解直角三角形的应用提高训练

合集下载

【精编版】数学中考专题训练——解直角三角形的应用

【精编版】数学中考专题训练——解直角三角形的应用

中考专题训练——解直角三角形的应用1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠P AB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB =115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=°,OM=;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=°,EF与AB的位置关系;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC =53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM=113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)16.如图1是十五中行政楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2.(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)(1)求开门过程中B与C走过的路径之和;(2)此时B与C之间的距离为多少?(结果保留一位小数)17.为解决群众“健身去哪儿”问题,某区2021年新建、改建90个市民益智健身苑点,图1是某益智健身苑点中的“侧摆器”.锻炼方法:面对器械,双手紧握扶手,双脚站立于踏板上,腰部发力带动下肢做左右摆式运动.(1)如图2是侧摆器的抽象图,已知摆臂OA的长度为80厘米,在侧摆运动过程中,点A为踏板中心在侧摆运动过程中的最低点位置,点B为踏板中心在侧摆运动过程中的最高点位置,∠BOA=25°,求踏板中心点在最高位置与最低位置时的高度差.(精确到0.1厘米)(sin25°≈0.423,cos25°≈0.906,tan25°≈0.466)(2)小杰在侧摆器上进行锻炼,原计划消耗400大卡的能量,由于小杰加快了运动频率,每小时能量消耗比原计划增加了100大卡,结果比原计划提早12分钟完成任务,求小杰原计划完成锻炼需多少小时?18.某超市大门口的台阶通道侧面如图所示,共有4级台阶,每级台阶高度都是0.25米.根据部分顾客的需要,超市计划做一个扶手AD,AB、DC是两根与地平线MN都垂直的支撑杆(支撑杆底端分别为点B、C).(1)求点B与点C离地面的高度差BH的长度;(2)如果支撑杆AB、DC的长度相等,且∠DAB=66°.求扶手AD的长度.(参考数据:sin66°≈0.9,cos66°≈0.4,tan66°≈2.25,cot66°≈0.44)19.“荡秋千”一直以来都是人们喜闻乐见的休闲方式之一,某天,小鹏和小运两人玩荡秋千.左图为实际图,右图为侧面几何图.静止时秋千位于铅垂线AB上,转轴A到地面的距离AB为3m,荡秋千的起始位置为C,终点为D,点C距离地面为1.16米,安全链AC为2.3m.需要解决问题如下:(1)秋千位于起始位置点C时,安全链AC与铅垂线AB夹角(即∠CAB)的度数;(2)如果我们把荡秋千的最高点与起始点的铅直高度之差记作H,起始点至最高点的路径长记作L,H与L的比值记作P(愉悦度),据科学研究表明,当0.20<P<0.22时,可使人愉悦感最强.当小鹏用力将小运从点C推出后可达到最高点D处,此时∠CAD=100°.请问这个过程能否实现愉悦感最强?说明理由.(结果精确到0.01,参考数据:sin37°=0.6,cos37°=0.8,sin27°=0.452,π=3)20.如图①是大家熟悉的柜式空调,关闭时叶片竖直向下.如图②,当启动时,出风口叶片会同步开始逆时针旋转到最大旋转角90°时返回,旋转速度是每秒10°,同时空调风从叶片口直线吹出.AB由5个叶片组成的出风口,经过测量,A点、B点距地面高度分别是170cm、145cm在空调正前方100cm处站着一个高70cm的小朋友(线段EF表示).(1)从启动开始,多长时间小朋友头顶E处感受到空调风;(2)若叶片从闭合旋转到最大角度的过程中,小朋友的头顶E处有多长时间感受到空调风;(3)当选择上下扫风模式时,叶片会旋转到最大角度后原速返回.从启动到第一次返回起始位的过程中,该小朋友头顶E处从第一次感受到空调风到再次感受到空调风中间间隔了多长时间.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析1.图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB =20cm,AB与墙壁AD的夹角∠α=30°,喷出的水流BC与AB形成的夹角∠ABC=80°.现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=150cm.问:安装师傅应将支架固定在离地面多高的位置?(结果精确到1cm,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.73,≈1.41).【分析】过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在△GAB中先求出GB、GA,再在△F AB中求出CF,最后利用线段的和差关系求出AD.【解答】解:如图,过点B作BG⊥D'D,垂足为G,延长EC、GB交于点F.在Rt△ABG中,∠BAG=∠a=30°,AB=20cm,∴GB=AB=10cm,.在Rt△BCF中,∠FBC=180°﹣60°﹣80°=40°,BF=DE﹣BG=40(cm),∴CF=BF•tan∠FBC=40tan40°≈33.6(cm),∴AD=CE+CF﹣AG=150+33.6﹣17.3≈166(cm).答:安装师傅应将支架固定在离地面166cm的位置.2.为了完成“综合与实践”作业任务,小明和小华利用周末时间邀约一起去郊外一处空旷平坦的草地上放风筝,小明负责放风筝,小华负责测量相关数据.如图,当小明把风筝放飞到空中点P处时,小华分别在地面的点A、B处测得∠P AB=45°,∠PBA=30°,AB=200米,请你求出风筝的高度PC(点C在点P的正下方,A、B、C在地面的同一条直线上)(参考数据:≈1.414,≈1.732)【分析】设PC=x米,根据等腰直角三角形的性质用x表示出AC,根据正切的定义列出方程,解方程求出x,得到CD的长,结合图形计算,得到答案.【解答】解:设PC=x米,在Rt△ACP中,∠P AC=45°,∴AC=PC=x,∴BC=200﹣x,在Rt△BCP中,∠PBA=30°,∴tan∠PBA=,∴=,解得x=100﹣100≈100×1.732﹣100=73.2,即PC=73.2米,答:风筝的高度PC约是73.2米.3.如图1所示是一种手机平板支架,由托板、支撑板和底座构成.图2是其侧面结构示意图,支撑板CD=40mm,托板AB固定在支撑板顶点C处,且CB=40mm,托板AB 可绕点C转动,支撑板CD可绕点D转动.(1)如图2,当∠CDE=60°时,求点C到直线DE的距离;(2)如图3,当∠DCB=90°时,再将CD绕点D转动,使点B落在DE上,求此时∠CDB的度数.【分析】(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,利用锐角三角函数的定义求出CF的长,即可解答;(2)在Rt△DCB中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点C作CF⊥DE,垂足为F,在Rt△CDF中,∠CDE=60°,CD=40mm,∴CF=CD•sin60°=40×=60(mm),∴点C到直线DE的距离为60mm;(2)在Rt△DCB中,CD=40mm,CB=40mm,∴tan∠CDB===,∴∠CDB=30°,∴此时∠CDB的度数为30°.4.火灾是生活中最常见、最突出的一种灾难,消防车是救援火灾的主要装备.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC(10m≤AC≤20m)是可伸缩的,且起重臂AC可绕点A在一定范围内上下转动,张角∠CAE(90°≤∠CAE≤150°),转动点A距离地面的高度AE=3.5m.(1)当起重臂AC的长度为12m,张角∠CAE=120°,求云梯消防车最高点C距离地面的高度CF.(2)某日一居民家突发火灾,该居民家距离地面的高度为180m,该消防车能否实施有效救援?(参考数据:≈1.732)【分析】(1)过点A作AG⊥CF,垂足为F.先在Rt△AGC中求出CG,再利用直角三角形的边角间关系求出CF;(2)先计算当AC长20m、∠CAE=150°时救援的高度,再判断该消防车能否实施有效救援.【解答】解:(1)过点A作AG⊥CF,垂足为F.由题意知:四边形AEFG是矩形.∴FG=AE=3.5m,∠EAG=∠AGC=∠AGF=90°.∵∠CAE=120°,∴∠CAG=∠CAE﹣∠EAG=30°.在Rt△AGC中,∵sin∠CAG=,∴CG=AC×sin30°=12×=6(m).∴CF=CG+GF=3.5+6=9.5(m).答:云梯消防车最高点C距离地面的高度CF为9.5m.(2)过点C作CH⊥AE,交EA的延长线于点H.当AC=20m,∠CAE=150°时,∠HAC=30°.在Rt△AHC中,∵cos∠HAC=,∴AH=cos∠HAC×AC=cos30°×20=×20=10≈1.732×10=17.32(m).∴HE=AH+AE=3.5+17.32=20.82(m).由题意知,四边形HEFC是矩形,∴CF=HE=20.82m.∵20.82<180,∴该消防车不能实施有效救援.5.如图,是放在水平桌面上的台灯的几何图,已知台灯底座高度为2cm,固定支点O到水平桌面的距离为7.5cm,当支架OA、AB拉直时所形成的线段与点M共线且与底座垂直,此时测得B到底座的距离为31.64cm(线段AB,AO,OM的和),经调试发现,当∠OAB =115°,∠AOM=160°时,台灯所投射的光线最适合写作业,测量得A到B的水平距离(线段AC)为10cm.求:(1)∠BAC=45°,OM= 5.5cm;(2)此时点B到桌面的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,≈1.414)【分析】(1)延长MO交AC于点D,则∠ADO=90°,先利用平角定义求出∠AOD=20°,然后利用直角三角形的两个锐角互余可得∠DAO=70°,再利用角的和差关系可求出∠BAC,最后根据题意利用支点O到水平桌面的距离减去台灯底座高度即可求出OM的长;(2)先在Rt△ABC中,利用锐角三角函数的定义求出BC,AB的长,从而求出AO的长,然后在Rt△ADO中,利用锐角三角函数的定义求出OD的长,进行计算即可解答.【解答】解:(1)延长MO交AC于点D,则∠ADO=90°,∵∠AOM=160°,∴∠AOD=180°﹣∠AOM=20°,∴∠DAO=90°﹣∠AOD=70°,∵∠OAB=115°,∴∠BAC=∠OAB﹣∠DAO=45°,由题意得:OM=7.5﹣2=5.5(cm),故答案为:45;5.5cm;(2)在Rt△ABC中,∠BAC=45°,AC=10cm,∴BC=AC•tan45°=10(cm),AB=AC=10≈14.14(cm),由题意得:AO=31.64﹣AB﹣OM=12(cm),在Rt△ADO中,∠AOD=20°,∴OD=AO•cos20°≈12×0.94=11.28(cm),∴BC+OD+7.5=28.78(cm),∴此时点B到桌面的距离约为28.78cm.6.如图1的风力发电机,风轮的三个叶片均匀分布,当风轮的叶片在风力作用下旋转时,最高点距地面145m,最低点距地面55m.如图2是该风力发电机的示意图,发电机的塔身OD垂直于水平地面MN(点O,A,B,C,D,M,N在同一平面内).(1)求风轮叶片OA的长度;(2)如图2,点A在OD右侧,且α=14.4°.求此时风叶OB的端点B距地面的高度.(参考数据:sin44.4°≈0.70,tan44.4°≈0.98)【分析】(1)以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO 与⊙O交于点Q,根据题意可得PD=145m,DQ=55m,从而求出PQ的长,进而可得OA=OP=PQ,进行计算即可解答;(2)过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,从而得∠DOF=90°,EF=OD,进而求出∠BOF=44.4°,然后在Rt△BOF中求出BF,进行计算即可解答.【解答】解:如图,以点O为圆心,OA的长为半径作圆,延长DO交⊙O于点P,设直线DO与⊙O交于点Q,由题意得:PD=145m,DQ=55m,∴PQ=PD﹣DQ=145﹣55=90(m),∴OA=OP=PQ=45(m),∴风轮叶片OA的长度为45m;(2)如图,过点B作BE⊥MN,垂足为E,过点O作OF⊥BE,垂足为F,则四边形ODEF是矩形,∴∠DOF=90°,EF=OD,由题意得:∠AOB=120°,AOD=14.4°,∴∠BOF=∠AOB+∠AOD﹣∠DOF=44.4°,∴BF=OB sin44.4°≈45×0.70=31.5(m),∵OD=PD﹣OP=145﹣45=100(m),∴EF=OD=100m,∴BE=BF+EF=131.5(m),∴此时风叶OB的端点B距地面的高度为131.5m.7.如图1,是某品牌的可伸缩篮球架,其侧面可抽象成图2,结点F,G,H,M,N可随着伸缩杆EF的伸缩转动,从而控制篮球圈ON离地面AB的高度,ON∥AB,主杆AH⊥AB,G,C,D均在主干AH上,结点N,G,F共线,DE∥AB,经测量,AD=150cm,DC=CG=GH=MN=GF=50cm,MH=NG=GD,∠NGD=33°,此时,EF∥AH.(结果保留小数点后一位)(1)①∠M=147°,EF与AB的位置关系垂直;②求EF的长度.(2)在图1的基础上,调节伸缩杆EF,得到图3,图4是图3的示意图,经测量,此时,篮球圈ON离地面AB的高度刚好达到国际标准305cm,求NF绕着G点顺时针旋转的度数.(参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)【分析】(1)①根据平行四边形的判定定理可知四边形GHMN是平行四边形,可得∠M =∠HGN=147°;由AH⊥AB,EF∥AH,可知EF⊥AB;②过G作GP⊥EF,可求FP =GF•sin57°≈50×0.84=42.0cm,由四边形GDEP为平行四边形可得GD=PE,即可求解;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P,由cos∠GNP===0.55,可求∠GNP≈57°,可得∠NGP≈33°,∠NGD≈123°,即可求得∠PGD的值.【解答】解:(1)①∵GH=MN,MH=NG,∴四边形GHMN是平行四边形,∵∠NGD=33°,∴∠M=∠HGN=147°,∵AH⊥AB,EF∥AH,∴EF⊥AB,故答案为:147,垂直;②过G作GP⊥EF,垂足为P,∵∠NGD=33°,∴∠FGP=57°,∴FP=GF•sin57°≈50×0.84=42.0cm,∵GP⊥EF,EF⊥AB,∴GP∥AB,又∵DE∥AB,∴GP∥DE,∵EF∥AH,∴四边形GDEP为平行四边形,∴GD=PE,∴EF=DG+PF=50+50+42≈142.0cm;(2)过点G作AB的平行线PG,再过点N作PG的垂线交PG于点P.∴NP=305﹣50﹣50﹣150=55cm,∵NG=GD=100cm,∴cos∠GNP===0.55,∴∠GNP≈57°,∴∠NGP≈33°,∴∠NGD≈123°,∴∠PGD≈123°﹣33°=90°,故NF绕着G点顺时针旋转了90°.8.已知图1是超市购物车,图2是超市购物车侧面示意图,测得支架AC=80cm,BC=60cm,AB,DO均与地面平行.(1)若支架AC与BC之间的夹角∠ACB=90°,求两轮轮轴A,B之间的距离;(2)若OF的长度为60cm,∠FOD=120°,求点F到AB所在直线的距离.(结果精确到0.1)(参考数据:≈1.414,≈1.732)【分析】(1)根据勾股定理求出AB的长度即可;(2)作辅助线,分别求出C点到AB的距离,F点到直线DO的距离,求和即可.【解答】解:(1)∵支架AC与BC之间的夹角(∠ACB)为90°,∴AB===100(cm),即两轮轮轴A,B之间的距离为100cm;(2)过C点作CH⊥AB于H,过F点作FG⊥DO延长线与G,则扶手F到AB所在直线的距离为FG+CH,∵OF的长度为60cm,∠FOD=120°,∴∠FOG=180°﹣120°=60°,∵∠G=90°,∴∠F=30°,∴OG=OF=30,∴FG=30,由(1)知AB=100,AC=80,BC=60,∴S△ABC=AC•BC=AB•CH,即×100×CH=×60×80,解得CH=48,∴FG+CH=48+30≈48+30×1.732≈100.0cm,即扶手F到AB所在直线的距离为100.0cm.9.为应对新冠疫情,学校购进一批酒精消毒瓶(如图1),AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=8cm,BE=6cm,当按压柄△BCD按压到底时,BD转动到BD′,此BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据sin36°≈0.59,cos36°≈0.81,tan30°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【分析】(1)由平行线的性质可求得∠D'BE=72°,从而可求得∠DBD'=36°,利用弧长公式即可求解;(2)过点D作DG⊥BD'于点G,过E作EH⊥BD'于点H,可求得DG=4.72cm,HE=5.7cm,利用平行线的性质可求解.【解答】解:(1)∵BD′∥EF,∠DBE=∠BEF=108°,∴∠D'BE=180°﹣∠BEF=72°,∴∠DBD'=∠DBE﹣∠D'BE=36°,∵BD=8cm,∴点D转动到点D′的路径长为:(cm);(2)过点D作DG⊥BD'于点G,过E作EH⊥BD'于点H,如图,Rt△BDG中,DG=BD•sin36°≈8×0.59=4.72(cm),Rt△BEH中,HE=BE•sin72°=6×0.95=5.7(cm),∴DG+HE=10.42cm,∵BD'∥EF,∴点D到直线EF的距离约为10.42cm.10.如图1是学生常用的一种圆规,其手柄AB=8mm,两脚BC=BD=56mm,如图2所示,当∠CBD=74°时.(1)求A离纸面CD的距离.(2)用该圆规作如图3所示正六边形,求该正六边形的周长.(参考数据:sin37°≈0.60,cos37°≈0.80,sin74°≈0.96,cos74°≈0.28,结果精确到0.1)【分析】(1)连接CD,延长AB交CD于点E,则AE⊥CD,利用等腰三角形的三线合一性质可得∠CBE=37°,CD=2CE,然后在Rt△BCE中,利用锐角三角函数的定义求出BE的长,最后进行计算即可解答;(2)在Rt△BCE中,利用锐角三角函数的定义求出CE的长,从而求出CD的长,进而求出正六边形的边长,然后进行计算即可解答.【解答】解:(1)连接CD,延长AB交CD于点E,则AE⊥CD,∵BC=BD=56mm,∴∠CBE=∠CBD=37°,CD=2CE,在Rt△BCE中,BE=BC•cos37°≈56×0.8=44.8(mm),∵AB=8mm,∴AE=AB+BE=8+44.8=52.8(mm),∴A离纸面CD的距离约为52.8mm;(2)在Rt△BCE中,∠CBE=37°,BC=56mm,∴CE=BC•sin37°≈56×0.6=33.6(mm),∴CD=2CE=67.2(mm),∴正六边形的边长为67.2mm,∴正六边形的周长=6×67.2=403.2(mm),∴正六边形的周长约为403.2mm.11.住宅的采光是建楼和购房时人们所关心的问题之一.如图,住宅小区南、北两栋楼房的高度均为16.8m.已知当地冬至这天中午12时太阳光线与地面所成的角是35°.(参考数据:sin35°≈0.57;cos35°≈0.81;tan35°≈0.70)(1)要使这时南楼的影子恰好落在北楼的墙脚,两楼间的距离应为多少米(精确到0.1m)?(2)如果两栋楼房之间的距离为20m,那么这时南楼的影子是否会影响北楼一楼的采光?【分析】(1)根据直角三角形的边角关系进行计算即可;(2)根据直角三角形的边角关系计算出AN即可.【解答】解:(1)如图1,由题意可知,AB=CD=16.8m,∠ADB=35°∵tan∠ADB=,∴≈0.7,∴BD≈24.0米,答:两楼间的距离应为24.0m;(2)如图2,过点M作MN∥BD,在Rt△AMN中,BD=20m=MN,∠AMN=35°,∴AN=tan35°×MN≈14.0(m),∴MD=AB﹣AN=16.8﹣14.0=2.8(m),答:这时南楼的影子会影响北楼一楼的采光,且影子在CD的高度为2.8 m.12.某小区门口安装了汽车出入道闸.道闸关闭时,如图①,四边形ABCD为矩形,AB长6米,AD长2米,点D距地面为0.4米.道闸打开的过程中,边AD固定,连杆AB,CD分别绕点A,D转动,且边BC始终与边AD平行.(1)如图②,当道闸打开至∠ADC=60°时,边CD上一点P到地面的距离PE为2.4米,求点P到MN的距离PF的长;(2)一辆载满货物的货车过道闸,已知货车宽2.1米,高3.2米.当道闸打开至∠ADC=53°时,货车能否驶入小区?请说明理由.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)【分析】(1)在Rt△PDQ中,由∠PDQ=30°得出DQ=2,进而求出FP即可;(2)当∠ADC=53°,PE=3.2米时,求出PF,与2.1米比较即可得出答案.【解答】解:(1)如图,过点D作DQ⊥PE,垂足为Q,由题意可知,∠ADC=60°,PE=2.4米,QE=0.4米,在Rt△PDQ中,∠PDQ=30°,PQ=2.4﹣0.4=2(米),∴tan30°=,∴DQ==2(米),∴PF=AB﹣DQ=(6﹣2)(米),(2)当∠ADC=53°,PE=3.2米时,则∠DPQ=53°,PQ=3.2﹣0.4=2.8(米),∴DQ=PQ•tan53°≈2.8×1.33=3.724(米),∴PF=6﹣3.724≈2.276(米),∵2.276>2.1,∴能通过.13.如图①是某中型挖掘机,该挖掘机是由基座、主臂和伸展臂构成,图②是共侧面结构示意图(MN是基座,AB是主臂,BC是伸展臂),若主臂AB长为4米,主臂伸展角∠MAB的范围是:30°≤∠MAB≤60°,伸展臂伸展角∠ABC的范围是:45°≤∠ABC≤105°.(1)如图③,当∠MAB=45°,伸展臂BC恰好垂直并接触地面时,求伸展臂BC的长(结果保留根号);(2)若(1)中BC长度不变,当∠MAB=30°时,求该挖掘机最远(即伸展臂伸展角∠ABC最大时)能挖掘到距A水平正前方多少米的土石.(结果保留根号)【分析】(1)根据题意可得:∠BCA=90°,然后在Rt△ABC中,利用锐角三角函数的定义求出BC的长,即可解答;(2)过点B作BD⊥AC,垂足为D,根据题意可得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,从而利用三角形内角和定理求出∠ACD=45°,然后在RtABD中,利用锐角三角函数定义求出AD的长,再在Rt△BCD中,利用锐角三角函数的定义求出CD的长,进行计算即可解答.【解答】解:(1)如图:由题意得:∠BCA=90°,在Rt△ABC中,∠MAB=45°,AB=4米,∴BC=AB•sin45°=4×=2(米),∴伸展臂BC的长为2米;(2)过点B作BD⊥AC,垂足为D,由题意得:∠MAB=30°,∠ABC=105°时,伸展臂伸展的最远,∴∠ACB=180°﹣∠ABC﹣∠MAB=45°,在RtABD中,AB=4米,∴AD=AB•cos30°=4×=2(米),在Rt△BCD中,BC=2米,CD=BC•cos45°=2×=2(米),∴AC=AD+CD=(2+2)米,∴该挖掘机最远能挖掘到距A水平正前方(2+2)米的土石.14.激光电视的光源是激光,它运用反射成像原理,屏幕不通电无辐射,降低了对消费者眼睛的伤害.根据THX观影标准,当观影水平视场角“θ”的度数处于33°到40°之间时(如图1),双眼肌肉处于放松状态,是最佳的感官体验的观影位.(1)小丽家决定要买一个激光电视,她家客厅的观影距离(人坐在沙发上眼睛到屏幕的距离)为3.5米,小佳家要选择电视屏幕宽(图2中的BC的长)在什么范围内的激光电视就能享受黄金观看体验?(结果精确到0.1m,参考数据:sin33°≈0.54,tan33°≈0.65,sin40°≈0.64,tan40°≈0.84,sin16.5°≈0.28,tan16.5°≈0.30,sin20°≈0.34,tan20°≈0.36)(2)由于技术革新和成本降低,激光电视的价格逐渐下降,某电器商行经营的某款激光电视今年每台销售价比去年降低4000元,在销售量相同的情况下,今年销售额在去年销售总额100万元的基础上减少20%,今年这款激光电视每台的售价是多少元?【分析】(1)过点A作AD⊥BC于点D,根据题意可得AB=AC,当∠BAC=33°时,当∠BAC=40°时,利用锐角三角函数即可解决问题;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意列出方程即可解决问题.【解答】解:(1)如图,过点A作AD⊥BC于点D,根据题意可知:AB=AC,AD⊥BC,∴BC=2BD,∠BAD=∠CAD=∠BAC,当∠BAC=33°时,∠BAD=∠CAD=16.5°,在△ABD中,BD=AD×tan16.5°≈3.5×0.30=1.05(m),∴BC=2BD=2.10(m),当∠BAC=40°时,∠BAD=∠CAD=20°,在△ABD中,BD=AD×tan20°≈3.5×0.36=1.26(m),∴BC=2BD=2.52m,答:小佳家要选择电视屏幕宽为2.10m﹣2.52m之间的激光电视就能享受黄金观看体验;(2)设今年这款激光电视每台的售价是x元,则去年每台的售价为(x+4000)元.由题意可得:=,解得:x=16000,经检验x=16000是原方程的解,符合题意,答:今年这款激光电视每台的售价是16000元.15.图1是疫情期间测温员用“额温枪”对学生测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直,量得胳膊MN=30cm,MB=44cm,肘关节M与枪身端点A之间的水平宽度为26.1cm(即MP的长度),∠ABM=113.6°.(1)求枪身BA的长度;(2)测温时规定枪身端点A与额头距离范围为3cm~5cm.在图2中,若测得∠BMN=68.6°,学生与测温员之间距离为50cm.问此时枪身端点A与学生额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据sin66.4°≈0.92,cos66.4°≈0.4,tan66.4°≈2.29,)【分析】(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,利用平行线的性质可得∠BMH=66.4°,然后在Rt△BMH中,利用锐角三角函数的定义求出MH的长,从而求出HP的长,即可解答;(2)延长QM交FG于点K,则KQ=50cm,∠NKM=90°,利用平角定义先求出∠NMK 的度数,再在Rt△NMK中,利用锐角三角函数的定义求出KM的长,从而求出PQ的长,进行比较即可解答.【解答】解:(1)过点B作BH⊥MQ,垂足为H,则BA=HP,AB∥MQ,∵∠ABM=113.6°,∴∠BMH=180°﹣∠ABM=66.4°,在Rt△BMH中,∠BMH=66.4°,BM=44cm,∴MH=BM•cos66.4°≈44×0.4=17.6(cm),∵MP=26.1cm,∴BA=HP=MP﹣MH=26.1﹣17.6=8.5(cm),∴枪身BA的长度约为8.5cm;(2)此时枪身端点A与学生额头的距离不在规定范围内,理由:延长QM交FG于点K,则KQ=50cm,∠NKM=90°,∵∠BMN=68.6°,∠BMH=66.4°,∴∠NMK=180°﹣∠BMN﹣∠BMH=45°,在Rt△MNK中,MN=30cm,∴KM=MN•cos45°=30×=15(cm),∵KQ=50cm,∴PQ=KQ﹣KM﹣MP=50﹣15﹣26.1≈2.7(cm),。

解直角三角形应用专题带答案

解直角三角形应用专题带答案

解直角三角形应用专题带答案解直角三角形应用专题练1.在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度。

用测角仪在A处测得雕塑顶端点C的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°。

求该雕塑的高度(测角仪高度忽略不计,结果不取近似值)。

2.一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处。

它沿XXX方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处。

求此时船距灯塔的距离(参考数据:√2≈1.414,√3≈1.732,结果取整数)。

3.2018年4月12日,菏泽国际牡丹花会拉开帷幕,XXX用直升机航拍技术全程直播。

在直升机的镜头下,观测曹州牡丹园A处的俯角为30°,B处的俯角为45°。

如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)4.XXX在某桥附近试飞无人机。

为了测量无人机飞行的高度AD,XXX通过操控器指令无人机测得桥头B、C的俯角分别为∠EAB=60°,∠EAC=30°,且D、B、C在同一水平线上。

已知桥BC=30米,求无人机飞行的高度AD(精确到0.01米,参考数据:√2≈1.414,√3≈1.732)。

5.我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰。

其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米。

由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°。

若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据√3≈1.732)。

6.随着航母编队的成立,我国海军日益强大。

2018年4月12日,XXX在南海海域隆重举行海上阅兵。

在阅兵之前我军加强了海上巡逻。

巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离XXX为400海里。

解直角三角形的应用提高训练

解直角三角形的应用提高训练

【解直角三角形的应用】一、关于坡度问题、例题1、(2009•深圳)如图,斜坡AC的坡度(坡比)为1:3,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.2、2009•山西)有一水库大坝的横截面是梯形ABCD,AD∥BC,EF为水库的水面,点E在DC上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡AB的长为12米,迎水坡上DE的长为2米,∠BAD=135°,∠ADC=120°,求水深.(精确到0.1米,2≈1.41,3≈1.73例题3、(2009•本溪)如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度.)(结果精确到个位,参考数据:2≈1.41,3≈1.736 2.4例题7、(2007•江苏)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为1.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC (杆子的底端分别为D ,C ),且∠DAB=66.5°. (1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l .(即AD+AB+BC ,结果精确到0.1米) (参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)1、2010•通化)如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m ,此时小球距离地面的高度为( )A .5mB 、25 C 、35 D 、1032、(2009•益阳)如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( ) A .5cosα B 、5cos a C .5sinα D 、5sin a3、(2007•宁波)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是1.6m ,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为( ) A .24m B .22m C .20m D .18m4、(2005•黄石)如图,小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为( ) A .9米 B .28米 C 、73+D 、1423+5、身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300m ,250m ,200m ;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝( )A.甲的最高B.乙的最低C.丙的最低D.乙的最高6、如图,某地夏季中午,当太阳移至房顶上方偏南时,光线与地面成80°角,房屋朝南的窗子高AB=1.8m,要在窗子外面上方安装水平挡光板AC,使午间光线不能直接射入室内,那么挡光板的宽度AC为()A.1.8tan80°m B.1.8cos80°m C、1.8sin80?D、1.8tan80?7、如图,将一个Rt△ABC形状的楔子从木桩的底端点P沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm(如箭头所示),则木桩上升了()A.6sin15°cm B.6cos15°cm C.6tan15°cm D、6tan15?cm8、2010•鞍山)如图小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得1 m杆的影子长为2 m,则电线杆的高度约为______m.(结果保留两位有效数字,2≈1.41,3≈1.73)9、(2008•鄂尔多斯)如图,在一个坡角为15°的斜坡上有一棵树,高AB,当太阳光与水平线成60°时,测得该树在斜坡上的树影BC的长为6m,则树高AB= _______m.10、(2007•连云港)如图是一山谷的横断面示意图,宽AA′为15m,用曲尺(两直尺相交成直角)从山谷两侧测量出OA=1m,OB=3m,O′A′=0.5m,O′B′=3m(点A,O,O′A′在同一条水平线上),则该山谷的深h为__________m.11、(2007•湖州)小明发现在教学楼走廊上有一拖把以15°的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其的倾斜角为75°,如果拖把的总长为1.80m,则小明拓宽了行路通道_______m.(结果保留三个有效数字,参考数据:sin15°≈0.26,cos15°≈0.97).12、(2003•陕西)如图梯子AB靠在墙上,梯子的底端A到墙根C的距离为2米,梯子的顶端B到地面的距离为7米,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根C的距离等于3米,同时梯子的顶端B下降至B′,那么BB′①等于1米②大于1米③小于1米.其中正确结论序号是________.二、关于仰角的问题1、(2010•青海)如图,从热气球C上测定建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD为150米,且点A、D、B在同一直线上,建筑物A、B间的距离为()A、1503B、1803C、2003D、22032、.(2007•舟山)如图,在高楼前D点测得楼顶的仰角为30°,向高楼前进60米到C点,又测得仰角为45°,则该高楼的高度大约为()A.82米B.163米C.52米D.30米3、.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A.300 B.900 C、3002D、30034、某测量队在山脚A处测得山上树顶仰角为45°(如图),测量队在山坡上前进600米到D处,再测得树顶的仰角为60°,已知这段山坡的坡角为30°,如果树高为15米,则山高为()(精确到1米,3=1.732).A.585米B.1014米C.805米D.820米5、.(2010•潼南县)如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为_______米(精确到0.1).(参考数据:2≈1.414,3≈1.732).例题1、(2011•苏州)如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:3,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:3≈1.732例题2、(2010•包头)如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,从B点测得D点的仰角α为60°从A点测得D点的仰角β为30°,已知甲建筑物高AB=36米.(1)求乙建筑物的高DC;(2)求甲、乙两建筑物之间的距离BC(结果精确到0.01米).(参考数据:2≈1.414,3≈1.732)例题3、.(2009•烟台)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据3≈1.732)例题4、.(2009•铁岭)某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)例题5、.(2009•昆明)如图,AC是我市某大楼的高,在地面上B点处测得楼顶A的仰角为45°,沿BC方向前进18米到达D点,测得tan∠ADC=53.现打算从大楼顶端A点悬挂一幅庆祝建国60周年的大型标语,若标语底端距地面15m,请你计算标语AE的长度应为多少?三、关于方向问题1、(2009•泰安)在一次夏令营活动中,小亮从位于A点的营地出发,沿北偏东60°方向走了5km到达B地,然后再沿北偏西30°方向走了若干千米到达C地,测得A地在C地南偏西30°方向,则A、C两地的距离为()2、.(2007•临沂)如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方位角为北偏东80°,测得C处的方位角为南偏东25°,航行1小时后到达C处,C在处测得A的方位角为北偏东20°,则C到A的距离是()3、(2010•深圳)如图所示,某渔船在海面上朝正东方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行_______分钟可使渔船到达离灯塔距离最近的位置.4、(2008•威海)如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处东500米的B 处,测得海中灯塔P在北偏东30°方向上,则灯塔P到环海路的距离PC=_____米.(用根号表示)5、(2011•资阳)在一次机器人测试中,要求机器人从A出发到达B处.如图1,已知点A在O的正西方600cm处,B在O的正北方300cm处,且机器人在射线AO及其右侧(AO下方)区域的速度为20cm/秒,在射线AO的左侧(AO上方)区域的速度为10cm/秒.(1)分别求机器人沿A→O→B路线和沿A→B路线到达B处所用的时间(精确到秒);(2)若∠OCB=45°,求机器人沿A→C→B路线到达B处所用的时间(精确到秒);(3)如图2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.试说明:从A出发到达B处,机器人沿A→P→B路线行进所用时间最短.6、.(2009•中山)如图所示,A、B两城市相距100km,现计划在这两座城市间修建一条高速公路(即线段AB),经测量,森林保护中心P在A城市的北偏东30°和B城市的北偏西45°的方向上,已知森林保护区的范围在以P点为圆心,50km为半径的圆形区域内,请问计划修建的这条高速公路会不会穿越保护区,为什么?(参考数据:2≈1.41,3≈1.73≈1.414)7、.(2009•泸州)在某段限速公路BC上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时(即503米/秒),并在离该公路100米处设置了一个监测点A.在如图所示的直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在A的北偏东45°方向上,另外一条高等级公路在y轴上,AO为其中的一段.(1)求点B和点C的坐标;(2)一辆汽车从点B匀速行驶到点C所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速?(参考数据:3≈1.73(3)若一辆大货车在限速路上由C处向西行驶,一辆小汽车在高等级公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少?8、.(2009•黄冈)如图,在海面上生产了一股强台风,台风中心(记为点M)位于海滨城市(记作点A)的南偏西15°,距离为612千米,且位于临海市(记作点B)正西方向60 3千米处,台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭.(1)滨海市、临海市是否会受到此次台风的侵袭请说明理由;(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?9、(2008•泸州)如图,在气象站台A的正西方向240km的B处有一台风中心,该台风中心以每小时20km的速度沿北偏东60°的BD方向移动,在距离台风中心130km内的地方都要受到其影响.(1)台风中心在移动过程中,与气象台A的最短距离是多少?(2)台风中心在移动过程中,气象台将受台风的影响,求台风影响气象台的时间会持续多长?1:在Rt △ABC 中,∠C=90°a+b=100 ∠B=60°求c 的值2.如图,在四边形ABCD 中,AB=2,CD=1,∠A=60°,∠B=∠D=90°。

九年级数学下册 28.2.2 解直角三角形及应用特色训练1 新人教版(2021年整理)

九年级数学下册 28.2.2 解直角三角形及应用特色训练1 新人教版(2021年整理)

2017春九年级数学下册28.2.2 解直角三角形及应用特色训练1 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春九年级数学下册28.2.2 解直角三角形及应用特色训练1 (新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春九年级数学下册28.2.2 解直角三角形及应用特色训练1 (新版)新人教版的全部内容。

28。

2。

2第1课时 与视角有关的解直角三角形应用题课前预习要点感知 如图,在进行高度测量时,视线与水平线所成的角中,视线在水平线上方的是 ,视线在水平线下方的是 .预习练习 为测楼房BC 的高,在距楼房30 m 的A 处,测得楼顶B 的仰角为α,则楼房BC 的高为( )A.30tan α m B 。

αtan 30m C.30sin α m D 。

αsin 30m 当堂训练知识点1 利用解直角三角形解决简单问题1.如图,已知AC=100 m,∠B=30°,则BC 两地之间的距离为( )A.3100m B 。

250m C.350m D 。

33100 m2。

如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5 m ,AB 为1.5 m (即小颖的眼睛距地面的距离),那么这棵树高是 m 。

3。

(2014·宁波)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°。

因城市规划的需要,将在A、B两地之间修建一条笔直的公路。

(1)求改直后的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0。

(完整word版)解直角三角形的应用中考练习题

(完整word版)解直角三角形的应用中考练习题

解直角三角形的应用练习题一.选择题(共5小题)1.(2012•襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为()A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米3.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米4.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米5.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为A.20海里B.10海里C.20海里D.30海里()二.填空题6.(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为_________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)7.(2009•安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了_________m.8.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出_________个这样的停车位.(≈1.4)9.(2014•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是_________海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)10.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为_________米.三.解答题(共5小题)11.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)12.(2014•铁岭)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)13.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)14.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.15.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)解直角三角形的应用练习题参考答案与试题解析一.选择题(共5小题)1.(2012•襄阳)在一次数学活动中,李明利用一根栓有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD.如图,已知小明距假山的水平距离BD为12m,他的眼镜距地面的高度为1.6m,李明的视线经过量角器零刻度线OA和假山的最高点C,此时,铅垂线OE经过量角器的60°刻度线,则假山的高度为()A.(4+1.6)m B.(12+1.6)m C.(4+1.6)m D.4m考点:解直角三角形的应用.分析:根据已知得出AK=BD=12m,再利用tan30°==,进而得出CD的长.解答:解:∵BD=12米,李明的眼睛高AB=1.6米,∠AOE=60°,∴DB=AK,AB=KD=1.6米,∠CAK=30°,∴tan30°==,解得CK=4(米),即CD=CK+DK=4+1.6=(4+1.6)米.故选:A.点评:本题考查的是解直角三角形的应用,根据题意得出tan30°==解答是解答此题的关键.2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.D.50米米考点:解直角三角形的应用.专题:几何图形问题.分析:过B作BM⊥AD,根据三角形内角与外角的关系可得∠ABC=30°,再根据等角对等边可得BC=AC,然后再计算出∠CBM的度数,进而得到CM长,最后利用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°,∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米,故选:B.点评:此题主要考查了解直角三角形的应用,关键是证明AC=BC,掌握直角三角形的性质:30°角所对直角边等于斜边的一半.3.(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选:D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.4.(2014•西宁)如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.解答:解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k米,AD=12k米,则AB=13k米.∵AB=13米,∴k=1,∴BD=5米,AD=12米.在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8米,∴BC≈5.8米.故选:D.点评:本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.(2014•临沂)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为()A.20海里B.10海里C.20海里D.30海里考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.解答:解:如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC===,∴BC=20海里.故选:C.点评:本题考查了解直角三角形的应用﹣方向角问题.解题的难点是推知△ABC是等腰直角三角形.二.填空题(共5小题)6.(2009•仙桃)如图所示,小华同学在距离某建筑物6米的点A处测得广告牌B点、C点的仰角分别为52°、35°,则广告牌的高度BC为 3.5米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)考点:解直角三角形的应用-仰角俯角问题.专题:应用题;压轴题.分析:图中有两个直角三角形△ABD、△ACD,可根据两个已知角度,利用正切函数定义,分别求出BD和CD,求差即可.解答:解:根据题意:在Rt△ABD中,有BD=AD•tan52°.在Rt△ADC中,有DC=AD•tan35°.则有BC=BD﹣CD=6(1.28﹣0.70)=3.5(米).点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.7.(2009•安徽)长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了2()m.考点:解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:利用所给角的正弦函数求两次的高度,相减即可.解答:解:由题意知:平滑前梯高为4•sin45°=4•=.平滑后高为4•sin60°=4•=.∴升高了2()m.点评:本题重点考查了三角函数定义的应用.8.(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)考点:解直角三角形的应用.专题:调配问题.分析:如图,根据三角函数可求BC,CE,由BE=BC+CE可求BE,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.解答:解:如图,BC=2.2×sin45°=2.2×≈1.54米,CE=5×sin45°=5×≈3.5米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.14米,(56﹣5.04)÷3.14+1=50.96÷3.14+1≈16+1=17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.点评:考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.9.(2014•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.10.(2014•抚顺)如图,河流两岸a、b互相平行,点A、B是河岸a上的两座建筑物,点C、D是河岸b上的两点,A、B的距离约为200米.某人在河岸b上的点P处测得∠APC=75°,∠BPD=30°,则河流的宽度约为100米.考点:解直角三角形的应用.专题:几何图形问题.分析:过点P作PE⊥AB于点E,先求出∠APE及∠BPE、∠ABP的度数,由锐角三角函数的定义即可得出结论.解答:解:过点P作PE⊥AB于点E,∵∠APC=75°,∠BPD=30°,∴∠APB=75°,∵∠BAP=∠APC=75°,∴∠APB=∠BAP,∴AB=PB=200m,∵∠ABP=30°,∴PE=PB=100m.故答案为:100.点评:本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.三.解答题(共5小题)11.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)考点:解直角三角形的应用.分析:(1)连接DE.根据菱形的性质和角的和差关系可得∠CDE=∠BED=90°,再根据平行线的判定可得CD,EB的位置关系;(2)根据菱形的性质可得BE,DE,再根据三角函数可得BD,AD,根据AB=BD+AD,即可求解.解答:解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.点评:此题考查了解直角三角形的应用,菱形的性质和平行线的判定,主要是三角函数的基本概念及运算,关键是运用数学知识解决实际问题.12.(2014•铁岭)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,作辅助线EF⊥AC,通过平角减去其他角从而得到∠AEF=45°即可求出AE的长度.解答:解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°﹣45°﹣15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°﹣45°﹣60°﹣30°=45°,∴AE=135≈190.35米点评:本题考查了解直角三角形的应用,解答本题的关键是作辅助线EF⊥AC,以及坡度和坡角的关系.13.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)考点:解直角三角形的应用;菱形的性质.分析:(1)证明△CED是等边三角形,即可求解;(2)分别求得当∠CED是60°和120°,两种情况下AD的长,求差即可;(3)分别求得当∠CED是60°和120°,两种情况下DG的长度,即可求得x的范围.解答:解:(1)连接CD(图1).∵CE=DE,∠CED=60°,∴△CED是等边三角形,∴CD=DE=20cm;(2)根据题意得:AB=BC=CD,当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H(图2),则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=,∴CH=20•sin60°=20×=10(cm),∴CD=20cm,∴AD=3×20=60≈103.9(cm).∴103.9﹣60=43.9(cm).即点A向左移动了43.9cm;(3)当∠CED=120°时,∠DEG=60°,∵DE=EG,∴△DEG是等边三角形.∴DG=DE=20cm,当∠CED=60°时(图3),则有∠DEG=120°,过点E作EI⊥DG于点I.∴∠DEI=∠GEI=60°,DI=IG,在直角△DIE中,sin∠DEI=,∴DI=DE•sin∠DEI=20×sin60°=20×=10cm.∴DG=2DI=20≈34.6cm.则x的范围是:20cm≤x≤34.6cm.点评:本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个等边三角形.14.(2014•宿迁)如图是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6m.(1)求FM的长;(2)连接AF,若sin∠FAM=,求AM的长.考点:解直角三角形的应用-坡度坡角问题.专题:几何图形问题.分析:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长线于点H,根据AB∥CD∥EF,AM∥BC∥DE,分别解Rt△ABN、Rt△DCG、Rt△FEH,求出BN、DG、FH的长度,继而可求出FM的长度;(2)在Rt△FAM中,根据sin∠FAM=,求出AF的长度,然后利用勾股定理求出AM的长度.解答:解:(1)分别过点B、D、F作BN⊥AM于点N,DG⊥BC延长线于点G,FH⊥DE延长在Rt△ABN中,∵AB=6m,∠BAM=30°,∴BN=ABsin∠BAN=6×=3m,∵AB∥CD∥EF,AM∥BC∥DE,同理可得:DG=FH=3m,∴FM=FH+DG+BN=9m;(2)在Rt△FAM中,∵FM=9m,sin∠FAM=,∴AF=27m,∴AM==18(m).即AM的长为18m.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数解直角三角形,注意勾股定理的应用.15.(2014•邵阳)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)考点:解直角三角形的应用-方向角问题.专题:几何图形问题.分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.。

【浙教版】2022年九年级(上)期末复习培优提分专项训练:解直角三角形的应用(方位角问题)(原卷)

【浙教版】2022年九年级(上)期末复习培优提分专项训练:解直角三角形的应用(方位角问题)(原卷)

【浙教版】2022年九年级(上)期末复习培优提分专项训练解直角三角形的应用(方位角问题)1.(2022·浙江宁波·一模)如图,某渔船沿正东方向以10海里/小时的速度航行,在A处测得岛C在北偏东60°方向,1小时后渔船航行到B处,测得岛C在北偏东30°方向,已知该岛周围9海里内有暗礁.参考数据:√3≈1.732,sin75°≈0.966,cos75°≈0.259.(1)B处离岛C有多远?如果渔船继续向东航行,有无触礁危险?(2)如果渔船在B处改为向东偏南15°方向航行,有无触礁危险?2.(2022·浙江宁波·九年级专题练习)我国海域辽阔,渔业资源丰富,如图,现有渔船以18√2km/ℎ的速度在海面上沿正东方向航行,当行至A处时,发现它的东南方向有一灯塔B,船续向东航行30min后达到C处,发现灯塔B在它的南偏东15°方向.(1)求此时渔船与灯塔B的距离.(2)若渔船继续向东行驶,还要行驶多少千米与B的距离达到最小值.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)3.(2022·浙江宁波·一模)如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向.(1)直接写出∠ACB的度数是;(2)测量发现∠BAC=20°,A岛与C岛之间的距离AC=20海里,求A岛与B岛之间的距离.(结果精确到0.1海里)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)4.(2021·浙江丽水·一模)如图,某海岸边有B,C两个码头,C码头位于B码头的正东方向,距离B码头60海里.甲、乙两船同时从A岛出发,甲船向位于A岛正北方向的B码头航行,乙船向位于A岛北偏东30°方向的C码头航行,当甲船到达距离B码头45海里的E 处时,乙船位于甲船北偏东60°方向的D处,求此时乙船与C码头之间的距离.(结果保留根号)5.(2022·浙江·一模)小明在A点测得C点在A点的北偏西75°方向,并由A点向南偏西45°方向行走到达B点测得C点在B点的北偏西45°方向,继续向正西方向行走2km后到达D 点,测得C点在D点的北偏东22.5°方向,求A,C两点之间的距离.(结果保留0.1km.参数数据√3≈1.732)6.(2022·浙江金华·一模)某海域有A,B两个岛屿,B岛在A岛北偏西30°方向上,距A岛120海里.有一艘船从A岛出发,沿东北方向行驶一段距离后,到达位于B岛南偏东75°方向的C处.(1)求∠BCA的度数.(2)求BC的长.7.(2022·浙江宁波·九年级期末)如图,某渔船向正东方向以14海里/时的速度航行,在A处测得小岛C在北偏东70∘方向,2小时后渔船到达B处,测得小岛C在北偏东45∘方向,已知该岛周围20海里范围内有暗礁.(参考数据:sin70∘≈0.94,cos70∘≈0.34,tan70∘≈2.75,√2≈1.41)(1)求B处距离小岛C的距离(精确到0.1海里);(2)为安全起见,渔船在B处向东偏南转了25∘继续航行,通过计算说明船是否安全?8.(2021·浙江·杭州外国语学校九年级阶段练习)阅读下列材料,并解决问题.如图(1),在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c,过点A作AD∠BC于点D,则sinB=ADc ,sinC=ADb,即AD=c sin B,AD=b sin C.于是c sin B=b sin C,即bsinB=csinC.同理有:csinC =asinA,asinA=bsinB,所以asinA=bsinB=csinC.即在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论就可以求出其余三个未知元素.(1)如图(2),一货轮在B处测得灯塔A在货轮的北偏东15°的方向上,随后货轮以80海里/时的速度向正东方向航行,半小时后到达C处,此时又测得灯塔A在货轮的北偏西30°的方向上,求此时货船距灯塔A的距离AC.(2)在(1)的条件下,试求75°的正弦值.(结果保留根号)9.(2020·浙江衢州·九年级期末)某社会实践活动小组实地测量河两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走50m 到达C点,测得点B在点C的北偏东60°方向,如图.(1)求∠CBA的度数;(2)求这段河的宽度.(结果精确到1m)10.(2022·重庆·四川外国语大学附属外国语学校九年级期中)期中测试临近学生都在紧张的复习中,小甘和小西相约周末去图书馆复习,如图,小甘从家A地沿着正东方向走900m 到小西家B地,经测量图书馆C地在B地的北偏东15°,C地在A地的东北方向.(1)求AC的距离:(2)两人准备从B地出发,实然接到疾控中心通知,一名确诊的新冠阳性患者昨天经过了C 地,并沿着C地南偏东22°走了1800m到达D地,根据相关要求,凡是确诊者途径之处800m 区域以内都会划为管控区,问:小西家会被划为管控区吗?请说明理由(参考数据:√3≈1.73,√2≈1.41,√6≈2.45,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75).11.(2021·河南·辉县市太行中学九年级期中)如图,一位自行车爱好者沿宿鸭湖湖边正东方向笔直的公路BC骑行,在B地测得湖中小岛上某建筑物A在北偏东45°方向,行驶12min 后到达C地,测得建筑物A在北偏西60°方向,如果此自行车爱好者的速度为60km/h,求建筑物A到公路BC的距离.(结果保留根号)【分母有理化:√3+1=√3−1(√3+1))(√3-−1)=√3−12】12.(2022·上海市民办新复兴初级中学九年级期中)如图,一艘海岸巡逻快艇在基地A的正东方向,且距A地13海里的B处巡逻.突然接到基地A命令,要该快艇前往C岛,接送一名病人到基地A的医院救治.已知C岛在基地A的南偏东α的方向,且在B处南偏东β的方向,巡逻快艇从B处出发,平均每小时行驶30海里,需要多少时间才能把病人送到基地A的医院?(参考数据:tanα=158,sinβ=45)13.(2022·山东青岛·九年级期中)九年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A处向正北方向走了220米,到达菜园B处锄草,再从B处沿正西方向走了200米,到达果园C处采摘水果,再向南偏东37°方向走了200米,到达手工坊D处进行手工制作,最后从D处回到门口A处.(1)求从手工坊D处回到门口A处的距离.(2)求从手工坊D处回到门口A处的方位角.[参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75]14.(2022·重庆一中九年级阶段练习)公园大门A的正东方向原本有一条通往湖心小岛B的景观步道AB,但为了让市民朋友多角度欣赏公园景色,市政府决定新修一条景观步道通往湖心小岛B,新步道从A出发通向C地,C位于A的北偏西45°方向,AC=800米,再从C 地到达湖心小岛B,其中C位于B的北偏西60°方向,甲工程队以每天60米的速度进行单独施工,2天后,为了加快工程进度,乙工程队以每天90米的速度加入项目建设,直到两队起完成景观步道的修建.(参考数据:√2≈1.4)(1)求A、B两地的距离(结果保留根号);(2)新的景观步道能否在15天内完成?请说明理由.15.(2022·山东·济南市大学城实验学校九年级阶段练习)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:√2≈1.4,√3≈1.7)16.(2022·上海·九年级专题练习)如图,在东西方向的海岸线l上有长为300米的码头AB,在码头的最西端A处测得轮船M在它的北偏东45°方向上;同一时刻,在A点正东方向距离100米的C处测得轮船M在北偏东22°方向上.(参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,√3≈1.732.)(1)求轮船M到海岸线l的距离;(结果精确到0.01米)(2)如果轮船M沿着南偏东30°的方向航行,那么该轮船能否行至码头AB靠岸?请说明理由.17.(2022·上海·九年级专题练习)如图,在航线l的两侧分别有两个灯塔A和B,灯塔A到航线l的距离为AC=3千米,灯塔B到航线l的距离为BD=4千米,灯塔B位于灯塔A南偏东60°方向.现有一艘轮船从位于灯塔B北偏西53°方向的N(在航线l上)处,正沿该航线自东向西航行,10分钟后该轮船行至灯塔A正南方向的点C(在航线l上)处.(参考数据:√3≈1.73,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)(1)求两个灯塔A和B之间的距离;(2)求该轮船航行的速度(结果精确到0.1千米/小时).18.(2022·重庆八中九年级阶段练习)如图,在竖直的海岸线上有长为68米的码头AB,现有一艘货船在点P处,从码头A处测得货船在A的东南方向,若沿海岸线向南走30米后到达点C,在C处测得货船在C的南偏东75°方向.(参考数据:√2≈1.41,√3≈1.73,√6≈2.45)(1)求货船到A的距离(结果精确到1米);(2)若货船从点P出发,沿着南偏西60°的方向行驶,请问该货船能否行驶到码头所在的线段AB上?请说明理由.19.(2022·四川·仁寿县黑龙滩镇光相九年制学校九年级期末)小明周未与父母一起到眉山湿地公园进行数学实践活动,在A处看到B,C处各有一棵被湖水隔开的银杏树.他在A处测得B在西北方向,C在北偏东30°方向.他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两棵银杏树B,C之间的距离.(结果保留根号)20.(2022·广东·广州市越秀区育才实验学校二模)如图,我国一艘海监执法船在南海海域进行常态化巡航,在A处测得北偏东30°方向距离为40海里的B处有一艘可疑船只正在向正东方向航行,我海监执法船便迅速沿北偏东75°方向前往监视巡查,经过一段时间在C处成功拦截可疑船只.求我海监执法船前往监视巡查的过程中行驶的路程(即AC长)?(结果精确到0.1海里,√3≈1.732,√2≈1.414,√6≈2.449)21.(2021·山东·泰安市泰山区大津口中学九年级阶段练习)如图,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号)22.(2022·湖南湘潭·八年级期末)如图,一艘渔船以30海里/h的速度由西向东追赶鱼群,在A处测得小岛C在船的北偏东60°方向;40min后,渔船行至B处,此时测得小岛C在船的北偏东30°方向.已知以小岛C为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险?23.(2022·黑龙江·哈尔滨市风华中学校九年级阶段练习)如图,海中有一个小岛A,它周围8n mile 内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60∘方向上,航行12n mile 到达D点,这时测得小岛A在北偏东30∘方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?24.(2022·黑龙江·大庆市祥阁学校九年级期中)为了维护我国海域安全,某巡逻艇从码头A 出发向东航行40海里后到达B处,再从B处沿北偏东30°方向行驶40海里到达C处,然后沿北偏西60°方向航行到D处,发现码头A在正南方向.求此时巡逻艇与码头A的距离.(结果保留根号)25.(2022·四川资阳·中考真题)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100√3米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)26.(2022·重庆市江津中学校八年级阶段练习)某海域有一小岛P,在以P为圆心,半径r 为10(3+√3)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20√5海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A、P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.27.(2022·重庆市第三十七中学校九年级阶段练习)海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为60√2海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:√3≈1.73)28.(2021·河南·油田十中九年级阶段练习)如图,是学生小金家附近的一块三角形绿化区的示意图;为增强体质,他每天早晨都沿着绿化区周边小路AB,BC,CA跑步(小路的宽度不计),观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B 在点C的北偏西75°方向上,AC间距离为400米.小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(结果精确到1米,参考数据:√2≈1.4,√3≈1.7)29.(2022·贵州安顺·中考真题)随着我国科学技术的不断发展,5G移动通信技术日趋完善.某市政府为了实现5G网络全覆盖,2021~2025年拟建设5G基站3000个,如图,在斜坡CB上有一建成的5G 基站塔AB ,小明在坡脚C 处测得塔顶A 的仰角为45°,然后他沿坡面CB 行走了50米到达D 处,D 处离地平面的距离为30米且在D 处测得塔顶A 的仰角53°.(点A 、B 、C 、D 、E 均在同一平面内,CE 为地平线)(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)求坡面CB 的坡度;(2)求基站塔AB 的高.30.(2022·辽宁丹东·中考真题)如图,我国某海域有A ,B ,C 三个港口,B 港口在C 港口正西方向33.2nmile (nmile 是单位“海里”的符号)处,A 港口在B 港口北偏西50°方向且距离B 港口40nmile 处,在A 港口北偏东53°方向且位于C 港口正北方向的点D 处有一艘货船,求货船与A 港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)。

专题28.6解直角三角形的应用:坡度坡角大题专项提升训练(重难点培优)-2022-2023学年九年级

专题28.6解直角三角形的应用:坡度坡角大题专项提升训练(重难点培优)-2022-2023学年九年级

2021-2022学年九年级数学下册尖子生培优题典【人教版】专题28.6解直角三角形的应用:坡度坡角大题专项提升训练(重难点培优)一.解答题(共24小题)1.(2022秋•长春期中)如图是某地铁站自动扶梯的示意图,自动扶梯AB的倾斜角(∠BAC)为30.5°,自动扶梯AB的长为17米.(1)求乘客从扶梯底端升到顶端上升的高度BC.(结果精确到0.1米)(2)如果一层楼的高度为2.8米,问这个扶梯升高的高度BC相当于几层楼高?(结果保留整数)【参考数据:sin30.5°=0.51,cos30.5°=0.86,tan30.5°=0.59】2.(2022春•江北区校级月考)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB与水平线AD的夹角为37°,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度.(结果精确到0.1米)参考数据:sin37°≈,cos37°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈0.4.3.(2022秋•惠山区校级月考)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米.(1)直接写出∠BAD=;(2)求旗杆的高度.(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)4.(2021秋•七里河区校级期末)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,求调整后滑滑板底部移动的距离.(结果精确到0.1米,参考数据:≈1.414,≈1.732,≈2.449)5.(2022秋•乳山市校级月考)如图,水库大坝的横断面是梯形ABCD,迎水坡BC的坡角为30,背水坡AD的坡度为1:1.2,坝顶宽DC为2.5米,坝高CF为4.5米.求:(1)坝底AB的长;(2)坡BC的长;(3)迎水坡BC的坡度.6.(2022秋•宁阳县校级月考)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE ⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移多少m时,才能确保山体不滑坡.(取tan50°≈1.2)7.(2020秋•鲤城区校级期中)我市有一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM是否需要拆除?请说明理由.(参考数据:,)8.(2022•綦江区校级模拟)某小区拟建设地下停车库入口,将原步行楼梯入口AC改造为斜坡AD.已知入口高AB=3m,坡面AC的坡度i=1:1,新坡面坡角∠ADB=30°.(1)求斜坡底部增加的长度CD为多少米?(保留根号)(2)入口处水平线AE=5m,地下停车库坡道入口上方点E处有悬挂广告牌EF,EF⊥BD,EF=0.5m.若一辆高度为2米的货车沿斜坡AD驶入车库,行进中是否会碰到广告牌的下端F?请说明理由.(参考数据: 1.4, 1.7)9.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.10.(2022•南京模拟)如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37°角的楼梯AD、BE和一段水平平台DE构成.已知天桥高度BC=4.5米,引桥水平跨度AC=8米.(参考数据:取sin37°=0.60,cos37°=0.80,tan37°=0.75)(1)求水平平台DE的长度;(2)若与地面垂直的平台立柱MN的高度为3米,求两段楼梯AD与BE的长度之比.11.(2022•菏泽)菏泽某超市计划更换安全性更高的手扶电梯,如图,把电梯坡面的坡角由原来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)12.(2022•郯城县二模)如图所示,某人通过定滑轮拉动静止在水平面上的箱子,开始时与物体相连的绳和水平面间的夹角为37°,拉动一段距离后,绳与水平面间的夹角为53°,绳子的自由端竖直向下移动了3米,求箱子移动的距离.(绳子伸缩不计)(参考数据:sin37°=,sin53°=,tan37°=)13.(2022•南京模拟)小华在网上看到一个如图(1)的躺椅,他决定自己动手用木条制作一个简易的躺椅,如图(2)是简易躺椅的侧面,其中∠B=44°,∠ACB=17°,∠DEC=∠DCE=48°,AE=AC,若木条AB=5dm,请你计算木条AC,DE,DC的长.(相关数据:sin44°=0.69,cos44°=0.72,tan44°=0.97,sin17°=0.29,cos17°=0.96,tan17°=0.31,sin48°=0.74,cos48°=0.67,tan48°=1.11,结果保留一位小数)14.(2022•湖北模拟)周末爬山、郊游是现代市民常见的健康休闲生活方式.小明和小亮两家相约周末一起去天柱山游玩.如图,他们从天柱山西坡的B点出发,沿坡角为30°的山坡走了300m到达山腰E点处休息;然后又沿着坡角为45°的山坡走了150m到达山顶A处.求天柱山的高度.(结果精确到个位,参考数据:≈1.4,≈1.7)15.(2022春•重庆月考)图1是安装在倾斜屋顶上的热水器,图2是安装热水器的侧面示意图.已知屋面AE的倾斜角∠EAD为22°,长为3米的真空管AB的坡度为1:,安装热水器的铁架竖直管CE的长度为0.5米.(1)真空管上端B到水平线AD的距离.(2)求安装热水器的铁架水平横管BC的长度(结果精确到0.1米).(参考数据:sin22°≈,cos22°≈,tan22°≈0.4)16.(2022•莱西市一模)周末爬山、郊游是现代市民常见的健康休闲生活方式.小丁和小亮两家相约周末一起去“天然氧吧”大青山游玩.如图,他们从大青山西坡的B点出发,沿坡角为37°的山坡走了300米到达山腰E点处休息;然后又沿着坡角为45°的山坡走了150米到达山顶A处.求大青山的海拔高度.(结果精确到个位,参考数据:≈1.4,≈1.7,sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)17.(2022•邯郸模拟)如图,某登山队沿山坡AB﹣BC上山后,再沿山坡CD下山.已知山坡AB的坡度为i=1:2.4,山坡BC的坡度为i=1:0.75,山坡CD的坡角∠D=30°,且山顶C点到水平面AD的距离为1000m,B点到水平面AD的距离为200m.(1)求山坡AB﹣BC的长:(2)已知登山队上山的速度保持不变,且下山速度是上山速度的2倍,若下山比上山少用26分钟,求下山的速度.18.(2022•南召县四模)2022年5月25日,郑州市城市隧道综合管理养护中心结合隧道情况,从人民至上、生命至上的角度出发,考虑增加多种安全措施,排除安全隐患.其中对京广路隧道,根据各段隧道空间情况,在不影响交通的情况下,加装了大小、形状不一的19条人行逃生爬梯.如图1,起初工程师计划修建一段坡度为4:3(即AF:BF=4:3),总长为7.5米的爬梯AB.从安全角度考虑,工程师对爬梯的设计进行了修改,如图2,修建了AC、DE两段爬梯,并在中间修建了1米的水平平台DC,其中∠ACD =135°,∠E=40°,爬梯AC长2米,点E、B、F三点共线.求修改后爬梯的底部E与修改前爬梯的底部B之间的距离.(结果精确到0.1米.参考数据:≈1.41,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)19.(2022•新野县三模)北京冬残奥会期间,为方便中外参赛运动员的生活起居、参赛出行,组委会在无障碍设施方面做了精心的安排,让运动员在细节里感受“中国温度”.如图1是一场馆内的无障碍坡道,其示意图如图2所示,台阶的垂直高度AB的长为1.4m,缓坡BD的坡角∠DBC=6°,缓坡FD的坡角∠EDF=8°,平台AF的长为2m,求BC的长.(结果精确到0.1m)(参考数据:sin6°≈0.10,cos6°≈0.99,tan6°≈0.11,sin8°≈0.14,cos8°≈0.99,tan8°≈0.14)20.(2022•鄂尔多斯)旗杆及升旗台的剖面如图所示,MN、CD为水平线,旗杆AB⊥CD于点B.某一时刻,旗杆AB的一部分影子BD落在CD上,另一部分影子DE落在坡面DN上,已知BD=1.2m,DE=1.4m.同一时刻,测得竖直立在坡面DN上的1m高的标杆影长为0.25m(标杆影子在坡面DN上),此时光线AE与水平线的夹角为80.5°,求旗杆AB的高度.(参考数据:sin80.5°≈0.98,cos80.5°≈0.17,tan80.5°≈6)21.(2022春•沙坪坝区校级期末)如图,已知教学楼前面的玻璃幕墙GH垂直于地面,为测量GH的高度,身高1.6米的小凯从教学楼底E点沿直线步行4米到达长度为10米的斜坡DC的底端D点处,在D处用仪器测得∠HDE=30°,然后再沿着斜坡DC上行到达C点(已知CM⊥DM且CM:DM=3:4),到达C点后继续沿平行于地面的平台直线行走了6米到达B点,此时他刚好踩着太阳光照射下楼顶G点的影子,这时小凯同学的影长BN=1.8米,用线段AB表示小凯同学身高,A,B,C,D,E,H,G,M,N在同一个平面内.且B,C,N和M,D,E在各自的同一水平线上,其中GE⊥EM,AB⊥BC,EM∥BC,GB∥AN.(1)求线段HE和EM的长度.(2)求玻璃幕墙GH的高度.(≈1.732,结果保留一位小数)22.(2022春•开州区期末)某商场拟将地下一楼改建为地下停车库,将原步行楼梯入口AC改造为车库斜坡入口AD.已知入口高AB=4m,且AB⊥BD,点C处测得∠ACB=45°,新坡面坡角∠ADB=30°.(1)求斜坡底部增加的长度CD为多少米?(保留根号)(2)入口处水平线AE=6m,地下停车库坡道入口上方点E处有悬挂广告牌EF,EF⊥BD,EF=1.3m.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入,请求出限制高度为多少米?(结果精确到0.1,参考数据:≈1.4,≈1.7)23.(2022•景德镇模拟)如图1是一个长方体形家用冰箱,长宽高分别为0.5米、0.5米、1.7米,在搬运上楼的过程中,由于楼梯狭窄,完全靠一名搬运师傅背上楼.(1)如图2,为便于搬运师傅起身,冰箱通常与地面成60°角,求此时点D与地面的高度;(2)如图3,在搬运过程中,冰箱与水平面成80°夹角,最低点A与地面高度为0.3米,门的高度为2米,假如最高点C与门高相同时,刚好可以搬进去.若他保持冰箱与平面夹角不变,他要下蹲几厘米(结果保留整数)才刚好进门?(sin80°≈0.98,cos80°≈0.16,tan80°≈5.67)24.(2022•沙坪坝区校级模拟)如图是某景区登山路线示意图,其中AD是缆车游览路线,折线A﹣B﹣C ﹣D是登山步道,步道AB与水平面AE的夹角α为30°,步道CD与水平面的夹角β为45°,BC是半山观景平台,BC∥AE.现测得AB=300m,CD=450m,缆车路线AD=1000m.其中点A,B,C,D,E在同一平面内,DE⊥AE.(1)求点B到水平面AE的距离;(2)求半山观景平台BC的长度.(结果保留整数)(参考数据:≈1.414,≈1.732.)。

2023年中考数学高频考点突破——解直角三角形的实际应用

2023年中考数学高频考点突破——解直角三角形的实际应用

2023年中考数学高频考点突破——解直角三角形的实际应用1.在修建某高速公路的线路中需要经过一座小山.如图,施工方计划从小山的一侧C处沿AC方向开挖隧道到小山的另一侧D(A,C,D三点在同一直线上)处.为了计算隧道CD的长,现另取一点B,测得∠CAB=30°,∠ABD=105°,AC=1km,AB=4km.求隧道CD的长.2.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).3.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?4.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.5.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约高多少米?(结果精确到0.1m,其中小丽眼睛距离地面高度近似为身高)6.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).7.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB 的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)8.给窗户装遮阳棚,其目的为最大限度的遮挡夏天炎热的阳光,又能最大限度的使冬天温暖的阳光射入室内,现请你为我校新建成的高中部教学楼朝南的窗户设计一个直角形遮阳篷BCD,如图,已知窗户AB高度为h=2米,本地冬至日正午时刻太阳光与地面的最小夹角α=32°,夏至日正午时刻太阳光与地面的最大夹角β=79°,请分别计算直角形遮阳篷BCD中BC、CD的长(结果精确到0.1米,tan32°≈0.62,tan79°≈5.14)9.如图,秋千链子AB的长度为3m,静止时的秋千踏板(厚度忽略不计)距地面DE为0.5m,秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,求秋千踏板与地面的最大距离.(sin53°≈0.80,cos53°≈0.60)10.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB∥ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)11.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.12.如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB (结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)13.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)14.2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)15CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)17.如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)18.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)20.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)参考答案与试题解析1.【解答】解:过点B作BE⊥AD于点E,如图所示:在Rt△ABE中,AB=4km,∠CAB=30°,∠AEB=90°,∴BE=AB=2km,AE===2km,∠ABE=180°﹣30°﹣90°=60°,∴∠DBE=∠ABD﹣∠ABE=105°﹣60°=45°.在Rt△BDE中,∠BED=90°,∠DBE=45°,∴DE=BE=2km,∴AD=AE+DE=(2+2)km,∴CD=AD﹣AC=2+2﹣1=(2+1)km.答:隧道CD的长为(2+1)km.2.【解答】解:∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4即BD=AD设BD=AD=xm,∵AC=50m∴CD=(x+50)m,在Pt△ACD中tan C=,10x=6x+3004x=300x≈75.0.答:AD的长度为75.0m.3.【解答】解:过点B作BF交CD于F,过点F作FE⊥AB于点E,∵太阳光与水平线的夹角为30°,∴∠BFE=30°,∵AC=EF=24m,∴BE=EF•tan30°=24×=8(m),∴CD﹣BE=(30﹣8)m.答:甲楼的影子在乙楼上的高度约为(30﹣8)m.4.【解答】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3.∴AD2=AE2+DE2=(3)2+(3)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=AB=3,∴BC2=AB2﹣AC2=62﹣32=27,∴BC==3m,∴点B到地面的垂直距离BC=3m.5.【解答】解:由题意得:AD=6m,在Rt△ACD中,tan A==∴CD=2(m),又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6≈5.1(m).答:树的高度约为5.1米.6.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+60解之得:x=30+30≈81.96.答:河宽约为81.96米.7.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.8.【解答】解:根据内错角相等可知,∠BDC=α,∠ADC=β.在Rt△BCD中,tanα=.①在Rt△ADC中,tanβ=.②由①、②可得:.把h=2,tan32°≈0.62,tan79°≈5.14代入上式,得BC≈0.3(米),CD≈0.4(米).所以直角遮阳篷BCD中BC与CD的长分别是0.3米和0.4米.9.【解答】解:设秋千链子的上端固定于A处,秋千踏板摆动到最高位置时踏板位于B 处.过点A,B的铅垂线分别为AD,BE,点D,E在地面上,过B作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=,∴AC=3cos53°≈3×0.6=1.8(),∴CD≈3+0.5﹣1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地面的最大距离约为1.7m.10.【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.42m,∴h=0.42+0.74=1.156≈1.2(米),答:手柄的一端A离地的高度h约为1.2m.11.【解答】解:∵AB=AC,D为BC的中点,BC=10米,∴DC=BD=5米,∵AB=AC,D为BC的中点,∴AD⊥BC.在Rt△ADB中,∠B=36°,∴tan36°=,即AD=BD•tan36°≈3.7(米).cos36°=,即AB=≈6.2(米).答:中柱AD(D为底边BC的中点)为3.7米和上弦AB的长为6.2米.12.【解答】解:在Rt△ABC中,BC=60米,∠BCA=62°,可得tan∠BCA=,即AB=BC•tan∠BCA=60×1.88≈113(米),则河宽AB为113米.13.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x米.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=10.解得x=13.答:河的宽度的13米.14.【解答】解:过C作CD⊥,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2米,∴x﹣x=2,解得:x=+1≈2.73,答:命所在点C与探测面的距离2.73米.15.【解答】解:由题可知:如图,BH⊥HE,AE⊥HE,CD=2米,BC=4米,∠BCH=30°,∠ABC=80°,∠ACE=70°∵∠BCH+∠ACB+∠ACE=180°∴∠ACB=80°∵∠ABC=80°∴∠ABC=∠ACB∴AB=AC过点A作AM⊥BC于M,∴CM=BM=2(米),∵在Rt△ACM中,CM=2米,∠ACB=80°∴∠ACB=cos80°≈0.17∴AC==(米),∵在Rt△ACE中,AC=米,∠ACE=70°∴∠ACE=sin70°≈0.94∴AE=×0.94=≈11.1(米),∴AE+CD=13.1(米),故可得点A到地面的距离为13.1米.16.【解答】解:设BM=x米.∵∠CDF=45°,∠CFD=90°,∴CF=DF=x米,∴BF=BC﹣CF=(4﹣x)米.∴EN=DM=BF=(4﹣x)米.∵AB=6米,DE=1米,BM=DF=x米,∴AN=AB﹣MN﹣BM=(5﹣x)米.在△AEN中,∠ANE=90°,∠EAN=31°,∴EN=AN•tan31°.即4﹣x=(5﹣x)×0.6,∴x=2.5,答:DM和BC的水平距离BM的长度为2.5米.17.【解答】解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•sin∠B=1.5×sin43°=1.5×0.682≈1.023米,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9米,∴DF=GH=EG﹣EH=6﹣0.9=5.1米,∴OF=OA+AC+CD+DF=1.5+1.023+1+5.1=8.623m.答:灯杆OF至少要8.63m.18.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3.所以生命迹象所在位置C的深度约为3米.19.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.10.答:河宽为68.30米.20.【解答】解:如图,根据题意OA=OA′=80cm,∠AOA′=35°,作A′B⊥AO于B,∴OB=OA′•cos35°=80×0.82≈65.6cm,∴AB=OA﹣OB=80﹣65.6=14.4cm.答:调整后点A′比调整前点A的高度降低了14厘米.。

中考专题训练(解直角三角形应用题)—解析版

中考专题训练(解直角三角形应用题)—解析版

答:这两座建筑物顶端 C 、 D 间的距离为 20 39m .
【解答】解:过点 C 作 CD ⊥ AB 于点 D ,由题意得: BCD = 30 ,设 BC = x ,则:
在 RtBCD 中, BD = BC sin 30 = 1 x , CD = BC cos 30 = 3 x ;
2
2
AD = 30 + 1 x , 2
则 AD = AE + EB = 20 3 + 20 = 20( 3 + 1)(m) ,
在 RtADC 中, A = 30 , DC = AD = (10 + 10 3)m .
2 答:塔高 CD 为 (10 + 10 3)m .
测得屋檐 E 点的仰角为 60 ,房屋的顶层横梁 EF = 12m , EF / /CB , AB 交 EF 于点 G (点 C , D , B 在同一
∴tan30°= x , x+6
解得 x≈8.22, 根据题意可知: DM=MH=MN+NH, ∵ MN=AC=10, 则 DM=10+8.22=18.22, ∴ CD=DM+MC=DM+EF=18.22+1.6=19.82≈19.8(m). 答:建筑物 CD 的高度约为 19.8m.
9.(2020·四川眉山)某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为 20 米的发射塔 AB ,如 图所示,在山脚平地上的 D 处测得塔底 B 的仰角为 30 ,向小山前进 80 米到达点 E 处,测得塔顶 A 的仰角为 60 ,求小山 BC 的高度.
AD2 + CD2 = AC 2 ,即: (30 + 1 x)2 + ( 3 x)2 = 702 ,

2023学年人教版九年级数学下册《28-2解直角三角形及其应用》应用解答题专题提升训练(附答案)

2023学年人教版九年级数学下册《28-2解直角三角形及其应用》应用解答题专题提升训练(附答案)

2022-2023学年人教版九年级数学下册《28.2解直角三角形及其应用》应用解答题专题提升训练(附答案)1.某小区准备购入一架滑梯供小区儿童使用,物业选定了左图的滑梯,但受小区儿童区域场地的限制,需知晓滑梯的水平长度.滑梯的截面如右图所示,已知梯子AE长度为3m,坡度为57°,顶台DE∥AB,且长度为1m,滑坡BD的坡度i=1:3.2,滑梯的缓冲长度BC为1.5m,求滑梯的水平长度AC.(结果精确到0.1m.参考数据:sin57°≈0.84,cos57°≈0.55,tan57°≈1.54)2.如图是一防洪堤背水坡的横截面图,斜坡AB的长为18m,它的坡角为45°.为了提高该堤的防洪能力,现将背水坡改造成坡度为的斜坡AD,在CB方向距点B处9m 处有一座房屋.(参考数据;)(1)求∠DAB的度数;(2)在背水坡改造的施工过程中,此处房屋是否需要拆除?3.如图(1)是一天桥的梯步图,为了方便残疾人出行,准备对梯步进行改建降低坡度,绘制了如图(2)的侧面示意图,点A为梯步顶端,点C为梯步底端,AB垂直于水平地面BC,并测得∠ACB=40°,CB=5米.要使改建后的梯步与水平面的夹角∠ADC=36°,求梯步底端向外延伸的长度DC(精确到0.1米,sin36°≈0.588,tan36°≈0.727,cos40°≈0.766,tan40°≈0.839).4.如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC 上的一点B取∠ABD=120°,BD=400米,∠D=30°.那么另一边开挖点E离D多远正好使A、C、E三点在一直线上(≈1.732,结果精确到1米)?5.高淳固城湖大桥采用H型塔型斜拉桥结构(如甲图),图乙是从图甲抽象出的平面图.测得拉索AB与水平桥面的夹角是45°,拉索CD与水平桥面的夹角是65°,两拉索顶端的距离AC为2米,两拉索底端距离BD为10米,请求出立柱AH的长(结果精确到0.1米).(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)6.如图,某水库大坝的横截面是梯形,其迎水坡AD的坡比为4:3,背水坡BC的坡比为1:2,大坝的高为20m,坝顶CD的宽为10m.求大坝横截面的周长.7.如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.7328.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C=49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..9.如图,AE是位于公路边的电线杆,高为12m,为了使拉线CDE不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根为6m的水泥撑杆BD,用于撑起电线.已知两根杆子之间的距离为8m,电线CD与水平线AC的夹角为60°.求电线CDE的总长L(A、B、C三点在同一直线上,电线杆、水泥杆的大小忽略不计).10.如图,我市常璩广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,在C点上方E处加固另一条钢缆ED,钢缆ED与地面夹角为60°,现在要在EC 处放置一个广告牌,请问广告牌EC的高度为多少?(sin40°≈0.6,cos40°≈0.8,tan40°≈0.8)11.如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm.使用时发现:光线最佳时灯罩BC与水平线所成的角为25°,求光线最佳时灯罩顶端C到桌面的高度CD的长.【参考数据:sin25°=0.42,cos25°=0.91,tan25°=0.47】.12.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角α;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)13.如图,幼儿园为了加强安全管理,决定将园内的滑滑梯的倾角由45°降为30°,已知原滑滑梯AB的长为5m,点D,B,C在同一水平地面上.(1)改善后滑滑梯会加长多少?(精确到0.01m)(2)若滑滑梯的正前方能有3m长的空地就能保证安全,原滑滑梯的前方有6m长的空地,像这样改造是否可行?说明理由(参考数据:=1.414,=1.732,=2.449)14.如图,身高1.75m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度(∠A=30°),已知她与树之间的距离为5m,那么这棵树大约有多高?(结果精确到0.1m)15.一灯柱AB被一钢缆CD固定,CD与地面成45°夹角,且BD=5m,现再在C点上方2m处加固另一根钢缆ED,那么钢缆ED的长度为多少?(结果保留根号)16.如图,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MB=m米,梯子的倾斜角度∠MCB=45°.若梯子斜靠在对面墙上,梯子的倾斜角度∠NCA=60°.试求该房间的宽和梯子的长度.17.如图,在一个坡角为30°的斜坡上有一棵树,高为AB,当太阳光与水平面75°角时.测得该树坡上的树影BC的长为4()米.求树高.18.如图,为迎接全国文明城市检查,某单位准备在一斜坡EF上安装衣服悬挂“社会主义核心价值观”宣传牌的金属架A﹣C﹣B,若CA与地面垂直,斜坡的坡角∠E=30°,∠C=45°,小王测得从A到B的距离是5m,已知每米金属架106元,请你帮该单位算一下安装这副金属架共需多少元(参考数据:≈1.414,≈1.732,≈2.236,≈2.449,结果保留整数).19.海绵城市是新一代城市雨洪管理概念,下雨时通过植被、下沉式绿地、渗透塘等设施吸水、蓄水、渗水、净水,需要时将蓄存的水“释放”并加以利用.我市是全国首批16个海绵城市建设试点城市之一,其中位于梦溪路与滨水路交界处的海绵主题公园,既是周边汇水区雨洪管理的一个有机模块,也是立体化展示海绵技术的科普公园,园区内有一块下沉式绿地(四边形ABCD),经测量,AB∥CD,AB=BC=20米,∠B=60°,∠D =45°,求该绿地边界的周长(结果保留根号).20.倡导“低碳环保”让“绿色出行”成为一种生活常态.嘉嘉买了一辆自行车作为代步工具,各部件的名称如图1所示,该自行车的车轮半径为30cm,图2是该自行车的车架示意图,立管AB=27cm,上管AC=36cm,且它们互相垂直,座管AE可以伸缩,点A,B,E在同一条直线上,且∠ABD=75°.(1)求下管BC的长;(2)若后下叉BD与地面平行,座管AE伸长到18cm,求座垫E离地面的距离.(结果精确到1cm,参考数据sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)参考答案1.解:作ME⊥AC于M,DN⊥AC于N,则四边形MNDE为矩形,则MN=DE=1,EM=DN,在Rt△AEM中,∠EAM=57°,AE=3,∴EM=AE×sin57°≈3×0.84=2.52(m),AM=AE×cos57°≈3×0.55=1.65(m),在Rt△DNB中,i=1:3.2,即=,∴BN=2.52×3.2=8.064(m),又∵BC=1.5m,∴AC=AM+MN+NB+BC=1.65+1+8.064+1.5=12.214≈12.2(m),答:AC的长度约为12.2m.2.解:(1)∵坡度为的斜坡AD,∴tan∠ADC===,∴∠ADC=30°,∴∠DAC=60°,∵AB的坡角为45°,∴∠BAC=∠ABC=45°,∴∠DAB=60°﹣45°=15°;(2)∵AB=18m,∠BAC=∠ABC=45°,∴BC=AC=×18=9(m),∴tan30°===,解得:DC=9,故DB=DC﹣BC=9﹣9≈9.324(米),∵9.324>9,∴在背水坡改造的施工过程中,此处房屋需要拆除.3.解:由题意可得:tan40°==≈0.839,解得:AB≈4.195,tan36°==≈0.727,∴DB≈5.77(米),故DC=DB﹣BC=5.77﹣5≈0.8(米),答:梯步底端向外延伸的长度约为0.8米.4.解:∵∠ABD=120°,∠D=30°,∴∠AED=120°﹣30°=90°,在Rt△BDE中,BD=400m,∠D=30°,∴BE=BD=200m,∴DE==200≈346(m),答:另一边开挖点E离D346m,正好使A,C,E三点在一直线上.5.解:设AH的长为x米,则CH的长为(x﹣2)米.在Rt△ABH中,AH=BH•tan45°,∴BH=x,∴DH=BH﹣BD=x﹣10;在Rt△CDH中,CH=DH•tan65°,∴x﹣2=2.14(x﹣10),解得:x=17.01≈17.0.答:立柱AH的长约为17.0米.6.解:∵DE=20m,DE:AE=4:3,∴AE=15m,∴AD==25(m),∵CF=DE=20m,CF:BF=1:2,∴BF=40m,∴BC==20(m),则周长C=AD+DC+BC+AB=(100+20)m,答:大坝横截面的周长为(100+20)m,7.解:在Rt△CDE中,∵sin∠C=,cos∠C=∴DE=sin30°×DC=×14=7(m),CE=cos30°×DC=×14=7≈12.124≈12.12,∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m在Rt△ABF中,∵∠B=45°∴DE=AF=7m,∴BC=BF+EF+EC≈7+6+12.12=25.12≈25.1(m)答:该坝的坝高和坝底宽分别为7m和25.1m.8.解:过点B作BD⊥AC于点D,∵∠A=30°,AB=60,∴BD=AB=30,∴AD=BD=30,在Rt△CBD中,tan49°=,sin49°=,∴CD≈26,BC≈40,∴AC=AD+CD≈78.9.解:作DF⊥AE于点F,则四边形ABDF是矩形.DF=AB=8(米),EF=AE﹣AF=AE﹣BD=12﹣6=6(m).在直角△DEF中,DE===10(m).在直角△BCD中,sin∠DCB=,则DC==BD=4(m).则电线CDE的总长L=DE+DC=10+4(m).答:电线CDE的总长L是(10+4)m.10.解:在Rt△CDB中,tan∠BDC=,∴BC=BD tan40°≈4,在Rt△BDE中,tan∠BDE=,∴BE=BD tan∠BDE=5,∴CE=BE﹣BC≈4.66(m),答:广告牌EC的高度约为4.66m.11.解:由题意得:AD⊥CD,过点B作BF⊥CE,BG⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为25°,∵CF⊥FB,即三角形CFB为直角三角形,∴sin25°==,∴CF=30×0.42=12.6(cm),∴CD=CF+FD+2=CF+AB+2=12.6+40+2=54.6(cm)答:光线最佳时灯罩顶端C到桌面的高度CD的长54.6cm.12.解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角α为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6米,∵=,∴AH=CH=6≈10.392(米),∴AB=AH﹣BH=6﹣6=4.392(米),∵3+4.392>7,∴文化墙需要拆除.13.解:(1)Rt△ABC中,AC=AB×sin45°=(m),Rt△ADC中,BC=AB×cos45°=(m),AD==5(m),∴AD﹣AB≈2.07(m).改善后滑滑梯会加长2.07 m;(2)这样改造能行.在直角△ACD中,CD==(m),因为CD﹣BC≈2.59(m),而6﹣3>2.59.因此,像这样改造是可行的.14.解:由题意可得:tan30°===,解得:CD=≈2.89(m),故CE=DC+DE=2.89+1.75≈4.6(m),答:这棵树大约有4.6m.15.解:∵在Rt△BCD中,∠CBD=90°,∠CDB=45°,BD=5,∴BC=BD=5.∵在Rt△BED中,∠EBD=90°,BE=BC+CE=5+2=7,BD=5,∴ED===(m).答:钢缆ED的长度为m.16.解:∵CB⊥MB,∠BCM=45°,∴∠BMC=45°,∵MB=m米,∴CB=m米,∴MC===m米,∵NC=CM,∴NC=m米,∵∠NCA=60°,∴∠ANC=30°,∴AC=m米,∴AB=AC+BC=m+m=m(米);答:该房间的宽是m米,梯子的长度是m米.17.解:过点B作BE⊥AC于E,以B为顶点,BE为一边,在∠ABE的内部作∠EBN=60°,交AE于N.∵∠D=30°,∠AMH=75°,∴∠DCM=∠AMH﹣∠D=45°,∴∠ECB=∠DCM=45°.在Rt△BCE中,∵∠BEC=90°,∠ECB=45°,BC=4(﹣1),∴BE=CE=BC=2﹣2,在Rt△BNE中,∵∠BEN=90°,∠EBN=60°,∴∠BNE=30°,∴EN=BE=6﹣2,BN=2BE=4﹣2,∵∠BNE=30°,∠A=90°﹣∠AMH=15°,∴∠ABN=∠BNE﹣∠A=15°,∴AN=BN=4﹣4,在Rt△ABE中,∵∠BEA=90°,BE=2﹣2,AE=2+2,∴AB==8(米),答:树高为8米.18.解:延长CA至D,则CD⊥ED,作BG⊥AC,∵∠E=30°,∴∠CAB=60°,则∠ABG=30°,∵AB=5,∴AG=AB=,∵∠C=45°,∴CG=BG=AG=,∴BC=BG=,∴AC+BC=AG+CG+BC=++≈2.5+4.33+6.12=12.95米,∴安装这副金属架共需12.95×106≈1373元.19.解:连接AC,过点A作AE⊥CD,垂足为E,∵AB=BC,∠B=60°,∴△ABC是等边三角形,∴AC=BC=20米,∠ACB=60°,∵AB∥CD,∴∠BCD=180°﹣∠B=120°,∴∠ACD=∠BCD﹣∠ACB=60°,在Rt△ACE中,AE=AC•sin60°=20×=10(米),CE=AC•cos60°=20×=10(米),在Rt△AED中,∠D=45°,∴DE===10(米),AD===10(米),∴AB+BC+CD+AD=20+20+10+10+10=(50+10+10)米,∴该绿地边界的周长为(50+10+10)米.20.解:(1)∵BA⊥AC,∴∠BAC=90°,在Rt△ABC中,AB=27cm,AC=36cm,∴BC===45(cm),∴下管BC的长为45cm;(2)过点E作EF⊥BD,垂足为F,∵AE=18cm,AB=27cm,∴BE=AE+AB=45cm,在Rt△BEF中,∠ABD=75°,∴EF=BE•sin75°≈45×0.97=43.65(cm),∴座垫E离地面的距离=43.65+30≈74(cm),∴座垫E离地面的距离约为74cm.。

2020人教版九年级数学下册28.2 解直角三角形及其应用训练题解析版

2020人教版九年级数学下册28.2 解直角三角形及其应用训练题解析版

2020人教版九年级数学下册28.2 解直角三角形及其应用训练题一.选择题(共10小题)1.如图,已知在平面直角坐标系xOy内有一点A(2,3),那么OA与x轴正半轴y的夹角α的余切值是()A.B.C.D.2.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A的值为()A.B.C.D.3.如图,一根电线杆PO垂直于地面,并用两根拉线P A,PB固定,量得∠P AO=α,∠PBO =β,则拉线P A,PB的长度之比=()A.B.C.D.4.某车库出口安装的栏杆如图所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.5.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m6.如图是一斜坡的横截面,某人沿斜坡从M出发,走了13米到达N处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是()A.1:5B.12:13C.5:13D.5:127.直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A 处看高处C处,那么点C在点A的()A.俯角67°方向B.俯角23°方向C.仰角67°方向D.仰角23°方向8.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+9.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60米到达C点,测得点B在点C的北偏东60°方向,则这段河的宽度为()A.60()米B.30()米C.(90﹣30)米D.30(﹣1)米10.如图,某轮船由东向西航行,在A处测得灯塔M在它的北偏西75°方向上,继续航行8海里到达B处,此时测得灯塔M在它的北偏西60°方向上,则BM=()A.8海里B.4海里C.4海里D.4海里二.填空题(共4小题)11.如图,在正方形网格中,点A,B,C是小正方形的顶点,那么tan∠BAC的值为.12.2022年在北京将举办第24届冬季奥运会,很多学校都开展了冰雪项目学习.如图,滑雪轨道由AB,BC两部分组成,AB,BC的长度都为200米,一位同学乘滑雪板沿此轨道由A点滑到了C点,若AB与水平面的夹角α为20°,BC与水平面的夹角β为45°,则他下降的高度为米.13.小明沿着坡度i=1:2.5的斜坡前行了29米,那么他上升的高度是米.14.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,则山高BC=米(结果保留根号).三.解答题(共9小题)15.在△ABC中,AB=6,BC=4,∠B为锐角且.(1)求∠B的度数;(2)求△ABC的面积;(3)求tan C.16.如图,Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.17.如图,胡同左右两侧是竖直的墙,一架3米长的梯子斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D处,此时测得梯子AD与地面的夹角为60°,问:胡同左侧的通道拓宽了多少米(保留根号)?18.图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)19.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD,如图所示,已知迎水面AB的长为20米,∠B=60°,背水面DC的长度为20米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).20.某仓储中心有一个坡度为i=1:2的斜坡AB,顶部A处的高AC为4米,B、C在同一水平地面上,其横截面如图.(1)求该斜坡的坡面AB的长度;(2)现有一个侧面图为矩形DEFG的长方体货柜,其中长DE=2.5米,高EF=2米,该货柜沿斜坡向下时,点D离BC所在水平面的高度不断变化,求当BF=3.5米时,点D离BC所在水平面的高度DH.21.如图①,在我国古建筑的大门上常常悬挂着巨大的匾额,图②中的线段BC就是悬挂在墙壁AM上的某块匾额的截面示意图.已知BC=1米,∠MBC=37°.从水平地面点D处看点C,仰角∠ADC=45°,从点E处看点B,仰角∠AEB=53°,且DE=2.4米,求匾额悬挂的高度AB的长.(参考数据:sin37°≈,cos37°≈,tan37°≈).22.水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)23.如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A 城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km 为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.732)参考答案一.选择题(共10小题)1.如图,已知在平面直角坐标系xOy内有一点A(2,3),那么OA与x轴正半轴y的夹角α的余切值是()A.B.C.D.【解答】解:过点A作AB⊥x轴,垂足为B,则OB=2,AB=3,在Rt△OAB中,cot∠AOB=cotα==,故选:B.2.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A的值为()A.B.C.D.【解答】解:如图所示:由勾股定理得:AC==5,∴tan A==;故选:D.3.如图,一根电线杆PO垂直于地面,并用两根拉线P A,PB固定,量得∠P AO=α,∠PBO =β,则拉线P A,PB的长度之比=()A.B.C.D.【解答】解:如图,在直角△P AO中,∠POA=90°,∠P AO=α,则P A=.如图,在直角△PBO中,∠POB=90°,∠PBO=β,则P A=.所以==.故选:D.4.某车库出口安装的栏杆如图所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=1.18米,AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.B.C.D.【解答】解:如图,延长BA、FE,交于点D,∵AB⊥BC,EF∥BC,∴BD⊥DF,即∠ADE=90°,∵∠AEF=143°,∴∠AED=37°,在Rt△ADE中,∵sin∠AED=,AE=1.2米,∴AD=AE sin∠AED=1.2×sin37°≈0.72(米),则BD=AB+AD=1.18+0.72=1.9(米),故选:A.5.某人沿着坡度为1:2.4的斜坡向上前进了130m,那么他的高度上升了()A.50m B.100m C.120m D.130m 【解答】解:如图,根据题意知AB=130米,tan B==1:2.4,设AC=x,则BC=2.4x,则x2+(2.4x)2=1302,解得x=50或x=﹣50(负值舍去),即他的高度上升了50m,故选:A.6.如图是一斜坡的横截面,某人沿斜坡从M出发,走了13米到达N处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是()A.1:5B.12:13C.5:13D.5:12【解答】解:过点N作HG⊥地面AB于G再作MH⊥NG于H,由题意得,MN=13,NH=5,由勾股定理得,MH===12,∴该斜坡的坡度为5:12,故选:D.7.直角梯形ABCD如图放置,AB、CD为水平线,BC⊥AB,如果∠BCA=67°,从低处A 处看高处C处,那么点C在点A的()A.俯角67°方向B.俯角23°方向C.仰角67°方向D.仰角23°方向【解答】解:∵BC⊥AB,∠BCA=67°,∴∠BAC=90°﹣∠BCA=23°,从低处A处看高处C处,那么点C在点A的仰角23°方向;故选:D.8.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高CD为()A.a sinα+a sinβB.a cosα+a cosβC.a tanα+a tanβD.+【解答】解:∵在Rt△ABC中,BC=AB•tanα=a tanα,在Rt△ABD中,BD=AB•tanβ=a tanβ,∴CD=BC+BD=a tanα+a tanβ.故选:C.9.如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60米到达C点,测得点B在点C的北偏东60°方向,则这段河的宽度为()A.60()米B.30()米C.(90﹣30)米D.30(﹣1)米【解答】解:作BD⊥CA交CA的延长线于D,设BD=xm,∵∠BCA=30°,∴CD==x,∵∠BAD=45°,∴AD=BD=x,则x﹣x=60,解得x==30(),答:这段河的宽约为30()米.故选:B.10.如图,某轮船由东向西航行,在A处测得灯塔M在它的北偏西75°方向上,继续航行8海里到达B处,此时测得灯塔M在它的北偏西60°方向上,则BM=()A.8海里B.4海里C.4海里D.4海里【解答】解:由题意得,∠BAM=90°﹣75°=15°,∴∠M=180°﹣90°﹣60°﹣15°=15°,∴∠BAM=∠M,∴BM=AB=8(海里),故选:A.二.填空题(共4小题)11.如图,在正方形网格中,点A,B,C是小正方形的顶点,那么tan∠BAC的值为2.【解答】解:连接BC,则AB⊥BC,在Rt△ABC中,AB==,BC==2,∴tan∠BAC===2,故答案为:2.12.2022年在北京将举办第24届冬季奥运会,很多学校都开展了冰雪项目学习.如图,滑雪轨道由AB,BC两部分组成,AB,BC的长度都为200米,一位同学乘滑雪板沿此轨道由A点滑到了C点,若AB与水平面的夹角α为20°,BC与水平面的夹角β为45°,则他下降的高度为210米.【解答】解:过点A作AE⊥BD于点E,过点B作BG⊥CF于点G,在Rt△ABE中,∴sinα=,∴AE=AB×sin20°≈68,在Rt△BCG中,∴sinβ=,∴BG=BC×sin45°≈142,∴他下降的高度为:AE+BG=210,故答案为:21013.小明沿着坡度i=1:2.5的斜坡前行了29米,那么他上升的高度是2米.【解答】解:设小明上升的高度为x米,∵坡度i=1:2.5,∴小明前行的水平宽度为2.5x米,由勾股定理得,x2+(2.5x)2=292,解得,x=2,故答案为:2.14.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,则山高BC=(100+100)米(结果保留根号).【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100(米),∴BC=BE+EC=100+100(米);故答案为:(100+100).三.解答题(共9小题)15.在△ABC中,AB=6,BC=4,∠B为锐角且.(1)求∠B的度数;(2)求△ABC的面积;(3)求tan C.【解答】解:(1)∵∠B为锐角且,∴∠B=60°;(2)作AD⊥BC于D,如图所示:∵∠B=60°,∴∠BAD=90°﹣60°=30°,∴BD=AB=3,∴△ABC的面积=BC×AD=×4×3=6;(3)∵BC=4,BD=3,∴CD=BC﹣BD=1,∴tan C===3.16.如图,Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.【解答】解:Rt△ABC中,∠C=90°,AC=2,BC=6,由勾股定理得,AB==4,∵tan B===,∴∠B=30°,∴∠A=90°﹣30°=60°,17.如图,胡同左右两侧是竖直的墙,一架3米长的梯子斜靠在右侧墙壁上,测得梯子与地面的夹角为45°,此时梯子顶端B恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D处,此时测得梯子AD与地面的夹角为60°,问:胡同左侧的通道拓宽了多少米(保留根号)?【解答】解:在Rt△BCE中,∵BC=3,∠BEC=90°,∠BCE=45°,∴BE=CE=BC•cos45°=3×=3,在Rt△BDE中,DE=BE•tan30°=,∴CD=CE﹣DE=3﹣,答:胡同左侧的通道拓宽了(3﹣)米.18.图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)【解答】解:过B作BG⊥OM于G,过C′作C′H⊥BG于H,延长D′A交BG于E,则C′H=D′E,HE=C′D′=8,设AE=x,∴C′H=D′E=16+x,∵∠BC′H=45°,∴BH=C′H=16+x,∴BE=16+x+8=24+x,∵∠BAO=160°,∴∠BAE=70°,∴tan70°===,解得:x=13.5,∴BE=37.5,∴BG=BE+EG=BE+AO=37.5+7=44.5≈45cm,答:B到水平桌面OM的距离为45cm.19.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD,如图所示,已知迎水面AB的长为20米,∠B=60°,背水面DC的长度为20米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).【解答】解:(1)分别过A、D作AF⊥BC,DG⊥BC,垂点分别为F、G,如图所示.在Rt△ABF中,AB=20米,∠B=60°,sin∠B=,∴AF=20×=10,DG=10.∴S△DCE=×CE•DG=5×10=25,需要填方:100×25=2500(立方米);(2)在直角三角形DGC中,DC=20,∴GC===30,∴GE=GC+CE=35,坡度i===.答:(1)需要土石方2500立方米.(2)背水坡坡度为.20.某仓储中心有一个坡度为i=1:2的斜坡AB,顶部A处的高AC为4米,B、C在同一水平地面上,其横截面如图.(1)求该斜坡的坡面AB的长度;(2)现有一个侧面图为矩形DEFG的长方体货柜,其中长DE=2.5米,高EF=2米,该货柜沿斜坡向下时,点D离BC所在水平面的高度不断变化,求当BF=3.5米时,点D离BC所在水平面的高度DH.【解答】解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.∴AB===(米);(2)∵∠DGM=∠BHM,∠DMG=∠BMH,∴∠GDM=∠HBM,∴,∵DG=EF=2m,∴GM=1m,∴DM=,BM=BF+FM=3.5+(2.5﹣1)=5m,设MH=xm,则BH=2xm,∴x2+(2x)2=52,∴x=m,∴DH==m.21.如图①,在我国古建筑的大门上常常悬挂着巨大的匾额,图②中的线段BC就是悬挂在墙壁AM上的某块匾额的截面示意图.已知BC=1米,∠MBC=37°.从水平地面点D处看点C,仰角∠ADC=45°,从点E处看点B,仰角∠AEB=53°,且DE=2.4米,求匾额悬挂的高度AB的长.(参考数据:sin37°≈,cos37°≈,tan37°≈).【解答】解:过C作CF⊥AM于F,过C作CH⊥AD于H,则四边形AHCF是矩形,所以AF=CH,CF=AH.在Rt△BCF中,BC=1,∠CBF=37°.BF=BC cos37°=0.8,CF=BC sin37°=0.6,在Rt△BAE中,∠BEA=53°,所以AE=AB,在Rt△CDH中,∠CDH=45°,∴CH=DH=F A=0.8+AB,∴AD=AH+DH=0.6+0.8+AB=1.4+AB,∵AD=AE+DE=AB+2.4,∴1.4+AB=AB+2.4,AB=4,答:匾额悬挂的高度是4米.22.水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点D、C、B在一直线上),求该水城门AB的高.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)【解答】解:由题意得,∠ABD=90°,∠D=20°,∠ACB=31°,CD=13,在Rt△ABD中,∵tan∠D=,∴BD==,在Rt△ABC中,∵tan∠ACB=,∴BC==,∵CD=BD﹣BC,∴13=,解得AB≈11.7米.答:水城门AB的高为11.7米.23.如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A 城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km 为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.732)【解答】解:计划修建的这条高速铁路穿越保护区,理由如下:作PH⊥AC于H,由题意得,∠PBH=60°,∠P AH=30°,∴∠APB=30°,∴∠BAP=∠BP A,∴PB=AB=150,在Rt△PBH中,sin∠PBH=,∴PH=PB•sin∠PBH=75≈129.9,129.9>120,∴计划修建的这条高速铁路不会穿越保护区.。

(2021年整理)解直角三角形提高练习题1(含答案)

(2021年整理)解直角三角形提高练习题1(含答案)

(完整)解直角三角形提高练习题1(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)解直角三角形提高练习题1(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)解直角三角形提高练习题1(含答案)的全部内容。

解直角三角形练习题1一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则tanE=( )A.43 B. 34C.53 D. 35 2。

在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( ) A 。

21 B.33C. 1 D 。

33。

在△ABC 中,若22cos =A ,3tan =B ,则这个三角形一定是( )A 。

锐角三角形B 。

直角三角形C 。

钝角三角形D 。

等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( )A 。

EGEF G =sin B. EFEH G =sin C.FGGH G =sin D 。

FGFH G =sin 5。

sin65°与cos26°之间的关系为( )A 。

sin65°<cos26° B. sin65°>cos26° C. sin65°=cos26° D. sin65°+cos26°=1 6。

已知30°<α〈60°,下列各式正确的是( ) A.B.C 。

D 。

7。

在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是( )A.32 B 。

解直角三角形能力提升

解直角三角形能力提升

学科教师辅导教案讲义编号:组长审核:学员编号:年级:初三课时数:3课时学员姓名:辅导科目:数学学科教师:授课主题锐角三角函数综合提升教学目的锐角三角函数的综合应用教学重点解直角三角形的应用授课日期及时段教学内容锐角三角函数与特殊角一、选择题1.(2014年广东汕尾,第7题4分)在Rt△ABC中,∠C=90°,若sinA=,则cosB的值是()A.B.C.D.分析:根据互余两角的三角函数关系进行解答.解:∵∠C=90°,∴∠A+∠B=90°,∴cosB=sinA,∵sinA=,∴cosB=.故选B.点评:本题考查了互余两角的三角函数关系,熟记关系式是解题的关键.2.(2014•毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A.1B.C.3D.考点:圆周角定理;解直角三角形分析:[来源:学由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C科网ZXXK]作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.解答:解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B===,∴AC=.故选D.[来源:Z*xx*]点评:此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.3.(2014•江苏苏州,第9题3分)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-方向角问题分析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选C.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.4.(2014•四川自贡,第10题4分)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为()A.B.C.D.考点:圆周角定理;勾股定理;锐角三角函数的定义专题:压轴题.分析:首先过点A作AD⊥OB于点D,由在Rt△AOD中,∠AOB=45°,可求得AD与OD 的长,继而可得BD的长,然后由勾股定理求得AB的长,继而可求得sinC的值.解答:解:过点A作AD⊥OB于点D,∵在Rt△AOD中,∠AOB=45°,∴OD=AD=OA•cos45°=×1=,∴BD=OB﹣OD=1﹣,∴AB==,∵AC是⊙O的直径,∴∠ABC=90°,AC=2,∴sinC=.故选B.点评:此题考查了圆周角定理、三角函数以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.5.(2014•浙江湖州,第6题3分)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()A.2 B.8C.2D.4分析:根据锐角三角函数定义得出tanA=,代入求出即可.解:∵tanA==,AC=4,∴BC=2,故选A.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.6.(2014·浙江金华,第6题4分)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为3,tan2αα=,则t的值是【】A.1 B.1.5 C.2 D.3【答案】C.【解析】7.(2014•滨州,第11题3分)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为()A.6B.7.5 C.8D.12.5考点:解直角三角形分析:根据三角函数的定义来解决,由sinA==,得到BC==.解答:解:∵∠C=90°AB=10,∴sinA=,∴BC=AB×=10×=6.故选A.点评:本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=.8.(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6(第1题图)考点:含30度角的直角三角形;等腰三角形的性质分析:过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.解答:解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故选C.点评:此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.二.填空题1. (2014•广西贺州,第18题3分)网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sinA=.考点:锐角三角函数的定义;三角形的面积;勾股定理.分析:根据正弦是角的对边比斜边,可得答案.解答:解:如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,由BC•AD=AB•CE,即CE==,sinA===,故答案为:.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2. (2014•广西玉林市、防城港市,第16题3分)如图,直线MN与⊙O相切于点M,ME=EF且EF∥MN,则cos∠E=.考点:切线的性质;等边三角形的判定与性质;特殊角的三角函数值.专题:计算题.分析:连结OM,OM的反向延长线交EF与C,由直线MN与⊙O相切于点M,根据切线的性质得OM⊥MF,而EF∥MN,根据平行线的性质得到MC⊥EF,于是根据垂径定理有CE=CF,再利用等腰三角形的判定得到ME=MF,易证得△MEF为等边三角形,所以∠E=60°,然后根据特殊角的三角函数值求解.解答:解:连结OM,OM的反向延长线交EF与C,如图,∵直线MN与⊙O相切于点M,∴OM⊥MF,∵EF∥MN,∴MC⊥EF,∴CE=CF,∴ME=MF,而ME=EF,∴ME=EF=MF,∴△MEF为等边三角形,∴∠E=60°,∴cos∠E=cos60°=.故答案为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理、等边三角形的判定与性质和特殊角的三角函数值.3.(2014•温州,第14题5分)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.考点:锐角三角函数的定义.分析:根据锐角三角函数的定义(tanA=)求出即可.解答:解:tanA==,故答案为:.点评:本题考查了锐角三角函数定义的应用,注意:在Rt△ACB中,∠C=90°,sinA=,cosA=,tanA=.4. (2014•株洲,第13题,3分)孔明同学在距某电视塔塔底水平距离500米处,看塔顶的仰角为20°(不考虑身高因素),则此塔高约为182米(结果保留整数,参考数据:sin20°≈0.3420,sin70°≈0.9397,tan20°≈0.3640,tan70°≈2.7475).(第1题图)考点:解直角三角形的应用-仰角俯角问题.分析:作出图形,可得AB=500米,∠A=20°,在Rt△ABC中,利用三角函数即可求得BC 的长度.解答:解:在Rt△ABC中,AB=500米,∠BAC=20°,∵=tan20°,∴BC=ACtan20°=500×0.3640=182(米).故答案为:182.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形利用三角函数求解三.解答题1. (2014•四川巴中,第27题9分)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)°.考点:解直角三角形的应用.分析:过梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形,利用相应的性质求解即可.解答:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,在Rt△ABE中,BE=20米,=,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=CFcot∠D=20米,∴AD=AE+EF+FD=50+6+20≈90.6(米).故坝底AD的长度约为90.6米.点评:本题考查了坡度及坡角的知识,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.2. (2014•益阳,第18题,8分)“中国﹣益阳”网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BAD=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.(第2题图)考点:解直角三角形的应用.分析:设AD=x米,则AC=(x+82)米.在Rt△ABC中,根据三角函数得到AB=2.5(x+82),在Rt△ABD中,根据三角函数得到AB=4x,依此得到关于x的方程,进一步即可求解.解答:解:设AD=x米,则AC=(x+82)米.在Rt△ABC中,tan∠BCA=,∴AB=AC•tan∠BCA=2.5(x+82).在Rt△ABD中,tan∠BDA=,∴AB=AD•tan∠BDA=4x.∴2.5(x+82)=4x,解得x=.∴AB=4x=4×≈546.7.答:AB的长约为546.7米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.3.2014•山东潍坊,第21题10分)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是450,然后:沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是600,求两海岛间的距离AB.考点:解直角三角形的应用-仰角俯角问题.分析:首先过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,易得四边形ABFE 为矩形,根据矩形的性质,可得AB =EF ,AE =BF .由题意可知:AE =BF =100米,CD =500米,然后分别在Rt △AEC 与Rt △BFD 中,利用三角函数即可求得CE 与DF 的长,继而求得岛屿两端A 、B 的距离.解答:如图,过点A 作AE ⊥CD 于点E ,过点B 作BF 上CD ,交CD 的延长线于点F ,则四边形ABFE 为矩形,所以AB =EF , AE =BF ,由题意可知AE =BF =1100—200=900,CD =19900.∴在Rt △AEC 中,∠C =450, AE =900, ∴90045tan 900tan 0==∠=C AE CE 在Rt △BFD 中,∠BDF =600,BF =900,BF =900 ∴330060tan 900tan 0==∠=BDF BF DF ∴ AB =EF =CD +DF -CE =19900+3300-900=19000+3300答:两海岛之间的距离AB 是(19000+300√3)米点评:此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.4.(2014年江苏南京,第23题)如图,梯子斜靠在与地面垂直(垂足为O )的墙上,当梯子位于AB 位置时,它与地面所成的角∠ABO =60°;当梯子底端向右滑动1m (即BD =1m )到达CD 位置时,它与地面所成的角∠CDO =51°18′,求梯子的长.(参考数据:sin 51°18′≈0.780,cos 51°18′≈0.625,tan 51°18′≈1.248)(第4题图)考点:解直角三角形的应用分析:设梯子的长为xm.在Rt△ABO中,根据三角函数得到OB,在Rt△CDO中,根据三角函数得到OD,再根据BD=OD﹣OB,得到关于x的方程,解方程即可求解.解答:设梯子的长为xm.在Rt△ABO中,cos∠ABO=,∴OB=AB•cos∠ABO=x•cos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CD•cos∠CDO=x•cos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的长是8米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.5.如图:我渔政310船在南海海面上沿正东方向匀速航行,在A点观测到我渔船C在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B点,观测到我渔船C在东北方向上.问:渔政310船再按原航向航行多长时间,离渔船C的距离最近?(渔船C捕鱼时移动距离忽略不计,结果不取近似值.)考点:解直角三角形的应用-方向角问题.分析:首先作CD⊥AB,交AB的延长线于D,则当渔政310船航行到D处时,离渔政船C 的距离最近,进而表示出AB的长,再利用速度不变得出等式求出即可.解答:解:作CD⊥AB,交AB的延长线于D,则当渔政310船航行到D处时,离渔政船C 的距离最近,设CD长为x,在Rt△ACD中,∵∠ACD=60°,tan∠ACD=,∴AD=x,在Rt△BCD中,∵∠CBD=∠BCD=45°,∴BD=CD=x,∴AB=AD﹣BD=x﹣x=(﹣1)x,设渔政船从B航行到D需要t小时,则=,∴=,∴(﹣1)t=0.5,解得:t=,∴t=,答:渔政310船再按原航向航行小时后,离渔船C的距离最近.点评:此题主要考查了方向角问题以及锐角三角函数关系等知识,利用渔政船速度不变得出等式是解题关键.6. (2014•山东聊城,第21题,8分)如图,美丽的徒骇河宛如一条玉带穿城而过,沿河两岸的滨河大道和风景带称为我市的一道新景观.在数学课外实践活动中,小亮在河西岸滨河大道一段AC上的A,B两点处,利用测角仪分别对东岸的观景台D进行了测量,分别测得∠DAC=60°,∠DBC=75°.又已知AB=100米,求观景台D到徒骇河西岸AC的距离约为多少米(精确到1米).(tan60°≈1.73,tan75°≈3.73)考点:解直角三角形的应用.分析:如图,过点D作DE⊥AC于点E.通过解Rt△EAD和Rt△EBD分别求得AE、BE的长度,然后根据图示知:AB=AE﹣BE﹣100,把相关线段的长度代入列出关于ED的方程﹣=100.通过解该方程求得ED的长度.解答:解:如图,过点D作DE⊥AC于点E.∵在Rt△EAD中,∠DAE=60°,∴tan60°=,∴AE=同理,在Rt△EBD中,得到EB=.又∵AB=100米,∴AE﹣EB=100米,即﹣=100.则ED=≈≈323(米).答:观景台D到徒骇河西岸AC的距离约为323米.点评:本题考查了解直角三角形的应用.主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.7.(2014•遵义21.(8分))如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.8.(2014•襄阳,第15题3分)如图,在建筑平台CD的顶部C处,测得大树AB的顶部A的仰角为45°,测得大树AB的底部B的俯角为30°,已知平台CD的高度为5m,则大树的高度为(5+5)m(结果保留根号)考点:解直角三角形的应用-仰角俯角问题分析:作CE⊥AB于点E,则△BCE和△BCD都是直角三角形,即可求得CE,BE的长,然后在Rt△ACE中利用三角函数求得AE的长,进而求得AB的长,即为大树的高度.解答:解:作CE⊥AB于点E,在Rt△BCE中,BE=CD=5m,CE==5m,在Rt△ACE中,AE=CE•tan45°=5m,AB=BE+AE=(5+5)m.故答案为:(5+5).点评:本题考查解直角三角形的应用﹣仰角俯角问题的应用,要求学生能借助仰角构造直角三角形并解直角三角形.9.(2014•邵阳,第24题8分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)考点:解直角三角形的应用-方向角问题分析:过点C作CD⊥AB交AB延长线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后根据时间=路程÷速度即可求出海警船到大事故船C处所需的时间.解答:解:如图,过点C作CD⊥AB交AB延长线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,[来源:]∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大事故船C处所需的时间大约为:50÷40=(小时).点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档