60acA C一A C 例io.在^ABC 中,A 、B 、C 成等差数列,求tan — tan — V 3tan —tan — 2222的值.解析:由于A 、B 、C 成等差数列,又 A+B+C=180° ,所以A+C=120° , ,一A C .一 A C 八 从而 —^—=60 ,故tan —— J3 .由两角和的正切公式,+ A + C tan tan 得——J ——2r <3. AC1 tan tan 一2 2 A CA C所以 tan tan —33tan tan ,2 22 2.―A .―C A ._C八tan — tan — v3 tan — tan — v3 0例11.在^ ABC 中,假设2cosBsinA = sinC,那么4 ABC 的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形答案:C解析:2sinAcosB= sin (A+ B) + sin (A —B)又「 2sinAcosB= sinC,••.sin (A —B) =0, .1. A= BABC 中,A B 为锐角,角A 、B 、C 所对的边分别为 a b 、c,(I)求A B 的值;在△ ABC 中,由余弦定理得: 在△ ABC 中,由正弦定理得<3 --- o2例12.(2021四川卷文)在且 sinA KsinB510 10求a、b、c的值.解〔I〕••• A B为锐角,sin A吏,sin B工5 10•1' cos A . 1 sin2 A 2AcosB5 「in2B,U10cos(A B) cos Acos B sin Asin B 2 .553 1010,5 10 ,25 10 2••• 0••• A(II)由(I) sin C, a由-----sin A sin B,5a 10b /2c,即 a 2b, c2b b ,2 1a 「2, c , 521. 〔2021四川卷文〕在ABC中,A、B为锐角, 角A、B、C所对的边分别为a且sin A5 .—,sin5,1010(I)求A B的值;(II)假设a 求a、b、c的值.解〔I〕••• A、B为锐角,sin A SinB51010cos A - 1 sin2 A 2,5----- ,cos B5-------- 2 3.10, 1 sin B10cos(A B) cos Acos B sin Asin B 2、. 5 3.10 ,一5、. 10 22 5 10 5 10 2AB —4(II)由(I)知 C3 ..八——,- sinC45a . 10b.2c,即 a , 2b, c J5b又「 a b「2 1・•. V 2b b 夜 1.. b 1a , 2, c , 5五.【思维总结】1 .解斜三角形的常规思维方法是:(1)两角和一边(如 A 、B 、C),由A+B+C =兀求C,由正弦定理求 a 、b;(2)两边和夹角(如 a 、b 、c),应用余弦定理求 c 边;再应用正弦定理先求较短 边所对的角,然后利用A+B+C = 为求另一角;(3)两边和其中一边的对角(如a 、b 、A),应用正弦定理求 B,由A+B+C =兀求C,再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况;(4)三边a 、b 、c,应余弦定理求 A 、B,再由A+B+C = TT ,求角C .., ,.2S …… a b c 斗2 .三角形内切圆的半径:r -------------- ,特别地,r 直 --------------- ;a b c 23 .三角学中的射影定理:在^ ABC 中,b a cosC c cosA,…4 .两内角与其正弦值:在△ ABC 中,A B sin A sin B ,5 .解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大 角定理及几何作图来帮助理解〞r4x o 、1如果函数尸机的图像关于点【31中央对称,江 我 汗 不(A) &(B )4(C) 3 (D) 2,2、右图所示的是函数y ='沏("工+防图象的-局部,那么其函数解析式是, a 由----- sin Absin B csinC那么। W ।的最小值为()/〔r 〕 = win 〔㈤工一 ±> 0〕3、函数’引的最小正周期为方,那么该函数图象犷 开X =——A.关于直线4对称B.关于点〔3,0〕对称C.关于点〔4 , 0〕对称D.关于直线 三对称/⑺二疝2?的图象得到式工〕二CM Q 五注〕图象,需要将武分4、由函数6 的图象7T汽C.向右平移 3个单位D .向右平移&个单位X _开5、假设 6是函数/⑴-0工+ C 网⑦工图象的一条对称轴,当由取最小正数 时A.单调递增 B .单调递减7VA.向左平移 3个单位汗B .向左平移&个单位c-r/〕单调递减单调递增位后得到的函数为奇函数,那么 圻的值为那么曲的取值范围 是7TX —— B . 2周期为2;丁y = CO £〔K + 士C .函数 3.的图象是关于点〔y — co 式 k + 3D.函数3〞的图象是关于直线 10、"⑵1〕石=〔-L-3〕,那么I 等于6、函数/〔幻=勃〔2〕的最小正周期是 注,假设其图像向左平移&个单7TA.B.C .一7TD.7、〔2021年高考〔新课标理〕〕…,函数皿吟在专㈤上单调递减.A.[--]B. 2'/C.吗8、〔2021年高考 〔福建文〕〕函数 的图像的一条对称轴是荏X ―――D.29、 以下命题中的真命题是A.y -2工+ 在区间〔-至,马 函数3 3 6 内单调递增 B. 函数y 三cos x ~ Stfl 工的最小正A.7T6 , 0〕成中央对称的图形箝x= &成轴对称的图形B. C. 5 D. 2511、正六边形ABCDEF勺边长为1,那么出,(C34B用的值为A .212、平面向量戊=(L-刃上=(4-2)九l+b与0垂直,那么4是(A. 1B. 2C. -2D. 一 113、设O O=QFOB = gfGC=㈠⑼/> 0的> 0 , O为坐标原点,假设点共线,那么A. 2 C. 614、设/ POQ=60 OP OQ上分别有动点A, B,假设二明•.胃=6, AOAB的重心是的最小值是(A.115、假设由先是夹角为3的单位向量,且 a - - -%] + 2e2A.1B. -47C「7D. 2A.第一象限 限B.第二象限C.第三象限D 第四象20、函数 y=cosxt","〔o <x <#",且xw 之〕的图象为sin C = 3 tosXsinC,求b.中二7T A.二19、假设果112位<0,且Gga tana<0,那么有比在16、圆.的半径为 招,圆周上两点 A B 与原点.恰构成三角形,那么向量 E 与.口 的数量积是 1 A.二B. T 3C. 2 17、如图,点 .是边长为1的等边△ ABC 的中央,那么〔Q4+0B 〕• 〔 UA+QC 〕 宰.丁.有丁1 B,二£C. 618、〔2021年高考〔大纲文〕〕假设函数 〔〞[0.词〕是偶函数,那么21、在LASC 中,内角A B 、C 的对边长分别为 逮、b 、亡,也〞一 〔? 二 2?,且(n)假设函数 小值.f(x)的图像向右平移 m(m> 0)个单位后,得到的图像关于原点对称,求实数m 的最(I)求函数/W 的单调递增区间;(n)中,角A£,C 所对的边长分别为明九.,假设丁⑷=Q , *=4,力=2冽 二(Ssin —= (cos —,cos 3 —23、向量44 4(II )记/⑶二制x ,在h 46c 中,角A%.的对边分别是即瓦1r ,且满足 ⑵一,13sB =&3口,求函数/(司的取值范围.24、设1也比=3,计算:(1)4力Q — E 玉);(2)如 仪一虱日口2匚8 £a = (sin x r -) N25、向量2-后三g3-1)⑴当沆//百时,求2g ,—sin2式的值;⑵求/⑻=6+ 2也在Gsiiixc©* - cos Qx +—} — co?工 f(x)= -22、函数小〞J33- 3——sin rcos x--sin. k 十一(I )假设帧$= 1,求- A )3 〞的值;上的值域.26、函数(I )求函数 f(x)的最小正周期及单调增区间;〔1〕求函数J 〔1〕的最小正周期;〔2〕假设对 4 2 ,不等式y 〔k 〕 >洸一 3恒成立,求实数7[工〕二用〔曰工一彳〕一 1 .0 八々一小、28、函数〔〔^ >〕的最大值为3,其图像相邻两条对称轴之间开的距离为二,…心…… ,电〕〕/〔令二2⑴ 求函数J ⑺的解析式; ⑵ 设 2 ,那么/ ,求41的值.J 〔x 〕 = -J5 siii 〔加〕—2 sin 1 ——+ 幽〔s > 0〕29、函数2的最小正周期为,且当 工W [ 0,k ]时,函数f 〔工〕的最小值为0.〔I 〕求函数/a 〕的表达式;〔II 〕在AABC,假设"C 〞1旦发ME=3S + C 网且一 C 〕,求汕区的值/(x) = cos(2x +—) + sin 2x设函数二一27、函数/(X )= 2 sin 3 (— + X )—不4m 的取值范围30、〔I 〕求函数J ⑶的最小正周期;〔ii 〕设函数皂〔幻对任意木匕五,有孤+g 气⑴且当泡吟叱的二白/㈤;求函数那么在[N ⑼上的解析式.八工〕=2cos a ——/ si ri 工函数2(I)求函数/W 的最小正周期和值域;cos 2a工工肱,求胭的取值范围.33、设4 ^C 的内角 A3, c 所对边的长分别为 乐瓦J ,且有2sin BccsA= sin <cosC + sf 』例 C o(i)求角A 的大小;(n )假设上=2 ,亡=1 , □为BD 的中点,求/日的长./缶)二£门1一6£五(亨+怖)34、函数乙乙 上,五匕依.f 5T 附 1x w [ 一 —,一1(1)求函数的最小正周期,并求函数在 3 ' 3上的最大值、最小值;(2)函数/⑺=Sm 心已的图像经过怎样的平移和伸缩变换可以得到函数 以工)的图像31、(n)假设为第二象限角,且3 3 ,求 1—tan 值 的值.32、两个不共线的向量a,b 夹角为8 ,且I 汽1= 3J 石|二L 工为正实数.(1)假设厘十 %与口- 4方垂直,求tanH ;其日=— I1 I(2)假设 6,求|初一切的最小值及对应的 x 值,并指出向量 a 与xa —b 的位置关系;(3)假设日为锐角,对于正实数 m,关于x 的方程有两个不同的正实数解,且C 16、C17、D 18、C 19、D20、C 21、33、(I)月+仃=?-民力/毛.付4处以>1+2)=讪m>0=(血—,cos35、向量a 3--=(cos —? 75cos-5- -占33 ,函数了(工)=3b ,(I)求函数,⑸ 的单调递增区间;(n)如果△ ABC 的三边a 、b 、c 满足"二叱,且边b 所对的角为天,试求k 的范围及函数的值域.36、cos 43 clm£77 口+ 疝 430 co 〞印的值为37、设向量.=.,的1二0十1小/二(2,哈假设(】+#门,那么产]38、平面向量0~' 二), [ J ), 那么a 与否的夹角余弦值等于39、 A 、R C 的坐标分别为A (3 , 0)、R0 , 3)、於**), ⑴假设UC|=|£C|,求角值的值;2 sin.1 a + sin 2a ⑵假设闻LSC= - 1,求1 + tana 的值.1、应选 A2、. A3、B4、B5、A6、C7、工8、C 9、C10、C 11、D 12、D 13、D14、B 15、m 的取值范围为Isin 6 <192 <1 3 32 sm B cos J = sin J4COS C+ cosj4sinC* =I 1 *不<=> cos J4=—<=>X=—a1= b1+c3- Qhc cos^ O a =事=>i a= a2 =8 =万(II )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考三角函数1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=3.弧长及扇形面积公式弧长公式:r l .α= 扇形面积公式:S=r l .21α----是圆心角且为弧度制。

r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy (2)各象限的符号:sin α cos α tan αxy+O— —+x yO — ++— +y O— ++ —5.同角三角函数的基本关系:(1)平方关系:s in 2α+ cos 2α=1。

(2)商数关系:ααcos sin =tan α (z k k ∈+≠,2ππα)6.诱导公式:记忆口诀:2k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号看象限。

()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限.7正弦函数、余弦函数和正切函数的图象与性质降幂公式: 1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-= 9.正弦定理 :2sin sin sin a b cR A B C===. 余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.三角形面积定理.111sin sin sin 222S ab C bc A ca B ===.1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理)两角和与差的三角函数关系 sin(α±β)=sin α·cos β±cos α·sin β cos(α±β)=cos α·cos β sin α·sin β βαβαβαtan tan 1tan tan )tan(⋅±=±倍角公式 s in2α=2sin α·cos α cos2α=cos 2α-sin 2α=2cos 2α-1 =1-2sin 2αααα2tan 1tan 22tan -=(2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。

2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =π。

(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R CcB b A a 2sin sin sin ===。

(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。

3.三角形的面积公式:(1)△=21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)△=21ab sin C =21bc sin A =21ac sin B ;(3)△=)sin(2sin sin 2C B C B a +=)sin(2sin sin 2A C A C b +=)sin(2sin sin 2B A BA c +;(4)△=2R 2sin A sin B sin C 。

(R 为外接圆半径) (5)△=Rabc 4; (6)△=))()((c s b s a s s ---;⎪⎭⎫ ⎝⎛++=)(21c b a s ; (7)△=r ·s 。

4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面积等等.解三角形的问题一般可分为下面两种情形:若给出的三角形是直角三角形,则称为解直角三角形;若给出的三角形是斜三角形,则称为解斜三角形解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C 。

(1)角与角关系:A +B +C = π;(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)边与角关系:正弦定理 R CcB b A a 2sin sin sin ===(R 为外接圆半径); 余弦定理 c 2 = a 2+b 2-2bc cos C ,b 2 = a 2+c 2-2ac cos B ,a 2 = b 2+c 2-2bc cos A ;它们的变形形式有:a = 2R sin A ,baB A =sin sin ,bc a c b A 2cos 222-+=。

5.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。

(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。

2sin 2cos ,2cos 2sinCB AC B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。

r 为三角形内切圆半径,p 为周长之半。

(3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列。

四.【典例解析】 题型1:正、余弦定理(2009岳阳一中第四次月考).已知△ABC 中,AB a =,AC b =,0a b ⋅<,154ABC S ∆=, 3,5a b ==,则BAC ∠=( )A.. 30 B .150- C .0150 D . 30或0150 答案 C例1.(1)在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形;(2)在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。

例2.(1)在∆ABC 中,已知23=a 62c 060=B ,求b 及A ; (2)在∆ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 解析:(1)∵2222cos =+-b a c ac B=22(23)(62)223(62)+-⋅⋅cos 045 =212(62)43(31)+- =8 ∴2 2.=b求A 可以利用余弦定理,也可以利用正弦定理:解法一:∵cos 222222(22)(62)(23)1,22222(62)+-++-==⨯⨯+b c a A bc ∴060.=A (2)由余弦定理的推论得:cos 2222+-=b c a A bc 22287.8161.7134.6287.8161.7+-=⨯⨯0.5543,≈ 05620'≈A ;cos 2222+-=c a b B ca 222134.6161.787.82134.6161.7+-=⨯⨯ 0.8398,≈ 03253'≈B ;0000180()180(56203253)''=-+≈-+C A B 09047.'= 例3.在∆ABC 中,sin cos A A +=22,AC =2,AB =3,求A tan 的值和∆ABC 的面积。

.21)45cos(,22)45cos(2cos sin =-∴=-=+ A A A A又0180<<A , 4560,105.A A ∴-==13tan tan(4560)2313A +∴=+==---,.46260sin 45cos 60cos 45sin )6045sin(105sin sin +=+=+==A S AC AB A ABC ∆=⨯=⨯⨯⨯+=+1212232643426sin ()。

例4.(2009湖南卷文)在锐角ABC ∆中,1,2,BC B A ==则cos ACA的值等于 , AC 的取值范围为 .答案 2)3,2(解析 设,2.A B θθ∠=⇒=由正弦定理得,1 2.sin 2sin 2cos cos AC BC AC ACθθθθ=∴=⇒=由锐角ABC ∆得0290045θθ<<⇒<<,又01803903060θθ<-<⇒<<,故233045cos 22θθ<<⇒<<, 2cos 2,3).AC θ∴=∈例5.(2009浙江理)(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足5cos25A =,3AB AC ⋅=.(I )求ABC ∆的面积; (II )若6b c +=,求a 的值. 解 (1)因为25cos25A =,234cos 2cos 1,sin 255A A A ∴=-==,又由3AB AC ⋅= 得cos 3,bc A =5bc ∴=,1sin 22ABC S bc A ∆∴== (2)对于5bc =,又6b c +=,5,1b c ∴==或1,5b c ==,由余弦定理得2222cos 20a b c bc A =+-=,25a ∴=例6.(2009全国卷Ⅰ理)在ABC ∆中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin ,A C A C = 求b解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a ac ab bc+-+-=化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解得40(b b ==或舍).例7.ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值。

相关文档
最新文档