新湘教版九年级下册数学全册教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章二次函数

1.1 二次函数

【知识与技能】

1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.

【过程与方法】

经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

【情感态度】

体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.

【教学重点】

二次函数的概念.

【教学难点】

在实际问题中,会写简单变量之间的二次函数关系式教学过程.

一、情境导入,初步认识

1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是S=-2x2+100x,(0

y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数.

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.

二、思考探究,获取新知

二次函数的概念及一般形式

在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,

b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.

注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.

三、典例精析,掌握新知

例1 指出下列函数中哪些是二次函数.

(1)y=(x-3)2

-x 2

;(2)y=2x(x-1);(3)y=32

x-1;(4)y=

22x

;(5)y=5-x 2

+x. 【分析】先化为一般形式,右边为整式,依照定义分析. 解:(2)(5)是二次函数,其余不是.

【教学说明】判定一个函数是否为二次函数的思路: 1.将函数化为一般形式. 2.自变量的最高次数是2次.

3.若二次项系数中有字母,二次项系数不能为0. 例2 讲解教材P3例题.

【教学说明】由实际问题确定二次函数关系式时,要注意自变量的取值范围. 例3 已知函数y=(m 2-m)x 2+mx+(m+1)(m 是常数),当m 为何值时: (1)函数是一次函数; (2)函数是二次函数.

【分析】判断函数类型,关键取决于其二次项系数和一次项系数能否为零,列出相应方程或不等式.

解:(1)由200m m m ⎧-=⎨≠⎩

得01

0m m ⎩=≠⎧⎨或 ,

∴m=1.即当m=1时,函数y=(m 2-m)x 2+mx+(m+1)是一次函数. (2)由m 2

-m ≠0得m ≠0且m ≠1,

∴当m ≠0且m ≠1时,函数y=(m 2

-m)x 2

+mx+(m+1)是二次函数.

【教学说明】学生自主完成,加深对二次函数概念的理解,并让学生会列二次函数的一些实际应用中的二次函数解析式.

四、运用新知,深化理解

1.下列函数中是二次函数的是( ) A. 2

1

23

y x x =

+- B.y=3x 3+2x 2 C.y=(x-2)2-x 3

D.21y =

2.二次函数y=2x(x-1)的一次项系数是( ) A.1 B.-1 C.2 D.-2

3.若函数2

32

(3)1k

k y k x kx -+=-++ 是二次函数,则k 的值为( )

A.0

B.0或3

C.3

D.不确定

4.若y=(a+2)x 2-3x+2是二次函数,则a 的取值范围是 .

5.已知二次函数y=1-3x+5x 2,则二次项系数a= ,一次项系数b= ,常数项c= .

6.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式 ,它 (填“是”或“不是”)二次函数.

7.如图,在边长为5的正方形中,挖去一个半径为x 的圆(圆心与正方形的中心重合),剩余部分的面积为y.

(1)求y 关于x 的函数关系式; (2)试求自变量x 的取值范围;

(3)求当圆的半径为2时,剩余部分的面积(π取3.14,结果精确到十分位). 【答案】1.D 2.D 3.A 4.a ≠-2 5.5,-3,1 6.211

22

y x x =- 是 7.(1)y=25-πx 2=-πx 2+25. (2)0<x ≤52.

(3)当x=2时,y=-4π+25≈-4×3.14+25=12.44≈12.4. 即剩余部分的面积约为12.4.

【教学说明】学生自主完成,加深对新知的理解,待学生完成上述作业后,教师指导.

五、师生互动,课堂小结

1.师生共同回顾二次函数的有关概念.

2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?与同伴交流. 【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.

1.教材P4第1~3题.

2.完成同步练习册中本课时的练习.

1.2 二次函数的图象与性质

第1课时二次函数y=ax2(a>0)的图象与性质

【知识与技能】

1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.

2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题. 【过程与方法】

经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.

【情感态度】

通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.

【教学重点】

1.会画y=ax2(a>0)的图象.

2.理解,掌握图象的性质.

【教学难点】

二次函数图象及性质探究过程和方法的体会教学过程.

一、情境导入,初步认识

相关文档
最新文档