高中部分三角函数知识点总结

合集下载

高中三角函数知识点总结《精华版》

高中三角函数知识点总结《精华版》

高中三角函数知识点总结《精华版》一、三角函数的定义:1. 正弦函数(sin):在单位圆上,其中一角的正弦值等于该角顶点的对边与斜边的比值。

2. 余弦函数(cos):在单位圆上,其中一角的余弦值等于该角顶点的邻边与斜边的比值。

3. 正切函数(tan):在单位圆上,其中一角的正切值等于该角顶点的对边与邻边的比值。

二、基本性质:1.三角函数的值域:正弦和余弦的值域为[-1,1],正切的值域为实数集。

2. 正弦函数和余弦函数的关系:sin²θ + cos²θ = 13.三角函数的周期性:正弦和余弦函数的周期为2π,正切函数的周期为π。

三、三角函数与四象限:1. 在第一象限,sinθ和cosθ均为正数。

2. 在第二象限,sinθ为正,cosθ为负。

3. 在第三象限,sinθ和cosθ均为负数。

4. 在第四象限,sinθ为负,cosθ为正。

四、三角函数的图像及性质:1.正弦函数的图像:从原点出发向右为起始点,振动幅度为1,曲线在零点上下交替。

2.余弦函数的图像:从峰值(1或-1)出发向右为起始点,振动幅度为1,曲线在零点上下交替。

3.正切函数的图像:振动幅度无限增加,从0开始。

五、常见角的正弦、余弦和正切值的计算:1. 0度:sin0 = 0,cos0 = 1,tan0 = 0。

2. 30度:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√33. 45度:sin45° = √2/2,cos45° = √2/2,tan45° = 14. 60度:sin60° = √3/2,cos60° = 1/2,tan60° = √35. 90度:sin90° = 1,cos90° = 0,tan90° = 无穷大。

六、三角函数的基本性质:1.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

高考三角函数知识点总结

高考三角函数知识点总结

高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。

1弧度等于圆周的1/2π。

2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。

3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。

4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。

二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。

- sin(x) = a / c,其中a是对边,c是斜边。

- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。

2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。

- cos(x) = b / c,其中b是邻边,c是斜边。

- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。

3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。

- tan(x) = a / b,其中a是对边,b是邻边。

- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。

4.余切函数:余切函数是正切函数的倒数。

- cot(x) = 1 / tan(x)。

5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。

- sec(x) = 1 / cos(x)。

6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。

- csc(x) = 1 / sin(x)。

三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。

高中数学三角函数知识点

高中数学三角函数知识点

高中数学三角函数知识点一、基础概念1. 三角函数三角函数是数学中的一种函数,用来描述一个直角三角形中各边和角度之间的关系。

三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)。

2. 角度制和弧度制角度制是指用度数来描述角度大小的一种测量方法,以“度”作为单位。

1圆周角等于360度,1度等于60分,1分等于60秒。

弧度制是指用弧长来描述角度大小的一种测量方法,以“弧度”作为单位。

1圆周角等于2π弧度,1弧度等于圆的半径所对应的弧长的长度。

3. 函数的周期与函数值域函数的周期是指函数在一段区间内重复出现的最小长度。

正弦函数和余弦函数的周期都是2π,正切函数和余切函数的周期都是π,正割函数和余割函数的周期都是π。

函数的值域是指函数所有可能的输出值所组成的集合。

正弦函数和余弦函数的值域都是[-1,1],正切函数的值域是(-∞,∞),余切函数的值域也是(-∞,∞),正割函数的值域是[1,∞),余割函数的值域也是[-∞,-1]∪[1,∞)。

4. 常用三角函数的图形正弦函数的图形是一条周期为2π、在x=π/2处取得最大值1,在x=3π/2处取得最小值-1的正弦曲线。

余弦函数的图形是一条周期为2π、在x=0处取得最大值1,在x=π处取得最小值-1的余弦曲线。

正切函数的图形是一条周期为π、在x=π/2+kπ(k∈Z)处有一个无穷大的跳跃,且在x=kπ(k∈Z)处取值为0的正切曲线。

5. 三角函数的基本关系式正弦函数和余弦函数之间满足关系式sin(x)=cos(x-π/2),cos(x)=sin(x+π/2)。

正切函数和余切函数之间满足关系式tan(x)=1/cot(x),cot(x)=1/tan(x)。

二、三角函数的运算1. 三角函数的加减法公式sin(x±y)=sinxcosy±cosxsinycos(x±y)=cosxcosy∓sinxsinytan(x±y)=(tanx±tany)/(1∓tanxtany)cot(x±y)=(cotxcoty∓1)/(cotx±coty)2. 三角函数的积化和差公式sinx+siny=2sin((x+y)/2)cos((x-y)/2)sinx-siny=2cos((x+y)/2)sin((x-y)/2)cosx+cosy=2cos((x+y)/2)cos((x-y)/2)cosx-cosy=-2sin((x+y)/2)sin((x-y)/2)3. 三角函数的倍角公式和半角公式sin2x=2sinxcosxcos2x=cos^2x-sin^2xtan2x=(2tanx)/(1-tan^2x)sin(x/2)=±√[(1-cosx)/2]cos(x/2)=±√[(1+cosx)/2]tan(x/2)=±√[(1-cosx)/(1+cosx)]4. 三角函数的反函数sin(-1)x:[-1,1]→[-π/2,π/2]cos(-1)x:[-1,1]→[0,π]tan(-1)x:(-∞,∞)→(-π/2,π/2)cot(-1)x:(-∞,∞)→(0,π)三、三角函数的应用1. 三角函数在几何中的应用在直角三角形中,正弦函数和余弦函数可以用来计算任意两边和一个角的关系。

三角函数知识点归纳总结

三角函数知识点归纳总结

三角函数是高中数学中的重要内容,涉及到三角函数的定义、性质、图像、公式等方面的知识。

下面是对三角函数知识点的归纳总结:一、三角函数的定义1. 正弦函数(sin):在直角三角形中,对边与斜边的比值。

2. 余弦函数(cos):在直角三角形中,邻边与斜边的比值。

3. 正切函数(tan):在直角三角形中,对边与邻边的比值。

4. 余切函数(cot):在直角三角形中,邻边与对边的比值。

5. 正割函数(sec):在直角三角形中,斜边与邻边的比值。

6. 余割函数(csc):在直角三角形中,斜边与对边的比值。

二、三角函数的性质1. 奇偶性:sin和cos函数是奇函数,tan和cot函数是偶函数。

2. 周期性:sin和cos函数的周期为2π,tan和cot函数的周期为π。

3. 值域:sin和cos函数的值域为[-1, 1],tan和cot函数的值域为实数集。

4. 单调性:sin和cos函数在每个周期内单调递增或递减,tan和cot函数在每个周期内单调递增。

5. 对称性:sin和cos函数关于原点对称,tan和cot函数关于坐标轴对称。

三、三角函数的图像1. 正弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

2. 余弦函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

3. 正切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

4. 余切函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

5. 正割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

6. 余割函数的图像:在直角坐标系中,以x轴为始边,以角θ为终边的一条线段。

四、三角函数的基本公式1. 和差公式:sin(a+b) = sina * cosb + cosa * sinb;cos(a+b) = cosa * cosb - sina * sinb;tan(a+b) = (tana + tanb) / (1 - tana * tanb);cot(a+b) = (1 / tana + 1 / tanb) / (1 / tana * 1 / tanb - 1);sec(a+b) = secab / (cosa * cosb - sina * sinb);csc(a+b) = cscab / (cosa * cosb + sina * sinb)。

高中学习三角函数的要点

高中学习三角函数的要点

高中学习三角函数的要点一、三角函数的定义三角函数是数学中研究角与边的关系的一门重要学科,它主要研究角的弧度和三角比值之间的关系。

在高中数学中,主要学习的三角函数有正弦函数、余弦函数和正切函数。

正弦函数(sin)、余弦函数(cos)和正切函数(tan)是最基本的三角函数,它们的定义如下:(1) 正弦函数(sin):对于任何一个角θ,它的正弦值可以表示为角的对边与斜边之比,即sinθ=opposite/hypotenuse。

(2) 余弦函数(cos):对于任何一个角θ,它的余弦值可以表示为角的邻边与斜边之比,即cosθ=adjacent/hypotenuse。

(3) 正切函数(tan):对于任何一个角θ,它的正切值可以表示为角的对边与邻边之比,即tanθ=opposite/adjacent。

二、三角函数的基本性质1.周期性:三角函数在定义域内具有周期性,即f(x+2π)=f(x)。

其中,正弦函数和余弦函数的周期是2π,而正切函数的周期是π。

2. 奇偶性:正弦函数是奇函数,即sin(-x)=-sin(x);余弦函数是偶函数,即cos(-x)=cos(x);正切函数是奇函数,即tan(-x)=-tan(x)。

3.定义域和值域:正弦函数和余弦函数的定义域是实数集,值域是[-1,1];而正切函数的定义域是所有除去π/2+kπ(k∈Z)的实数,值域是实数集。

4.单调性:在定义域内,正弦函数和余弦函数是周期性变化的,而且都具有单调性;正弦函数在[0,π]上是递增的,[π,2π]上是递减的;余弦函数在[0,π/2]上是递减的,[π/2,π]上是递增的。

5. 正交关系:正弦函数和余弦函数具有正交关系,即∫[0,π/2]sinx*cosxd x=0。

三、三角函数的图像和变换1.正弦函数和余弦函数的图像:正弦函数的图像为“山”字形,余弦函数的图像为“U”字形。

它们在原点的函数值都是0,而且根据周期性,整个函数图像呈现周期性变化。

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典

高中数学必修三角函数知识点归纳总结经典一、正弦函数、余弦函数、正切函数的定义1. 正弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y=sinθ称为角θ的正弦函数。

2. 余弦函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则x=cosθ称为角θ的余弦函数。

3. 正切函数:在单位圆上,对于任意角度θ,都存在一个点P(x,y),其中x=cosθ,y=sinθ。

则y/x=tanθ称为角θ的正切函数。

二、基本性质1.周期性:正弦函数、余弦函数、正切函数的周期都是2π。

2.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。

3.值域:正弦函数和余弦函数的值域为[-1,1],正切函数的值域为R。

三、基本公式1. 正弦函数的基本公式:sin(θ±α) = sinθcosα ±cosθsinα2. 余弦函数的基本公式:cos(θ±α) = cosθcosα ∓ sinθsinα3. 正切函数的基本公式:tan(θ±α) =(tanθ±tanα)/(1∓tanθtanα)四、三角函数的图像与性质1.正弦函数图像的性质:周期为2π,在(0,0)处取得最小值-1,在(π/2,1)、(3π/2,-1)处取得最大值1,是一个奇函数。

2.余弦函数图像的性质:周期为2π,在(0,1)处取得最大值1,在(π,-1)处取得最小值-1,是一个偶函数。

3.正切函数图像的性质:周期为π,在(0,0)处取得最小值-∞,在(π/2,∞)处取得最大值∞,是一个奇函数。

五、三角函数的性质1.三角函数的和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA±tanB)/(1∓tanAtanB)2.三角函数的倍角公式:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1-tan^2θ)3.三角函数的半角公式:sin(θ/2) = √[(1-cosθ)/2]cos(θ/2) = √[(1+cosθ)/2]tan(θ/2) = sinθ/(1+cosθ)4.三角函数的积化和差公式:sinA·sinB = (1/2)[cos(A-B)-cos(A+B)]cosA·cosB = (1/2)[cos(A-B)+cos(A+B)]sinA·cosB = (1/2)[sin(A-B)+sin(A+B)]六、三角函数的应用1.解三角形:利用正弦定理、余弦定理和正弦函数、余弦函数的性质,可以解决三角形的边长和角度。

高中数学三角函数知识点总结实用版

高中数学三角函数知识点总结实用版

千里之行,始于足下。

高中数学三角函数学问点总结有用版高中数学中的三角函数主要包括正弦函数、余弦函数、正切函数以及其反函数。

以下是三角函数的相关学问点总结。

一、正弦函数(sinx)1. 定义:对于任意角x,其对应的正弦值是一个比值,表示x角的对边与斜边的比值。

2. 特点:- 定义域:(-∞, +∞)- 值域:[-1, 1]- 奇函数:sin(-x) = -sinx- 周期性:sin(x + 2π) = sinx,其中π是圆周率,x为任意实数- 对称性:sin(π - x) = sinx,sin(π + x) = -sinx3. 基本关系式:- 三角恒等式:sin²x + cos²x = 1- 三角函数的互余关系:sinx = cos(π/2 - x),cosx = sin(π/2 - x)- 和差与倍角公式:sin(x ± y) = sinxcosy ± cosxsiny,sin2x = 2sinxcosx二、余弦函数(cosx)1. 定义:对于任意角x,其对应的余弦值是一个比值,表示x角的邻边与斜边的比值。

2. 特点:- 定义域:(-∞, +∞)- 值域:[-1, 1]- 偶函数:cos(-x) = cosx第1页/共3页锲而不舍,金石可镂。

- 周期性:cos(x + 2π) = cosx,其中π是圆周率,x为任意实数- 对称性:cos(π - x) = -cosx,cos(π + x) = -cosx3. 基本关系式:- 三角恒等式:sin²x + cos²x = 1- 三角函数的互余关系:sinx = cos(π/2 - x),cosx = sin(π/2 - x)- 和差与倍角公式:cos(x ± y) = cosxcosy ∓ sinxsiny,cos2x = cos²x - sin²x三、正切函数(tanx)1. 定义:对于任意角x,其对应的正切值是一个比值,表示x角的对边与邻边的比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

★高中三角函数部分总结
1.任意角的三角函数定义:
设α为任意一个角,点),(y x P 是该角终边上的任意一点(异于原点),),(y x P 到原点的距离为22y x r +=
,则:
)(tan ),(cos ),(sin y x x
y
x r x y r y ⨯===
正负看正负看正负看ααα 2.特殊角三角函数值:
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3
cot30°=√3 cot45°=1 cot60°=√3/3
sin15°=(√6-√2)/4 sin75°=(√6+√2)/4
cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin (45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值
3.同角三角函数公式:
αααααααααα
αtan 1
cot ,sin 1csc ,cos 1sec 1cos sin ,cos sin tan 22=
===+=
4.三角函数诱导公式:
(1))(;tan )2tan(,cos )2cos(
,sin )2sin(Z k k k k ∈=+=+=+απααπααπα (2);tan )tan(,cos )cos(
,sin )sin(απααπααπα=+-=+-=+ (3);tan )tan(,cos )cos(,sin )sin(αααααα-=-=--=-
(函数名称不变,符号看象限)
(4);cot )2
tan(,sin )2cos(,cos )2sin(απ
ααπααπ
α-=+-=+=+ (5);cot )2
tan(,sin )2cos(,cos )2sin(
ααπ
ααπααπ
=-=-=- (正余互换,符号看象限)
注意:tan 的值,总为sin/cos ,便于记忆;
5.三角函数两角诱导公式:
(1)和差公式
βαβαβαsin cos cos sin )sin(±=±βαβαβαsin sin cos cos )cos( =± β
αβ
αβαtan tan 1tan tan )tan( ±=
±
(2)倍角公式
令上面的βα=可得:αααcos sin 2)2sin(=
α
αααα2222sin 211cos 2sin cos )2cos(-=-=-= α
α
α2tan 1tan 2)2tan(-=
6.正弦定理:
△ABC 中三边分别为c b a ,,,外接圆半径为R ,则有:
R C
c
B b A a 2sin sin sin === 在△AB
C 中,a / sin A = b / sin B = c / sin C = 2R (其中,R 为△ABC 的外接圆的半径。

)
7.余弦定理:
△ABC 中三边分别为c b a ,,,则有:ab
c b a C 2cos 2
22-+=
8两角公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA
tan(A-B) =tanAtanB1tanB tanA
cot(A+B) =cotAcotB1 -cotAcotB cot(A-B) =cotA cotB1 cotAcotB
9倍角公式
tan2A =A tan12tanA
2
Sin2A=2SinA •CosA
Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA Tan3A=)3tan()3tan(tan)(tan1)(tan3tan323A
10面积公式:
△ABC 中三边分别为c b a ,,,面积为S ,则有:)(sin 2
1
两边与夹角正弦值C ab S =
函数名 图像
单调区间
y=sinx
递增区间:
]22,22[π
ππ
π+-
k k 递减区间:
Z k k k ∈+
+
],2
32,2
2[π
ππ
π
y=cosx
递增区间:
]2,2[πππk k -
递减区间:
Z k k k ∈+],2,2[πππ
y=tanx
递增区间:
Z k k k ∈+-
),2
,2(π
ππ
π 定义域非R ,为:
}2
|{π
π+≠k x x
12关于B x A y ++=)sin(ϕω的性质:
(1)最大值为B A +||,最小值为B A +-||(得最大最小时,1)sin(±=+ϕωx ) (2)周期||2ωπ=
T ,频率π
ω2||1==T f ,相位是ϕω+x ,初相是ϕ
(3)图像的对称轴是直线:)(2
Z k k x ∈+
=+π
πϕω,可化简为x=的形式;
(4)图像的对称中心为:B B x A y =++=)sin(ϕω时得到的所有交点(x ,B ) (5)单调区间求取:一利用诱导公式将ω变为正,如变为cos 等,此处假设0>ω,二求出x A y sin =的单调区间,令ϕω+x 分别位于单调区间区域,反解x 范围;
13图像变换:B x A y ++=)sin(ϕω:
B
x A y x A B y x A y x A
y
x x
y x y x
y B y A y x x ++=→+=-−−−−−→−+=→+=−−−−−−→−+=+=−−−−−−→−+=−−−−−→−=)sin()sin()
sin()sin()
sin()1
sin()
sin(sin 1
ϕωϕωϕωϕωϕωϕω
ϕω
ϕ个单位轴下移沿倍
变为原来的纵坐标倍
变为原来的横坐标个单位轴左移沿
关键点:上+下-(y ),左+右-(x ),倍数相除(变为原来的n 倍,则对应的坐标都除以n )。

相关文档
最新文档