人教版高中数学必修4知识点总结
数学必修4平面向量公式总结
数学必修4平面向量公式总结平面向量是高中数学必修4新教材中新增加的重要内容之一,是高中学生需要学习的重要知识点。
下面店铺给大家带来数学必修4平面向量公式总结,希望对你有帮助。
数学必修4平面向量公式高中数学必修4平面向量知识点坐标表示法平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底。
由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y 轴上的坐标。
来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算1、向量的加法:AB+BC=AC设a=(x,y) b=(x',y')则a+b=(x+x',y+y')向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x',y-y')若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=0高中数学学习方法抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
高中数学必修1、3、4、5知识点归纳及公式大全
必修 1 数学知识点第一章、会合与函数观点§、会合1、把研究的对象统称为元素,把一些元素构成的整体叫做会合。
会合三因素:确立性、互异性、无序性。
2、只需构成两个会合的元素是同样的,就称这两个会合相等。
3、常有会合:正整数会合:N *或 N ,整数会合: Z ,有理数会合:Q ,实数会合: R .4、会合的表示方法:列举法、描绘法.§、会合间的基本关系1、一般地,对于两个会合 A 、B ,假如会合 A 中随意一个元素都是会合 B 中的元素,则称会合A是会合 B的子集。
记作 A B .2、假如会合A B ,但存在元素x B ,且 x A ,则称会合A是会合B的真子集.记作:A B.3、把不含任何元素的会合叫做空集.记作:.并规定:空会合是任何会合的子集.4、假如会合 A 中含有 n 个元素,则会合 A有 2 n个子集.§、会合间的基本运算1、一般地,由所有属于会合 A 或会合 B 的元素构成的会合,称为会合 A 与 B 的并集 .记作:2、一般地,由属于会合 A 且属于会合 B 的所有元素构成的会合,称为 A 与 B 的交集 .记作:3、全集、补集C U A { x | x U , 且 x U }§、函数的观点A B .A B .1、设 A 、 B 是非空的数集,假如依据某种确立的对应关系 f ,使对于会合 A 中的随意一个数x ,在会合 B 中都有唯一确立的数 f x 和它对应,那么就称 f : A B 为会合A到会合 B 的一个函数,记作:y f x , x A .2 、一个函数的构成因素为:定义域、对应关系、值域.假如两个函数的定义域同样,并且对应关系完整一致,则称这两个函数相等.§、函数的表示法1、函数的三种表示方法:分析法、图象法、列表法.§、单一性与最大(小)值1、注意函数单一性证明的一般格式:解:设 x1 , x2a, b 且 x1x2,则: f x1 f x2=§、奇偶性1、一般地,假如对于函数f x的定义域内随意一个x ,都有f x f x,那么就称函数f x.为偶函数偶函数图象对于y 轴对称.2 、一般地,假如对于函数f x 的定义域内随意一个x ,都有 f x f x ,那么就称函数f x 为奇函数.奇函数图象对于原点对称.第二章、基本初等函数(Ⅰ)§、指数与指数幂的运算1、一般地,假如x n a ,那么 x 叫做 a 的 n 次方根。
「高中数学必修1-4知识点总汇」
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B的子集,且在B 中至少存在一个元素不属于A ,则A是B的真子集,记作A≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为 AB交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为AB补集:在全集U中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D的函数f ( x ),若任意的x 1, x 2∈D,且x 1 < x2① f ( x 1 ) < f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) < 0 <=> f ( x )是增函数② f ( x 1 ) > f ( x 2 ) <=> f ( x 1 ) – f ( x 2 ) > 0 <=> f ( x )是减函数2、复合函数的单调性: 同增异减三、二次函数y = ax 2 +b x + c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22, 对称轴:a bx 2-=,最大(小)值:a b ac 442-2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)两根式12()()()(0)f x a x x x x a =--≠. 四、指数与指数函数 1、幂的运算法则:(1)am• a n = am+ n ,(2)nm n m aa a -=÷,(3)( a m ) n =a m n (4)( ab ) n= a n • b n(5) n n n b a b a =⎪⎭⎫ ⎝⎛(6)a 0= 1 ( a≠0)(7)n n a a 1=- (8)m n m n a a =(9)m n m naa 1=-2、根式的性质(1)na =.(2)当na =; 当n 为偶数时,0||,0a a a a a ≥⎧==⎨-<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数1对数的运算法则:(1)a b = N <=> b = log a N (2)lo g a 1 = 0(3)l og a a = 1(4)lo g a a b = b(5)alog a N= N(6)lo g a (MN ) = lo g a M + lo g a N (7)l og a (NM) = l og a M -- l og a N(8)lo g a N b = b log a N (9)换底公式:log a N =aNb b log log(10)推论 log log m na a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)l ogaN =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如: y = x 2 21x x y == 11-==x xy 七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +-=)(的图象; 规律:左加右减,上加下减八. 平均增长率的问题 如果原来产值的基础数为N,平均增长率为p ,则对于时间x 的总产值y ,有(1)xy N p =+.九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
(新课标人教版)高中数学必修+选修全部知识点精华归纳总结
高中数学必修+选修知识点归纳新课标人教A版引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
系列4:由10个专题组成。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
高中数学解题基本方法一、配方法二、换元法三、待定系数法四、定义法五、数学归纳法六、参数法七、反证法八、消去法九、分析与综合法十、特殊与一般法十一、类比与归纳法十二、观察与实验法高中数学常用的数学思想一、数形结合思想二、类讨论思想三、函数与方程思想四转化(化归)思想2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用⒀复数:复数的概念与运算必修1数学知识点第一章:集合与函数概念§1.1.1、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。
数学必修四知识点(15篇)
数学必修四知识点(15篇)数学必修四知识点1平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。
虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。
学生们不得不预习课本。
我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。
在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。
同时,在课堂上安排笔记也是必要的。
在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。
这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
高考数学必修四学习技巧养成良好的学习数学习惯多质疑、勤思考、好动手、重归纳、注意应用。
学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的'脑海中。
良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。
高中数学必修4知识点
P xyA O M T高中数学必修4知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 α原来是第几象限对应的标号即为 终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是.7、弧度制与角度制的换算公式:2360π=8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为 C ,面积为S ,则 l r α=,2C r l =+,. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则,10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-; .13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.口诀:正弦与余弦互换,符号看象限.14、函数s i n y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数s i n y x =的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移 个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()s i n 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期: ③频率: ④相位:x ωϕ+; ⑤初相:ϕ.函数()s i n y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x = tan y x =图象定义域 R R值域 []1,1-[]1,1-R最值 当 ()k ∈Z 时,max 1y =; 当 ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性 奇函数偶函数奇函数单调性在 ()k ∈Z 上是增函数;在 ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数. 在 ()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z 对称轴对称中心对称轴()x k k π=∈Z对称中心 无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a bb a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ .18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- .baCBA设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP时,点P 的坐标是.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b同向时,a b a b ⋅=;当a 与b反向时,a b a b ⋅=- ;22a a a a ⋅== 或a a a =⋅ .③a b a b ⋅≤ .⑶运算律:①a b b a ⋅=⋅ ;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅ .⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则 1212a b x x y y ⋅=+ .若(),a x y = ,则222a x y =+ ,或22a x y =+ . 设()11,a x y = ,()22,b x y = ,则 12120a b x x y y ⊥⇔+= . 设a 、b 都是非零向量,()11,a x y =,()22,b x y = ,θ是a 与b 的夹角,则.24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()()tan tan tan 1tan tan αβαβαβ-=-+; ⑹ ()()t a nt a n t a n1t a n t a n αβαβαβ+=+-.25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⑶.26、()22sin cos sin αααϕA +B =A +B +,其中.。
高中数学人教版必修4知识点汇总
1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2
,
2
sin
2
1 cos
,
cos
sin 等。
高中数学必修4知识点总结归纳(人教版最全)
高中数学必修4知识点汇总第一章:三角函数1、任意角①正角:按逆时针方向旋转形成的角 ②负角:按顺时针方向旋转形成的角 ③零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在区域.5、长度等于半径长的弧所对的圆心角叫做1弧度6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.8、若扇形的圆心角为α(α为弧度制),半径为r ,弧长为l ,周长为C ,面积为S则αr l =,l r C +=2,22121r lr S α==9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:一全正,二正弦,三正切,四余弦.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos ααα=; 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2πα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、要由sin y x =的图像得到sin()y A x φ=+的图像主要有下列两种方法:sin sin()sin()sin()y x y x y x y A x φωφωφ=−−−→=+−−−→=+−−−→=+相位周期振幅变换变换变换sin sin sin()sin()y x y x y x y x ωωφωφ=−−−→=−−−→=+−−−→=+周期相位振幅变换变换变换注:第二种φωω+→x x 的情况需要平移ωφ个单位 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ; ④相位:x ωϕ+;⑤初相:ϕ.α) A α)(1)(2)15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心 ()(),0k k π∈Z 对称轴 ()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴函 数 性质第二章:平面向量1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则),(AB 1212y y x x --=4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 8、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.第三章:三角恒等变换1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- (2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-.3、()sin cos αααϕA +B =+,其中tan ϕB =A.。
最新人教版高中数学必修4第一章《余弦函数、正切函数的图象与性质》(第2课时)
第二课时 正切函数的图象与性质⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z实数集Rπ 后加以应用,例如,y =|sin x |的周期是y =sin x 的周期的一半,而y =|tan x |与y =tan x 的周期却相同,均为π.【自主测试1】函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A .⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈ZC .⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D .⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:令k π-π2<x +π4<k π+π2(k ∈Z ),解得函数f (x )的单调增区间为k π-3π4<x <k π+π4(k ∈Z ).答案:C【自主测试2】函数y =11+tan x的定义域是__________.解析:要使函数y =11+tan x 有意义,则有⎩⎪⎨⎪⎧1+tan x ≠0,x ≠k π+π2 k ∈Z ,即x ≠k π-π4,且x ≠k π+π2(k ∈Z ).故函数y =11+tan x的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠k π-π4,且x ≠k π+π2,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠k π-π4,且x ≠k π+π2,k ∈Z1.正切函数与正弦函数、余弦函数的比较剖析:正切函数y =tan x ,x ≠k π+π2,k ∈Z ,其定义域不是R ,又正切函数与正弦函数、余弦函数对应法则不同,因此一些性质与正弦函数、余弦函数的性质有了较大的差别.如正弦函数、余弦函数是有界函数,而正切函数不是有界函数;正弦函数、余弦函数是连续函数,反映在图象上是连续无间断点,而正切函数在R 上不连续,它有无数条渐近线x =k π+π2,k ∈Z ,图象被这些渐近线分隔开来;正弦函数、余弦函数既有单调增区间又有单调减区间,而正切函数在每一个区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数.它们也存在大量的共性:如均为周期函数,且对y =A tan(ωx +φ)(ω>0)而言,T =πω,y =tan x 是奇函数,它的图象既可以类似地用正切线的几何方法作图,又可以用类似于“五点法”的“三点两线法”作简图,这里三个点为(k π,0),⎝ ⎛⎭⎪⎫k π+π4,1,⎝ ⎛⎭⎪⎫k π-π4,-1,两线为直线x =k π+π2(k ∈Z ),直线x =k π-π2(k ∈Z ),作出这三个点和这两条渐近线,便可得到y =tan x 在一个周期上的简图.正弦函数、余弦函数与正切函数都是中心对称图形(注意正弦、余弦函数同时也是轴对称图形).2.教材中的“思考与讨论”正切函数在整个定义域内都是增函数吗?剖析:正切函数在整个定义域内不是增函数,可取特殊值来说明.例如取x 1=π4,x 2=2π3,显然x 1<x 2,但y 1=tan π4=1,y 2=tan 2π3=-3,y 1>y 2,不符合增函数的定义.题型一 求函数的定义域【例题1】求函数y =tan x +1+lg(1-tan x )的定义域.解:由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.在⎝ ⎛⎭⎪⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎢⎡⎭⎪⎫-π4,π4.又因为y =tan x 的周期为π,所以所求x 的范围是⎣⎢⎡⎭⎪⎫k π-π4,k π+π4(k ∈Z ),即此函数的定义域为⎣⎢⎡⎭⎪⎫k π-π4,k π+π4(k ∈Z ). 反思求三角函数式的定义域,可转化为解三角函数的不等式,利用三角函数的图象直观地求得解集.题型二 求函数的值域或最值【例题2】(1)求y =tan 2x +4tan x -1的值域;(2)若x ∈⎣⎢⎡⎦⎥⎤π6,π3,y =k +tan ⎝ ⎛⎭⎪⎫π3-2x 的值总不大于零,求实数k 的取值范围. 分析:(1)设t =tan x ,则转化为关于t 的二次函数求最值.(2)由y ≤0得k ≤-tan ⎝ ⎛⎭⎪⎫π3-2x ,因此,只要求出tan ⎝ ⎛⎭⎪⎫π3-2x 的范围即可. 解:(1)设t =tan x ,则y =t 2+4t -1=(t +2)2-5≥-5,故y =tan 2x +4tan x -1的值域为[-5,+∞).(2)由y =k +tan ⎝ ⎛⎭⎪⎫π3-2x ≤0, 得k ≤-tan ⎝ ⎛⎭⎪⎫π3-2x =tan ⎝⎛⎭⎪⎫2x -π3. ∵x ∈⎣⎢⎡⎦⎥⎤π6,π3,∴2x -π3∈⎣⎢⎡⎦⎥⎤0,π3.由正切函数的单调性得0≤tan ⎝⎛⎭⎪⎫2x -π3≤ 3. 故要使k ≤tan ⎝⎛⎭⎪⎫2x -π3恒成立,只要k ≤0. 即实数k 的取值范围为(-∞,0].反思(1)与二次函数有关的三角函数问题,常常使用“换元法”. (2)解决恒成立问题常常使用“分离常数法”. 题型三 利用函数图象研究性质 【例题3】画出函数y =|tan x |的图象,并根据图象判断其奇偶性、单调区间、周期性. 分析:解决本题的关键是画出y =|tan x |的图象,由函数图象研究其性质. 解:y =|tan x |的图象如下图所示.由图可得,函数y =|tan x |是偶函数,单调递增区间为⎣⎢⎡⎭⎪⎫k π,π2+k π(k ∈Z ), 单调递减区间为⎝ ⎛⎦⎥⎤-π2+k π,k π(k ∈Z ),周期为π. 反思(1)作函数y =|f (x )|的图象一般利用图象变换方法,具体步骤是: ①保留函数y =f (x )图象在x 轴上方的部分;②将函数y =f (x )图象在x 轴下方的部分沿x 轴向上翻折.(2)若函数为周期函数,可先研究其一个周期上的图象,再利用周期性,扩展到定义域上即可.题型四 易错辨析【例题4】若A ={x |tan x >0},B ={x |tan x +3tan 2x +23tan x -3≥0},试求A ∩B.错解:由tan x +3tan 2x +23tan x -3≥0,得⎩⎨⎧tan x ≥0,3tan 2x +23tan x -3≥0,即⎩⎨⎧tan x ≥0, 3tan x -3 tan x +3 ≥0,解得⎩⎪⎨⎪⎧tan x ≥0,tan x ≥33或tan x ≤- 3.所以tan x ≥33.所以B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33. 所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33. 由tan x ≥33,解得x ≥k π+π6,k ∈Z . 所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥k π+π6,k ∈Z. 错因分析:误认为正切函数是R 上的增函数,而忽视了其周期性及定义域等性质,正切函数应该是在每一个开区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上是增函数. 正解:因为tan x +3tan 2x +23tan x -3≥0,所以⎩⎨⎧tan x ≥0,3tan 2x +23tan x -3≥0,解得tan x ≥33.所以B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ tan x ≥33.故A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33.而正切函数在每一个开区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上是增函数, 所以tan x ≥33的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈Z . 故A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈Z.1.函数y =tan ⎝⎛⎭⎪⎫x +π4的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π4 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π-π4,k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈Z答案:D2.下列函数中,以π为周期且在区间⎝⎛⎭⎪⎫0,π2上为增函数的是( )A .y =sin x2B .y =sin xC .y =-tan xD .y =-cos 2x 答案:D3.直线y =a (a 为常数)与正切曲线y =tan ωx (ω是常数且ω>0)相交,则相邻两交点间的距离是( )A .πB .2πωC .πω D .与a 的值有关 答案:C4.函数y =tan x ,x ∈⎣⎢⎡⎦⎥⎤0,π4的值域是__________.答案:[0,1]5.函数y =tan ⎝ ⎛⎭⎪⎫x 2+π3的单调增区间是__________. 解析:由题意得k π-π2<x 2+π3<k π+π2,k ∈Z ,解得2k π-5π3<x <2k π+π3,k ∈Z .答案:⎝⎛⎭⎪⎫2k π-5π3,2k π+π3,k ∈Z 6.不等式tan x ≥3的解集为__________.解析:如图所示.由图可知x ∈⎣⎢⎡⎭⎪⎫k π+π3,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎭⎪⎫k π+π3,k π+π2(k ∈Z ) 7.若y =tan(2x +θ)的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,且-π2<θ<π2,求θ的值.解:∵y =tan α的对称中心为⎝⎛⎭⎪⎫k π2,0(k ∈Z ),∴2x +θ=k π2(k ∈Z ),代入x =π3得θ=k π2-2π3(k ∈Z ).又∵-π2<θ<π2,∴当k =1时,θ=-π6;当k =2时,θ=π3,∴θ=-π6或π3.。
人教版高中数学必修四 (空间中点、线、面的位置关系)
教案漂市一中钱少锋点A不在直线l上l A∉2.两条直线位置关系符号表示图形表示直线a与l 相交Ala=直线a与l 平行l a//直线a与l 异面异面与la异面直线的定义:空间中的两条直线既不平行也相交,则称这两条直线异面.两条直线异面,则它们不同在任何一个平面内. 用平面衬托的方法表示异面直线.3.点与平面空间中的平面也可看成这个平面上的所有点组成的集合.位置关系符号表示图形表示点A 在平面α内 α∈A点A 不是平面α内的点 α∉A4. 直线与平面(1)直线在平面α内(或平面α过直线l ):直线l 上的所有点都在平面α内,记作α⊂l .(2)直线l 在平面α外:直线l 上至少有一个点不在平面α内,记作α⊄l .①直线l 与平面α相交:直线l 与平面α有且只有一个公共点A ,记作A l =α .②直线l 与平面α平行:直线l 与平面α没有公共点,记作α//l .5. 平面与平面 位置关系 符号表示 图形表示平面βα与相交l =βα平面βα与平行βα//三、直线与平面垂直1. 直线与平面垂直的定义:如果直线l与平面α相交于点A,且对平面α内任意一条过点A的直线m,都有ml⊥,则称直线l与平面α垂直(或l是平面α的一条垂线,α是直线l的一个垂面),记作α⊥l.其中点A称为垂足.2.点与面的距离:给定空间中的一个平面α及一个点A,过点A作只可以作平面α的一条垂线,如果记垂足为B,则称B为A在平面α内的射影(也称投影),线段AB为平面α的垂线段,AB的长为点A到平面α的距离.3.直线与平面的距离:当直线与平面平行时,直线上任意一点到平面的距离称为这条直线到这个平面的距离;4.两个平行平面的距离:当平面与平面平行时,一个平面上的任意一点到另一个平面的距离称为这两平行平面之间的距离.以可以取其中任一点来作点面距来求线面距离.两个平面平行时,其中一个平面的每一点到另一个平面距离都相等,所以可以转化为点面距来处理.例题例1 判断下列命题是否正确.(1)若直线l上有无数个点不在平面α内,则α//l.( )(2)若直线l与平面α平行,则l与平面α内的任意一条直线都平行. ( )(3)若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点. ( )【答案】(1)错;(2)错;(3)对.例2 在正方体1111DCBAABCD-中,(1)与直线1AA异面的棱有条;(2)与直线BA1相交的棱有条;(3)直线BA1与直线CB1的位置关系是;(4)直线BA1与直线CD1的位置关系对线面平行关系的定义的认识,线与面没有公共点即线与平面中的所有线都没有公共点,且直线上的所有点都不在平面内,这与直线上无数个点都不在平面上不同.两条直线的平行依赖于在同一平面内没有公共点,所以仅由直线与平面平行不可得到.是 .【答案】(1)排除相交和平行的情况,4条;(2)从一个顶点出发的棱有3条,所以共有6条; (3)异面,通过找到衬托平面来判断; (4)平行.例3 已知1111D C B A ABCD -是长方体,且2,3,41===AA AD AB .(1)求点A 到平面11B BCC 的距离;(2)求直线AB 到平面1111D C B A 的距离;(3)求平面11A ADD 与平面11B BCC 之间的距离. 【答案】(1)4;(2)2;(3)4.在正方体内,判断两条直线的位置关系,通过对图形的观察,熟练掌握位置关系描述和判断的方法.通过找线面垂直,完成距离的求解.【素材积累】1、一个房产经纪人死后和上帝的对话一个房产经纪人死后,和上帝喝茶。
高中数学必修4知识点(自编)
高中数学必修4知识点 第一章 三角函数1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、终边相同的角的表示:与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第二象限角,则2α是第_____象限角。
5、长度等于半径长的弧所对的圆心角叫做1弧度.2360π= ,1180π=,1801rad 57.3π⎛⎫=≈ ⎪⎝⎭.6、弧长公式:||l R α=,扇形面积公式:211||22S lR R α==,1弧度(1rad)57.3≈ . 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。
7、任意角的三角函数的定义:设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则s i n y r α=,cos x r α=,()tan 0y x xα=≠. 8、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .正切线起点始终为A(1,0) 若08πθ-<<,则sin ,cos ,tan θθθ的大小关系为_____9、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割-----+++++-+正弦、余割o o o x yx yxy10、特殊角的三角函数值:30° 45° 60° 0°90° 180° 270° 15°75°sin α2122 23 0 1 0 -1 624- 624+ cos α23 22 21 1 0 -1 0 624+ 624- tan α33 1 32-3 2+3 cot α31330 2+32-311、同角三角函数的基本关系式:(1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1,(3)商数关系:sin cos tan ,cot cos sin αααααα==12、函数的诱导公式:()()1s i n 2s i n k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z .()()2s i n s i n παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3s i n s i n αα-=-,()cos cos αα-=,()tan tan αα-=-.TMA OPxy()()4s i n s i n παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限.()5s i n c o s 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、x y sin =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 15、五点法作正弦函数和余弦函数的图象:正弦函数sin y x =五个关键点: 、 、 、 、 。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学必修4第一章三角函数的知识点
2
1,1
k
; 当 当 x 2 k k 时,
y m ax 1 ;当 x 2 k
R
倍(纵坐标
不变) ,得到函数 y sin x 的图象;再将函数 y sin x 的图象上所有点的纵坐标 伸长(缩短)到原来的 倍(横坐标不变) ,得到函数 y sin x 的图象. 函数 y sin x 的图象上所有点的横坐标伸长(缩短)到原来的
2
奇函数
偶函数
奇函数
2
, 2k
2
;③频率: f
1
2
;④相位: x ;⑤初相: .
函数 y s in x ,当 x x1 时,取得最小值为 y m in ;当 x x 2 时,取得最大值为
y m a x ,则
sin , co s
co s , tan
, tan
tan .
3、与角 终边相同的角的集合为 k 3 6 0 , k
sin , co s
co s
tan .
终边所落在的区域.
co s , co s sin , tan co t . 2 2 2 co s , co s sin , tan co t . 2 2 2
1 2
y m ax
y m in ,
高中数学必修4知识点(完美版)
高中数学必修4知识点(完美版)高中数学必修4第一章三角函数角是指由两条射线(或直线)共同端点所组成的图形。
按照旋转方向,角可以分为正角、负角和零角。
其中,正角是按逆时针方向旋转形成的角,负角是按顺时针方向旋转形成的角,零角是不作任何旋转形成的角。
如果一个角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,就称这个角为第几象限角。
各象限角的集合可以表示为:第一象限角的集合为:α ∈ {α | k360° < α < k360° + 90°,k∈Z};第二象限角的集合为:α ∈ {α | αk360° + 90° < α < k360° + 180°,k∈Z};第三象限角的集合为:α ∈ {α | αk360° + 180° < α < αk360° + 270°,k∈Z};第四象限角的集合为:α ∈ {α | αk360° + 270° < α < αk360° + 360°,k∈Z};终边在x轴上的角的集合为:α ∈{α | α = k180°,k∈Z};终边在y轴上的角的集合为:α ∈ {α | α = k180° + 90°,k∈Z};终边在坐标轴上的角的集合为:α ∈ {α | α = k90°,k∈Z}。
根据终边所在的象限,可以将角分为四个象限。
第一象限角的终边落在第一象限,第二象限角的终边落在第二象限,以此类推。
在第一象限,角的值在0°到90°之间;在第二象限,角的值在90°到180°之间;在第三象限,角的值在180°到270°之间;在第四象限,角的值在270°到360°之间。
高中数学必修4知识点总结归纳[1]
高中数学必修4知识点14、函数s in y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()s i n y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y xω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为m in y ;当2x x =时,取得最大值为max y ,则()m axm in 12y y A =-,()m axm in12y y B =+,()21122x x x x T =-<.周期问题()()()()()()ωπωϕωωπωϕωωπωϕωωπωϕωωπωϕωωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=xACosy xASin y x ACos y xASin y x ACos y xASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T,,A,cotT,,A,tanT,,A,cotT,,A,tanxAyxAyxAyxAy15、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,m ax1y=;当22x kππ=-()k∈Z时,m in1y=-.当()2x k kπ=∈Z时,m ax1y=;当2x kππ=+()k∈Z时,m in1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.函数性质()k ∈Z 上是减函数.对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴向量:16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+ ;②结合律:()()a b c a b c ++=++;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB=--.19、向量数乘运算:⑴实数λ与向量a的积是一个向量的运算叫做向量的数乘,记作a λ.①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.baCBAa b C C -=A -AB =B⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③()a b a b λλλ+=+.⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫ ⎪++⎝⎭.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅= .②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a =.③a b a b ⋅≤.⑶运算律:①a b b a ⋅=⋅ ;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅.⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ⋅=+.若(),a x y = ,则222ax y =+,或a =设()11,a x y = ,()22,b x y = ,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y = ,()22,b x y = ,θ是a与b 的夹角,则cos x x y y a ba bθ+⋅==.恒等变换:24、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=. ⑵2222cos 2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-.26、()sin cos αααϕA +B =+,其中tan ϕB =A.。
(完整版)高中数学必修4三角函数知识点归纳总结【经典】(最新整理)
cos
4、三角函数线
设任意角 的顶点在原点 O ,始边与 x 轴非负半轴重合,终边与单位圆相交与 P (x, y) , 过 P 作 x 轴的垂线,垂足为 M ;过点 A(1, 0) 作单位圆的切线,它与角 的终边或其反向
延长线交于点 T.
y
y
T
P
A
Mo
x
P A
oM x
(Ⅱ)T
(Ⅰ)
y T
y
M
A
o
x
MA
5、三角函数的图像与性质表格
函 性质 数
y sin x
y cos x
y tan x
图 像
定
义
R
域
值
1,1
域
当 x 2k k Z 时,
2
最
ymax 1;
值 当 x 2k k Z 时,
2
ymin 1.
R
1,1
当 x 2k k Z 时,
ymax 1;当 x 2k
sin
tan
第一象限:.x 0, y 0 sin 0,cos 0,tan 0,
第二象限:.x 0, y 0 sin 0,cos 0,tan 0,
第三象限:.x 0, y 0 sin 0,cos 0,tan 0,
第四象限:.x 0, y 0 sin 0,cos 0,tan 0,
弧度 0
2 3 5
2
6
4
3
2
3
4
6
9、弧长与面积计算公式
弧长: l R ;面积: S 1 l R 1 R2 ,注意:这里的 均为弧度制.
2
2
二、任意角的三角函数
1、正弦: sin y ;余弦 cos x ;正切 tan y
高中数学教材必修4知识点
高中数学必修4知识点汇总目录第一章三角函数 (3)§1.1.1任意角 (3)§1.1.2弧度制 (3)§1.2.1任意角的三角函数 (3)§1.2.2同角三角函数的基本关系式 (4)§1.3三角函数的诱导公式 (4)§1.4.1正弦、余弦函数的图象和性质 (5)§1.4.2正切函数的图象与性质 (5)§1.5函数()ϕω+=xAy sin的图象 (7)第三章三角恒等变换 (9)§3.1.1两角差的余弦公式 (9)§3.1.2两角和与差的正弦、余弦、正切公式 (9)§3.1.3二倍角的正弦、余弦、正切公式 (9)§3.2简单的三角恒等变换 (10)第二章平面向量 (10)§2.1.1向量的物理背景与概念 (10)§2.1.2向量的几何表示 (10)§2.1.3相等向量与共线向量 (10)§2.2.1向量加法运算及其几何意义 (10)§2.2.2向量减法运算及其几何意义 (11)§2.2.3向量数乘运算及其几何意义 (11)§2.3.1平面向量基本定理 (11)§2.3.2平面向量的正交分解及坐标表示 (11)§2.3.3平面向量的坐标运算 (11)§2.3.4平面向量共线的坐标表示 (12)§2.4.1平面向量数量积的物理背景及其含义 (12)§2.4.2平面向量数量积的坐标表示、模、夹角 (12)§2.5.1平面几何中的向量方法 (14)§2.5.2向量在物理中的应用举例 (14)1、直线的方向向量和平面的法向量 (14)2、用向量方法判定空间中的平行关系 (15)5、利用法向量求空间距离 (17)6、三垂线定理及其逆定理 (18)7、三余弦定理 (19)8、面积射影定理 (19)9、一个结论 (19)高中数学必修4知识点总结第一章 三角函数 §1.1.1任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 r l =α.3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π. §1.2.1任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin y r α=,cos x r α=,tan yxα=,cot x y α=3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.§1.2.2同角三角函数的基本关系式1、 平方关系:1cos sin 22=+αα.2、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα=§1.3三角函数的诱导公式(概括为“奇变偶不变,符号看象限”Z k ∈)1、 诱导公式一: ()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈)2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五: .sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六: .sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1正弦、余弦函数的图象和性质1、记住正弦、余弦函数图象:2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图.sin y x =在[0,2]x π∈上的五个关键点为: 30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.2正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.图表归纳:正弦、余弦、正切函数的图像及其性质x y sin =x y cos = x y tan =图象定义域 RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性 π2=Tπ2=Tπ=T奇偶性奇偶奇单调性Z k ∈ 在[2,2]22k k ππππ-+上单调递增在3[2,2]22k k ππππ++上单调递减 在[2,2]k k πππ-上单调递增 在[2,2]k k πππ+上单调递减在(,)22k k ππππ-+上单调递增 对称性 Z k ∈ 对称轴方程:2x k ππ=+ 对称中心(,0)k π对称轴方程:x k π= 对称中心(,0)2k ππ+无对称轴 对称中心,0)(2k π§1.5函数()ϕω+=x A y sin 的图象1、对于函数:()()sin 0,0y A x B A ωφω=++>>有:振幅A ,周期2T πω=,初相ϕ,相位ϕω+x ,频率πω21==Tf .2、能够讲出函数x y sin =的图象与()sin y A x B ωϕ=++的图象之间的平移伸缩变换关系.① 先平移后伸缩:sin y x = 平移||ϕ个单位 ()sin y x ϕ=+(左加右减) 横坐标不变()sin y A x ϕ=+纵坐标变为原来的A 倍 纵坐标不变 ()sin y A x ωϕ=+横坐标变为原来的1||ω倍平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)② 先伸缩后平移:sin y x = 横坐标不变 sin y A x =纵坐标变为原来的A 倍 纵坐标不变 sin y A x ω=横坐标变为原来的1||ω倍()sin y A x ωϕ=+(左加右减)平移||B 个单位 ()sin y A x B ωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0)的周期2||T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0)的周期||T πω=. 对于sin()y A x ωϕ=+和cos()y A x ωϕ=+来说,对称中心与零点相联系,对称轴与最值点联系. 求函数sin()y A x ωϕ=+图像的对称轴与对称中心,只需令()2x k k Z πωϕπ+=+∈与()x k k Z ωϕπ+=∈解出x 即可.余弦函数可与正弦函数类比可得. 4、由图像确定三角函数的解析式 利用图像特征:max min 2y y A -=,max min2y y B +=. ω要根据周期来求,ϕ要用图像的关键点来求.第三章 三角恒等变换 §3.1.1两角差的余弦公式记住15°的三角函数值:§3.1.2两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、()tan tan 1tan tan tan αβαβαβ+-+=. 6、()tan tan 1tan tan tan αβαβαβ-+-=.§3.1.3二倍角的正弦、余弦、正切公式1、αααcos sin 22sin =, 变形: 12sin cos sin 2ααα=.2、ααα22sin cos 2cos -=1cos 22-=α α2sin 21-=.变形如下:升幂公式:221cos 22cos 1cos 22sin αααα⎧+=⎪⎨-=⎪⎩ 降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、ααα2tan 1tan 22tan -=.4、sin 21cos 2tan 1cos 2sin 2ααααα-==+ §3.2简单的三角恒等变换1、 注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y(其中辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 第二章 平面向量 §2.1.1向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量AB 的大小,也就是向量AB 的长度(或称模),记作AB u u u r;长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2、b a +≤b a +.§2.2.2向量减法运算及其几何意义1、 与a 长度相等方向相反的向量叫做a 的相反向量.2、 三角形减法法则和平行四边形减法法则.§2.2.3向量数乘运算及其几何意义1、 规定:实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘.记作:a λ,它的长度和方向规定如下: ⑴a a λλ=,⑵当0>λ时, a λ的方向与a 的方向相同;当0<λ时, a λ的方向与a 的方向相反. 2、 平面向量共线定理:向量()0≠a a 与b 共线,当且仅当有唯一一个实数λ,使a b λ=.§2.3.1平面向量基本定理1、 平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于这一平面内任一向量a ,有且只有一对实数21,λλ,使2211e e a λλ+=.§2.3.2平面向量的正交分解及坐标表示1、 ()y x j y i x a ,=+=.§2.3.3平面向量的坐标运算1、 设()()2211,,,y x b y x a ==,则: ⑴()2121,y y x x b a ++=+,⑵()2121,y y x x b a --=-,⑶()11,y x λλλ=, ⑷1221//y x y x b a =⇔. 2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x --=.§2.3.4平面向量共线的坐标表示1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1平面向量数量积的物理背景及其含义1、 θb a =⋅.2、 a 在b θ.3、 2=.4、 =.5、 0=⋅⇔⊥b a b a .§2.4.2平面向量数量积的坐标表示、模、夹角1、 设()()2211,,,y x y x ==,则:⑴2121y y x x +=⋅2121y x +=⑶121200a b a b x x y y ⊥⇔⋅=⇔+=r r r r⑷1221//0a b a b x y x y λ⇔=⇔-=r r r r2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.3两向量的夹角公式cos a ba bθ⋅==r r r r4点的平移公式平移前的点为(,)P x y (原坐标),平移后的对应点为(,)P x y '''(新坐标),平移向量为(,)PP h k '=u u u r,则.x x hy y k '=+⎧⎨'=+⎩函数()y f x =的图像按向量(,)a h k =r平移后的图像的解析式为().y k f x h -=-§2.5.1平面几何中的向量方法 §2.5.2向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量:若A 、B 是直线l 上的任意两点,则AB u u u r 为直线l 的一个方向向量;与AB u u u r平行的任意非零向量也是直线l 的方向向量. ⑵.平面的法向量:若向量n r所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥r ,如果n α⊥r ,那么向量n r叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =r.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==r u r.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩r r r r .⑤解方程组,取其中一组解,即得平面α的法向量.(如图)2、用向量方法判定空间中的平行关系⑴线线平行设直线12,l l 的方向向量分别是a b r r 、,则要证明1l ∥2l ,只需证明a r ∥b r ,即()a kb k R =∈r r. 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线l 的方向向量是a r ,平面α的法向量是u r,则要证明l ∥α,只需证明a u ⊥r r ,即0a u ⋅=r r.即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可. ⑶面面平行若平面α的法向量为u r ,平面β的法向量为v r ,要证α∥β,只需证u r ∥v r,即证u v λ=r r .即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线12,l l 的方向向量分别是a b r r、,则要证明12l l ⊥,只需证明a b ⊥r r ,即0a b ⋅=r r . 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线l 的方向向量是a r ,平面α的法向量是u r ,则要证明l α⊥,只需证明a r ∥u r,即a u λ=r r .②(法二)设直线l 的方向向量是a r ,平面α内的两个相交向量分别为m n u r u u r 、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩r u rr r则 即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面α的法向量为u r,平面β的法向量为v r ,要证αβ⊥,只需证u v ⊥r r ,即证0u v ⋅=r r .即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BDAC BDθ⋅=u u u r u u u r u u u r u u u r⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线l 的方向向量为a r ,平面α的法向量为u r ,直线与平面所成的角为θ,a r 与u r的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .in a ua uϕθ⋅==r r r⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥,,则AOB ∠为二面角βα--l 的平面角.如图:②求法:设二面角l αβ--的两个半平面的法向量分别为m n u r r 、,再设m n u r r 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n u r r、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角:OAOBl◆如果θ是锐角,则cos cos m nm nθϕ⋅==u r r u r r ,即arccos m nm nθ⋅=u r r u r r ;◆ 如果θ是钝角,则cos cos m nm nθϕ⋅=-=-u r r u r r ,即arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭u r r u r r .5、利用法向量求空间距离⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a r为直线l 的方向向量,b r =PQ uuu r ,则点Q 到直线l 距离为h =⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n r ,则P 到平面α的距离就等于MP u u u r在法向量n r 方向上的投影的绝对值.即cos ,d MP n MP =u u u r r u u u u rn MP MP n MP ⋅=⋅r u u u r u u u r r u u u rn MPn⋅=r u u u r r ⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MPd n⋅=r u u u r r⑷两平行平面,β之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅=r u u u r r⑸异面直线间的距离设向量n r 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP u u u r在向量nr 方向上投影的绝对值.即.n MPd n⋅=r u u u r r6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PA a a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭I概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭I概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面α内的任一条直线,AD 是α的一条斜线AB 在α内的射影,且BD ⊥AD ,垂足为D.设AB 与α (AD)所成的角为1θ, AD 与AC 所成的角为2θ, AB 与AC 所成的角为θ.则12cos cos cos θθθ=.8、 面积射影定理已知平面β内一个多边形的面积为()S S 原,它在平面α内的射影图形的面积为()S S '射,平面α与平面β所成的二面角的大小为锐二面角θ,则'cos =.S S S S θ=射原9、一个结论长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有 2222123l l l l =++222123cos cos cos 1θθθ⇔++= 222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4知识点总结第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα=. 6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系()221sin cos 1αα+=()2222sin1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.sin y x = cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴函数性 质第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)baCBAa b C C -=A -AB =B22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
)1=λ 23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y=+,或2a x y =+. 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos x x a b a bx θ⋅==+.第三章 三角恒等变换24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-. 26、⇒(后两个不用判断符号,更加好用)27、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。