初二数学-勾股定理测试题(含答案)
人教版八年级数学下册额第十七章《勾股定理》测试卷(含答案)
人教版八年级数学下册额第十七章《勾股定理》测试卷(含答案)一、单选题(共30分)1.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A3,4,5B.2,3C.6,7,8D.2,3,42.如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A.10m B.15m C.18m D.20m3.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和4.如图,在△ABC中,△ACB=90°,分别以点A和点B为圆心,以相同的长(大AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于于12点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .1525.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为( )A .()22610x x =--B .()222610x x =-- C .()22610x x +=- D .()222610x x +=- 6.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C 7D .577.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C 234π+D .231π+8.在Rt △ABC 中,两条直角边的长分别为5和12,则斜边的长为( ) A .6 B .7 C .10 D .13 9.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A 7B .38C .78D .5810.在Rt ABC △中,90C ∠=︒,9AC =,12BC =,则点C 到 AB 的距离是( )A .94B .1225C .365D 33二、填空题(共30分)11.在△ABC 中,AB =c ,AC =b ,BC =a ,当a 、b 、c 满足_______时,△B =90°. 12.如图,等腰直角ABC 中,90,4ACB AC BC ∠=︒==,D 为BC 的中点,5AD =,若P 为AB 上一个动点,则PC PD +的最小值为_________.13.如图,在Rt ABC △中,90A ∠=︒,3AB =,4AC =,现将ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD =__________.14.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为17米,几分钟后船到达点D 的位置,此时绳子CD 的长为10米,问船向岸边移动了__米.15.已知:如图,ABC 中,△ACB =90°,AC =BC 2,ABD 是等边三角形,则CD 的长度为______.16.如图,在四边形ABCD 中,22AD =27AB =10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.17.如图,“以数轴的单位长度为边长作一个正方形,以数轴的原点O为圆心,以正方形的对角线长为半径画弧交数轴于一点A”,该图说明数轴上的点并不都表示________.18.在Rt△ACB中,△ACB=90°,点D在边AB上,连接CD,将△ADC沿直线CD翻折,点A恰好落在BC边上的点E处,若AC=3,BE=1,则DE的长是_____.19.如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_____米.20.我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽问绳索长是多少?”示意图如下图所示,设绳索AC的长为x尺,根据题意,可列方程为__________.三、解答题(共60分)21.如图,一张长8cm ,宽6cm 的矩形纸片,将它沿某直线折叠使得A 、C 重合,求折痕EF 的长.22.一架云梯长25m ,如图所示斜靠在一而墙上,梯子底端C 离墙7m .(1)这个梯子的顶端A 距地面有多高?(2)如果梯子的顶端下滑了4 m ,那么梯子的底部在水平方向滑动了多少米?23.如图,把一块直角三角形(ABC ,90ACB ∠=︒)土地划出一个三角形(ADC )后,测得3CD =米,4=AD 米,12BC =米,13AB =米.(1)求证:90ADC ∠=︒;(2)求图中阴影部分土地的面积.24.如图,在四边形ABCD 中,AB=20cm ,BC=15cm ,CD=7cm ,AD=24cm ,△ABC=90°.(1)求△ADC 的度数;(2)求出四边形ABCD 的面积.25.如图,在△ABC 和△DEB 中,AC △BE ,△C =90°,AB =DE ,点D 为BC 的中点,12AC BC =. (1)求证:△ABC △△DEB .(2)连结AE ,若BC =4,直接写出AE 的长.26.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD△CD,AE△BD于点E,且△ABE△△BCD.求证:AB2=BE2+AE2.27.一艘轮船从A港向南偏西48°方向航行100km到达B岛,再从B岛沿BM方向航行125km到达C岛,A港到航线BM的最短距离是60km.(1)若轮船速度为25km/小时,求轮船从C岛沿CA返回A港所需的时间.(2)C岛在A港的什么方向?参考答案1.B2.C3.C4.C5.D6.D7.C8.D9.C10.C11.a2+c2= b212.513.5 214.9.1531 16.14 17.有理数18.15 719.0.820.x2−(x−3)2=8221.EF的长为15 222.(1)这个梯子的顶端A距地面有24m高;(2)梯子的底部在水平方向滑动了8m.23.2424.(1)△ADC=90°;(2)四边形ABCD的面积为2234cm252527.(1)从C岛返回A港所需的时间为3小时;(2)C岛在A港的北偏西42°。
八年级数学-勾股定理-经典单元测试题(含答案)
八年级数学-勾股定理-经典单元测试题
(含答案)
1、能构成直角三角形的组合是A:4,5,6和C:6,8,11.
2、根据勾股定理,c的长为20,选项C。
3、根据勾股定理,OP的长为5,选项C。
4、根据正切函数,tanB=b/a=1,可得a=c/√2=5,选项A。
5、根据正弦函数,h=5*sin30°+5=7.5,选项B。
6、根据勾股定理,斜边长为√1800=30√2,选项B。
7、将长方形折叠成三角形ABE和ADE,根据勾股定理
可得AE=√90=3√10,△ABE的面积为1/2*3*3√10=4.5√10,选项B。
8、等边三角形的面积为√3/4*a^2,代入a=2可得面积为
√3,选项B。
9、根据勾股定理,BC的长为√(15^2-12^2)=9,三角形的
周长为15+13+9=37,选项D。
10、等腰三角形的底边上的高等于底边长的一半,即6,
选项A。
11、根据勾股定理,BC的长为√(15^2-12^2)=9,选项A。
12、设另一直角边为b,则斜边长为√(11^2+b^2),周长为11+b+√(11^2+b^2),因为周长为整数,所以b为60,周长为121,选项A。
二、填空题
1、等腰三角形。
因为c-a=b,根据等腰三角形的定义可知,a=b。
勾股定理测试题(含答案)初中数学
第14章《勾股定理》一、选择题1. 三角形三边长分别为6,8,10,那么它最短边上的高为……………()A. 4B. 5C. 6D. 82. 三角形各边(从小到大)长度的平方比如下,其中不是直角三角形的是………()A. 1:1:2B. 1:3:4C. 9:25:36D. 25:144:1693. 设一个直角三角形的两条直角边长为a、b,斜边上的高为h,斜边长为c,则以c+h,a+b,h为边的三角形的形状是…………………………………()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定4. △ABC中,∠A:∠B:∠C=1:2:3,则BC:AC:AB为……………………()A. 1:2:3B. 1:2:3C. 1:3:2D. 3:1:25. △ABC中,AB=15,AC=13。
高AD=12。
则△ABC的周长是……………()A. 42B. 32C. 42或32D. 37或33二、填空题1. 若有两条线段,长度分别为8 cm,17cm,第三条线段长满足__________条件时,这三条线段才能组成一个直角三角形。
2. 木工做一个长方形桌面,量得桌面的长为60cm,宽为32cm,对角线长为68cm,这个桌面__________(填“合格”或“不合格”)。
3. 如图,有一圆柱,其高为12cm,它的底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上面B处的食物,则蚂蚁经过的最短距离为________ cm。
(π取3)4. 如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于________ 。
三、计算题1. 如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A 到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?2. 已知直角三角形的三边长分别为3,4,x,求x2。
初中数学-《勾股定理》测试(有答案)
初中数学-《勾股定理》测试一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8 B.21,28,35 C.1.5,2,2.5 D.5,8,132.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.504.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.14或4 C.8 D.4或85.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.326.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120 B.121 C.132 D.1237.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cm B.12cm C.19cm D.20cm14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需米.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是,不同之处:.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)16.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.17.如图所示,折叠长方形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为cm.18.如果△ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC 的形状.《勾股定理》参考答案与试题解析一、选择题1.下面三组数中是勾股数的一组是()A.6,7,8 B.21,28,35 C.1.5,2,2.5 D.5,8,13【考点】勾股数.【分析】勾股数的定义:满足a2+b2=c2的三个正整数,称为勾股数,据此求解即可.【解答】解:A、62+72≠82,不能构成勾股数,故错误;B、212+282=352,能构成勾股数,故正确;C、1.5和2.5不是整数,所以不能构成勾股数,故错误;D、52+82≠132,不能构成勾股数,故错误.故选B.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm【考点】勾股定理.【分析】设另一条直角边是a,斜边是c.根据另一条直角边与斜边长的和是49cm,以及勾股定理就可以列出方程组,即可求解.【解答】解:设另一条直角边是a,斜边是c.根据题意,得,联立解方程组,得.故选D.【点评】注意根据已知条件结合勾股定理列方程求解.解方程组的方法可以把①方程代入②方程得到c﹣a=1,再联立解方程组.3.在△ABC中,∠C=90°,若AB=5,则AB2+AC2+BC2=()A.10 B.15 C.30 D.50【考点】勾股定理.【分析】先画图,再根据勾股定理易求BC2+AC2的值,再加上AB2即可.【解答】解:如右图所示,在Rt△ABC中,BC2+AC2=AB2,∵AB=5,∴BC2+AC2=25,∴AB2+AC2+BC2=25+25=50.故选D.【点评】本题考查了勾股定理,解题的关键是找准直角边和斜边.4.在△ABC中,AB=13,AC=15,高AD=12,则BC的长为()A.14 B.14或4 C.8 D.4或8【考点】勾股定理.【专题】分类讨论.【分析】根据勾股定理先求出BD、CD的长,再求BC就很容易了.【解答】解:此图中有两个直角三角形,利用勾股定理可得:CD2=152﹣122=81,∴CD=9,同理得BD2=132﹣122=25∴BD=5∴BC=14,此图还有另一种画法.即当是此种情况时,BC=9﹣5=4故选B.【点评】此题主要考查了直角三角形中勾股定理的应用.即直角三角形两直角边的平方和等于斜边的平方.5.等腰三角形底边上的高为8,周长为32,则三角形的面积为()A.56 B.48 C.40 D.32【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,进而利用勾股定理得出DC的长,进而求出BC的长,即可得出答案.【解答】解:过点A做AD⊥BC于点D,∵等腰三角形底边上的高为8,周长为32,∴AD=8,设DC=BD=x,则AB=(32﹣2x)=16﹣x,∴AC2=AD2+DC2,即(16﹣x)2=82+x2,解得:x=6,故BC=12,则△ABC的面积为:×AD×BC=×8×12=48.故选:B.【点评】此题主要考查了勾股定理以及等腰三角形的性质,得出DC的长是解题关键.6.直角三角形有一条直角边的长为11,另外两边的长也是正整数,则此三角形的周长为()A.120 B.121 C.132 D.123【考点】勾股定理.【专题】计算题.【分析】设另一条直角边为x,斜边为y,由勾股定理得出y2﹣x2=112,推出(y+x)(y﹣x)=121,根据121=11×11=121×1,推出x+y=121,y﹣x=1,求出x、y的值,即可求出答案.【解答】解:设另一条直角边为x,斜边为y,∵由勾股定理得:y2﹣x2=112,∴(y+x)(y﹣x)=121=11×11=121×1,∵x、y为整数,y>x,∴x+y>y﹣x,即只能x+y=121,y﹣x=1,解得:x=60,y=61,∴三角形的周长是11+60+61=132,故选C.【点评】本题考查了勾股定理的应用,关键是得出x+y=121和y﹣x=1,题目比较好,但有一定的难度.7.如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A.450a元B.225a元C.150a元D.300a元【考点】解直角三角形的应用.【专题】压轴题.【分析】求出三角形地的面积即可求解.如图所示,作BD⊥CA于D点.在Rt△ABD中,利用正弦函数定义求BD,即△ABC的高.运用三角形面积公式计算面积求解.【解答】解:如图所示,作BD⊥CA于D点.∵∠BAC=150°,∴∠DAB=30°,∵AB=20米,∴BD=20sin30°=10米,=×30×10=150(米2).∴S△ABC已知这种草皮每平方米a元,所以一共需要150a元.故选C.【点评】本题考查了通过作辅助线构建直角三角形,从而解斜三角形的能力.8.如图:有一圆柱,它的高等于8cm,底面直径等于4cm(π=3),在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A相对的B点处的食物,需要爬行的最短路程大约()A.10cm B.12cm C.19cm D.20cm【考点】平面展开﹣最短路径问题.【分析】根据两点之间,线段最短.首先把A和B展开到一个平面内,即展开圆柱的半个侧面,得到一个矩形,然后根据勾股定理,求得蚂蚁爬行的最短路程即展开矩形的对角线的长度.【解答】解:展开圆柱的半个侧面,得到一个矩形:矩形的长是圆柱底面周长的一半即2π=6,矩形的宽是圆柱的高即8.根据勾股定理得:蚂蚁爬行的最短路程即展开矩形的对角线长即10.故选A.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.本题注意只需展开圆柱的半个侧面.14.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=4.【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.二、填空题9.在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB=5.【考点】勾股定理.【分析】根据勾股定理直接解答即可.【解答】解:因为在Rt△ABC中,AB2=AC2+BC2,即AB==5.【点评】本题考查了勾股定理解及直角三角形的能力.10.在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=48.【考点】勾股定理.【分析】首先根据勾股定理以及a:b=3:4,知斜边占5份.又c=10,所以一份是2,则a=6,b=8.所以ab=48.【解答】解:设a=3x,b=4x,则c==5x,又c=10,所以x=2,即a=6,b=8,所以ab=48.故答案为:48.【点评】熟练运用勾股定理,此类题首先计算一份的值,再进一步进行计算.11.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需2+2米.【考点】勾股定理的应用.【专题】压轴题.【分析】地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,因此根据勾股定理求出直角三角形两直角边即可.【解答】解:已知直角三角形的高是2米,根据三角函数得到:水平的直角边是=2,则地毯水平的部分的和是水平边的和,竖直的部分的和是竖直边,则地毯的长是(2+2)米.【点评】正确计算地毯的长度是解决本题的关键.12.如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.13.如图在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是A,不同之处:A不是直角三角形,B,C,D是直角三角形.【考点】勾股定理.【专题】网格型.【分析】可以设正方形小格的边长是1.根据勾股定理计算各个三角形的三边,看三边的平方是否满足两条较短边的平方和等于最长边的平方.【解答】解:(1)在A图中三角形的三个边的长为、、,由勾股定理的逆定理可知5+10≠17,故A不是直角三角形;(2)在B图中三角形的三个边的长为2,4,,由勾股定理的逆定理可知22+42=()2,所以B是直角三角形;(3)根据(2)的计算方法,同理可求得C,D也是直角三角形.【点评】综合运用了勾股定理及其逆定理.三、解答题15.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2,图3中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全等)【考点】作图—应用与设计作图.【专题】网格型;开放型.【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为无理数的线段,画三角形即可.【解答】解:【点评】本题需仔细分析题意,结合图形,利用勾股定理即可解决问题.16.如图,在△ABD 中,∠A 是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD 的面积.【考点】勾股定理的逆定理.【专题】几何图形问题.【分析】连接BD ,根据勾股定理的逆定理,判断出△ABD 和△DBC 是直角三角形,然后根据三角形面积公式求出两个三角形的面积,将其相加即可得到四边形ABCD 的面积.【解答】解:连接BD ,在△ABD 中,∠A 是直角,AB=3,AD=4,∴BD===5,△BCD 中,BC=12,DC=13,DB=5,52+122=132,即BC 2+BD 2=DC 2,∴△BCD 是直角三角形,∴S 四边形ABCD =S △ABD +S △BDC=AD•AB +BD•BC=×4×3+×5×12=6+30=36.【点评】此题要将求四边形面积的问题转化为求两个直角三角形面积和的问题,既考查了对勾股定理逆定理的掌握情况,又体现了转化思想在解题时的应用.17.如图所示,折叠长方形的一边AD ,使点D 落在边BC 的点F 处,已知AB=8cm ,BC=10cm ,则EC的长为3cm.【考点】勾股定理;翻折变换(折叠问题).【分析】能够根据轴对称的性质得到相关的线段之间的关系.再根据勾股定理进行计算.【解答】解:∵D,F关于AE对称,所以△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8﹣x.∴EF=8﹣x,在Rt△ABF中,BF==6,∴FC=BC﹣BF=4.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+42=(8﹣x)2,解得x=3.∴EC的长为3cm.【点评】特别注意轴对称的性质以及熟练运用勾股定理.18.如果△ABC的三边长分别为a、b、c,并且满足a2+b2+c2+338=10a+24b+26c,试判断△ABC 的形状.【考点】勾股定理的逆定理;非负数的性质:偶次方;完全平方公式.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.把a2+b2+c2+338=10a+24b+26c 化简后判断则可.【解答】解:a2+b2+c2+338=10a+24b+26ca2﹣10a+25+b2﹣24b+144+c2﹣26c+169=0即(a﹣5)2+(b﹣12)2+(c﹣13)2=0∴a﹣5=0,b﹣12=0,c﹣13=0∴a=5,b=12,c=13∵52+122=169=132∴a2+b2=c2∴△ABC是直角三角形.【点评】本题考查了式子的变形和因式分解,然后再根据勾股定理的逆定理判断三角形的形状.。
八年级数学下册《勾股定理》单元测试卷(带答案解析)
八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。
初二数学勾股定理试题答案及解析
初二数学勾股定理试题答案及解析1. (2010湖北恩施)如图,在长方形ABCD中,AD=4,DC=3,将△ADC按逆时针方向绕点A 旋转到△AEF(点A、B、E在同一直线上),连接CF,则CF=________.【答案】【解析】△AEF是由△ADC旋转得来的,可得△AEF≌△ADC,所以∠EAF=∠DAC,AF=AC.则△CAF是直角三角形,所以,又,所以.2.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )A.米B.米C.米D.3米【答案】C【解析】树干垂直于地面,于是可构造一个直角三角形,运用勾股定理可以计算出(米),所以树高为米.3.(2013山东济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m.则旗杆的高度(滑轮上方的部分忽略不计)为( )A.12mB.13mC.16m【答案】D【解析】如图所示,作BC⊥AE于点C,则BC=DE=8,设AE=x,则AB=x,AC=x-2,在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.所以旗杆的高度为17m.4.如图所示是一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长为________.【答案】7米【解析】(米).利用平移,得至少需要地毯的长为AC+BC=4+3=7(米).5. (2014四川甘孜州)如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为( )A.1B.2C.3【答案】D【解析】由题意得△ABD≌△CBD,所以∠ADB=∠CDB,而∠ADB+∠CDB=180°,所以∠BDC=90°,即BD⊥AC.在Rt△BCD中,由勾股定理得BD2=BC2-CD2=52-32=16,所以.6. (2014江苏淮安)如图,在边长为1个单位长度的小正形组成的网格中,点A、B都是格点,则线段AB的长度为( )A.5B.6C.7D.25【答案】A【解析】构造直角三角形,如图所示,.故选A.7. (2014安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.B.C.4D.5【答案】C【解析】设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3.在Rt△BND中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选C.8. (2012吉林)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.【答案】2【解析】∵AC=3,BC=4,∠ACB=90°,∴.∵以点A为圆心,AC长为半径画弧,交AB于点D,∴AD=AC=3,∴BD=AB-AD=5-3=2.9. [问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明.著名数学家华罗庚曾提出把“数形关系(勾股定理)”带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.[定理表述]请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述).[尝试证明]以图(1)中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图(2)),请你利用图(2)验证勾股定理.[知识拓展]利用图(2)中的直角梯形,我们可以证明.其证明步骤如下:∵BC=a+b,AD=________,又∵在直角梯形ABCD中,有BC________AD(填大小关系),即________,∴.【答案】见解析【解析】[定理表述]如果直角三角形的两条直角边长分别为a 、b ,斜边长为c ,那么a 2+b 2=c 2. [尝试证明]∵Rt △ABE ≌Rt △ECD ,∴∠AEB =∠EDC . 又∵∠EDC +∠DEC =90°,∴∠AEB +∠DEC =90°, ∴∠AED =90°.∵S 梯形ABCD =S Rt △ABE +S Rt △DEC +S Rt △AED , ∴,整理,得a 2+b 2=c 2. [知识拓展];<;10. 小明想知道学校旗杆的高度,他把绳子一端挂在旗杆顶端,发现绳子垂到地面时还余1m ;当他把绳子下端拉开5m 后,绳子下端刚好接触地面,如图,你能帮他求出旗杆的高度吗?【答案】由于旗杆垂直于地面,所以∠C =90°.在Rt △ABC 中,由勾股定理,得AC 2+BC 2=AB 2,而AB =AC +1,所以可设旗杆AC =xm ,则有x 2+52=(x +1)2,解得x =12. 所以旗杆的高度为12m .【解析】由于旗杆与地面是垂直的,所以△ABC 是直角三角形,根据勾股定理,已知两边可求第三边,但此题中仅知道一边的边长和另外两边之间的关系,可通过列方程得旗杆的高度.11. 如图,在四边形ABCD 中,AB =2,CD =1,∠A =60°,∠B =∠D =90°,求四边形ABCD的面积.【答案】见解析【解析】延长AD,BC相交于点E,如图.∵∠A=60°,∠B=90°.∴∠E=30°.在Rt△CDE中,∠CDE=90°,CD=1,∴CE=2,∴.故.在Rt△ABE中,∠ABE=90°,∠E=30°,∴AE=2AB=2×2=4.∴.∴.∴.12.如图所示,在长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,使点D落在点D′处,求重叠部分△AFC的面积.【答案】10【解析】在长方形ABCD中,∵AB∥CD,∴∠BAC=∠DCA.又由折叠的性质可得∠DCA=∠FCA.∴∠BAC=∠FCA.∴AF=CF.设AF=x,则BF=AB-AF=8-x.在Rt△BCF中,BC=4,BF=8-x,CF=x,∴42+(8-x)2=x2.解得x=5.∴.13.(2013鞍山)△ABC中,∠C=90°,AB=8,AC=6,则BC的长为________.【答案】【解析】利用勾股定理即可求得BC的长.∵∠C=90°,∴AB为斜边,∴.14.(2013山东滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为________.【答案】【解析】根据勾股定理可得.15.(2013山东德州)(1)如图中图(1),已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD.请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)(2)如图(2),已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD.BE与CD有什么数量关系?简单说明理由.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图(3),要测量池塘两岸相对的两点B,E间的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.【答案】解:(1)如图(1).证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∴△CAD≌△EAB,∴BE=CD.(2)BE=CD.理由如下:∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∴△CAD≌△EAB,∴BE=CD.(3)由(1)(2)的解题经验可知,过A作等腰直角三角形ABD,使∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴米.连接CD,则由(2)可得BE=CD.∵∠ABC=45°,∴∠DBC=90°.在Rt△DBC中,BC=100米,米,∴(米),∴BE的长为米.【解析】(1)根据题目要求进行尺规作图,并证明所给结论;(2)用三角形全等分析BE与CD的相等关系;(3)构建几何模型(添加辅助线、运用勾股定理)解决实际问题.16.(2013湖南张家界)如图,OP=1,过P作PP1⊥OP且PP1=1,得;再过P1作P1P2⊥OP1且P1P2=1,得;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2012=________.【答案】【解析】首先根据勾股定理求出OP4,再由OP1,OP2,OP3,OP4的长度找到规律,进而求出OP22012的长.由勾股定理得,∵,,,,依此类推可得,∴.17.(2013湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.【答案】解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE.∵CD=3.∴DE=3.(2)在Rt△ABC中,由勾股定理得,∴△ADB的面积为.【解析】(1)根据角平分线性质得出CD=DE.(2)利用勾股定理求出AB的长,然后计算△ADB的面积.18.在Rt△ABC中,∠C=90°,AB=10,AC=6,则BC的长为( )A.2B.4C.8D.9【答案】C【解析】由勾股定理,得BC2=AB2-AC2=102-62=64,所以,故选C.19.如图,以数轴的单位长为边长作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是( )A.B.1.4C.D.【答案】D【解析】由勾股定理求得正方形的对角线长为,由作图得,所以点A表示的数是.20.已知某直角三角形的两直角边的长分别为和,则这个直角三角形的周长为( )A.B.C.26D.无法确定【答案】B【解析】由勾股定理得该直角三角形的斜边长为,所以这个直角三角形的周长为.。
人教版八年级下册数学第十七章 勾股定理含答案(全优)
人教版八年级下册数学第十七章勾股定理含答案一、单选题(共15题,共计45分)1、下列数据中,哪一组不是勾股数( )A.7,24,25B.9,40,41C.3,4,5D.8,15,192、如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2B.2C.2D.43、如图,在⊙O中,直径MN=10,正方形ABCD的四个顶点都分别在半径OP、OM及⊙O上,且∠POM=45º,则AB=()A.2B.C.D.4、如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=2 ,BD=,则AB的长为( )A.2B.3C.4D.55、《九章算术》中记载:今有户不知高、广,竿不知长、短.横之不出四尺,从之不出二尺,斜之适出.问户高、广、斜各几何?译文是:今有门,不知其高、宽,有竿,不知其长、短.横放,竿比门宽长出4尺;竖放,竿比门高长出2尺;斜放,竿与门对角线恰好相等.问门高、宽、对角线长分别是多少?若设门对角线长为x尺,则可列方程为()A. B. C.D.6、如图,的对角线与相交于点,,,,则的长为()A. B. C. D.7、下列各组数中不能作为直角三角形的三边长的是()A.7,24,25B. ,4,5C. ,1,D.40,50,608、直角三角形中,两直角边分别是12和5,则斜边上的中线长是().A.34B.26C.6.5D.8.59、如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是()A.﹣2B.﹣2C.2 ﹣1D.1﹣210、如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。
已知孔洞的最长边为2cm,则三角尺穿过孔洞部分的最大面积为( )A. cm 2B. cm 2C.2 cm 2D.(2+ )cm 211、如图,在矩形ABCD中,AD=5,AB=3 ,点E在AB上,= ,在矩形内找一点P,使得∠BPE=60°,则线段PD的最小值为()A.4B.2C.2 -2D.2 -412、如图,四边形ABCD是菱形,AB=5,AC=6,AE⊥BC于E,则AE等于( )A.4B.C.D.513、三角形的三边长分别为6,8,10,那么最长边上的高为()A.4.8B.5C.6D.814、已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.∠A=∠C-∠BB.a 2=b 2-c 2C.a:b:c=2:3:4D.a=,b=,c=115、如图所示,在正方形中,边长为2的等边三角形的顶点,分别在和上.下列结论:① ;② ;③ ;④ .其中结论正确的序号是()A.①②③B.①②④C.①③④D.②③④二、填空题(共10题,共计30分)16、如图中的螺旋由一系列直角三角形组成,则第2017个三角形的面积为________.17、如图,在Rt△ABC中,∠C=90°,AC=4,cosA= ,点D是斜边AB上的动点且不与A,B重合,连接CD,点B'与点B关于直线CD对称,连接B'D,当B'D垂直于Rt△ABC的直角边时,BD的长为________.18、如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.19、如图, Rt△ABC的两直角边 AC = 8cm , BC = 6cm , D 为 AC 上一点,将△ABC 折叠,使点 A 与点 B 重合,折痕为 DE ,则CD 的长为________cm.20、如图,在长方形 ABCD中,点E为长方形ABCD的边AD上一点,若AE=2,S=6,将长方形ABCD沿BE折叠,使点A落在EC上的点F处,则BCE的面ABE积是 ________.21、如图,四边形是矩形,点的坐标为,点的坐标为,把矩形沿折叠,点落在点处,则点的坐标为________.22、在Rt中,∠A=90°,AC=4,,将沿着斜边BC翻折,点A落在点处,点D、E分别为边AC、BC的中点,联结DE并延长交所在直线于点F,联结,如果为直角三角形时,那么________23、如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是________.24、如图,射线PB,PD分别交⊙O于点A,B和点C,D,且AB=CD=8。
(完整版)八年级勾股定理典型练习题含答案
八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。
3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。
5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。
E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。
7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。
(典型题)初中数学八年级数学上册第一单元《勾股定理》测试(含答案解析)
一、选择题1.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a ,较短直角边长为b ,大正方形面积为S 1,小正方形面积为S 2,则(a +b )2可以表示为( )A .S 1﹣S 2B .S 1+S 2C .2S 1﹣S 2D .S 1+2S 2 2.毕达哥拉斯树,也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树形图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A ,B ,C ,D 的边长分别是2,3,1,2,则△正方形E 的边长是( )A .18B .8C .22D .32 3.下列各组数据,不能作为直角三角形的三边长的是( ) A .5、6、7 B .6、8、10C .1.5、2、2.5D .3、2、7 4.七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C .22cm 2D .225cm 5.已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ).已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC=∠BPC =120°时,P 就是△ABC 的费马点.若点P 是腰长为6的等腰直角三角形DEF 的费马点,则PD +PE +PF =( )A .6B .()326+C .63D .96.如图,直线l 上有三个正方形a 、b 、c ,若a 、c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .77.如图所示的图案是由两个直角三角形和三个正方形组成的图形,其中一直角三角形的斜边和一直角边长分别是13,12,则阴影部分的面积是( )A .25B .16C .50D .418.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .15 9.下列四组数中,是勾股数的是( ) A .5,12,13 B .4,5,6 C .2,3,4 D .1,2,5 10.如图,在ABC ∆中,90C ∠=︒,4AC =,2BC =.以AB 为一条边向三角形外部作正方形,则正方形的面积是( )A .8B .12C .18D .2011.下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12 12.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64二、填空题13.如图,把一张宽为4(即4AB =)的矩形纸片ABCD 沿,EF GH 折叠(点,E H 在AD 边上,点,F G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点对称点为D '点.当PFG △为等腰三角形时,发现此时PFG △的面积为10,则矩形ABCD 的长BC =_____.14.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -+++-=,则此等腰三角形的面积为____.15.如图,△ABC 中AD ⊥BC 于D ,AC =2, DC =1,BD =3, 则AB 的长为_____.16.如图,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= __________.17.小明学了在数轴上表示无理数的方法后,进行了练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB OA ⊥,使3AB =(如图);再以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数是____________.18.一架5米长的梯子斜靠在一竖直的墙上,这时梯足距离墙脚3m ,若梯子的顶端下滑1m ,则梯足将滑动______.19.如图,ABC 中,90C ∠=︒,D 是BC 边上一点,17AB cm =,10AD cm =,8AC cm =,则BD 的长为________.20.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD =3,AE =10,则正方形ODCE 的边长等于____.三、解答题21.在△ABC 中,AB=8,AC=5,若BC 边上的高等于4,求BC 的长.22.某校校门口有一个底面为等边三角形的三棱柱(如图),学校计划在三棱柱的侧面上,从顶点A 绕三棱柱侧面一周到顶点A '安装灯带,已知此三棱柱的高为4m ,底面边长为1m ,求灯带最短的长度.23.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连接CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DE=7,则△ACD的周长是.24.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.25.在等腰直角△ABC中,AB= AC, BAC=90°,过点B作BC的垂线l.点P为直线AB 上的一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转90°交直线l于点D.(1)如图1,点P在线段AB上,依题意补全图形;①求证:∠BDP =∠PCB;②用等式表示线段BC,BD,BP之间的数量关系,并证明.(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.26.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,求小巷的宽度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据图形和勾股定理可知S1=c2=a2+b2,再由完全平方公式即可得到结果.【详解】解:如图所示:设直角三角形的斜边为c,则S1=c2=a2+b2S2=(a﹣b)2=a2+b2﹣2ab,∴2ab=S1﹣S2,∴(a+b)2=a2+2ab+b2=S1+S1﹣S2=2S1﹣S2,故选:C【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式.2.D解析:D【分析】根据勾股定理分别求出正方形E 的面积,进而即可求解.【详解】解:由勾股定理得,正方形E 的面积=正方形A 的面积+正方形B 的面积+正方形C 的面积+正方形D 的面积=22+32+12+22=18,∴正方形E 的边长故选:D .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.3.A解析:A【分析】利用勾股定理的逆定理计算判断即可.【详解】∵2256253661+=+=≠2749=,∴5、6、7不能作为直角三角形的三边长,∴选项A 错误;∵22866436100+=+==210100=,∴6、8、10能作为直角三角形的三边长,∴选项B 正确;∵221.52 2.254 6.25+=+==22.5 6.25=,∴1.5、2、2.5能作为直角三角形的三边长,∴选项C 正确; ∵222347+=+==27=, ∴2能作为直角三角形的三边长,∴选项D 正确;故选A .【点睛】本题考查了勾股定理的逆定理,熟练掌握逆定理并进行准确计算是解题的关键. 4.B解析:B【分析】根据七巧板意义,计算出阴影等腰直角三角形的直角边的长即可.【详解】如图,根据题意,得BC=20,=EM ,∴,∴EF=FG=5, ∴212522EFG S EF ==, 故选B.【点睛】本题考查了等腰直角三角形的性质,等腰直角三角形的面积,熟练掌握七巧板制作规律和制作特点是解题的关键.5.B解析:B【分析】根据题意画出图形,根据勾股定理可得EF ,由过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°就可以得到满足条件的点P ,易得EM =DM =MF =32方程求出PM 、PE 、PF ,继而求出PD 的长即可求解.【详解】解:如图:等腰Rt △DEF 中,DE =DF =6, ∴22226662EF DE DF =++=过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则∠EPF=∠FPD=∠DPE=120°,点P 就是马费点,∴EM =DM =MF =32设PM =x ,PE =PF=2x ,在Rt △EMP 中,由勾股定理可得:222PM EM PE +=,即()22182x x +=, 解得:16x =26x =-即PM 6,∴PE =PF =26故DP =DM -PM =326,则PD +PE +PF =326463236326. 故选B .【点睛】此题主要考查了等腰直角三角形的性质、勾股定理的应用,正确画出做辅助线构造直角三角形进而求出PM 的长是解题关键.6.D解析:D【分析】根据“AAS”可得到△ABC ≌△CDE ,由勾股定理可得到b 的面积=a 的面积+c 的面积.【详解】解:如图∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,∵∠ABC=∠CDE ,AC=CE ,∴△ABC ≌△CDE ,∴BC=DE ,∵AC 2=AB 2+BC 2,∴AC 2=AB 2+DE 2,∴b 的面积=a 的面积+c 的面积=3+4=7.故答案为:D .【点睛】本题考查了全等三角形的判定与性质,勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.7.C解析:C【分析】由勾股定理解得2AB 、22CD BD +,再根据正方形边长相等的性质得到222225CD BD BC AB +===,据此解题即可.【详解】解:由勾股定理得,222131225AB =-=222BC CD BD =+222225CD BD BC AB ∴+===∴阴影部分的面积是222252550CD BD BC ++=+=,故选:C .【点睛】本题考查勾股定理,是重要考点,难度较易,掌握相关知识是解题关键.8.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 9.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵25∴125故选A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.10.D解析:D【分析】根据勾股定理解得2AB 的值,再结合正方形的面积公式解题即可.【详解】在ABC ∆中,90C ∠=︒,4AC =,2BC =,222224220AB AC BC ∴=+=+=∴以AB 为一条边向三角形外部作的正方形的面积为220AB =,故选:D .【点睛】本题考查勾股定理的应用,是重要考点,难度较易,掌握相关知识是解题关键. 11.C解析:C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,熟记勾股数的概念是解题的关键.12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,∴2225289a +=,∴字母A 所代表的正方形的面积264a =,故选:D ..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.【分析】根据勾股定理解答即可;【详解】由题可知∴作∵是等腰三角形∴∴由翻折可知∴∴;故答案是【点睛】本题主要考查了勾股定理的应用准确结合翻折的性质计算是解题的关键 解析:589+【分析】根据勾股定理解答即可;【详解】 由题可知△14102PFG S FG =⨯⨯=, ∴5FG =, 作PM FG ⊥,∵PFG △是等腰三角形,∴52FM GM ==, ∴25891622PF PG ⎛⎫==+= ⎪⎝⎭, 由翻折可知,BF PF PG CG ===,∴89BF CG ==∴589BC BF FG CF =++=+;故答案是589+.【点睛】 本题主要考查了勾股定理的应用,准确结合翻折的性质计算是解题的关键.14.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h 解析:374或22 【分析】根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=7 ∴此等腰三角形的面积为1732⨯⨯=37; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形,设底边上的高为h ,如下图所示则22232⎛⎫- ⎪⎝⎭2 ∴此等腰三角形的面积为12222⨯⨯=22或综上:此等腰三角形的面积为4故答案为:或4【点睛】本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a,b的值是解题的关键,要注意分情况讨论.15.【分析】根据ACDC解直角△ACD可以求得AD根据求得的AD和BD解直角△ABD可以计算AB【详解】∵AD⊥BC于D∴△ACD△ABD为直角三角形∴AC2=AD2+DC2∴AD===∵△ABD为直角解析:【分析】根据AC,DC解直角△ACD,可以求得AD,根据求得的AD和BD解直角△ABD,可以计算AB.【详解】∵AD⊥BC于D,∴△ACD、△ABD为直角三角形,∴AC2=AD2+DC2,∴AD,∵△ABD为直角三角形,∴AB2=AD2+BD2,∴AB=故答案为:【点睛】本题考查了直角三角形中勾股定理的灵活运用,根据两直角边求斜边,根据斜边和一条直角边求另一条直角边.16.8【分析】设AB=5x则BC=3x根据勾股定理可求出AC=4x由周长为24列方程求出x的值即可求出AC的长【详解】设AB=5x∵AB:BC=5:3∴BC=3x∴AC=4x∵直角三角形ABC的周长为2解析:8【分析】设AB=5x,则BC=3x,根据勾股定理可求出AC=4x,由周长为24列方程求出x的值,即可求出AC的长.【详解】设AB=5x,∵AB:BC=5:3,∴BC=3x,∴AC=4x,∵直角三角形ABC的周长为24,∴3x+4x+5x=24,解得:x=2,∴AC=4x=8.故答案为8【点睛】本题主要考查了勾股定理的运用,用含有x的式子分别表示出三边的值,代入周长公式求解是解题关键.17.【分析】根据勾股定理可计算出OB的长度即点P在数轴正半轴表示的数【详解】解:在Rt△OAB中∵OA=2OB=3;∴OB=;∴以点O为圆心OB为半径与正半轴交点P表示的数为故答案为:【点睛】本题考查勾【分析】根据勾股定理可计算出OB的长度,即点P在数轴正半轴表示的数.【详解】解:在Rt△OAB中∵OA=2,OB=3;∴==;∴以点O为圆心,OB为半径与正半轴交点P【点睛】本题考查勾股定理的应用及数轴上点的坐标的表示,根据题意先计算OB的长度,注意以点O交点即可得解.18.【分析】根据条件作出示意图根据勾股定理求解即可【详解】解:由题意可画图如下:在直角三角形ABO中根据勾股定理可得如果梯子的顶度端下滑1米则在直角三角形中根据勾股定理得到:则梯子滑动的距离就是故答案为解析:1m【分析】根据条件作出示意图,根据勾股定理求解即可.【详解】解:由题意可画图如下:在直角三角形ABO 中,根据勾股定理可得,22534OA =-=,如果梯子的顶度端下滑1米,则'413OA m =-=.在直角三角形''A B O 中,根据勾股定理得到:'4OB m =,则梯子滑动的距离就是'431OB OB m -=-=.故答案为:1m .【点睛】本题考查的知识点是勾股定理的应用,根据题目画出示意图是解此题的关键. 19.9cm 【分析】由可知为直角三角形利用勾股定理可分别计算求得BC 和CD 从而完成BD 求解【详解】∵∴同理∴故答案为:【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长 解析:9cm【分析】由90C ∠=︒可知ABC 为直角三角形,利用勾股定理,可分别计算求得BC 和CD ,从而完成BD 求解.【详解】∵90C ∠=︒ ∴222217815BC AB AC -=-=同理 22221086CD AD AC =-=-=∴1569BD BC CD =-=-=故答案为:9cm .【点睛】本题考察了勾股定理的知识点;求解的关键是熟练掌握并运用勾股定理求解直角三角形边长.20.2【分析】根据题意有两对全等的直角三角形设正方形的边长为x 则BC=3+xAC=10+xAB=13根据勾股定理BC2+AC2=AB2列出方程解出x 即可【详解】解:设DC=CE=x 则BC=3+xAC=1解析:2【分析】根据题意,有两对全等的直角三角形,设正方形的边长为x,则BC=3+x,AC=10+x,AB=13,根据勾股定理,BC2+AC2=AB2,列出方程,解出x即可.【详解】解:设DC=CE=x,则BC=3+x,AC=10+x∵BC2+AC2=AB2∴(3+x)2+(10+x)2=132∴x=2故答案为:2.【点睛】本题主要考查了全等三角形的性质与勾股定理,熟悉全等三角形对应边相等,勾股定理的应用是解决本题的关键.三、解答题21.BC=43+3或43-3【分析】作AD⊥BC于D,分点D在线段BC上和BC的延长线上两种情况,根据勾股定理计算即可.【详解】解:作AD⊥BC于D,分两种情况:①高BD在线段BC上,如图1所示:在Rt△ABD中,BD=2222AB AD-=-=,8443在Rt△ACD中,CD=2222AC AD-=-=3,54∴BC=BD+CD=43+3;②高AD在CB的延长线上,如图2所示:BC=BD-CD=43-3;综上所述,BC的长为43+3或43-3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22.5m【分析】先画出三棱柱的侧面展开图,再根据勾股定理求解.【详解】将三棱柱展开如图,连接A’A,则A’A的长度就是彩带的最短长度,如图,在Rt△AA'B中AB=底面等边三角形的周长=3×1=3(m)∵AA'=4(m)由勾股定理得:22AA'=+=(m).435答:灯带的最短长度为5m.【点睛】本题考查学生对勾股定理的应用能力,熟练掌握勾股定理是解题的关键.23.(1)见解析;(2)30.【分析】(1)根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【详解】(1)证明:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△BCE和△CAD中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CAD (AAS );(2)解:∵△BCE ≌△CAD ,BE =5,DE =7,∴BE =DC =5,CE =AD =CD+DE =5+7=12.∴由勾股定理得:AC =13,∴△ACD 的周长为:5+12+13=30,故答案为:30.【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.也考查了余角的性质和勾股定理.24.见解析【分析】根据总面积=以c 为边的正方形的面积+2个直角边长为,a b 的三角形的面积=以b 为上底、(a+b)为下底、高为b 的梯形的面积+以a 为上底、(a+b)为下底、高为a 的梯形的面积,据此列式求解.【详解】 证明:总面积()()21112222S c ab a b b b a a b a =+⨯=++⋅+++⋅ 222c a b ∴=+【点睛】此题考查的是勾股定理的证明,用两种方法表示同一图形的面积是解题关键. 25.(1)见解析;①见解析;②BC -BD;见解析;(2)BD -BCBP【分析】(1)根据题意补全图形即可:①设PD 与BC 的交点为E ,根据三角形内角和定理可求解;②过点P 作PF ⊥BP 交BC 于点F .证明△BPD ≌△FPC ,即可得到结论;(2)过点P 作PH ⊥BP 交CB 的延长线于点H ,证明△HPC ≌△BPD 即可.【详解】解:(1)补全图形,如图.①证明:如图①,设PD与BC的交点为E.根据题意可知,∠CPD=90°.∵BC⊥l,∴∠DBC=90°.∴∠BDP+∠BED=90°,∠PCB+∠PEC= 90°.∵∠BED=∠PEC∴∠BDP=∠PCB.②BC-BD=2BP.证明:如图②,过点P作PF⊥BP交BC于点F.∵AB= AC, A=90°,∴∠ABC=45°.∴BP=PF,∠PFB=45°.∴∠PBD=∠PFC=135°.∴△BPD≌△FPC.∴BD=FC.∵BF2BP,∴BC -BD=2BP .(3)过点P 作PH ⊥BP 交CB 的延长线于点H ,如图③,∵∠DPC=∠CBM=90°,∠PMD=∠BMC∴∠PDM=∠BCM∵∠ABC=∠ACB=45°∴∠HBP=45°∴∠DBP=45°∵∠BPH=90°∴∠BHP=45°∴HP=BP∴2HB PB =又∠DPC=90°∴∠HPC=∠BPD ,在△HPC 和△BPD 中,HP BP BPD HPC PHC PBD =⎧⎪∠=∠⎨⎪∠=∠⎩∴△HPC ≌△BPD∴2BP BC +∴BD -BC 2BP .【点睛】此题主要考查了三角形全等的判定与性质,以及等腰直角三角形的性质运用和勾股定理的应用,熟练掌握相关定理与性质是解答此题的关键.26.2米【分析】先根据勾股定理求出AB 的长,同理可得出BD 的长,进而可得出结论.【详解】解:在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒,2A D '=米,222BD A D A B +'=',222 6.25BD ∴+=,2 2.25BD ∴=,0BD >,1.5BD ∴=米,0.7 1.5 2.2CD BC BD ∴=+=+=米,答:小巷的宽度为2.2米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.。
初二数学勾股定理试题
初二数学勾股定理试题1.如图,已知由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是有理数的有 ( )A.1条B.2条C.3条D.4条【答案】B【解析】先根据勾股定理算出各条线段的长,即可判断。
,,,,,、的长度均是有理数,故选B.【考点】本题考查的是勾股定理点评:解答本题的关键是熟练掌握网格的特征,灵活选用恰当的直角三角形使用勾股定理。
2.如图,在△ABC中,三边a、b、c的大小关系是( )A.a<b<c B.c<a<b C.c<b<a D.b<a<c【答案】D【解析】先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.根据勾股定理,得,,,,,故选D.【考点】本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算。
3.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是( )A.24cm2B.36cm2C.48cm2D.60cm2【答案】A【解析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.∵a+b=14∴(a+b)2=196∴2ab=196-(a2+b2)=96∴ab=24.故选A.【考点】本题考查的是勾股定理,完全平方公式点评:这里不要去分别求a,b的值,熟练运用完全平方公式去变形即可。
4.如图,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,点B与点A 重合,折痕为DE,则CD的长为( )【答案】D【解析】设CD=x,由折叠得BD=AD,在Rt△ACD中运用勾股定理就可以求出CD的长.设CD=x,则BD=AD=10-x.在Rt△ACD中,,解得故选D.【考点】本题主要考查了折叠的性质,勾股定理点评:解答本题的关键是根据折叠的性质得到BD=AD。
八年级初二数学 勾股定理测试试题及答案
一、选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm2.△ABC 的三边的长a 、b 、c 满足:2(1)250a b c -+-+-=,则△ABC 的形状为( ). A .等腰三角形B .等边三角形C .钝角三角形D .直角三角形3.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( )A .3B .6C .10D .94.如图,将一个等腰直角三角形按图示方式依次翻折,若DE a =,则下列说法正确的是( )①DC '平分BDE ∠;②BC 长为()22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.A .①②③B .②④C .②③④D .③④5.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( )A .2n ﹣2B .2n ﹣1C .2nD .2n+16.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y 轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( ) A .(-2,23)B .(-2,-23)C .(-2,-2)D .(-2,2)7.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10 B .a =41,b =4,c =5 C .a =3,b =2,c =5D .a =3,b =4,c =68.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2()a b + 的值为( ).A .49B .25C .13D .19.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =2510.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25B .111,4,5222C .3,4,5D .114,7,822二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =7AD =AC 的长为_________13.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)14.如图,在Rt △ABC 中,∠ACB =90°,AB =7.5cm ,AC =4.5cm ,动点P 从点B 出发沿射线BC 以2cm/s 的速度移动,设运动的时间为t 秒,当△ABP 为等腰三角形时,t 的取值为_____.15.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.16.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.17.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.18.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.19.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.20.如图所示,圆柱体底面圆的半径是2π,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______三、解答题21.如图,△ABC 和EDC ∆都是等边三角形,7,3,2AD BD CD ===求:(1)AE长;(2)∠BDC 的度数:(3)AC 的长.22.如图,在△ABC 中,AB =30 cm ,BC =35 cm ,∠B =60°,有一动点M 自A 向B 以1 cm/s 的速度运动,动点N 自B 向C 以2 cm/s 的速度运动,若M ,N 同时分别从A ,B 出发.(1)经过多少秒,△BMN 为等边三角形; (2)经过多少秒,△BMN 为直角三角形.23.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 25.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0). (1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值; (2)若点P 恰好在∠BAC 的角平分线上,求t 的值;(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.26.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD . (1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.27.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC 的面积是.(2)已知△PMN中,PM=17,MN=25,NP=13.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.28.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.29.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).30.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,点P 的速度为每秒1cm ,设运动时间为t 秒.①问在运动的过程中,以A 、P 、C 、Q 四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t 和点Q 的速度;若不可能,请说明理由.②若点Q 的速度为每秒0.8cm ,当A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题. 【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F , 则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长, 即 25cm AF BF A B '+==, 延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=, Rt A DB '∴△中,由勾股定理得:20cm A D '==,∴该圆柱底面周长为:20240cm ⨯=,故选D . 【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D 【分析】由等式可分别得到关于a 、b 、c 的等式,从而分别计算得到a 、b 、c 的值,再由222+=a b c 的关系,可推导得到△ABC 为直角三角形.【详解】∵2(1)0a c -=又∵()21000a c ⎧-≥≥-≥⎪⎩∴()21=0a c ⎧-⎪⎪⎨⎪⎪⎩∴12a b c ⎧=⎪=⎨⎪=⎩ ∴222+=a b c ∴△ABC 为直角三角形 故选:D . 【点睛】本题考察了平方、二次根式、绝对值和勾股定理逆定理的知识;求解的关键是熟练掌握二次根式、绝对值和勾股定理逆定理,从而完成求解.3.C解析:C 【分析】 做点F 做FHAD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】 过点F 做FHAD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得, ∴ED=BE ,CF=C F ',3BC CD '== ∵ED=BE ,DE=AD-AE=9-AE ∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE ∴()22293AE AE -=+ ∴AE=4 ∴DE=5∴9C F BC BF BF '=-=- ∴Rt BC F ',3BC '=,9C F BF '=- ∴()22293BF BF -+= ∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.4.B解析:B 【分析】根据折叠前后得到对应线段相等,对应角相等判断①③④式正误即可,根据等腰直角三角形性质求BC 和DE 的关系. 【详解】解:根据折叠的性质知,△C ED CED '≅∆,且都是等腰直角三角形, ∴90BDE ∠<︒,45C DE ∠'=︒, ∴12C DE BDE ∠'≠∠∴DC '不能平分BDE ∠①错误;45DC E DCE ∴∠'=∠=︒,C E CE DE AD a '====,CD DC ='=,AC a ∴=,2)BC a ==,∴②正确;2ABC DBC ∠=∠,22.5DBC ∴∠=︒,45DCB ∠=︒,112.5BDC ∴∠=︒,BCD ∴∆不是等腰三角形,故③错误;CED ∴∆的周长(2CE DE CD a a a BC =++=+==,故④正确.故选:B .【点睛】本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形,三角形外角与内角的关系,等角对等边等知识点.5.A解析:A【分析】连续使用勾股定理求直角边和斜边,然后再求面积,观察发现规律,即可正确作答.【详解】解:∵△ABC 是边长为1的等腰直角三角形121111222ABC S -∆∴=⨯⨯== ,∴AC 2====2232112:2122122AACD ADE S S --∆∴====⨯⨯== ∴第n 个等腰直角三角形的面积是22n - ,故答案为A.【点睛】本题的难点是运用勾股定理求直角三角形的直角边,同时观察、发现也是解答本题的关键.6.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.7.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A、∵72+82≠102,∴△ABC不是直角三角形;B、∵52+42=41)2,∴△ABC是直角三角形;C、∵223252,∴△ABC不是直角三角形;D、∵32+42≠62,∴△ABC不是直角三角形;故选:B.【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.8.A解析:A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a2+b2=25,四个三角形的面积=4×12ab=25-1=24,∴2ab=24,联立解得:(a+b)2=25+24=49.故选A.9.D解析:D【解析】A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D .10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A 、22272425+=,能组成直角三角形,故正确;B 、22211145222⎛⎫⎛⎫⎛⎫+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误; C 、222345+=,能组成直角三角形,故正确; D 、2221147822⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确; 故选:B .【点睛】 本题考查了勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.125【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD 3ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD , 在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD =3,∠E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB =22AD +BD =7+3=10,∵AB=2BC ,∴BC =2×AB=52, 故答案为:5.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.13.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),222021+=29(尺).答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.14.75或6或9 4【分析】当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP 时,分别求出BP的长度,继而可求得t值.【详解】在Rt△ABC中,BC2=AB2﹣AC2=7.52﹣4.52=36,∴BC=6(cm);①当AB=BP=7.5cm时,如图1,t=7.52=3.75(秒);②当AB=AP=7.5cm时,如图2,BP=2BC=12cm,t=6(秒);③当BP=AP时,如图3,AP=BP=2tcm,CP=(4.5﹣2t)cm,AC=4.5cm,在Rt△ACP中,AP2=AC2+CP2,所以4t2=4.52+(4.5﹣2t)2,解得:t=94,综上所述:当△ABP为等腰三角形时,t=3.75或t=6或t=94.故答案为:3.75或6或94.【点睛】此题是等腰三角形与动点问题,考查等腰三角形的性质,勾股定理,解题中应根据每两条边相等分情况来解答,不要漏解.153【分析】作点B关于AD的对称点B′,过点B′作B′N⊥AB于N交AD于M,根据轴对称确定最短路线问题,B′N的长度即为BM+MN的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.【详解】如图,作点B关于AD的对称点B′,由垂线段最短,过点B′作B′N ⊥AB 于N 交AD 于M ,B′N 最短,由轴对称性质,BM=B′M ,∴BM+MN=B′M+MN=B′N ,由轴对称的性质,AD 垂直平分BB′,∴AB=AB′,∵∠BAC=60°,∴△ABB′是等边三角形,∵AB=2,∴B′N=2×32=3, 即BM+MN 的最小值是3.故答案为3.【点睛】本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M 、N 的位置是解题的关键,作出图形更形象直观.16.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512 =169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.17.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解.18.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= .又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.19.【分析】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.【详解】如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .∵P (1,22),G (7.﹣22),∴OA =1,PA =GM =22,OM =7,AM =6,∵PA ∥GM ,∴∠PAN =∠GMN ,∵∠ANP =∠MNG ,∴△ANP ≌△MNG (AAS ),∴AN =MN =3,PN =NG ,∵∠PAH =45°,∴PH =AH =2,∴HN =1,∴2222215PN PH NH =+=+=,∴PG =2PN =25 .故答案为25.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.20.5【分析】先将图形展开,再根据两点之间线段最短可知.【详解】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C 是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•2π=2,CB=1.∴【点睛】圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.三、解答题21.(12)150°;(3【分析】(1)根据等边三角形的性质可利用SAS 证明△BCD ≌△ACE ,再根据全等三角形的性质即得结果;(2)在△ADE 中,根据勾股定理的逆定理可得∠AED =90°,进而可求出∠AEC 的度数,再根据全等三角形的性质即得答案;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,根据等边三角形的性质和勾股定理可得PE 与CP 的长,进而可得AE =CP ,然后即可根据AAS 证明△AEG ≌△CPG ,于是可得AG =CG ,PG =EG ,根据勾股定理可求出AG 的长,进一步即可求出结果.【详解】解:(1)∵△ABC 和△EDC 都是等边三角形,∴BC =AC ,CD =CE =DE =2,∠ACB =∠DCE =60°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,∵BC =AC ,∠BCD =∠ACE ,CD =CE ,∴△BCD ≌△ACE ,∴AE =BD(2)在△ADE 中,∵2AD AE DE ===,∴DE 2+AE 2=2222+==AD 2, ∴∠AED =90°,∵∠DEC =60°,∴∠AEC =150°,∵△BCD ≌△ACE ,∴∠BDC =∠AEC =150°;(3)过C 作CP ⊥DE 于点P ,设AC 与DE 交于G ,如图,∵△CDE 是等边三角形,∴PE =12DE =1,CP 22213-=,∴AE =CP ,在△AEG 与△CPG 中,∵∠AEG =∠CPG =90°,∠AGE =∠CGP ,AE =CP ,∴△AEG ≌△CPG ,∴AG =CG ,PG =EG =12, ∴AG ()222211332AE EG ⎛⎫+=+= ⎪⎝⎭, ∴AC =2AG 13【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、勾股定理及其逆定理等知识,熟练掌握上述知识、灵活应用全等三角形的判定与性质是解题的关键.22.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B=60°,∴∠BMN=30°,∴BN=12BM,即2x=12(30-x),解得x=6;②当∠BMN=90°时,∵∠B=60°,∴∠BNM=30°,∴BM=12BN,即30-x=12×2x,解得x=15,答:经过6秒或15秒,△BMN是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.23.(1)见解析;(2)见解析;(3)43或63【分析】(1)先由三角形的内角和为180°求得∠ACB的度数,从而根据等腰三角形的判定证得AB=AC=AD,按照邻和四边形的定义即可得出结论.(2)以点A为圆心,AB长为半径画圆,与网格的交点,以及△ABC外侧与点B和点C组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC的长,再分类计算即可:①当DA=DC=AC时;②当CD=CB=BD时;③当DA=DC=DB或AB=AD=BD时.【详解】(1)∵∠ACB=180°﹣∠ABC﹣∠BAC=70°,∴∠ACB=∠ABC,∴AB=AC.∵∠ACD=∠ADC,∴AC=AD,∴AB=AC=AD.∴四边形ABCD是邻和四边形;(2)如图,格点D、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23, ∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论: ①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-=,∴S △ADC =1423432⨯⨯=,S △ABC =12AB×BC =23, ∴S 四边形ABCD =S △ADC +S △ABC =63;②当CD =CB =BD =23时,如图所示:∴△BDC 为等边三角形,过D 作DE ⊥BC 于E ,则∠BDE =160302⨯︒=︒, ∴132BE BD == ()()22222333DE BD BE =-=-=, ∴S △BDC =1233332⨯= 过D 作DF ⊥AB 交AB 延长线于F ,∵∠FBD=∠FBC -∠DBC =90︒-60︒=30︒,∴DF=12S △ADB =122⨯=,∴S 四边形ABCD =S △BDC +S △ADB =;③当DA =DC =DB 或AB =AD =BD 时,邻和四边形ABCD 不存在.∴邻和四边形ABCD 的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.24.(1)AE=BD 且AE ⊥BD ;(2)6;(3)PQ 为定值6,图形见解析【分析】(1)由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC=45°,可得AE ⊥BD ; (2)由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长; (3)分两种情况讨论,由“SAS”可证△ACE ≌△BCD ,可得AE=BD ,∠EAC=∠DBC ,可得AE ⊥BD ,由等腰三角形的性质可得PA=AQ ,由勾股定理可求PA 的长,即可求PQ 的长.【详解】解:(1)AE=BD ,AE ⊥BD ,理由如下:∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE ⊥BD ;(2)∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;(3)如图3,若点D 在AB 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.25.(1) 2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=,解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-, 解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅,即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.26.(1)见解析;(2)∠ADC=45α︒+;(3)2BD DE =【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可; (3)画出图形,结合(2)的结论证明△BED 为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD ,且∠EAD=α,∴∠AED=45°,∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,∴∠AED=∠AEB=45°,BE=DE ,∴∠BED=90°,∴△BED 是等腰直角三角形,∴22222BD BE DE DE =+=, ∴2BD DE =. 【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.27.(1131710,112;(2)图见解析;7. 【分析】(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积.(2)模仿(1)中方法,画出△PMN ,利用分割法求解即可.【详解】解:(1)如图1中,AB 22AE BE +2232+13BC 22BD CD +2214+17AC 22AF CF +2213+10,S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣32﹣2=112, 131710,112. (2)△PMN 如图所示.S △PMN =4×4﹣2﹣3﹣4=7,故答案为7.【点睛】此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键.28.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.【分析】(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.【详解】(1)不存在一组数,既符合上述规律,且其中一个数为71.理由如下:根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;若271m =,则35.5,m =,此时m 不符合题意;若2171m +=,则270m =,此时m 不符合题意,所以不存在一组数,既符合上述规律,且其中一个数为71.(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.理由如下:对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数).因为2224222(1)(2)21(1)m m m m m -+=++=+所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用。
八年级数学下册勾股定理习题(附答案)(含答案)
C勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。
八年级初二数学勾股定理测试试题含答案
八年级初二数学勾股定理测试试题含答案一、选择题1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF=- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④2.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个3.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .2C .4D .34.如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB 30=a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( )A.6 B.8 C.10 D.125.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个6.如图所示,有一个高18cm,底面周长为24cm的圆柱形玻璃容器,在外侧距下底1cm 的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是()A.16cm B.18cm C.20cm D.24cm7.如图,在等腰Rt△ABC中,∠C=90°,AC=7,∠BAC的角平分线AD交BC于点D,则点D到AB的距离是()A.3 B.4 C.7(21)D.7(21)8.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB 的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则 h 的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 10.有下列的判断:①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形③如果△ABC是直角三角形,那么a2+b2=c2以下说法正确的是()A.①②B.②③C.①③D.②二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.12.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm、3 dm和1 dm,A和B 是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是 dm.13.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).14.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.15.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若 A =60°,AB=4,CE=3,则BC 的长为_______.16.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)17.若ABC ∆为直角三角形,90B ∠=︒,6AB =,8BC =,点D 在斜边AC 上,且2AC BD =,则AD 的长为__________.18.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.19.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.①线段OA 的取值范围是______________;②若BD -AC =1,则AC •BD = _________.20.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在边AB上,点E在边AC的左侧,连接AE.(1)求证:AE=BD;(2)试探究线段AD、BD与CD之间的数量关系;,求线段AB (3)过点C作CF⊥DE交AB于点F,若BD:AF=1:22,CD=36的长.23.如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,①求证:△ACD≌△BCF;②若∠DCE=45°,求证:DE2=AD2+BE2;(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.24.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).25.如图,在平面直角坐标系中,点O 是坐标原点,ABC ∆,ADE ∆,AFO ∆均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ∆内部,点E 在ABC ∆的外部,32=AD ,30DOE ∠=︒,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .(1)求点A 的坐标;(2)判断DF 与OE 的数量关系,并说明理由;(3)直接写出ADG ∆的周长.26.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y .(1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.27.已知:四边形ABCD 是菱形,AB =4,∠ABC =60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD 的顶点A 重合,两边分别射线CB 、DC 相交于点E 、F ,且∠EAP =60°.(1)如图1,当点E 是线段CB 的中点时,请直接判断△AEF 的形状是 .(2)如图2,当点E 是线段CB 上任意一点时(点E 不与B 、C 重合),求证:BE =CF ; (3)如图3,当点E 在线段CB 的延长线上,且∠EAB =15°时,求点F 到BC 的距离.28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .(1)请直接写出CM 和EM 的数量关系和位置关系.(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.29.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,△ABC的面积为S=()()()()4a b c a b c a c b b c a+++-+-+-.(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b =5,c=7,则△ABC的面积为;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.30.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的.【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠,∵AF CD ⊥,∴90AGD ∠=︒,∴90FAB CDA ∠=︒-∠,∴2ACD FAB ∠=∠,故①正确;∵3CG =,1DG =,∴314CD CG DG =+=+=,∴4AC CD ==,在Rt ACG 中,221697AG AC CG =--=, ∴1272ACD S AG CD =⋅= ∵90CHB ∠=︒,45B ∠=︒,∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠,∴AFC ACF ∠=∠,∴4AC AF ==,故④正确; ∴47GF AF AG =-=-,在Rt CGF 中,()2222347272CF CG GF =+=+-=-,故③正确. 故选:B .【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理.2.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF ,交DE 于点P ,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.3.B解析:B【分析】设OA =a ,OB =b ,OC =c ,OD =d ,根据勾股定理求出a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,即可证得a 2+d 2=18,由此得到答案.【详解】设OA =a ,OB =b ,OC =c ,OD =d ,由勾股定理得,a 2+b 2=AB 2=9,c 2+b 2=BC 2=16,c 2+d 2=CD 2=25,则a 2+b 2+c 2+b 2+c 2+d 2=50,∴a 2+d 2+2(b 2+c 2)=50,∴a 2+d 2=50﹣16×2=18,∴AD ==故选:B .【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.4.B解析:B【解析】【分析】MN 表示直线a 与直线b 之间的距离,是定值,只要满足AM +NB 的值最小即可.过A 作直线a 的垂线,并在此垂线上取点A ′,使得AA ′=MN ,连接A 'B ,则A 'B 与直线b 的交点即为N ,过N 作MN ⊥a 于点M .则A 'B 为所求,利用勾股定理可求得其值.【详解】过A 作直线a 的垂线,并在此垂线上取点A ′,使得AA ′=4,连接A ′B ,与直线b 交于点N ,过N 作直线a 的垂线,交直线a 于点M ,连接AM ,过点B 作BE ⊥AA ′,交射线AA ′于点E,如图,∵AA′⊥a,MN⊥a,∴AA′∥MN.又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.由两点之间线段最短,可知AM+NB的最小值为A′B.∵AE=2+3+4=9,AB230=,∴BE2239=-=.AB AE∵A′E=AE﹣AA′=9﹣4=5,∴A′B22=+=8.'A E BE所以AM+NB的最小值为8.故选B.【点睛】本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.5.D解析:D【解析】分析:由四边形ABCD与四边形EFGC都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD和EFGC都为正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,∴△BCE≌△DCG,∴BE=DG,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.6.C解析:C【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20 cm,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.7.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =72-x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB =22AC +BC =72,在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22272-77-x x +=, 解得: 7(21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.8.C【分析】利用勾股定理求出AB的长,再根据无理数的估算即可求得答案.【详解】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=2222OA AB+=+=,2313∴P点所表示的数就是13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.【点睛】本题考查了勾股定理和无理数的估算,熟练掌握勾股定理的内容以及无理数估算的方法是解题的关键.9.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10,x+4y=103, 所以S 2=x+4y=103. 考点:勾股定理的证明.12.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.【分析】①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.14.【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=∴6=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =,∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=43,负值舍去,故答案为:43.【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键. 15.7【分析】连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.【详解】连接AC ,交BD 于点O ,∵AB =AD ,BC =DC ,∠A =60°,∴AC 垂直平分BD ,△ABD 是等边三角形,∴∠BAO =∠DAO =30°,AB =AD =BD =4,BO =OD =2,∵CE ∥AB ,∴∠BAO =∠ACE =30°,∠CED =∠BAD =60°,∴∠DAO =∠ACE =30°,∴AE =CE =3,∴DE =AD−AE =1,∵∠CED =∠ADB =60°,∴△EDF 是等边三角形,∴DE =EF =DF =1,∴CF =CE−EF =2,OF =OD−DF =1,22OC CF OF 3∴-=22BC=OB +OC =7∴故答案为:7.【点睛】 本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.16.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【详解】解:如图,一条直角边(即木棍的高)长20尺,另一条直角边长7×3=21(尺),因此葛藤长222021+=29(尺).答:葛藤长29尺.故答案为:29.【点睛】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.5【分析】在直角ABC 中,依据勾股定理求出AC 的长度,再算出BD ,过点B 作BE AC ⊥于点E ,通过等面积法求出BE ,得到两个直角三角形,分别运用勾股定理算出AE ED 、,两者相加即为AD 的长.【详解】解:如图,过点B 作BE AC ⊥于点E ,则90BEA ∠=︒,90BED ∠=︒,∵直角ABC 中,90B ∠=︒,6AB =,8BC =,∴22=10AC AB BC +=,又∵2ABC S AB BC AC BE =⋅=⋅,2AC BD =∴6810BE ⨯=,5BD =,∴=4.8BE ,∵90BEA ∠=︒,90BED ∠=︒ ∴22= 3.6AE AB BE -=,22= 1.4ED BD BE -=,∴5AD AE ED =+=.故答案为:5.【点睛】本题考查了勾股定理,通过作直角三角形斜边上的高,既构造了两个直角三角形求位置线段,又通过等面积法求出了一条直角边的长度,为运用勾股定理求线段创造了条件;故在求线段长时,可以考虑构造直角三角形.18.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N ′=22''OM ON +=10. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.19.①1<OA <4. ②672. 【解析】(1)由三角形边的性质5-3<2OA <5+3,1<OA <4.(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,由题意知,22BD DE =+()2BC CE +=2DE +()24CE +,()()222225AC DE BC CE DE CE ∴=+-=+-,2AC ∴+ 2BD=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672.20.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称, 如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22-=24米.257答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22-,2520CD CE-22∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE≌△BCD,∴∠CAE=∠CBD,又∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=∠CAE=45°,∴∠EAD=90°,在Rt△ADE中,AE2+AD2=ED2,且AE=BD,∴BD2+AD2=ED2,∵ED2CD,∴BD2+AD2=2CD2,(3)解:连接EF,设BD=x,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x ,∵AE 2+AD 2=2CD 2, ∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.23.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD ≌△BCF②证明:连接EF ,由①知△ACD ≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD ,BF=AD∴∠EBF=90°∴EF 2=BE 2+BF 2,∴EF 2=BE 2+AD 2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+(32BF)2∴DE2=(EB+12AD)2+3)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.24.(1)见解析;(2)26;(323+3 【分析】(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出3,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH 和△BEH 中,∠CAH+∠ACH=∠EBH+∠BEH ,而∠CAH=∠EBH ,∴∠BEH=∠ACH=90°,∴△ABE 为直角三角形 由勾股定理得2222AB=AE BE =2410=26++(3)由(1)(2)可得△ACD ≌△BCE ,∴∠DAC=∠EBC ,∵△ACB ,△DCE 都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM ⊥DE ,∴∠CMD=90°,DM=EM ,∴CD=CE=2CM ,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°, ∴∠NBE=30°,∴BE=2EN ,3EN∵BN=a∴23=AD ∴AE=AD+DE=3233+a b 【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.25.(1)(0,;(2)DF OE =;(3)9+【分析】(1)由等边三角形的性质得出6OB =,12AB AC BC ===,由勾股定理得出OA ==A 的坐标;(2)由等边三角形的性质得出AD AE =,AF AO =,60FAO DAE ∠=∠=︒,证出FAD OAE ∠=∠,由SAS 证明FAD OAE ∆≅∆,即可得出DF OE =;(3)证出90AGO ∠=︒,求出9AG =,由全等三角形的性质得出AOE AFD ∠=∠,证出6090FDO AFD AOD ∠=∠+︒+∠=︒,由等边三角形的性质得12DG OF ==即可得出答案.【详解】解:(1)ABC ∆是等边三角形,点0()6,B -,点(6,0)C ,6OB ∴=,12AB AC BC ===,OA === ∴点A 的坐标为(0,;(2)DF OE =;理由如下:ADE ∆,AFO ∆均为等边三角形,AD AE ∴=,AF AO =,60FAO DAE ∠=∠=︒,FAD OAE ∴∠=∠,在FAD ∆和OAE ∆中,AF AO FAD OAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()FAD OAE SAS ∴∆≅∆,DF OE ∴=;(3)60AOF ∠=︒,30FOB ∴∠=︒,60ABO ∠=︒,90AGO ∴∠=︒,AFO ∆是等边三角形,AO =·sin 6092AG OA ∴=︒==, FAD OAE ∆≅∆,AOE AFD ∴∠=∠,30DOE AOD AOE ∠=︒=∠+∠,30AOD AFD ∴∠+∠=︒,FDO AFD FAO AOD ∠=∠+∠+∠,60603090FDO AFD AOD ∴∠=∠+︒+∠=︒+︒=︒,AG OF ⊥,AOF ∆为等边三角形,G ∴为斜边OF 的中点,1122DG OF ∴==⨯=ADG ∴∆的周长9AG AD DG =++=+【点睛】本题是三角形综合题目,考查了等边三角形的性质、勾股定理、坐标与图形性质、全等三角形的判定与性质、三角函数等知识;本题综合性强,有一定难度,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.26.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴AB 13==故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--=故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴DE 5==DF 5==EF ==∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩ 解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'=()()22146273-++= 故当P 的坐标为(1304,)时,PD+PF 的长度最短,最短长度为73. 【点睛】本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.27.(1)△AEF 是等边三角形,理由见解析;(2)见解析;(3)点F 到BC 的距离为3﹣.【解析】【分析】(1)连接AC ,证明△ABC 是等边三角形,得出AC =AB ,再证明△BAE ≌△DAF ,得出AE =AF ,即可得出结论;(2)连接AC ,同(1)得:△ABC 是等边三角形,得出∠BAC =∠ACB =60°,AB =AC ,再证明△BAE ≌△CAF ,即可得出结论;(3)同(1)得:△ABC 和△ACD 是等边三角形,得出AB =AC ,∠BAC =∠ACB =∠ACD =60°,证明△BAE ≌△CAF ,得出BE =CF ,AE =AF ,证出△AEF 是等边三角形,得出∠AEF =60°,证出∠AEB =45°,得出∠CEF =∠AEF ﹣∠AEB =15°,作FH ⊥BC 于H ,在△CEF内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x =3﹣即可.【详解】(1)解:△AEF是等边三角形,理由如下:连接AC,如图1所示:∵四边形ABCD是菱形,∴AB=BC=AD,∠B=∠D,∵∠ABC=60°,∴∠BAD=120°,△ABC是等边三角形,∴AC=AB,∵点E是线段CB的中点,∴AE⊥BC,∴∠BAE=30°,∵∠EAF=60°,∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,在△BAE和△DAF中,,∴△BAE≌△DAF(ASA),∴AE=AF,又∵∠EAF=60°,∴△AEF是等边三角形;故答案为:等边三角形;(2)证明:连接AC,如图2所示:同(1)得:△ABC是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∵∠EAF=60°,∴∠BAE=∠CAF,∵∠BCD=∠BAD=120°,∴∠ACF=60°=∠B,在△BAE和△CAF中,,∴△BAE≌△CAF(ASA),∴BE=CF;(3)解:同(1)得:△ABC和△ACD是等边三角形,∴AB=AC,∠BAC=∠ACB=∠ACD=60°,。
八年级数学勾股定理试卷含答案
八年级数学试卷(勾股定理)一、选择题(将正确答案代号填入下表中,每小题3分,共36分)1.以下列数组为边长的三角形,恰好是直角三角形的是()A.4,6,8 B.4,8,10 C.6,8,10 D.8,10,122.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题 B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A.20cm B.50cm C.40cm D.45cm4.等边三角形的边长为2,则该三角形的面积为()A.4 B.C.2 D.35.如图,将三边长分别为3,4,5的△ABC沿最长边翻转180°成△ABC1,则CC1的长等于()A.B.C.D.6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.8.长方形的一边长为4,对角线与长方形另外一条边相差2,则长方形的面积为()A.8 B.4 C.6 D.129.在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::210.设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2 C.2.5 D.311.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm12.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种 B.2种 C.3种 D.4种二、填空题(本大题共4小题,每小题3分,共12分.把答案填在题中横线上)13.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为.14.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为.16.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为cm2.三、解答题(本大题共8小题,共72分,解答应写出计算过程)17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知a=,∠A=60°,求b、c.18.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求AB的长;(3)判断△ABC的形状.19.如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,求线段BN的长.20.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?21.如图,△ABC,△AED是两个大小一样的三角形,已知∠ADE=90°,AE=5,AD=4,连接EB,求DE和EB的长.22.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.23.在△ABC中,a=m2﹣n2,b=2mn,c=m2+n2,其中m、n都是正整数;且m >n,试判断△ABC是否为直角三角形?24.长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.八年级数学试卷(勾股定理)参考答案与试题解析一、选择题(将正确答案代号填入下表中,每小题3分,共36分)1.以下列数组为边长的三角形,恰好是直角三角形的是()A.4,6,8 B.4,8,10 C.6,8,10 D.8,10,12【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【解答】解:A、∵42+62≠82,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵42+82≠102,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵62+82=102,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;D、∵82+102≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选C.2.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题 B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题【考点】命题与定理.【分析】首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.【解答】解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选B.3.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】根据题意画出示意图,AC为圆桶底面直径,AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理即可求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=2×12=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.4.等边三角形的边长为2,则该三角形的面积为()A.4 B.C.2 D.3【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,=BC•AD=×2×=,∴S△ABC故选B.5.如图,将三边长分别为3,4,5的△ABC沿最长边翻转180°成△ABC1,则CC1的长等于()A.B.C.D.【考点】翻折变换(折叠问题);勾股定理的逆定理.【分析】首先设AB与CC1相较于点D,由△ABC的三边分别为3、4、5,且32+42=52,可得△ABC是直角三角形,即可求得CD的长,继而求得答案.【解答】解:设AB与CC1相较于点D,∵△ABC的三边分别为3、4、5,且32+42=52,∴△ABC是直角三角形,由折叠的性质可得:AB⊥CD,且CD=C1D,∴CD==,∴CC1=2CD=.故选:D.6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.7.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B.C.D.【考点】勾股定理;三角形的外角性质;等腰三角形的性质;等边三角形的性质.【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD==4.故选:D.8.长方形的一边长为4,对角线与长方形另外一条边相差2,则长方形的面积为()A.8 B.4 C.6 D.12【考点】矩形的性质.【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵如图,AB=4,AC=BC+2,∴根据勾股定理得到:AB2+BC2=(BC+2)2,即16+BC2=(BC+2)2,∴BC=3,∴它的面积为4×3=12.故选:D.9.在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::2【考点】含30度角的直角三角形.【分析】设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.【解答】解:如图,设30°角所对的直角边BC=a,则AB=2BC=2a,∴AC==a,∴三边之比为a:a:2a=1::2.故选D.10.设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab的值.【解答】解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由②得a2+b2=(a+b)2﹣2ab=2.52∴3.52﹣2ab=2.52ab=3,故选D.11.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm【考点】平面展开-最短路径问题.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2dm,∴这圈金属丝的周长最小为2AC=4dm.故选:A.12.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种 B.2种 C.3种 D.4种【考点】勾股定理的应用.【分析】如图所示,找出从A点到B点的最短距离的走法即可.【解答】解:根据题意得出最短路程如图所示,最短路程长为+1=2+1,则从A点到B点的最短距离的走法共有3种,故选:C.二、填空题(本大题共4小题,每小题3分,共12分.把答案填在题中横线上)13.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为90°.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可得答案.【解答】解:∵()2+22=()2,∴此三角形是直角三角形,∴这个三角形的最大角的度数为90°,故答案为:90°.14.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为(10,3).【考点】翻折变换(折叠问题);坐标与图形性质.【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理来求OF=6,然后设EC=x,则EF=DE=8﹣x,CF=10﹣6=4,根据勾股定理列方程求出EC 可得点E的坐标.【解答】解:∵四边形A0CD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10﹣6=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故答案为:(10,3).15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为a2.【考点】勾股定理.【分析】根据勾股定理可得AC2+BC2=AB2,然后判断出阴影部分的面积=2S△ABE,再利用等腰直角三角形的面积等于直角边的平方的一半计算即可得解.【解答】解:∵△ABC是直角三角形,∴AC2+BC2=AB2,∵三个阴影部分三角形都是等腰直角三角形,=2וa•(a)=a2.∴阴影部分的面积=2S△ABE故答案为:a2.16.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为18cm2.【考点】勾股定理的逆定理.【分析】首先设AB为3xcm,BC为4xcm,AC为5xcm,利用方程求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的,BP,BQ的长,利用三角形的面积公式计算求解.【解答】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,解得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),=BP•BQ=×(9﹣3)×6=18(cm2).∴S△PBQ故答案为:18.三、解答题(本大题共8小题,共72分,解答应写出计算过程)17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;(2)已知a=,∠A=60°,求b、c.【考点】解直角三角形.【分析】(1)根据勾股定理即可直接求出a的值;(2)根据直角三角形的性质与勾股定理即可求出b、c的值.【解答】解:(1)根据勾股定理可得:a==20;(2)∵△ABC为Rt△,∠A=60°,∴∠B=30°,∴c=2b,根据勾股定理可得:a2+b2=c2,即6+b2=(2b)2,解得b=,则c=2.18.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求AB的长;(3)判断△ABC的形状.【考点】勾股定理;勾股定理的逆定理.【分析】(1)在Rt△BCD中,根据勾股定理求出CD的长;(2)在Rt△ACD中根据勾股定理求出AD的长,故可得出AB的长;(3)由勾股定理的逆定理即可得出结论.【解答】(1)在△BCD中,因为CD⊥AB,所以BD2+CD2=BC2.所以CD2=BC2﹣BD2=152﹣92=144.所以CD=12.(2)在△ACD中,因为CD⊥AB,所以CD2+AD2=AC2.所以AD2=AC2﹣CD2=202﹣122=256.所以AD=16.所以AB=AD+BD=16+9=25.(3)因为BC2+AC2=152+202=625,AB2=252=625,所以AB2=BC2+AC2.所以△ABC是直角三角形.19.如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,求线段BN的长.【考点】翻折变换(折叠问题).【分析】如图,首先求出BD的长,根据勾股定理列出关于线段AN的方程,问题即可解决.【解答】解:如图,∵点D为BC的中点,∴BD=CD=;由题意知:AN=DN(设为x),则BN=9﹣x;由勾股定理得:x2=(9﹣x)2+32,解得:x=5,∴BN=9﹣5=4,即BN的长为4.20.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?【考点】勾股定理的应用.【分析】仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可【解答】解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,∴h2+6h+9=h2+36,6h=27,解得:h=4.5.答:水深4.5尺.21.如图,△ABC,△AED是两个大小一样的三角形,已知∠ADE=90°,AE=5,AD=4,连接EB,求DE和EB的长.【考点】勾股定理.【分析】直接利用勾股定理得出DE的长,再利用全等三角形的性质结合勾股定理得出BE的长.【解答】解:∵∠ADE=90°,AE=5,AD=4,∴DE==3,∵△ABC,△AED是两个大小一样的三角形,∴AB=AE=5,∴BD=1,∴BE===.22.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.【考点】勾股定理的逆定理;全等三角形的判定与性质.【分析】根据题意中的△ABD为等腰直角三角形,显然应分为三种情况:∠ABD=90°,∠BAD=90°,∠ADB=90°.然后巧妙构造辅助线,出现全等三角形和直角三角形,利用全等三角形的性质和勾股定理进行求解.【解答】解:∵AC=4,BC=2,AB=,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.分三种情况:如图(1),过点D作DE⊥CB,垂足为点E.∵DE⊥CB(已知)∴∠BED=∠ACB=90°(垂直的定义),∴∠CAB+∠CBA=90°(直角三角形两锐角互余),∵△ABD为等腰直角三角形(已知),∴AB=BD,∠ABD=90°(等腰直角三角形的定义),∴∠CBA+∠DBE=90°(平角的定义),∴∠CAB=∠EBD(同角的余角相等),在△ACB与△BED中,∵∠ACB=∠BED,∠CAB=∠EBD,AB=BD(已证),∴△ACB≌△BED(AAS),∴BE=AC=4,DE=CB=2(全等三角形对应边相等),∴CE=6(等量代换)根据勾股定理得:CD=2;如图(2),过点D作DE⊥CA,垂足为点E.∵BC⊥CA(已知)∴∠AED=∠ACB=90°(垂直的定义)∴∠EAD+∠EDA=90°(直角三角形两锐角互余)∵△ABD为等腰直角三角形(已知)∴AB=AD,∠BAD=90°(等腰直角三角形的定义)∴∠CAB+∠DAE=90°(平角的定义)∴∠BAC=∠ADE(同角的余角相等)在△ACB与△DEA中,∵∠ACB=∠DEA(已证)∠CAB=∠EDA(已证)AB=DA(已证)∴△ACB≌△DEA(AAS)∴DE=AC=4,AE=BC=2(全等三角形对应边相等)∴CE=6(等量代换)根据勾股定理得:CD=2;如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.∵∠C=90°,∴∠CAB+∠CBA=90°,∵∠DAB+∠DBA=90°,∴∠EBD+∠DAF=90°,∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,∴∠DBE=∠ADF,∵∠BED=∠AFD=90°,DB=AD,∴△AFD≌△DEB,则ED=AF,由∠ACB=∠CED=∠AFE=90°,则四边形CEFA是矩形,故CE=AF,EF=AC=4,设DF=x,则BE=x,故EC=2+x,AF=DE=EF﹣DF=4﹣x,则2+x=4﹣x,解得:x=1,故EC=DE=3,则CD=3.23.在△ABC中,a=m2﹣n2,b=2mn,c=m2+n2,其中m、n都是正整数;且m >n,试判断△ABC是否为直角三角形?【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行判断即可.【解答】解:∵a=m2﹣n2,b=2mn,c=m2+n2,∴a2+b2=(m2﹣n2)2+4m2n2=m4+n4﹣2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.24.长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.【考点】坐标与图形变化-旋转;勾股定理的应用;矩形的性质;旋转的性质.【分析】(1)先根据旋转的性质以及矩形的性质,求得BC=AO=O′A′,AB=CO=CO'=5,∠B=∠O'=90°,BD=1,再连接CD,设BC=x,根据勾股定理得出BC2+BD2=CD2=CO'2+DO'2,据此列出方程求解即可;(2)根据阴影部分的面积=△BCD面积+△O'CD面积,进行计算即可.【解答】解:(1)∵长方形OABC绕顶点C(0,5)逆时针方向旋转得到矩形CO′A′B′∴BC=AO=O′A′,AB=CO=CO'=5,∠B=∠O'=90°,∵AD=4,AB=5,∴BD=5﹣4=1,设BC=x,则DO'=O'A'﹣A'D=x﹣2,连接CD,则BC2+BD2=CD2=CO'2+DO'2即x2+12=52+(x﹣2)2解得:x=7,∴BC=7;(2)∵BC=7,BD=1,CO'=5,DO'=7﹣2=5,∠B=∠O'=90°,∴阴影部分的面积=△BCD面积+△O'CD面积=×7×1+×5×5=16.。
八年级数学-勾股定理练习题(含解析)
八年级数学-勾股定理练习题(含解析)一、单选题1.已知直角三角形的两条直角边的长分别是1 )A .1BC .2D .32.下面各图中,不能证明勾股定理正确性的是( )A .B .C .D .3.一直角三角形的三边分别为2、3、x ,那么x 为( )A B C D .无法确定4.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A .2cmB .3cmC .4cmD .5cm5.如图,在Rt ABC ∆中,90ACB ∠=o ,正方形,AEDC BCFG 的面积分别为25和144,则AB 的长度为( )A .13B .169C .12D .56.如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD⊥AC 于点D .则BD 的长为()A B C D 7.如图,三角形纸片ABC ,AB=AC ,∠BAC=90°,点E 为AB 中点,沿过点E 的直线折叠,使点B 与点A 重合,折痕现交于点F ,已知EF=32,则BC 的长是( )A B . C .3 D .8.如图所示,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )A .123S S S +=B .222123S S S +=C .123S S S +>D .123S S S +<9.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是( )A .9B .10C .D .10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m 处,发现此时绳子末端距离地面2 m ,则旗杆的高度(滑轮上方的部分忽略不计)为( )A .12 mB .13 mC .16 mD .17 m11.在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=( )A.4 B.5 C.6 D.7二、填空题12.△ABC,∠A=90°,a=15,b=12,则c=________.13.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m.14.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长备几何?”这个数学问题的意思是说:尺)的正方形,在水池正中央长有一根芦苇,“有一个水池,水面是一个边长为1丈(1丈10芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”设这个水池的深度是x尺,根据题意,可列方程为__________.15.如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共__个.16.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第2个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第3个等腰Rt△ADE,…,依此类推,则第2018个等腰直角三角形的斜边长是___________.三、解答题17.如图,四边形ABCD中,∠B=90°,BB=12,BB=9,BB=8,BB=17,求四边形ABCD的面积.18.如图,三个村庄A,B,C之间的距离分别为BB=5km,BB=12 km,BB=13 km.要从B修一条公路直达AC,已知公路的造价为26000元/km,修这条公路的最低造价是多少?19.“中华人民共和国道路交通管理条例”规定,小汽车在设有中心双实线、中心分隔带、机动车道与非机动车道分隔设施的城市街道上的行驶速度不得超过70千米/时.如图,一辆“小汽车”在一条城市道路上沿直线行驶,某一时刻刚好行驶到路对面“车速检测仪A”正前方50米的C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由20.如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.21.设a=b=c=(1)当x取什么实数时,a,b,c都有意义;(2)若Rt△ABC三条边的长分别为a,b,c,求x的值.参考答案1.C【解析】解:直角三角形的两条直角边的长分别为1;故选C.2.C【解析】解:A、∵12ab+12c2+12ab=12(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×12ab +(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、∵4×12ab +c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;故选C.3.C【解析】解:当3为斜边时,32=22+x2,解得:当x为斜边时,x2=32+22,解得:∴x故选C.4.A【解析】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.5.A【解析】解:∵在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,又∵AC2=144,BC2=25,∴AB2=25+144=169,.故选:A.6.A【解析】如图,△ABC 的面积=12×BC×AE=2,由勾股定理得,则12解得 故选A .7.B【解析】解:E B A Q 沿过点的直线折叠,使点与点重合, B EAF 45∠∠∴==︒,AFB 90∠∴=︒,E AB AFB 90∠=︒Q 点为中点,且,1EF AB 2∴=, 3EF 2=Q , 3AB 2EF 232∴==⨯=, ΔRtABC 在中, AB =AC ,AB 3,=BC∴===故选B.8.A【解析】解:设三个半圆的直径分别为:d1、d2、d3,S 1=12×π×(12d)2=21π8d,S 2=12×π×(22d)2=22π8d,S 3=12×π×(32d)2=23π8d.由勾股定理可得:d 12+d22=d32,∴S1+S2=π8(d12+d22)=23π8d=S3,所以S1、S2、S3的关系是:S1+S2=S3.故选A.9.B【解析】如图=如图10==.故选B.10.D【解析】设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.11.A【解析】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.12.9【解析】c9.==故答案为9.13.4【解析】解如图所示:在Rt ∆ABC 中,BC=3,AC=5, 由勾股定理可得:AB 2+BC 2=AC 2设旗杆顶部距离底部AB=x 米,则有32+x 2=52, 解得x=4 故答案为:4.14.2225(1)x x +=+ 【解析】设由题意可得:2225(1)x x +=+.故答案为2225(1)x x +=+. 15.4 【解析】解:根据题意可得以AB 为边画直角△ABC,使点C 在格点上,满足这样条件的点C 共 8个.故答案为8.16.)2018 【解析】解:∵△ABC是腰长为1的等腰直角三形,∴△ABC,第2=)2,第3个等腰直角三角形的斜边长是:2=)3,…,∴第2012)2018.2018.17.114【解析】解:如图所示,连接AC,∵∠B=90°,∴BB2=BB2+BB2=225=152,∵BB2+BB2=152+82=289,BB2=289,∴BB2+BB2=BB2,∴BB⊥BB,∴B 四边形BBBB =B Rt △BBB +B Rt △BBB =12×12×9+12×8×15=54+60=114.18.修这条公路的最低造价是12万元. 【解析】解:∵BC 2+AB 2=122+52=169,AC 2=132=169, ∴BC 2+AB 2=AC 2,∴∠ABC=90°,当BD⊥AC 时BD 最短,造价最低,∵S △ABC =12AB•BC=12AC•BD, ∴BB =BB •BB BB=6013km ,6013×2600=12000(万元), 答:最低造价为12000万元. 19.这辆“小汽车”超速了. 【解析】解:这辆“小汽车”超速了,理由:由题意知,130AB =米,50AC =米,且ABC △为直角三角形,AB 是斜边, 根据勾股定理,得222AB BC AC =+, 可以求得:120BC =米0.12=千米,6秒63600=时, 所以速度为小车此时速度为60.12723600÷=千米/时,所以这辆“小汽车”超速了.20.(1)BD=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明见解析. 【解析】(1)∵AO⊥OD,AO=4m ,AB=5m ,,∵梯子的顶端A 沿墙下滑1m 至C 点, ∴OC=AO﹣AC=3m , ∵CD=AB=5m,∴由勾股定理得:OD=4m , ∴BD=OD﹣OB=4m ﹣3m=1m ;(2)CE 与BE 的大小关系是CE=BE ,证明如下: 连接CB ,由(1)知:AO=DO=4m ,AB=CD=5m , ∵∠AOB=∠DOC=90°, 在Rt△AOB 和Rt△DOC 中AB DCAO DO =⎧⎨=⎩, ∴Rt△AOB≌Rt△DOC(HL ), ∴∠ABO=∠DCO,OC=OB , ∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB, ∴∠EBC=∠ECB,∴CE=BE.21.(1)483x-≤≤;(2)x=25或2.【解析】解:(1)由二次根式的性质,得80 34020xxx-≥⎧⎪+≥⎨⎪+≥⎩,解得483x-≤≤;(2)当c为斜边时,由a2+b2=c2,即8-x+3x+4=x+2,解得x=-10,当b为斜边时,a2+c2=b2,即8-x+x+2=3x+4,解得x=2,当a为斜边时,b2+c2=a2,即3x+4+x+2=8-x,解得x=2 5∵48 3x-≤≤∴x=25或2.。
八年级数学勾股定理试卷含答案
八年级数学试卷(勾股定理)一、选择题(将正确答案代号填入下表中,每小题3分,共36分)1.以下列数组为边长的三角形,恰好是直角三角形的是()A.4,6,8 B.4,8,10 C.6,8,10 D.8,10,122.已知命题:等边三角形是等腰三角形.则下列说法正确的是(),A.该命题为假命题 B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题3.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()A.20cm B.50cm C.40cm D.45cm4.等边三角形的边长为2,则该三角形的面积为()·A.4 B.C.2 D.35.如图,将三边长分别为3,4,5的△ABC沿最长边翻转180°成△ABC1,则CC1的长等于()A.B.C.D.6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()、A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()`A.B. C. D.8.长方形的一边长为4,对角线与长方形另外一条边相差2,则长方形的面积为()A.8 B.4 C.6 D.129.在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::2~10.设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为,则ab的值是()A. B.2 C. D.311.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm…12.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种 B.2种 C.3种 D.4种二、填空题(本大题共4小题,每小题3分,共12分.把答案填在题中横线上)…13.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为.14.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为.!16.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为cm2.三、解答题(本大题共8小题,共72分,解答应写出计算过程)17.在Rt△ABC中,∠C=90°.~(1)已知c=25,b=15,求a;(2)已知a=,∠A=60°,求b、c.18.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求AB的长;*(3)判断△ABC的形状.19.如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,求线段BN的长.20.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少|21.如图,△ABC,△AED是两个大小一样的三角形,已知∠ADE=90°,AE=5,AD=4,连接EB,求DE和EB的长.22.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.23.在△ABC中,a=m2﹣n2,b=2mn,c=m2+n2,其中m、n都是正整数;且m >n,试判断△ABC是否为直角三角形,24.长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.-八年级数学试卷(勾股定理)参考答案与试题解析一、选择题(将正确答案代号填入下表中,每小题3分,共36分)\1.以下列数组为边长的三角形,恰好是直角三角形的是()A.4,6,8 B.4,8,10 C.6,8,10 D.8,10,12【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【解答】解:A、∵42+62≠82,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;|B、∵42+82≠102,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵62+82=102,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;D、∵82+102≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选C.%2.已知命题:等边三角形是等腰三角形.则下列说法正确的是()A.该命题为假命题 B.该命题为真命题C.该命题的逆命题为真命题D.该命题没有逆命题【考点】命题与定理.【分析】首先判断该命题的正误,然后判断其逆命题的正误后即可确定正确的选项.【解答】解:等边三角形是等腰三角形,正确,为真命题;其逆命题为等腰三角形是等边三角形,错误,为假命题,故选B.3.一个圆柱形铁桶的底面半径为12cm,高为32cm,则桶内所能容下的木棒最长为()【A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】根据题意画出示意图,AC为圆桶底面直径,AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理即可求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=2×12=24cm,CB=32cm,@∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB===40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.…4.等边三角形的边长为2,则该三角形的面积为()A.4 B.C.2 D.3【考点】等边三角形的性质.【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题./【解答】解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,=BC•AD=×2×=,∴S△ABC(故选B.5.如图,将三边长分别为3,4,5的△ABC沿最长边翻转180°成△ABC1,则CC1的长等于()A.B.C.D.¥【考点】翻折变换(折叠问题);勾股定理的逆定理.【分析】首先设AB与CC1相较于点D,由△ABC的三边分别为3、4、5,且32+42=52,可得△ABC是直角三角形,即可求得CD的长,继而求得答案.【解答】解:设AB与CC1相较于点D,∵△ABC的三边分别为3、4、5,且32+42=52,∴△ABC是直角三角形,—由折叠的性质可得:AB⊥CD,且CD=C1D,∴CD==,∴CC1=2CD=.故选:D.)6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对}【考点】勾股定理的逆定理;勾股定理.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,}AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.!故选:A.7.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.B. C. D.【考点】勾股定理;三角形的外角性质;等腰三角形的性质;等边三角形的性质.【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【解答】解:∵△ABC和△DCE都是边长为4的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=4.∴∠BDC=∠CBD=30°.}∴∠BDE=90°.∴BD==4.故选:D.8.长方形的一边长为4,对角线与长方形另外一条边相差2,则长方形的面积为();A.8 B.4 C.6 D.12【考点】矩形的性质.【分析】利用勾股定理列式求出另一边长,然后根据矩形的面积公式列式进行计算即可得解.【解答】解:∵如图,AB=4,AC=BC+2,∴根据勾股定理得到:AB2+BC2=(BC+2)2,即16+BC2=(BC+2)2,[∴BC=3,∴它的面积为4×3=12.故选:D.^9.在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::2【考点】含30度角的直角三角形.【分析】设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.【解答】解:如图,设30°角所对的直角边BC=a,@则AB=2BC=2a,∴AC==a,∴三边之比为a:a:2a=1::2.故选D.¥10.设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为,则ab的值是()A. B.2 C. D.3【考点】勾股定理.【分析】由该三角形的周长为6,斜边长为可知a+b+=6,再根据勾股定理和完全平方公式即可求出ab的值.)【解答】解:∵三角形的周长为6,斜边长为,∴a+b+=6,∴a+b=,①∵a、b是直角三角形的两条直角边,∴a2+b2=,②]由②得a2+b2=(a+b)2﹣2ab=∴﹣2ab=ab=3,故选D.$11.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm【考点】平面展开-最短路径问题.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.^【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2dm,~∴这圈金属丝的周长最小为2AC=4dm.故选:A.12.如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()¥A.1种 B.2种 C.3种 D.4种【考点】勾股定理的应用.【分析】如图所示,找出从A点到B点的最短距离的走法即可.【解答】解:根据题意得出最短路程如图所示,(最短路程长为+1=2+1,则从A点到B点的最短距离的走法共有3种,故选:C.{二、填空题(本大题共4小题,每小题3分,共12分.把答案填在题中横线上)13.如果三角形的三边分别为,,2,那么这个三角形的最大角的度数为90°.【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形可得答案.【解答】解:∵()2+22=()2,`∴此三角形是直角三角形,∴这个三角形的最大角的度数为90°,故答案为:90°.14.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC 上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为(10,3).%【考点】翻折变换(折叠问题);坐标与图形性质.【分析】根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理来求OF=6,然后设EC=x,则EF=DE=8﹣x,CF=10﹣6=4,根据勾股定理列方程求出EC 可得点E的坐标.【解答】解:∵四边形A0CD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,¥∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10﹣6=4,设EC=x,则DE=EF=8﹣x,|在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故答案为:(10,3).~15.如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形,若斜边AB=a,则图中阴影部分的面积为a2.【考点】勾股定理.【分析】根据勾股定理可得AC2+BC2=AB2,然后判断出阴影部分的面积=2S△ABE,再利用等腰直角三角形的面积等于直角边的平方的一半计算即可得解.|【解答】解:∵△ABC是直角三角形,∴AC2+BC2=AB2,∵三个阴影部分三角形都是等腰直角三角形,=2וa•(a)=a2.∴阴影部分的面积=2S△ABE故答案为:a2.!16.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为18cm2.【考点】勾股定理的逆定理.【分析】首先设AB为3xcm,BC为4xcm,AC为5xcm,利用方程求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的,BP,BQ的长,利用三角形的面积公式计算求解.—【解答】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,解得x=3,;∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),=BP•BQ=×(9﹣3)×6=18(cm2).∴S△PBQ)故答案为:18.三、解答题(本大题共8小题,共72分,解答应写出计算过程)17.在Rt△ABC中,∠C=90°.(1)已知c=25,b=15,求a;>(2)已知a=,∠A=60°,求b、c.【考点】解直角三角形.【分析】(1)根据勾股定理即可直接求出a的值;(2)根据直角三角形的性质与勾股定理即可求出b、c的值.【解答】解:(1)根据勾股定理可得:】a==20;(2)∵△ABC为Rt△,∠A=60°,∴∠B=30°,∴c=2b,\根据勾股定理可得:a2+b2=c2,即6+b2=(2b)2,解得b=,则c=2.18.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;}(2)求AB的长;(3)判断△ABC的形状.【考点】勾股定理;勾股定理的逆定理.【分析】(1)在Rt△BCD中,根据勾股定理求出CD的长;^(2)在Rt△ACD中根据勾股定理求出AD的长,故可得出AB的长;(3)由勾股定理的逆定理即可得出结论.【解答】(1)在△BCD中,因为CD⊥AB,所以BD2+CD2=BC2.所以CD2=BC2﹣BD2=152﹣92=144.¥所以CD=12.(2)在△ACD中,因为CD⊥AB,所以CD2+AD2=AC2.所以AD2=AC2﹣CD2=202﹣122=256.所以AD=16.!所以AB=AD+BD=16+9=25.(3)因为BC2+AC2=152+202=625,AB2=252=625,所以AB2=BC2+AC2.所以△ABC是直角三角形.,19.如图,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC 的中点D重合,折痕为MN,求线段BN的长.【考点】翻折变换(折叠问题).【分析】如图,首先求出BD的长,根据勾股定理列出关于线段AN的方程,问题即可解决.【解答】解:如图,!∵点D为BC的中点,∴BD=CD=;由题意知:AN=DN(设为x),则BN=9﹣x;由勾股定理得::x2=(9﹣x)2+32,解得:x=5,∴BN=9﹣5=4,即BN的长为4.(20.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少【考点】勾股定理的应用.【分析】仔细分析该题,可画出草图,关键是水深、红莲移动的水平距离及红莲的高度构成一直角三角形,解此直角三角形即可|【解答】解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,∴h2+6h+9=h2+36,6h=27,.解得:h=.答:水深尺.21.如图,△ABC,△AED是两个大小一样的三角形,已知∠ADE=90°,AE=5,AD=4,连接EB,求DE和EB的长.,【考点】勾股定理.【分析】直接利用勾股定理得出DE的长,再利用全等三角形的性质结合勾股定理得出BE的长.【解答】解:∵∠ADE=90°,AE=5,AD=4,∴DE==3,(∵△ABC,△AED是两个大小一样的三角形,∴AB=AE=5,∴BD=1,∴BE===.【22.在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD,使△ABD为等腰直角三角形,求线段CD的长.【考点】勾股定理的逆定理;全等三角形的判定与性质.【分析】根据题意中的△ABD为等腰直角三角形,显然应分为三种情况:∠ABD=90°,∠BAD=90°,∠ADB=90°.然后巧妙构造辅助线,出现全等三角形和直角三角形,利用全等三角形的性质和勾股定理进行求解.【解答】解:∵AC=4,BC=2,AB=,∴AC2+BC2=AB2,-∴△ACB为直角三角形,∠ACB=90°.分三种情况:如图(1),过点D作DE⊥CB,垂足为点E.∵DE⊥CB(已知)∴∠BED=∠ACB=90°(垂直的定义),'∴∠CAB+∠CBA=90°(直角三角形两锐角互余),∵△ABD为等腰直角三角形(已知),∴AB=BD,∠ABD=90°(等腰直角三角形的定义),∴∠CBA+∠DBE=90°(平角的定义),∴∠CAB=∠EBD(同角的余角相等),在△ACB与△BED中,∵∠ACB=∠BED,∠CAB=∠EBD,AB=BD(已证),∴△ACB≌△BED(AAS),∴BE=AC=4,DE=CB=2(全等三角形对应边相等),∴CE=6(等量代换)根据勾股定理得:CD=2;如图(2),过点D作DE⊥CA,垂足为点E.∵BC⊥CA(已知)∴∠AED=∠ACB=90°(垂直的定义)∴∠EAD+∠EDA=90°(直角三角形两锐角互余)∵△ABD为等腰直角三角形(已知)∴AB=AD,∠BAD=90°(等腰直角三角形的定义)∴∠CAB+∠DAE=90°(平角的定义)∴∠BAC=∠ADE(同角的余角相等)在△ACB与△DEA中,∵∠ACB=∠DEA(已证)∠CAB=∠EDA(已证)AB=DA(已证)∴△ACB≌△DEA(AAS)∴DE=AC=4,AE=BC=2(全等三角形对应边相等)∴CE=6(等量代换)根据勾股定理得:CD=2;如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.∵∠C=90°,∴∠CAB+∠CBA=90°,∵∠DAB+∠DBA=90°,∴∠EBD+∠DAF=90°,∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,∴∠DBE=∠ADF,∵∠BED=∠AFD=90°,DB=AD,∴△AFD≌△DEB,则ED=AF,由∠ACB=∠CED=∠AFE=90°,则四边形CEFA是矩形,故CE=AF,EF=AC=4,设DF=x,则BE=x,故EC=2+x,AF=DE=EF﹣DF=4﹣x,则2+x=4﹣x,解得:x=1,故EC=DE=3,则CD=3.23.在△ABC中,a=m2﹣n2,b=2mn,c=m2+n2,其中m、n都是正整数;且m >n,试判断△ABC是否为直角三角形【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行判断即可.【解答】解:∵a=m2﹣n2,b=2mn,c=m2+n2,∴a2+b2=(m2﹣n2)2+4m2n2=m4+n4﹣2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.24.长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.(1)求BC长;(2)求阴影部分的面积.【考点】坐标与图形变化-旋转;勾股定理的应用;矩形的性质;旋转的性质.【分析】(1)先根据旋转的性质以及矩形的性质,求得BC=AO=O′A′,AB=CO=CO'=5,∠B=∠O'=90°,BD=1,再连接CD,设BC=x,根据勾股定理得出BC2+BD2=CD2=CO'2+DO'2,据此列出方程求解即可;(2)根据阴影部分的面积=△BCD面积+△O'CD面积,进行计算即可.【解答】解:(1)∵长方形OABC绕顶点C(0,5)逆时针方向旋转得到矩形CO′A′B′∴BC=AO=O′A′,AB=CO=CO'=5,∠B=∠O'=90°,∵AD=4,AB=5,∴BD=5﹣4=1,设BC=x,则DO'=O'A'﹣A'D=x﹣2,连接CD,则BC2+BD2=CD2=CO'2+DO'2即x2+12=52+(x﹣2)2解得:x=7,∴BC=7;(2)∵BC=7,BD=1,CO'=5,DO'=7﹣2=5,∠B=∠O'=90°,∴阴影部分的面积=△BCD面积+△O'CD面积=×7×1+×5×5=16.。
八年级数学下册《第十七章 勾股定理》 单元测试卷及答案(人教版)
八年级数学下册《第十七章勾股定理》单元测试卷及答案(人教版)一、单选题1.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52 =(x+1)2B.x2+52 =(x﹣1)2C.x2+(x+1)2 =102D.x2+(x﹣1)2=522.如图,Rt△ABC中,∠BAC=90°,AB=AC,D、E为BC边上两点,∠DAE=45°,过A 点作AF⊥AE,且AF=AE,连接DF、BF.下列结论:①△ABF≌△ACE,②AD平分∠EDF;③若BD=4,CE=3,则AB=6√2;④若AB=BE,S△ABD=12S△ADE,其中正确的个数有()A.1个B.2个C.3个D.4个3.在△ABC中,AB=10,AC=17,BC边上的高AD=8,则△ABC的面积为()A.72B.84C.36或84D.72或844.如图,在△ABC中,△C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,BE=5,则AC的长为()A.8B.7C.6D.55.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为8m,则BB′的长为()A.1m B.2m C.3m D.4m6.有一个边长为1的正方形,以它的一条边为斜边,向外作一个直角三角形,再分别以直角三角形的两条直角边为边,向外各作一个正方形,称为第一次“生长”(如图1);再分别以这两个正方形的边为斜边,向外各自作一个直角三角形,然后分别以这两个直角三角形的直角边为边,向外各作一个正方形,称为第二次“生长”(如图2)……如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2021次后形成的图形中所有的正方形的面积和是()A.1B.2020C.2021D.20227.如图,直线l上有三个正方形A、B、C,若正方形A、C的边长分别为4和6,则正方形B的面积为()A.26B.49C.52D.648.要焊接一个如图所示的钢架,需要的钢材长度是()A.(3√5+7)m B.(5√3+7)m C.(7√5+3)m D.(3√7+5)m9.如图,某超市为了吸引顾客,在超市门口离地高4.5m的墙上,装有一个由传感器控制的门铃A,如①图所示,人只要移至该门铃5m及5m以内时,门铃就会自动发出语音“欢迎光临”.如②图所示,一个身高1.5m的学生走到D处,门铃恰好自动响起,则BD的长为()A.3米B.4米C.5米D.7米10.如图,在数轴上点B表示的数为1,在点B的右侧作一个边长为1的正方形BACD,将对角线BC 绕点B逆时针转动,使对角线的另一端落在数轴负半轴的点M处,则点M表示的数是()A.√2B.√2+1C.1﹣√2D.﹣√2二、填空题11.如图,在△ABC中,∠A=90°,AB=AC,点D为AB中点,过点B作BE⊥CD交CD的延长线于点E,BE=2,CD=5,则DE=.12.如图,在Rt△ABC中,AB=BC=4,以AB为边作等边三角形ABD,使点D与点C在AB同侧,连接CD,则CD=.13.如图,已知Rt△ABC,△C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是。
八年级初二数学 勾股定理测试试题及答案
一、选择题1.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°2.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCD S S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的13;⑤M 为BC 的中点;其中正确的有( )A .2个B .3个C .4个D .5个3.已知:△ABC 中,BD 、CE 分别是AC 、AB 边上的高,BQ =AC ,点F 在CE 的延长线上,CF =AB ,下列结论错误的是( ).A .AF ⊥AQB .AF=AQC .AF=ADD .F BAQ ∠=∠4.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A.47 B.62 C.79 D.985.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是()A.4 B.5 C.7 D.66.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=46,则PE+PF的长是()A.46B.6 C.42D.267.如图是一块长、宽、高分别为6cm、4cm、3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的表面到长方体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是()A.cm B.cm C.cm D.9cm8.如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,D为BC边上的一点,现将直角边AC沿直线AD折叠,使AC落在斜边AB上,且与AE重合,则CD的长为()A .2cmB .2.5cmC .3cmD .4cm 9.下列各组线段能构成直角三角形的一组是( )A .30,40,60B .7,12,13C .6,8,10D .3,4,610.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( ) A .6B .8C .10D .12二、填空题11.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.12.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________13.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________. 14.如图,已知△DBC 是等腰直角三角形,BE 与CD 交于点O ,∠BDC=∠BEC=90°,BF=CF ,若BC=8,OD=2,则OF=______.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.16.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,AD=4,AB=3,则CD=_________17.如图,长方形ABCD 中,∠A =∠ABC =∠BCD =∠D =90°,AB =CD =6,AD =BC =10,点E 为射线AD 上的一个动点,若△ABE 与△A ′BE 关于直线BE 对称,当△A ′BC 为直角三角形时,AE 的长为______.18.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.19.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间. 22.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒; ②求AB 的长.23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .26.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求mn的值.27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.28.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).29.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.(1)如图1,若m =8,求AB 的长;(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE =2DE ; (3)如图3,若m =43,在射线AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解. 【详解】 连接AB∵22125AM =+=22125AB =+=221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形 ∴45AMB ∠=︒ 故选C . 【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.2.C解析:C 【分析】过M 作ME AD ⊥于E ,得出12MDE CDA ∠=∠,12MAD BAD ∠=∠,求出1()902MDA MAD CDA BAD ∠+∠=∠+∠=︒,根据三角形内角和定理求出AMD ∠,即可判断①;根据角平分线性质求出MC ME =,ME MB =,即可判断④和⑤;由勾股定理求出DC DE =,AB AE =,即可判断③;根据SSS 证DEM DCM ∆≅∆,推出DEM DCM S S =三角形三角形,同理得出AEM ABM S S =三角形三角形,即可判断②. 【详解】解:过M 作ME AD ⊥于E ,DAB ∠与ADC ∠的平分线相交于BC 边上的M 点,12MDE CDA ∴∠=∠,12MAD BAD ∠=∠,//DC AB ,180CDA BAD ∴∠+∠=︒,11()1809022MDA MAD CDA BAD ∴∠+∠=∠+∠=⨯︒=︒,1809090AMD ∴∠=︒-︒=︒,故①正确;DM 平分CDE ∠,90()C MC DC ∠=︒⊥,ME DA ⊥,MC ME ,同理ME MB =,12MC MB ME BC ∴===,故⑤正确; M ∴到AD 的距离等于BC 的一半,故④错误;由勾股定理得:222DC MD MC =-,222DE MD ME =-,又ME MC =,MD MD =, DC DE ∴=, 同理AB AE =,AD AE DE AB DC ∴=+=+,故③正确; 在DEM ∆和DCM ∆中DE DC DM DM ME MC =⎧⎪=⎨⎪=⎩,()DEM DCM SSS ∴∆≅∆,DEM DCM S S ∴=三角形三角形 同理AEM ABM S S =三角形三角形, 12AMD ABCD S S ∴=三角形梯形,故②正确;故选:C .【点睛】本题考查了角平分线性质,垂直定义,直角梯形,勾股定理,全等三角形的性质和判定等知识点的应用,主要考查学生运用定理进行推理的能力.3.C解析:C根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解. 4.C解析:C依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+……2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.5.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】 解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 6.C解析:C【解析】【分析】根据三角形的面积判断出PE+PF 的长等于AC 的长,这样就变成了求AC 的长;在Rt △ACD 和Rt △ABC 中,利用勾股定理表示出AC ,解方程就可以得到AD 的长,再利用勾股定理就可以求出AC 的长,也就是PE+PF 的长.【详解】∵△DCB 为等腰三角形,PE ⊥AB ,PF ⊥CD ,AC ⊥BD ,∴S △BCD =12BD•PE+12CD•PF=12BD•AC ,∴PE+PF=AC,设AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=(46)2-(4x)2,∴x=2,∴AC=42,∴PE+PF=42.故选C【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.7.C解析:C【解析】【分析】本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解.【详解】解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长==cm;如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长==cm;如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.所以要爬行的最短路径的长cm.故选C.【点睛】本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.8.C解析:C【分析】首先由勾股定理求得AB=10,然后由翻折的性质求得BE=4,设DC=x ,则BD=8x -,在△BDE 中,利用勾股定理列方程求解即可.【详解】在Rt △ABC 中,由勾股定理可知:10==,由折叠的性质可知:DC=DE ,AC=AE=6,∠DEA=∠C=90°,∴BE=AB-AE=10-6=4,∠DEB=90°,设DC=x ,则BD=8-x ,DE=x ,在Rt △BED 中,由勾股定理得:BE 2+DE 2=BD 2,即42+x 2=(8-x)2,解得:x=3,∴CD=3.故选:C .【点睛】本题主要考查了勾股定理与折叠问题,熟练掌握翻折的性质和勾股定理是解决问题的关键.9.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.10.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和13当1312=;故这个三角形的第三条边可以是12.故选:D .【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.二、填空题11.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.12.53或203【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83∵DE AC⊥根据勾股定理可得DE=222CD CE-=由折叠的性质可得:DH=CD=103,CP=PH∴EH=DH-DE=4 3设CP=PH=x,则EP=CE-CP=83-x在Rt△PEH中,EP2+EH2=PH2即(83-x)2+(43)2=x2解得:x=5 3即此时CP=53;②当折叠后点C的对应点H在AC的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH∴EH=DH+DE=16 3设CP=PH=y,则EP= CP-CE =y-8 3在Rt△PEH中,EP2+EH2=PH2即(y-83)2+(163)2=y2解得:y=20 3即此时CP=203.综上所述:CP=53或203.故答案为:53或203. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.13.23或2【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】 在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4,∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:32【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.1410【分析】过点F 作FG ⊥BE ,连接OF 、EF ,先根据等腰直角三角形的性质得出DC 的值,再用勾股定理求出OE 的值,然后根据中位线定理得出FG 的的值,最后再根据勾股定理得出OF 的值即可.【详解】过点F 作FG ⊥BE ,连接OF 、EF ,如下图所示:∵DBC ∆是等腰直角三角形,且BF CF =,8BC = ∴422DC DB ===∵2OD =∴32OC DC OD =-= ∴2234OB BD DO +=设OE x =,∵∠BEC=90°则()2222OC OE BC OB OE -=-+ ∴33417OE = ∴22123417EC OC EO =-=∵BF CF =,FG ⊥BE ,∠BEC=90° ∴1634217FG EC == ∴2034BE BO OE =+=∴17342GO GE OE BE OE =-=-= ∴22=10OF GO GF -=【点睛】本题主要考查了等腰直角三角形的性质、相似三角形、中位线定理、勾股定理等,综合度比较高,准确作出辅助线是关键.15.4【分析】根据线段垂直平分线得出AE=EC ,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE 和EF ,即可求出FG ,再求出BF=FG 即可【详解】∵AC 的垂直平分线FG ,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴AE=3(负值舍去)即CE=3,同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+(3)2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.16.【解析】【分析】延长BC,AD交于E点,在直角三角形ABE和直角三角形CDE中,根据30°角所对的直角边等于斜边的一半和勾股定理即可解答.【详解】如图,延长AD、BC相交于E,∵∠A=60°,∠B=∠ADC=90°,∴∠E=30°∴AE=2AB,CE=2CD∵AB=3,AD=4,∴AE=6, DE=2设CD=x,则CE=2x,DE=x即x=2x=即CD=故答案为:【点睛】 本题考查了勾股定理的运用,含30°角所对的直角边是斜边的一半的性质,本题中构建直角△ABE 和直角△CDE ,是解题的关键.17.2或18【分析】分两种情况:点E 在AD 线段上,点E 为AD 延长线上的一点,进一步分析探讨得出答案即可.【详解】 解:①如图点E 在AD 线段上,△ABE 与△A ′B E 关于直线BE 对称,∴△A ′BE ≌△ABE,∴∠B A′E=∠A=90o ,AB=A ′B∠B A′C =90o ,∴E 、A',C 三点共线,在△ECD 与△CB A′中,{CD A BD BA C DEC ECB='∠=∠'∠=∠,∴△ECD ≌△CB A′,∴CE=BC=10,在RT △CB A′中,A′C=22BC BA -'=22106-=8,∴AE= A′E=CE - A′C=10-8=2;②如图点E 为AD 延长线上,由题意得:∠A"BC+∠A"CB=∠DCE+∠A"CB=90o∴∠A"BC=∠DCE,在△A"BC 与△D CE 中,"={""A CDECD A B A BC DCE∠∠=∠=∠∴△A"BC ≌△DCE,DE= A"C,在RT △ A"BC 中,∴AE=AD+DE=AD+ A"C=10+8=18;综上所知,AE=2或18.故答案为:2或18.【点睛】此题考查翻折的性质,三角形全等的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.18【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即EF=CD=5.点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.19.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.20.28+ 【分析】 依次求出在Rt △OAB 中,OA 1Rt △OA 1B 1中,OA 2OA 1)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】 ∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1OA ,在22Rt OA B ∆中OA 2=2OA 1=(2)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6的周长是=8+2×(2)6=8+2×18=28+.故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)2)83;(3)5.5秒或6秒或6.6秒 【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,)PQ cm ==;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =; 即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E ,则68 4.8()10AB BC BE cm AC ⨯===3.6CE cm ∴==,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.22.(1)BC−AC =AD ;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB 上截取CE =CA ,连接DE ,证△ACD ≌△ECD 得DE =DA ,∠A =∠CED =60°,据此∠CED =2∠CBA ,结合∠CED =∠CBA +∠BDE 得出∠CBA =∠BDE ,即可得DE =BE ,进而得出答案;(2)①在AB 上截取AM =AD ,连接CM ,先证△ADC ≌△AMC ,得到∠D =∠AMC ,CD =CM ,结合CD =BC 知CM =CB ,据此得∠B =∠CMB ,根据∠CMB +∠CMA =180°可得;②设BN =a ,过点C 作CN ⊥AB 于点N ,由CB =CM 知BN =MN =a ,CN 2=BC 2−BN 2=AC 2−AN 2,可得关于a 的方程,解之可得答案.【详解】解:(1)BC−AC =AD .理由如下:如图(a ),在CB 上截取CE =CA ,连接DE ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,又CD =CD ,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=, 解得:a =3,即BN =MN =3,则AB =8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.23.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE 即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD ,DE ,BE 之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD ,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD ≌△BCF②证明:连接EF ,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,FG=32BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+12 BF,∴EF2=(EB+12BF)2+3)2∴DE2=(EB+12AD)2+(32AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.作图见解析,32 5【分析】作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,连接AN,首先用等积法求出AH的长,易证△ACH≌△A'NH,可得A'N=AC=4,然后设NM=x,利用勾股定理建立方程求出NM的长,A'M的长即为AN+MN的最小值.【详解】如图,作A点关于BC的对称点A',A'A与BC交于点H,再作A'M⊥AB于点M,与BC交于点N,此时AN+MN最小,最小值为A'M的长.连接AN,在Rt△ABC中,AC=4,AB=8,∴2222AB AC=84=45++∵11AB AC=BC AH 22⋅⋅∴85 45∵CA⊥AB,A'M⊥AB,∴CA∥A'M∴∠C=∠A'NH,由对称的性质可得AH=A'H,∠AHC=∠A'HN=90°,AN=A'N在△ACH 和△A'NH 中,∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,∴△ACH ≌△A'NH (AAS )∴A'N=AC=4=AN ,设NM=x ,在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x在Rt △AA'M 中,AA'=2AH=165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654⎛⎫-+ ⎪ ⎪⎝⎭x ∴()2221654=16⎛⎫-+- ⎪ ⎪⎝⎭x x 解得125x = 此时AN MN +的最小值=A'M=A'N+NM=4+125=325 【点睛】本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.26.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()22222m m m n m n =++-22222222m n m m n =+-+-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.27.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为3.理由见解析.【分析】(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.【详解】(1)CF FH =证明:延长DF 交AB 于点G∵在ABC △中,90ACB ∠=︒,6AC BC ==,∴45A B ∠=∠=︒∵DF DE ⊥于点D ,且DE DF =,∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,∴135CEF FGH ∠=∠=︒,∵点D 是AC 的中点,∴132CD AD AC ===,∴CD DG = ∴CE FG =∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒∴DCF GFH ∠=∠∴CEF FGH ≌∴CF FH =;(2)依然成立理由:设AH ,DF 交于点G ,由题意可得出:DF=DE ,∴∠DFE=∠DEF=45°,∵AC=BC ,∴∠A=∠CBA=45°,∵DF ∥BC ,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D 为AC 的中点,DF ∥BC ,∴DG=12BC,DC=12AC , ∴DG=DC ,∴EC=GF ,∵∠DFC=∠FCB ,∴∠GFH=∠FCE ,在△FCE 和△HFG 中 CEF FGH EC GFECF GFH ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FCE ≌△HFG(ASA),∴HF=FC.由(1)可知ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==. ∴2233DE DF CF CD ==-=∴333CE DE DC =-=-∴点E 与点C 之间的距离为333-.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.28.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)222133k k k k ++++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG,△ABC都是等边三角形,∴AG=AD,AB=AC,∴∠GAD=∠BAC=60°,∴△GAB≌△DAC,∴BG=CD,∠ABG=∠C,∵CD=AE,∠C=∠BAE,∴BG=AE,∠ABG=∠BAE,∴BG∥AE,∴四边形AGBE是平行四边形,ⅱ)如图2中,作AH⊥BC于H.∵BH=CH=1 (1) 2k+∴1113 1(1),3(1) 2222DH k k AH BH k =-+=-==+∴222AH DH k k1AD=+=++∴四边形BGAE的周长=22k k1k+++,△ABC的周长=3(k+1),∴四边形AGBE与△ABC2221 k k k+++【点睛】本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.29.(1)AB=52)见解析;(3)CD+CF的最小值为7.【分析】(1)根据勾股定理可求AB的长;(2)过点D作DF⊥AO,根据等腰三角形的性质可得OF=EF,根据轴对称的性质等腰直角三角形的性质可得AF=DF,设OF=EF=x,AE=4﹣2x,根据勾股定理用参数x表示DE,CE的长,即可证CE2DE;(3)过点B作BM⊥OB,在BM上截取BM=AO,过点C作CN⊥BM,交MB的延长线于点N,根据锐角三角函数可得∠ABO=30°,根据轴对称的性质可得AC=AO=4,BO=BC。
八年级数学勾股定理30道必做题(含答案和解析)
八年级数学勾股定理30道必做题(含答案和解析)1、如图,四边形ABCD ,EFGH ,NHMC 都是正方形,边长分别为a ,b ,c. A ,B ,N ,E ,F 五点在同一直线上,则c = .(用含有a ,b 的代数式表示).答案:√a 2+b 2.解析:由三个正方形如图的摆放.∵四边形ABCD ,EFGH ,NHMC 都是正方形. ∴∠CNB +∠ENH =90°.又∵∠CNB +∠NCB =90°,∠ENH +∠EHN =90°. ∴∠CNB =∠EHN ,∠NCB =∠ENH. 在△CBN 和△NEH 中:{∠BNC =∠EHNNC =HN ∠NCB =∠HNE .∴△CBN ≌△NEH (ASA ). ∴HE =BN.在Rt △CBN 中,BC 2+BN 2=CN 2.又已知三个正方形的边长分别为a ,b ,c. 则有a 2+b 2=c 2. ∴c =√a 2+b 2.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理. 四边形——正方形——正方形的性质.2、在Rt △ABC 中,斜边长BC =3,AB 2+AC 2+BC 2的值为( ). A.9 B.18 C.6 D. 无法计算答案:B.解析:在Rt△ABC中,斜边长BC=3.BC2=AB2+AC2=9.∴AB2+AC2+BC2=9+9=18.考点:三角形——直角三角形——勾股定理.3、三角形三边长分别为① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.其中能构成直角三角形的有.答案:①②③④⑤⑥.解析:① 3,4,5;② 9,40,41;③ 5,12,13;④ 6,8,10;⑤ 7,24,25;⑥ 8,15,17.全都能构成直角三角形.考点:三角形——直角三角形——勾股数.4、已知点A(3,5),B(-1,1)那么线段AB的长度为().A.4B.3√2C.4√2D.5答案:C.解析:已知A(3,5)和B(-1,1),由两点间的距离公式可知AB=√(3+1)2+(5−1)2=4√2.考点:函数——平面直角坐标系——坐标与距离.5、等腰直角三角形的斜边为10,则腰长为,斜边上的高为.答案:1.5√2.2.5.解析:等腰三角形的三边关系为1∶1∶√2.因为等腰直角三角形的斜边为10,则腰长为5√2.斜边上的高,即为斜边的中线,为斜边的一半,长为5.考点:三角形——直角三角形——等腰直角三角形——勾股定理.6、若正方形的周长为40,则其对角线长为().A.100B.20√2C.10√2D.10答案:C.解析:正方形边长为10,根据勾股定理得对角线长为10√2.考点:三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.7、在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AC的长是().A.2B.√32C.√3D.√3+2答案:C.解析:略.考点:三角形——直角三角形——勾股定理.8、等边三角形的边长为4,则它的面积是.答案:4√3 .解析:等边三角形的面积=√34×42=4√3.考点:三角形——直角三角形——含30°角的直角三角形.9、已知一个直角三角形的两条直角边分别为3,4,则此三角形斜边是__________,斜边上的高为__________.A.5;125B.6;145C.6;125D.5;145答案:A.解析:略.考点:三角形——三角形基础——三角形面积及等积变换.直角三角形——勾股定理.10、直角三角形两直角边长分别为5和12,则它的斜边上的高为.答案:6013.解析:设斜边的长为c,斜边上的高为h.∵直角三角形的两直角边长分别为5和12.∴c=√52+122=13.∴5×12=13h,解得h=60.13考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.11、如图所示,小明同学在距离某建筑物6米的点A处测得条幅两端点B,C点的仰角分别为60°和30°,则条幅的高度BC为米(结果可以保留根号).答案:4√3.=2√3,BC=BD−CD=4√3.解析:依题可知,BC=6√3,CD=√3考点:三角形——直角三角形——含30°角的直角三角形.三角形——锐角三角函数——解直角三角形.12、一张直角三角形的纸片,按图所示折叠,使两个锐角的顶点A,B重合,若∠B=30°,AC=√3,则DC的长为.答案:1.解析:由题知∠DAE=∠B=30°.∴∠DAC=90°-∠B-∠DAE=30°.AC=1.∴在Rt△ADC中,DC=√33考点:三角形——直角三角形——含30°角的直角三角形.13、已知:如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,D是AB延长线上一点且∠CDB=45°.求DB与DC的长.答案:证明见解析.解析:过C作CE⊥AB于E.在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4.∴BC=2,∠ABC=60°.∴∠BCE=30°.∴BE=1,CE=√3.在Rt△CDE中,∠CED=90°,∠CDB=45°.∴∠ECD=45°.∴DE=CE=√3.∴CD=√CE2+DE2=√6.∴BD=√3-1.考点:三角形——直角三角形——含30°角的直角三角形——等腰直角三角形——勾股定理.14、如图,数轴上有两个Rt△OAB,Rt△OCD,OA,OC是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA,OC为半径画弧交x轴于E,F,则E,F分别对应的数是.答案:−√2,√5.解析:在Rt△OAB中,OA=√OB2+AB2=√2.∴OE=√2.∴点E对应的数为−√2.在Rt△OCD中,OC=√OD2+CD2=√5.∴OF=√5.∴点F对应的数为√5.考点:数——有理数——数轴.三角形——直角三角形——勾股定理.15、在△ABC中,三条边的长分别为AB=√5,BC=√10,AC=√13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格,其中每个小正方形的边长为1,再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样就不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上.(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为√2a,√13a,√17a(a>0).请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积填写在横线上.(3)若△ABC中有两边的长分别为√2a,√10a(a>0).且△ABC的面积为2a2,试运用构图法在图3的正方形网格(每个小正方形的边长为a)中画出所有符合题意的△ABC(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上..答案:(1)72a2.(2)52(3)4a或2√2a.解析:(1)△ABC的面积为72.(2)△ABC的面积为52a2.(3)图中三角形为符合题意的三角形.第三边的长度为4a或2√2a.考点:函数——平面直角坐标系——坐标与面积.三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.16、在Rt△ABC中,∠C=90°,若a+b=5,c=4,则S△ABC=.答案:94.解析:在Rt△ABC中,由勾股定理得,a2+b2=c2.又有(a+b)2=a2+b2+2ab,∴(a+b)2-c2=2ab.∴S△ABC=12ab=94.考点:三角形——直角三角形——勾股定理.17、已知Rt△ABC的周长为2+√6,其中斜边AB=2,则这个三角形的面积为.答案:12.解析:在Rt△ABC中,设BC=a,AC=b.由勾股定理得a2+b2=4.由题意得a +b +2=2+√6. ∴a +b =√6. ∴ab =(a+b)2−(a 2+b 2)2=6−42=1.∴s =12ab =12.考点:式——整式——完全平方公式.三角形——直角三角形——勾股定理.18、在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为 . 答案:132cm. 解析:略.考点:三角形——直角三角形——勾股定理.19、如图所示,在平静的湖面上,有一支红莲,高出水面1m ,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m ,求水深是多少?答案:水深为1.5米.解析:设水深AC 为x 米.则红莲的长是(x +1)米.在Rt △ABC 中,根据勾股定理得,AC 2+BC 2=AB 2. ∴(x +1)2=x 2+4. 解得x =1.5. 答:水深为1.5米.考点:三角形——直角三角形——勾股定理——勾股定理的应用.20、如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD =1,BD =√17,则BC 的长为 ..答案:178解析:在Rt△ABD中,由勾股定理可知,AD=1,BD=√17,AB=4.设BC=BD=x,AC=4-x..由勾股定理可知12+(4-x)2=x2,解得x=178考点:三角形——直角三角形——勾股定理.21、如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH等于.答案:6.解析:∵AB=10,EF=2.∴大正方形的面积是100,小正方形的面积是4.∴四个直角三角形的面积和为100-4=96.ab=96.设AE=a,DE=b,即4×12∴2ab=96,a2+b2=100.∴a+b=14.∵a-b=2.解得a=8,b=6.∴AE=8,DE=6.∴AH=8-2=6.考点:方程与不等式——二元一次方程组——解二元一次方程组.三角形——直角三角形——勾股定理.四边形——正方形——正方形的性质.22、在Rt△ABC中,AC=5,BC=12,则AB边的长是.答案:13或√119.解析:若AC=5,BC=12都是直角边,则AB=13.若BC=12是斜边,则AB=√122−52=√119.考点:三角形——直角三角形——勾股定理.23、等腰三角形的一边长为12,另一边长是10,则其面积为.答案:48或5√119.解析:作出底边上的高AD.当AB=AC=12,BC=10时,BD=5.由勾股定理得:AD=√AB2−BD2=√119.∴S=12BC×AD=12×10×√119=5√119.当AB=AC=10,BC=12时,BD=6.由勾股定理得:AD=√AB2−BD2=√102−62=8.∴S=12BC×AD=48.考点:三角形——直角三角形——勾股定理.24、在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2.答案:66或126.解析:如图所示,分如下两种情况:由勾股定理可得,B1H=B2H=5,CH=16.∴CB1=21,CB2=11.∴△ABC的面积为66或126cm2.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理.25、下列各组数中,不能构成直角三角形的是().A.3,4,5B.1,1,√2C.5,12,13D.4,6,8答案:D.解析:∵32+42=52,∴选项A正确.∵12+12=(√2)2,∴选项B正确.∵52+122=132,∴选项C正确.∵42+62≠82,∴选项D错误.考点:三角形——直角三角形——勾股定理的逆定理.26、在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,如果三边长满足b2-a2=c2,那么△ABC中互余的一对角是.答案:∠A和∠C.解析:∵b2-a2=c2.∴b2=a2+c2.∴△ABC为直角三角形,且∠B=90°.∴∠A+∠C=90°.考点:几何初步——角——余角和补角.三角形——直角三角形——勾股定理的逆定理.27、如图所示,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD.求证:△AEF 是直角三角形.答案:证明见解析.解析:如图所示,延长FE交AB的延长线于点G.∵∠C=∠GBE=90°,CE=BE,∠1=∠2.∴△CEF≌△BEG.∴EF=EG,CF=BG.设正方形ABCD的边长为a,则CF=14a,DF=34a.在Rt△ADF中,根据勾股定理,得AF2=AD2+DF2=a2+(34a)2=2516a2.∴AF=54a,BG=14a.∴AG=54a.∴AF=AG.∵EF=EG.∴AE⊥FG.∴∠AEF=90°.∴△AEF是直角三角形.考点:三角形——全等三角形——全等三角形的应用.三角形——等腰三角形——等腰三角形的性质.三角形——直角三角形——勾股定理——勾股定理的逆定理.28、如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.答案:四边形ABCD的面积为1+√5.解析:连接AC.∵∠ABC=90°,AB=1,BC=2.∴AC=√AB2+BC2=√5.在△ACD中,AC2+CD2=5+4=9=AD2.∴△ACD是直角三角形.∴S四边形ABCD=12AB×BC+12AC×CD=12×1×2+12×√5×2=1+√5.故四边形ABCD的面积为1+√5.考点:三角形——三角形基础——三角形面积及等积变换.三角形——直角三角形——勾股定理——勾股定理的逆定理.29、在△ABC中,点D为BC的中点,点M,N分别为AB,AC上的点,且MD⊥ND.(1)若∠A=90°,以线段BM,MN,CN为边能否构成一个三角形?若能,该三角形是锐角三角形,直角三角形或钝角三角形?(2)如果BM2+CN2=DM2+DN2,求证AD2=14(AB2+AC2).答案:(1)能,该三角形是直角三角形.(2)证明见解析.解析:(1)略.(2)延长ND至E,使DE=DN,连接EB,EM,MN.因为DE=DN,DB=DC,∠BDE=∠CDN,则△BDE≌△CDN.从而BE=CN,∠DBE=∠C.而DE=DN,∠MDN=90°,故ME=MN.因此DM2+DN2=MN2=ME2.即BM2+BE2=ME2,则∠MBE=90°.即∠MBD+∠DBE=90°.因为∠DBE=∠C,故∠MBD+∠C=90°.则∠BAC=90°.AD为Rt△ABC斜边BC上的中线.BC.故AD=12(AB2+AC2).由此可得AD2=14考点:三角形——全等三角形——全等三角形常用辅助线——倍长中线.三角形——全等三角形——全等三角形的性质——全等三角形的判定.三角形——直角三角形——勾股定理.30、阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP’C,连接PP’,得到两个特殊的三角形,从而将问题解决.(1)图1中∠APB的度数等于.(2)如图3,在正方形ABCD内有一点P,且PA=2√2,PB=1,PD=√17,则∠APB的度数等于,正方形的边长为.(3)如图,在正六边形ABCDEF内有一点,且PA=2,PB=1,PF=√13,则∠APB的度数等于,正六边形的边长为(并写出解答过程).答案:(1)150°.(2)1.135°.2.√13.(3)1.120°.2.√7.解析:(1)∵△ABC为正三角形,PA=P’A.∴△AP P’为正三角形.∴∠A P’P=60°,P’P=AP=3.∵P’C=PB=4,PC2=P’P2+P’C2.∴∠PP’C=90°.∴∠APB=∠AP’C=150°.(2)1.135°;2.√13.(3)图4中∠APB的度数等于120°,正六边形的边长为√7.将△APB绕点A逆时针旋转120°得到△A P’F,连接P’P.过点A作AN⊥P’P,过点A作AH⊥FP’于点H.∵△APB绕点A逆时针旋转120°得到△A P’F.∴∠PAP’=120°,P’A=PA=2,P’F=PB=1.∴∠AP’P=30°.在Rt△ANP’中,P’A=2AN=2.∴P’N=√3.∴PP’=2√3.在△FPP’中,PF=√13,PP’=2√3,P’F=2.∴PF2=P’F2+P’P2.∴∠FP’P=90°.∴∠APB=∠FP’A=∠FP’P+∠AP’P=120°.∴∠HP’A=60°.在Rt△HP’A中,AP’=2, ∠P’AH=30°.∴HP’=1.在Rt△HFA中,FA2=FH2+HA2.∴FA=√FH2+HA2=√7.考点:三角形——直角三角形——勾股定理——勾股定理的逆定理.几何变换——图形的旋转——旋转全等.。
勾股定理练习题(含答案)_初二数学_数学_初中教育_教育专区
勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D.222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k>1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为,斜边上的中线长为,则这个三角形周S d 长为( )(A (B2d +d -(C ) (D )2d +d +8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为()A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足则三角形的形状是()2(6)100a -=A :底与边不相等的等腰三角形 B :等边三角形 C :钝角三角形 D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___. 16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是 .19.一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?AE B4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?小汽车小汽车观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6.解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8.解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.卡祖玛咖,卡祖玛咖官网 lxMQovlLvRTh。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学 勾股定理测试题
一、选择题(每小题3分,共30分)
1. 下列各组中,不能构成直角三角形的是 ( ).
(A )9,12,15 (B )15,32,39 (C )16,30,32 (D )9,40,41 2. 如图1,直角三角形ABC 的周长为24,且AB :BC=5:3,则AC= ( ).
(A )6 (B )8 (C )10 (D )12
3. 已知:如图2,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 ( ).
(A )9 (B )3 (C )
49 (D )2
9 4. 如图3,在△ABC 中,AD ⊥BC 与D ,AB=17,BD=15,DC=6,则AC 的长为( ).
(A )11 (B )10 (C )9 (D )8
5. 若三角形三边长为a 、b 、c ,且满足等式ab c b a 2)(2
2
=-+,则此三角形是( ).
(A )锐角三角形 (B )钝角三角形 (C )等腰直角三角形 (D )直角三角形 6. 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).
(A )6 (B )8.5 (C )
1320 (D )13
60 7. 高为3,底边长为8的等腰三角形腰长为 ( ).
(A )3 (B )4 (C )5 (D )6
8. 一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再
沿边长爬行一周需 ( ). (A )6秒 (B )5秒 (C )4秒 (D )3秒
9. 我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个
大正方形(如图1所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2
)(b a + 的值为 ( ).
(A )49 (B )25 (C )13 (D )1
10. 如图5所示,在长方形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE=12,BF=16,则由点E 到
F 的最短距离为 ( ). (A )20 (B )24 (C )28 (D )32 二、填空题(每小题3分,共30分)
11. 写出两组直角三角形的三边长 .(要求都是勾股数) 12. 如图6(1)、(2)中,(1)正方形A 的面积为 . (2)斜边x= .
13. 如图7,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面
积分别记为1S ,2S ,则1S +2S 的值等于 .
14. 四根小木棒的长分别为5cm ,8cm ,12cm ,13cm ,任选三根组成三角形,其中有 个直角三角形.
15. 如图8,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿
直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 . 三、简答题(50分)
16.(8分)如图9,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD 的面积.
17.(8分)如图10,方格纸上每个小正方形的面积为1个单位.
(1)在方格纸上,以线段AB 为边画正方形并计算所画正方形的面积,解释你的计算方法.
(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?
18.(8分)如图11,这是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB=CD=20m ,点E 在CD 上,CE=2m ,一滑行爱好者从A 点到E 点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)
19.(8分)如图12,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20
秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?
20.(8分)如图13(1)所示为一个无盖的正方体纸盒,现将其展开成平面图,如图13(2)所示.已
知展开图中每个正方形的边长为1.
(1)求该展开图中可画出最长线段的长度,并求出这样的线段可画几条. (2)试比较立体图中∠ABC 与平
面展开图中
///C B A 的大小关系.
21.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.
(1)这个梯子底端离墙有多少米?
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?
,8.现在要将绿地扩充成等腰三22.(8分)有一块直角三角形的绿地,量得两直角边长分别为6m m
角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.
参考答案
一、选择题
1.C
2.B
3.C
4.B
5.D
6.D
7.C
8.C
9.A 10.A 二、填空题
11.略 12.(1)36,(2)13 13. 2π 14. 1 15. 4
15 三、简答题
16. 在Rt △ABC 中,AC=54322=+. 又因为222
13125
=+,即222CD AC AD =+. 所以∠DAC=90°.
所以1252
1
4321⨯⨯+⨯⨯=+=∆∆ABC Rt ACD Rt ABCD S S S 四边形=6+30=36. 17.略
18. 约22米.根据半圆柱的展开图可计算得:AE=22)4(182
2≈+π米. 19. 如图12,在Rt △ABC 中,根据勾股 定理可知,
BC=30004000500022=-(米). 3000÷20=150米/秒=540千米/小时. 所以飞机每小时飞行540千米. 20. (1)10;(2)4条
21. (1)7米;(2)不是.设滑动后梯子的底端到墙的距离为x 米,得方程, 2
2
2
)424(25--=x ,解得x=15,所以梯子向后滑动了8米.
22.在Rt ABC △中,9086ACB AC BC ∠===°,,由勾股定理有:10AB =,扩充部分为Rt ACD △,
扩充成等腰ABD △,应分以下三种情况:①如图1,当10AB AD ==时,可求6CD CB ==,得ABD △的周长为32m .②如图2,当10AB BD ==时,可求4CD =,由勾股
定理得:45AD =,得ABD △的周长为()
2045m +.③如图3,当AB 为底时,设AD BD x ==,
则6CD x =-,由勾股定理得:253x =,得ABD △的周长为80
m 3
.
A
D
C B
A
D B
C
A
D B
C
图1
图2 图3。