人教版 高中数学必修4 三角函数知识点
(word完整版)高中数学必修4三角函数知识点总结归纳,文档

高中数学必修 4 知识点总结第一章三角函数正角 : 按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角2、象限角:角的极点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称为第几象限角.第一象限角的会集为k 360o k 360o90o , k第二象限角的会集为k 360o90o k360o180o, k第三象限角的会集为k 360o 180o k360o270o , k第四象限角的会集为k 360o270o k360o360o, k终边在 x 轴上的角的会集为k 180o , k终边在 y 轴上的角的会集为k180o90o , k终边在坐标轴上的角的会集为k 90o, k3、终边相等的角:与角终边相同的角的会集为k 360o, k4、是第几象限角,确定n*所在象限的方法:先把各象限均分 n 等n份,再从 x 轴的正半轴的上方起,依次将各地域标上一、二、三、四,那么原来是第几象限对应的标号即为终边所落在的地域.n例 4.设角属于第二象限,且cos2cos2,那么角属于〔〕2A .第一象限B.第二象限C.第三象限D.第四象限解.C 2k22k,( k Z ), k4k,( k Z ),22当 k2n,( n Z)时,在第一象限;当 k2n1,(n Z ) 时,在第三象限;22而 cos cos cos20,在第三象限;2225、1 弧度:长度等于半径长的弧所对的圆心角叫做1弧度.- 1 -6、半径为 r 的圆的圆心角所对弧的长为 l ,那么角的弧度数的绝对值是l .ro7、弧度制与角度制的换算公式:2360o , 1o, 1180o.1808、假设扇形的圆心角为为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S , 那么弧长l r ,周长 C 2r l ,面积 S 1 lr 1 r 2 .2 2 9、设是一个任意大小的角,的终边上任意一点的坐标是 x, y ,它与原点的距离是 r r x 2y 20 ,那么 siny, cosx, tany x 0 . r r x10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线: sin , cos , tan . y例 7.设 MP 和 OM 分别是角17的正弦线和余弦线,那么给出的以下P T18不等式: ① MP OM 0;②OM 0 MP ; ③OMMP 0 ;OM Ax④ MP0 OM ,其中正确的选项是_____________________________ 。
高中数学必修四 第一章三角函数 1.4.2.1 周期函数

7 2
-4
, 即������
7 2
= ������
-
1 2
.
又当 x∈(-1,0)时,f(x)=2x+1,
∴������
7 2
= ������
-
1 2
=2×
-
1 2
+ 1 = 0.
题型一 题型二 题型三 题型四
反思1.解答此类题目的关键是利用化归的思想,借助周期函数的 定义把待求问题转化到已知区间上,代入求值即可.
π 6
+ 2π = 2(������ + π) − π6,
∴f(x+π)=sin
2(������
+
π)-
π 6
=sin
2������-
π 6
+
2π
= sin
2������-
π 6
= ������(������).
∴T=π.
本节结束,谢谢大家!
题型一 题型二 题型三 题型四
题型二 求三角函数的周期
【例 2】 求下列函数的周期:
(1)f(x)=sin
1 4
������
+
π 3
(������∈R);
(2)y=|sin x|(x∈R).
分析:对于(1),可结合周期函数的定义求解;对于(2),可通过画函
数图象求周期.
题型一 题型二 题型三 题型四
(2)函数 y=sin
������������
+
π 4
(������
>
0)的周期是
2π 3
,
则������
=
_____.
高中数学必修4《三角函数》知识点与易错点归纳

高中数学必修4《三角函数》知识点与易错点归纳知识点(一)任意角和弧度制1.与θ终边相同的角的集合是 ;第一或第三象限角的集合是 ;x 轴上的角的集合是 ;2.若α是锐角,则πα-是第 象限角;πα+是第 象限角;2πα-是第 象限角;α-是第 象限角;32πα-是第 象限角;2πα+是第 象限角。
3.180°=π;1°= 弧度; 1弧度= ;圆心角α弧度数的绝对值||α= ;扇形面积公式S = 。
4.角ααcos 2=-,则2α角是 象限角。
知识点二.任意角的三角函数1.任意角的三角函数的定义:设α是任意一个角,(,)P x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin α= ,cos α= ,tan α= 。
2.如图,三角函数线:正弦线是 、余弦线是 、正切线是 ;4.已知角α的终边经过点(3,4)P -,则sin tan αα+的值为 ; 5.函数sin cos tan |sin ||cos ||tan |y αααααα=++的值域是 ; 6.sin cos θθ<⇔ ;sin cos θθ>⇔ 。
知识点三.同角三角函数的基本关系式及诱导公式1.平方关系:22sin cos αα+= ;商数关系:tan α= ;2.已知tan 2α=,则ααααcos sin cos 3sin +-= ;sin cos αα⋅= ;4.1419costan()34ππ+-的值为 ; 5.化简23sin (180)cos(360)sin(270)cos (180)cos(90)tan(180)αααααα+⋅-⋅-=--⋅+⋅+ 。
yTA xα B SO M P知识点四.正弦、余弦、正切公式及倍角公式1.基本公式及变式()()22222sin sin cos cos sin sin 22sin cos 1sin 2(sin cos )cos cos cos sin sin cos2cos sin 2cos 112sin t αβαβαβαβαβαααααααβαβαβααααα==±=±−−−→=⇒±=±±=−−−→=-=-=-↓↓令令 ()222tan tan 2tan 1+cos21cos2an tan 2cos sin 1tan tan 1tan 22αβααααβααααβα±-±=→=- = ,=变式:1tantan tan tan()(1tan tan),tan()1tan4απαβαβαβαα++=+⋅-⋅=+-;sin cos ),sin 2sin(cos 2sin()436πππθθθθθθθθθ±=±±=±±=±2.4411111212cos sin ππ-= ;sin163sin 223sin 253sin313+= ; 3.在ABC ∆中,53sin ,cos 135A B ==,则cos C = ; 4.在直角ABC ∆中,sin sin A B ⋅的最大值为 ;5.已知等腰三角形的一个底角的正弦值为13,则这个三角形的顶角的余弦值是 。
高中数学必修4 三角函数(1)

高中数学必修4 三角函数(1)一、角的概念和弧度制:(1)在直角坐标系内讨论角:角的顶点在原点,始边在x 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。
若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与α角终边相同的角的集合:},2|{},360|{0Z k k Z k k ∈+=∈+=απββαββ或 与α角终边在同一条直线上的角的集合: ;与α角终边关于x 轴对称的角的集合: ;与α角终边关于y 轴对称的角的集合: ; 与α角终边关于y x =轴对称的角的集合: ; ②一些特殊角集合的表示终边在坐标轴上角的集合: ; 终边在一、三象限的平分线上角的集合: ; 终边在二、四象限的平分线上角的集合: ; 终边在四个象限的平分线上角的集合: ; (3)区间角的表示:①象限角:第一象限角 ;第三象限角: ;第一、三象限角: ;②写出图中所表示的区间角:(4)正确理解角:“第一象限的角”= ;“锐角”= ;“小于o90的角”= ;(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一 已知角α的弧度数的绝对值lrα=,其中l 为以角α作为圆心角时所对圆弧的长,r 为圆的半径。
注意钟表指针所转过的角是负角。
(7)弧长公式: ;半径公式: ;扇形面积公式: ;周长公式 二、任意角的三角函数:(1)任意角的三角函数定义:以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,x y O x y O则=αsin ;=αcos ;=αtan如:角α的终边上一点)3,(a a -,则=+ααsin 2cos 。
注意r>0 三、同角三角函数的关系与诱导公式: (1)同角三角函数的关系作用:已知某角的一个三角函数值,求它的其余各三角函数值。
(2)诱导公式:ααπ⇒+k 2: , , ;ααπ⇒+: ,, ;αα⇒-: , , ;ααπ⇒-: , , ;ααπ⇒-2:, , ;ααπ⇒-2: , , ;ααπ⇒+2:, , ;ααπ⇒-23: , , ;ααπ⇒+23: , , ;诱导公式可用概括为:奇变偶不变,符号看象限(3)同角三角函数的关系与诱导公式的运用:①已知某角的一个三角函数值,求它的其余各三角函数值。
高中数学必修4第一章_三角函数知识复习

1第一章 三角函数知识点1、角的定义:⎧⎪⎪⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。
第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。
5、长度等于半径长的弧所对的圆心角叫做1弧度。
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=。
7、弧度制与角度制的换算公式:180********.3180πππ⎛⎫===≈ ⎪⎝⎭,,8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==。
9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin yrα=,cos x r α=,()tan 0y x x α=≠。
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正。
必修四三角函数知识点

必修四三角函数知识点三角函数是数学中的一个重要分支,在必修四中,我们主要学习了正弦函数、余弦函数、正切函数等基本三角函数的相关知识。
下面让我们一起来详细了解一下这些知识点。
一、角的概念的推广在平面内,一条射线绕着它的端点旋转所形成的图形叫做角。
按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角。
如果一条射线没有作任何旋转,我们称它形成了一个零角。
为了更广泛地研究角,我们将角的概念进行了推广。
角可以是任意大小的实数,其度量单位为弧度制和角度制。
弧度制是用弧长与半径的比值来度量角的大小。
如果半径为 r 的圆中,圆心角α所对的弧长为 l,那么α的弧度数的绝对值为|α| = l /r 。
角度制则是将圆周分为 360 等份,每一份所对的圆心角为 1 度,记作 1°。
弧度制与角度制的换算公式为:180°=π 弧度。
二、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它到原点的距离为 r(r =√(x²+ y²),且 r > 0),则角α的正弦、余弦、正切函数分别定义为:正弦函数:sinα = y / r余弦函数:cosα = x / r正切函数:tanα = y / x (x ≠ 0)三角函数值在各个象限的符号规律为:“一全正,二正弦,三正切,四余弦”。
三、同角三角函数的基本关系(1)平方关系:sin²α +cos²α = 1(2)商数关系:tanα =sinα /cosα (cosα ≠ 0)利用这些基本关系,可以进行三角函数的化简、求值和证明。
四、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如:sin(π +α) =sinα ,cos(π +α) =cosα ,tan(π +α) =tanα 等。
诱导公式的记忆口诀有“奇变偶不变,符号看象限”。
五、三角函数的图象和性质(1)正弦函数 y = sin x 的图象是一条周期为2π,振幅为 1 的波浪线。
高一数学必修4:三角函数(知识点梳理)

第一章 高一数学必修4:三角函数(知识点梳理)三角函数不作任何旋转形成的角:零角按顺时针方向旋转形成的角:、任意角负角1按逆时针方向旋转形成的角:正角⎩⎪⎨⎪⎧2、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限,叫做轴线角。
第一象限角的集合为⋅<<⋅+∈Z ααk k k 36036090,}{第二象限角的集合为⋅+<⋅+∈Z αk k k 36090360180,}{第三象限角的集合为⋅+<<⋅+∈Z ααk k k 360180360270,}{ 第四象限角的集合为⋅+<<⋅+∈Z ααk k k 360270360360,}{ 终边在x 轴上的角的集合为=⋅∈Z ααk k 180,}{终边在y 轴上的角的集合为=⋅+∈Z ααk k 18090,}{ 终边在坐标轴上的角的集合为=⋅∈Z ααk k 90,}{3、与角α终边相同的角,连同角α在内,都可以表示为集合{αββ|360,∈⋅+=Z k k } 4、弧度制:(1)定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制。
半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是=αrl. (2)度数与弧度数的换算:=o 3602π,180=π rad ,1 rad π=≈= (180)57.185730'注:角度与弧度的相互转化:设一个角的角度为n o,弧度为α;①角度化为弧度:=⋅=o o o n n n ππ180180,②弧度化为角度:ααπαπ=⋅=⎛⎝ ⎫⎭⎪180180oo(3)若扇形的圆心角为α(α是角的弧度数),半径为r ,则:弧长公式: ①=l n π(用度表示的)180,② =α||r l (用弧度表示的); 扇形面积:①=πs r n 扇用度表示的2360()② 扇α==212||12r S lr (用弧度表示的)5、三角函数:(1)定义①:设α是一个任意大小的角,α是x y ,(),它与原点的距离是==>r OP r 0)(,则=αr y sin ,=αr x cos ,=≠αxx ytan 0() 定义②:设α是一个任意角,它的终边与单位圆交于点P 那么v 叫做α的正弦,记作sin α,即sin α=y ;u 叫做α弦,记作cos α,即cos α=x ; 当α的终边不在y 轴上时,y x 叫做α的正切,记作tan α, 即tan α=y x. (2)三角函数值在各象限的符号:口诀:全正,S 正,T 正,C口诀:第一象限全为正;二正三切四余弦. (3)特殊角的三角函数值sin αx y + + _ _ O x y + + _ _ cos α Otan α x y++_ _ O(4)三角函数线:如下图(5)同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα6、三角函数的诱导公式:+=πααk 1sin 2sin ()(),+=πααk cos 2cos (),+=∈Z πααk k tan 2tan ()().口诀:终边相同的角的同一三角函数值相等.-=-αα2sin sin ()(),-=ααcos cos (),-=-ααtan tan (). -=παα3sin sin ()(),-=-πααcos cos (),-=-πααtan tan ().+=-παα4sin sin ()(),+=-πααcos cos (),+=πααtan tan (). -=-παα5sin 2sin ()(),-=πααcos 2cos (),-=-πααtan 2tan ().口诀:函数名称不变,正负看象限.⎝⎭⎪-=⎛⎫ααπ26sin cos (),⎝⎭ ⎪-=⎛⎫ααπ2cos sin ,⎝⎭ ⎪-=⎛⎫ααπ2tan cot . ⎝⎭⎪+=⎛⎫ααπ27sin cos (),⎝⎭ ⎪+=-⎛⎫ααπ2sin cos ,⎝⎭⎪+=-⎛⎫ααπ2cot tan . 口诀:正弦与余弦互换,正负看象限.诱导公式记忆口诀:“奇变偶不变,符号看象限”。
(完整版)必修4三角函数知识点归纳总结材料

《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈gx 轴上角:{}()180k k Z αα=∈o gy 轴上角:{}()90180k k Z αα=+∈o o g3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈o o g g第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈oo g g第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈oo g g4、区分第一象限角、锐角以及小于90o的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈o g g锐角:{}090αα<<o小于90o的角:{}90αα<o5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,r =2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”)sin α tan α cos α 第一象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第二象限:0,0.><y x sin α>0,cos α<0,tan α<0, 第三象限:0,0.<<y x sin α<0,cos α<0,tan α>0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x xx OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
(完整版)人教高中数学必修四第一章三角函数知识点归纳

三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学必修四三角函数知识点总结

中学数学必修四三角函数学问点总结三角函数是中学数学考试必考的一个内容,也是许多同学遇到的一个难点,下面是给大家带来的中学数学必修四三角函数学问点总结,希望对你有帮助。
中学数学三角函数找学问点总结(一)中学数学三角函数学问点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )中学数学三角函数学问点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)中学数学三角函数学问点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina中学数学三角函数学问点总结:协助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t),tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))中学数学三角函数学问点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosa中学数学三角函数学问点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]=4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)中学数学三角函数学问点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 点击下一页共享更多中学数学必修四三角函数学问点总结。
高中数学必修4三角函数常考题型:三角函数的诱导公式(一)

三角函数的诱导公式(一)【学问梳理】1.诱导公式二(1)角π+α与角α的终边关于原点对称. 如图所示. (2)公式:sin(π+α)=-sin_α.cos(π+α)=-cos_α.tan(π+α)=tan_α.2.诱导公式三(1)角-α与角α的终边关于x 轴对称.如图所示.(2)公式:sin(-α)=-sin_α.cos(-α)=cos_α.tan(-α)=-tan_α.3.诱导公式四(1)角π-α与角α的终边关于y 轴对称.如图所示.(2)公式:sin(π-α)=sin_α.cos(π-α)=-cos_α.tan(π-α)=-tan_α.【常考题型】题型一、给角求值问题【例1】 求下列三角函数值:(1)sin(-1 200°);(2)tan 945°;(3)cos 119π6. [解] (1)sin(-1 200°)=-sin 1 200°=-sin(3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32; (2)tan 945°=tan(2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1;(3)cos 119π6=cos ⎝⎛⎭⎫20π-π6=cos ⎝⎛⎭⎫-π6=cos π6=32.【类题通法】利用诱导公式解决给角求值问题的步骤【对点训练】求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值.解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos(3×360°+210)+cos 30°sin 210°+tan(180°-45°)=sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45°=sin 45°cos 30°-cos 30°sin 30°-tan 45°=22×32-32×12-1=6-3-44. 题型二、化简求值问题【例2】 (1)化简:cos (-α)tan (7π+α)sin (π-α)=________; (2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°). (1)[解析]cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1. [答案] 1(2)[解] 原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1. 【类题通法】利用诱导公式一~四化简应留意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有变更,但肯定要留意函数的符号有没有变更;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采纳切化弦,有时也将弦化切.【对点训练】化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ). 解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ. 题型三、给角(或式)求值问题【例3】 (1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( ) A .1 B .-1C.13 D .-13 (2)已知cos(α-55°)=-13,且α为第四象限角,求sin(α+125°)的值. (1)[解析] ∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z ,∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13. [答案] D(2)[解] ∵cos(α-55°)=-13<0,且α是第四象限角. ∴α-55°是第三象限角.sin(α-55°)=-1-cos 2(α-55°)=-223. ∵α+125°=180°+(α-55°),∴sin(α+125°)=sin[180°+(α-55°)]=-sin(α-55°)=223. 【类题通法】解决条件求值问题的策略(1)解决条件求值问题,首先要细致视察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.【对点训练】已知sin(π+α)=-13,求cos(5π+α)的值. 解:由诱导公式得,sin(π+α)=-sin α,所以sin α=13,所以α是第一象限或其次象限角. 当α是第一象限角时,cos α= 1-sin 2α=223, 此时,cos(5π+α)=cos(π+α)=-cos α=-223. 当α是其次象限角时,cos α=-1-sin 2α=-223, 此时,cos(5π+α)=cos(π+α)=-cos α=223. 【练习反馈】1.如图所示,角θ的终边与单位圆交于点P ⎝⎛⎭⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 2.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( ) A .-35B.35 C .±35 D.45解析:选B sin α=-45,又α是第四象限角, ∴cos(α-2π)=cos α=1-sin 2α=35. 3.设tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=________. 解析:∵tan(5π+α)=tan α=m ,∴原式=-sin α-cos α-sin α+cos α=-tan α-1-tan α+1=-m -1-m +1=m +1m -1. 答案:m +1m -14.cos (-585°)sin 495°+sin (-570°)的值是________. 解析:原式=cos (360°+225°)sin (360°+135°)-sin (210°+360°)=cos 225°sin 135°-sin 210°=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-cos 45°sin 45°+sin 30°=-2222+12=2-2. 答案:2-25.已知cos ⎝⎛⎭⎫π6-α=33,求cos ⎝⎛⎭⎫α+5π6的值. 解:cos ⎝⎛⎭⎫π+5π6=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫α+5π6= -cos ⎝⎛⎭⎫π6-α=-33.。
高中数学必修4三角函数知识归纳

《三角函数》第一讲:诱导公式及同角的三角函数关系知识要点:一、三角函数的定义:()22,,P x y r OP x y α==+设点是角终边上异于原点的任一点,则()sin ;cos tan 0.y x yx r r xααα===≠; sin cos tan ααα“一、二象限为正,三、四象限为负”“一、四象限为正,二、三象限为负”“一、三象限为正,二、四象限为负”二、诱导公式:十字决:“奇变偶不变,符号看象限”说明:⑴将“α”始终视为锐角;⑵“奇,偶”指的是除α外的角是902π⎛⎫⎪⎝⎭或的奇数倍或偶数倍; ⑶“变,不变”指的是函数名的变或不变;⑷ “符号”指的是原函数的正负号,看象限指的是“() ”内整体角所在的象限。
三、同角的三角函数关系:平方关系:22sin cos 1αα+=;商数关系:sin tan ,cos 2k k Z απααπα⎛⎫=≠+∈ ⎪⎝⎭倒数关系:1tan ,cot 2k k Z πααα⎛⎫=≠∈ ⎪⎝⎭变形应用: ()2sin cos 12sin cos x x x x ±=±、()()22sin cos sin cos 2.x x x x ++-=典型例题:题型一:(诱导公式)【例1】tan 300sin 450+=【例2】已知sin (-α)=,则)2cos(απ+= .【例3】已知sin()4πα+=3sin()4πα-值为( )A.21 B. 12- C. 23 D. 题型二:(同角的三角函数关系)【例4】已知()3sin 5πα+=,且α是第四象限的角,则()cos 2απ-= . 【例5】已知:1cos tan 0,sin _______.5ααα=<=且则 【例6】已知tan100,sin80k =则的值等于_______. 【例7】已知:1tan 3α=-,求下列各式的值. ()()()24sin 2cos 11;2sin 3sin cos 1;3.5cos 3sin 1sin cos ααααααααα--++-【例8】已知()()sin cos ,32ππαπαθπ⎫--+=<<⎪⎝⎭求值:(1)sin cos αα-; (2)()()33sin2cos 2παπα-+-强化训练:1. 化简:)23sin()2sin(++-ππ= 。
高中数学必修4(人教A版)第一章三角函数1.6知识点总结含同步练习及答案

21 24 7.9 11.1
经长期观察,函数 y = f (t) 的图象可以近似地看成函数 y = k + A sin (ωt + φ) 的图象.下面的函数 中,最能近似表示表中数据间对应关系的函数是 ( A.y = 11 + 3 sin (
)
π π t + ) , t ∈ [0, 24] 12 2 π B.y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C.y = 11 + 3 sin t , t ∈ [0, 24] 12 π D.y = 11 + 3 sin t , t ∈ [0, 24] 6
π π t + ) , t ∈ [0, 24] 12 2 π B. y = 11 + 3 sin ( t + π) , t ∈ [0, 24] 6 π C. y = 11 + 3 sin t , t ∈ [0, 24] 6 π D. y = 11 + 3 sin t , t ∈ [0, 24] 12
3. 某城市一年中 12 个月的平均气温与月份的关系可近似地用三角函数 y = a + A cos
π (x − 6) ( 6
x = 1, 2, 3, ⋯ , 12 ) 来表示,已知 6 月份的月平均气温最高,为 28∘ C , 12 月份的月平均气温最
低,为 18∘ C ,则 10 月份的平均气温值为
B.[1, 7]
D.[0, 1] 和 [7, 12]
2π π π 弧度,从而经过 t 秒转了 = t 弧度. 12 6 6 1 √3 π 而 t = 0 时, 点 A ( , .经过 t 秒后点 A 的纵坐标为 ) ,则 ∠xOA = 2 2 3
高中数学必修四第一章三角函数公式总结

高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4知识点总结 第一章 三角函数(初等函数二)
⎧⎪
⎨⎪⎩
正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角
2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.
第一象限角的集合为{}
36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z
第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z
终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z
3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z
4、已知α是第几象限角,确定
()*
n n
α
∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n
α
终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做1弧度.
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r
α=
. 7、弧度制与角度制的换算公式:2360π=,1180
π
=,180157.3π⎛⎫
=≈
⎪⎝⎭
. 8、若扇形的圆心角为()α
α为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,
211
22
S lr r α==.
9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是(
)
0r r =>,
则sin y r α=
,cos x r α=,()tan 0y
x x
α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.
11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .
12、同角三角函数的基本关系:()22
1sin cos 1αα+=
()2222sin 1cos ,cos 1sin αααα=-=-;()
sin 2tan cos α
αα
= sin sin tan cos ,cos tan αααααα⎛
⎫== ⎪⎝
⎭.
13、三角函数的诱导公式:
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.
口诀:函数名称不变,符号看象限.{符号看象限,就是把α看作是某一个锐角(例如30°、45°、60°之类),然后π+α、π-α、-α就看作是π与这个锐角相加减或者相反后的角,然后根据这个角在第几象限,来判断三角函数的正负。
例如把α看作是30°,所以π+α为210°第三象限角,所以sin 为负、cos 为负、tan 为正,也就是诱导公式二了。
结论:当把把α看作是某一个锐角时,π+α、π-α、-α就分别为第三、第二、第四象限角了,又例如:sin (3π+α)先化成sin 【2π+(π+α)】,再化成sin (π+α),因为π+α第三象限角,而第三象限角的sin 为负,所以sin (π+α)=-sin α,用等式表示为sin (3π+α)=sin 【2π+(π+α)】=sin (π+α)=-sin α}
()5sin cos 2π
αα⎛⎫-=
⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭
. ()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫
+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.(这里的符号看象限,跟上面的一样道理,不同的是π减小到一半而已,其他没变,同样把α看作是某一个锐角,然后来判断) 14、函数sin y x =的图象上所有点向左(右)平移
ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数
()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数
()sin y x ωϕ=A +的图象.
函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移
ϕ
ω
个单位长度,得到函数()sin y x ωϕ=+
的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.
函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2π
ω
T =
;③频率:12f ω
π
=
=
T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则
()max min 12y y A =
-,()max min 12y y B =+,()21122x x x x T
=-<. sin y x =
cos y x = tan y x =
图象
定义域
R R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最值
当22
x k π
π=+
()k ∈Z 时,
max 1y =;当22
x k π
π=- ()k ∈Z 时,min 1y =-.
当()2x k k π=∈Z 时,
max 1y =;当2x k ππ=+
()k ∈Z 时,min 1y =-.
既无最大值也无最小值
周期性
2π 2π π 奇偶性
奇函数
偶函数
奇函数
单调性
在2,222k k ππππ⎡
⎤-+⎢⎥⎣
⎦
()k ∈Z 上是增函数;在
32,222k k ππππ⎡
⎤++⎢⎥⎣⎦
()k ∈Z 上是减函数.
在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+
()k ∈Z 上是减函数.
在,22k k ππππ⎛
⎫-+ ⎪⎝
⎭
()k ∈Z 上是增函数.
函 数
性 质。