利用MATLAB模拟光学简单空间滤波系统-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用MATLAB模拟光学简单空间滤波系统
摘要:阿贝成像原理是第一步在透镜的后焦面上得到物的空间频谱分布,第二步成像则是合频的过程,实则是两次傅立叶变换。利用阿贝-波特实验装置和空间滤波系统,可以对一幅光学图像进行光学信息处理。通过MATLAB环境编写程序完成阿贝-波特实验和空间滤波的物理模型的构建并进行计算机模拟。
关键词:MATLAB;阿贝成像原理;空间滤波;计算机模拟
引言:
早在1873年,阿贝(E.Abbe,1840—1905)在德国蔡司光学器械公司研究如何提高显微镜的分辨本领问题时,就认识到相干成像的原理。空间滤波的主要目的是通过有意识地改变像的频谱,使像实现所希望的变化。光学信息处理是一个更为广阔的领域,它是基于光学频谱分析,利用傅里叶综合技术,通过空域或频域调制,借助空间滤波技术对光学信息进行处理的过程。阿贝提出的二次成像理论和20世纪初的阿贝—波特实验,已经为光学信息处理打下了一定的理论基础。
在阿贝成像理论的教学中,单纯依靠数学推演来讲解,效果不好,特别是空间频率、空间滤波等概念的形成有一定的困难。虽然可以通过演示阿贝-波特实验来加强教学效果,但由于在普通教室难以完成演示实验,在实验室又受仪器、场地等方面的限制,实验现象不太理想。为此,我们设计出计算机模拟实验,获得较好的模拟效果。在学习了解了阿贝成像原理的基础上,我们可以通过MATLAB完成对阿贝-波特实验和空间滤波系统的计算机模拟,观察各种物体的空间频谱分布,设计各种不同的空间滤波器。
1.阿贝成像原理
在相干平行光照明下,显微镜的物镜成像可以分成两步:第一步即分频过程,由入射光经过物平面1P 发生衍射在物镜的后焦面2P 上形成夫琅禾费衍射图样;第二步称为合频或频谱综合过程,衍射图样作为新的子波源发出的球面波在像平面上相干叠加成像。相干光的成像过程本质上是两次傅立叶变换,第一次是将光场空间分布变成频率分布,第二次则是傅立叶逆变换,即将各频谱分量复合为像。如下图所示,为阿贝成像原理图。
阿贝-波特实验是对阿贝成像理论最好的验证和演示。实验一般做法如下图所示,用平行相干光束照明一张细丝网格,在成像透镜后焦面上出现周期性网格的傅里叶频谱,由这些傅里叶频谱分量的在组合,从而在像平面上再现网格得像。若把各种遮挡物放在频谱面上,就能得到不同的像的频谱,从而得到由改变后的频谱分量重新组合得到的对应的像。
阿贝波特实验
2.空间滤波的傅里叶分析
2.1 4f系统滤波的傅里叶分析
空间滤波就是利用滤波器(包括振幅滤波器、位相滤波器和复数滤波器)
在相干光学信息处理系统的空间频谱上面滤去一些空间频率成分,从而使像平面的像按我们的意图来改变。以最典型的4f系统为例,用傅里叶分析的手段来讨论空间滤波过程。如下图所示,图中:
1
L是准直透镜;
2
L和
3
L为傅里叶变换透
镜,焦距均为f;
1
P、
2
P和
3
P分别是物面、频谱面和像面,且
3
P采用反演坐标。
设光栅常数为d,缝宽为a,光栅沿
1
x方向的宽度为L,则它的透过率为:
t(
1
x)=[rect(
a
x
1)*
d
1comb(
d
x
1)]rect(
L
x
1)
采用单位振幅平面波垂直照明,
2
P面上的光场分布正比于物体的频谱
T(x f )=d
aL )]([sin )(sin d m f L c d am c x n -∑∞-∞= =d aL {)(sin x Lf c +)(sin d a c )]1([sin d f L c x -+)(sin d a c )]1([sin d
f L c x ++……} 式中x f =f x λ2。为了避免各级谱重叠,假定2
L >>d ,以便对每一级谱实现单独处理。当在2P 面上放置不同的屏或孔径,作频域处理,就可以得到不同的输出像。
2.2 4f 系统构成的低通滤波器的傅里叶分析
根据前面内容所述,在2P 面上选择适当宽度的狭缝,仅让零级谱通过或仅让零级和正、负一级谱通过,限制高频成分通过,构成低通滤波器。仅让零级谱成分通过时,紧靠狭缝后的透射频谱为:
T(x f )H(x f )=d
aL )(sin x Lf c 式中H(x f )为相逢的透过率函数。3P 面上输出光场分布为:
g(3x )=1-F {T(x f )H(x f )}=d
a rect (L x 3) 仅让零级和正、负一级谱通过,透射频谱为:
T(x f )H(x f )=d aL {)(sin x Lf c +)(sin d a c )]1([sin d f L c x -+)(sin d a c )]1([sin d f L c x +} 3P 面上输出光场分布为:
g(3x )=1-F {T(x f )H(x f )}=d a [rect (L x 3)+)(sin d
a c rect (L x 3)exp (d x j 32π)+rect (L x 3)+)(sin d
a c rect (L x 3)exp (d x j 32π-)]=d a rect (L x 3)[d x d a c 32cos )2(sin 21π+] 3.频域低通滤波的MATLAB 模拟
3.1模拟方法
根据傅里叶变换的性质,两个函数卷积的傅里叶变换等于傅里叶变换的乘积。在频谱面上插入空间滤波器相当于频谱分布函数乘以空间滤波器滤波函数的复振幅透过率函数。空间滤波的光学处理器的模拟系统简图如上图所示,按图通过计算机模拟仿真可以完成空间滤波实验。
3.2二维光栅的频谱
将二维光栅作为物,则可在傅立叶面上观测到如图所示的频谱分布。在MATLAB中输入以下指令:
x=ones(150,150);%创建矩阵
x(1:9:150,:)=0;%得到1维光栅
y=x.*(x');%得到2维光栅
m=fft2(y,200,200);%傅立叶变换
n=abs(fftshift(m));%变换象限并取模
imshow(0.01*n);%以一定比例显示图像