高中物理牛顿运动定律解题技巧讲解及练习题(含答案)

合集下载

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得:1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2工件与传送带共速需要时间为:011v vt a -= 解得:t 1=0.4s工件滑行位移大小为:220112v v x a -=解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta =解得:t 2=2s工件滑行位移大小为:23?1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高中物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)含解析

高中物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)含解析

高中物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s2.某智能分拣装置如图所示,A 为包裹箱,BC 为传送带.传送带保持静止,包裹P 以初速度v 0滑上传送带,当P 滑至传送带底端时,该包裹经系统扫描检测,发现不应由A 收纳,则被拦停在B 处,且系统启动传送带轮转动,将包裹送回C 处.已知v 0=3m/s ,包裹P 与传送带间的动摩擦因数μ=0.8,传送带与水平方向夹角θ=37º,传送带BC 长度L =10m ,重力加速度g =10m/s 2,sin37º=0.6,cos37º=0.8,求:(1)包裹P 沿传送带下滑过程中的加速度大小和方向; (2)包裹P 到达B 时的速度大小;(3)若传送带匀速转动速度v =2m/s ,包裹P 经多长时间从B 处由静止被送回到C 处; (4)若传送带从静止开始以加速度a 加速转动,请写出包裹P 送回C 处的速度v c 与a 的关系式,并画出v c 2-a 图象.【答案】(1)0.4m/s 2 方向:沿传送带向上(2)1m/s (3)7.5s(4)222200.4/80.4/ca a m s v a m s ⎧<=⎨≥⎩()() 如图所示:【解析】 【分析】先根据牛顿第二定律求出包裹的加速度,再由速度时间公式求包裹加速至速度等于传送带速度的时间,由位移公式求出匀加速的位移,再求匀速运动的时间,从而求得总时间,这是解决传送带时间问题的基本思路,最后对加速度a 进行讨论分析得到v c 2-a 的关系,从而画出图像。

高考物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。

某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。

重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。

【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.质量为2kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的图象如图所示取m/s 2,求:(1)物体与水平面间的动摩擦因数; (2)水平推力F 的大小;(3)s内物体运动位移的大小.【答案】(1)0.2;(2)5.6N;(3)56m。

【解析】【分析】【详解】(1)由题意可知,由v-t图像可知,物体在4~6s内加速度:物体在4~6s内受力如图所示根据牛顿第二定律有:联立解得:μ=0.2(2)由v-t图像可知:物体在0~4s内加速度:又由题意可知:物体在0~4s内受力如图所示根据牛顿第二定律有:代入数据得:F=5.6N(3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:【点睛】在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活处理.在这类问题时,加速度是联系运动和力的纽带、桥梁.3.如图1所示,在水平面上有一质量为m1=1kg的足够长的木板,其上叠放一质量为m2=2kg的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等・现给木块施加随时间t增大的水平拉力F=3t(N),重力加速度大小g=10m/s2(1)求木块和木板保持相对静止的时间t1;(2)t=10s时,两物体的加速度各为多大;(3)在如图2画出木块的加速度随时间変化的图象(取水平拉カF的方向为正方向,只要求画图,不要求写出理由及演算过程)【答案】(1)木块和木板保持相对静止的时间是4s;(2)t=10s时,两物体的加速度各为3m/s2,12m/s2;(3)【解析】【详解】(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有拉动,处于静止状态,当木块和木板一起运动时,对m1:f max﹣μ2(m1+m2)g=m1a max,f max=μ1m2g解得:a max=3m/s2对整体有:F max﹣μ2(m1+m2)g=(m1+m2)a max解得:F max=12N由F max=3t 得:t=4s(2)t=10s时,两物体已相对运动,则有:对m1:μ1m2g﹣μ2(m1+m2)g=m1a1解得:a1=3m/s2对m2:F﹣μ1m2g=m2a2 F=3t=30N解得:a2=12m/s2(3)图象过(1、0),(4.3),(10、12)图象如图所示.4.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.5.如图甲所示,质量为m 的A 放在足够高的平台上,平台表面光滑.质量也为m 的物块B 放在水平地面上,物块B 与劲度系数为k 的轻质弹簧相连,弹簧 与物块A 用绕过定滑轮的轻绳相连,轻绳刚好绷紧.现给物块A 施加水平向右的拉力F (未知),使物块A 做初速度为零的匀加速直线运动,加速度为a ,重力加速度为,g A B 、均可视为质点.(1)当物块B 刚好要离开地面时,拉力F 的大小及物块A 的速度大小分别为多少; (2)若将物块A 换成物块C ,拉力F 的方向与水平方向成037θ=角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块C 的质量应满足什么条件?(0sin 370.6,cos370.8==) 【答案】(1)2;amgF ma mg v k=+=(2)343C mg m g a ≥-【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时,设弹簧的伸长量为x ,物块A 的速度大小为v ,对物块B 受力分析有mg kx = ,得:mgx k =. 根据22v ax =解得:22amgv ax k==对物体A:F T ma -=; 对物体B:T=mg , 解得F=ma+mg ;(2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:1cos C F T m a θ-=,其中1T kx mg =≤;竖直方向:sin C F m g θ≤; 联立解得 343C mgm g a≥-6.近年来,随着AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动分拣传送装置的简化示意图,水平传送带右端与水平面相切,以v 0=2m/s 的恒定速率顺时针运行,传送带的长度为L =7.6m.机械手将质量为1kg 的包裹A 轻放在传送带的左端,经过4s 包裹A 离开传送带,与意外落在传送带右端质量为3kg 的包裹B 发生正碰,碰后包裹B 在水平面上滑行0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹A 、B 与水平面间的动摩擦因数均为0.1,取g =10m/s 2.求:(1)包裹A 与传送带间的动摩擦因数; (2)两包裹碰撞过程中损失的机械能; (3)包裹A 是否会到达分拣通道口.【答案】(1)μ1=0.5(2)△E =0.96J (3)包裹A 不会到达分拣通道口 【解析】 【详解】(1)假设包裹A 经过t 1时间速度达到v 0,由运动学知识有01012v t v t t L +-=() 包裹A 在传送带上加速度的大小为a 1,v 0=a 1t 1包裹A 的质量为m A ,与传输带间的动摩檫因数为μ1,由牛顿运动定律有:μ1m A g =m A a 1 解得:μ1=0.5(2)包裹A 离开传送带时速度为v 0,设第一次碰后包裹A 与包裹B 速度分别为v A 和v B , 由动量守恒定律有:m A v 0=m A v A +m B v B包裹B 在水平面上滑行过程,由动能定理有:-μ2m B gx =0-12m B v B 2 解得v A =-0.4m/s ,负号表示方向向左,大小为0.4m/s 两包裹碰撞时损失的机械能:△E =12m A v 02 -12m A v A 2-12m B v B 2 解得:△E =0.96J(3)第一次碰后包裹A 返回传送带,在传送带作用下向左运动x A 后速度减为零, 由动能定理可知-μ1m A gx A =0-12m A v A 2 解得x A =0.016m<L ,包裹A 在传送带上会再次向右运动. 设包裹A 再次离开传送带的速度为v A ′μ1m A gx A =12m A v A ′2 解得:v A ′ =0.4m/s设包裹A 再次离开传送带后在水平面上滑行的距离为x A-μ2m A gx A ′=0-12m A v A 2 解得 x A ′=0.08m x A ′=<0.32m包裹A 静止时与分拣通道口的距离为0.24m ,不会到达分拣通道口.7.如图所示,一个质量为3kg 的物体静止在光滑水平面上.现沿水平方向对物体施加30N 的拉力,(g 取10m/s 2).求:(1)物体运动时加速度的大小; (2)物体运动3s 时速度的大小;(3)物体从开始运动到位移为20m 时经历的时间. 【答案】(1)10m/s 2(2)30m/s (3)2s 【解析】 【详解】(1)根据牛顿第二定律得:2230m/s 10m/s 3F a m ===; (2)物体运动3s 时速度的大小为 :103m/s 30m/s v at ==⨯=;(3)由位移与时间关系:212x at =则:2120m 102t =⨯⨯,则:2s t =. 【点睛】本题是属性动力学中第一类问题,知道受力情况来确定运动情况,关键求解加速度,它是联系力与运动的纽带.8.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1m/s ,高度为56m .货物质量为2kg ,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10m/s 2.求(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力. 【答案】(1)2.5m ;(2)20.8N 【解析】 【详解】(1)无人机匀速上升的高度:h 2=vt 2 无人机匀减速上升的高度:h 3=2v t 3 无人机匀加速上升的高度:h 1=h -h 2-h 3 联立解得:h 1=2.5 m(2)货物匀加速上升过程:v 2=2ah 1货物匀加速上升的过程中,无人机对货物的作用力最大,由牛顿运动定律得: F -mg -0.02mg =ma 联立解得:F =20.8 N9.如图甲,圆圈内放大的集成块可以同时自动测量沿手机短边(x 轴)、长边(y 轴)和垂直面板方向(z 轴)的加速度,相当于在三个方向上各有一个如图乙所示的一维加速度计,图中固定在力传感器上的质量块的质量为 m .下面仅研究 x 轴处于水平方向和 y 轴处于竖直方向的加速度情况.(1)沿 x 轴方向,若用 F 表示力传感器垂直接触面对质量块的作用力,取+x 轴方向为加速度正方向, 导出手机在水平方向的加速度 x a 的表达式;(2)沿 y 轴方向,若用 F 表示力传感器垂直接触面对质量块的作用力,取+y 轴方向为加速度正方向, 导出手机在竖直方向的加速度 y a 的表达式;(3)当手机由竖屏变横屏时,为让手机感知到这种变化,需要通过电信号分别将(1)和(2)中导出的 加速度进行输出,但应统一输出项 a 出,请分别写出水平和竖直方向上输出项 a 出的表达式;(4)当手机由竖屏变横屏时,显示的视频画面会随之由窄变宽,请解释其中的原理.【答案】(1)x F a m =(2)y F mg a m -=(3)=x x F a a m =出=y y F a a g m=+出(4)当手机竖屏播放视频时,=0x x F a a m ==出 、 =y y Fa a g g m出=+=将手机转为横屏时,加速度计测得水平、竖直两个方向加速度的值发生交换; 智能手机据此做出判断, 将视频画面由窄变宽. 【解析】 【分析】 【详解】(1)质量块在+x 轴方向只受力传感器垂直接触面对它的作用力 F ,由牛顿第二定律得:x Fa m=(2)质量块在+y 轴方向受重力(mg )、力传感器垂直接触面对它的作用力 F 两个力的作用,由牛顿第二定律得:y F mga m-=(3)应统一设置水平和竖直方向上通过力传感器电信号输出的加速度的表达式为:a 出 在水平方向的加速度的输出表达式:=x x Fa a m=出 在竖直方向的加速度的输出表达式:=y y Fa a g m=+出 (4)当手机竖屏播放视频时,=0x x F a a m ==出 、 =y y Fa a g g m出=+=将手机转为横屏时,加速度计测得水平、竖直两个方向加速度的值发生交换; 智能手机据此做出判断, 将视频画面由窄变宽.10.如图所示,质量1m kg =的小球套在细斜杆上,斜杆与水平方向成30α=o 角,球与杆之间的滑动摩擦因数3μ=,球在竖直向上的拉力20F N =作用下沿杆向上滑动.(210/g m s =)求:(1)求球对杆的压力大小和方向;(2)小球的加速度多大;(3)要使球以相同的加速度沿杆向下加速运动,F应变为多大.2.5m/s(3) 0N 【答案】(1)53N方向垂直于杆向上(2)2【解析】(1)小球受力如图所示:建立图示坐标,沿y方向,有:(F−mg)cos30∘−FN=0解得:FN=53N根据牛顿第三定律,球对杆的压力大小为3N,方向垂直于杆向上.(2)沿x方向由牛顿第二定律得(F−mg)sin30∘−f=ma而f=μFN解得:a=2.5m/s2(3)沿y方向,有:(mg −F)cos30∘−FN=0沿x方向由牛顿第二定律得(mg −F)sin30∘−f=ma而f=μFN解得:F=0N。

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.一长木板置于粗糙水平地面上,木板左端放置一小物块,在木板右方有一墙壁,木板右端与墙壁的距离为4.5m ,如图(a )所示.0t =时刻开始,小物块与木板一起以共同速度向右运动,直至1t s =时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s 时间内小物块的v t -图线如图(b )所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10m/s 2.求(1)木板与地面间的动摩擦因数1μ及小物块与木板间的动摩擦因数2μ; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【答案】(1)10.1μ=20.4μ=(2)6m (3)6.5m 【解析】(1)根据图像可以判定碰撞前木块与木板共同速度为v 4m/s = 碰撞后木板速度水平向左,大小也是v 4m/s =木块受到滑动摩擦力而向右做匀减速,根据牛顿第二定律有24/0/1m s m sg sμ-=解得20.4μ=木板与墙壁碰撞前,匀减速运动时间1t s =,位移 4.5x m =,末速度v 4m/s = 其逆运动则为匀加速直线运动可得212x vt at =+ 带入可得21/a m s =木块和木板整体受力分析,滑动摩擦力提供合外力,即1g a μ= 可得10.1μ=(2)碰撞后,木板向左匀减速,依据牛顿第二定律有121()M m g mg Ma μμ++= 可得214/3a m s =对滑块,则有加速度224/a m s =滑块速度先减小到0,此时碰后时间为11t s = 此时,木板向左的位移为2111111023x vt a t m =-=末速度18/3v m s =滑块向右位移214/022m s x t m +== 此后,木块开始向左加速,加速度仍为224/a m s =木块继续减速,加速度仍为214/3a m s =假设又经历2t 二者速度相等,则有22112a t v a t =- 解得20.5t s =此过程,木板位移2312121726x v t a t m =-=末速度31122/v v a t m s =-= 滑块位移24221122x a t m == 此后木块和木板一起匀减速.二者的相对位移最大为13246x x x x x m ∆=++-= 滑块始终没有离开木板,所以木板最小的长度为6m(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度211/a g m s μ==位移23522v x m a==所以木板右端离墙壁最远的距离为135 6.5x x x m ++= 【考点定位】牛顿运动定律【名师点睛】分阶段分析,环环相扣,前一阶段的末状态即后一阶段的初始状态,认真沉着,不急不躁2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小; (2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+ 解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.3.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求: (1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J 【解析】 【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得:1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2工件与传送带共速需要时间为:011v vt a -= 解得:t 1=0.4s工件滑行位移大小为:220112v v x a -=解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22vt a =解得:t 2=2s工件滑行位移大小为:23?1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)含解析

高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)含解析

高考物理牛顿运动定律的应用解题技巧(超强)及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

高考物理牛顿运动定律解题技巧分析及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧分析及练习题(含答案)及解析

高考物理牛顿运动定律解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m,某时刻另一质量m=0.1kg的小滑块(可视为质点)以v0=2m/s的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。

已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m/s2,小滑块始终未脱离长木板。

求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。

【答案】(1)1.65m (2)0.928m【解析】【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.质量m=2kg的物块自斜面底端A以初速度v0=16m/s沿足够长的固定斜面向上滑行,经时间t=2s速度减为零.已知斜面的倾角θ=37°,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.试求:(1)物块上滑过程中加速度大小;(2)物块滑动过程摩擦力大小; (3)物块下滑所用时间.【答案】(1)8m/s 2;(2)4N ;(3)s【解析】 【详解】(1)上滑时,加速度大小(2)上滑时,由牛顿第二定律,得:解得(3)位移下滑时,由牛顿第二定律,得解得 由,解得=s3.我国科技已经开启“人工智能”时代,“人工智能”已经走进千家万户.某天,东东呼叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,东东操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在加速、匀速、减速过程中对货物的作用力F 1、F 2和F 3大小分别为20.8N 、20.4N 和18.4N ,货物受到的阻力恒为其重力的0.02倍.g 取10m/s 2.计算: (1)货物的质量m ;(2)货物上升过程中的最大动能E km 及东东家阳台距地面的高度h . 【答案】(1) m =2kg (2)2112km E mv J == h =56m 【解析】 【分析】 【详解】(1)在货物匀速上升的过程中 由平衡条件得2F mg f =+ 其中0.02f mg = 解得2kg m =(2)设整个过程中的最大速度为v ,在货物匀减速运动阶段由牛顿运动定律得33–mg f F ma += 由运动学公式得330v a t =- 解得1m v s = 最大动能211J 2m k E mv == 减速阶段的位移3310.5m 2x vt == 匀速阶段的位移2253m x vt ==加速阶段,由牛顿运动定律得11––F mg f ma =,由运动学公式得2112a x v =,解得1 2.5m x =阳台距地面的高度12356m h x x x =++=4.现有甲、乙两汽车正沿同一平直马路同向匀速行驶,甲车在前,乙车在后,它们行驶的速度均为10m/s .当两车快要到一十字路口时,甲车司机看到绿灯已转换成了黄灯,于是紧急刹车(反应时间忽略不计),乙车司机为了避免与甲车相撞也紧急刹车,但乙车司机反应较慢(反应时间为0.5s ).已知甲车紧急刹车时制动力为车重的0.4倍,乙车紧急刹车时制动力为车重的0.5倍,g 取10m/s 2.(1)若甲车司机看到黄灯时车头距警戒线15m ,他采取上述措施能否避免闯警戒线? (2)为保证两车在紧急刹车过程中不相撞,甲、乙两车行驶过程中至少应保持多大距离?【答案】(1)见解析(2)2.5m 【解析】 【分析】(1)根据甲车刹车时的制动力求出加速度,再根据位移时间关系求出刹车时的位移,从而比较判定能否避免闯红灯;(2)根据追及相遇条件,由位移关系分析安全距离的大小. 【详解】(1)甲车紧急刹车的加速度为210.44/a g m s ==甲车停下来所需时间0112.5v t s a == 甲滑行距离 20112.52v x m a == 由于12.5 m <15 m ,所以甲车能避免闯红灯;(2)乙车紧急刹车的加速度大小为:220.55/a g m s ==设甲、乙两车行驶过程中至少应保持距离0x ,在乙车刹车2t 时刻两车速度相等,0120022()v a t t v a t -+=-解得2 2.0t s =此过程中乙的位移: 220002121152x v t v t a t m =+-= 甲的位移:210021021()()12.52x v t t a t t m =+-+= 所以两车安全距离至少为:012 2.5x x x m =-= 【点睛】解决本题的关键利用牛顿第二定律求出加速度,再根据运动学公式进行求解.注意速度大者减速追速度小者,判断能否撞上,应判断速度相等时能否撞上,不能根据两者停下来后比较两者的位移去判断.5.水平面上固定着倾角θ=37°的斜面,将质量m=lkg 的物块A 从斜面上无初速度释放,其加速度a=3m/s 2。

高中物理牛顿运动定律解题技巧讲解及练习题(含答案)

高中物理牛顿运动定律解题技巧讲解及练习题(含答案)

高中物理牛顿运动定律解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。

已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。

求:(1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。

【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】(1)设释放后,滑块会相对于平板向下滑动,对滑块m :由牛顿第二定律有:011sin 37mg f ma -=其中01cos37N F mg =,111N f F μ= 解得:00211sin 37cos374/a g g m s μ=-=对薄平板M ,由牛顿第二定律有:0122sin 37Mg f f Ma +-= 其中002cos37cos37N F mg Mg =+,222N f F μ=解得:221m/s a =12a a >,假设成立,即滑块会相对于平板向下滑动。

设滑块滑离时间为t ,由运动学公式,有:21112x a t =,22212x a t =,12x x L -= 解得:1s t =2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.如图1所示,在水平面上有一质量为m1=1kg的足够长的木板,其上叠放一质量为m2=2kg的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等・现给木块施加随时间t增大的水平拉力F=3t(N),重力加速度大小g=10m/s2(1)求木块和木板保持相对静止的时间t1;(2)t=10s时,两物体的加速度各为多大;(3)在如图2画出木块的加速度随时间変化的图象(取水平拉カF的方向为正方向,只要求画图,不要求写出理由及演算过程)【答案】(1)木块和木板保持相对静止的时间是4s;(2)t=10s时,两物体的加速度各为3m/s2,12m/s2;(3)【解析】【详解】(1)当F<μ2(m1+m2)g=3N时,木块和木板都没有拉动,处于静止状态,当木块和木板一起运动时,对m1:f max﹣μ2(m1+m2)g=m1a max,f max=μ1m2g解得:a max=3m/s2对整体有:F max﹣μ2(m1+m2)g=(m1+m2)a max解得:F max=12N由F max=3t 得:t=4s(2)t=10s时,两物体已相对运动,则有:对m1:μ1m2g﹣μ2(m1+m2)g=m1a1解得:a1=3m/s2对m2:F﹣μ1m2g=m2a2 F=3t=30N解得:a 2=12m/s 2(3)图象过(1、0),(4.3),(10、12) 图象如图所示.4.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得23t =故经过时间12310.91t t t s +=+=≈ 物块滑落.5.如图所示,一个质量为3kg 的物体静止在光滑水平面上.现沿水平方向对物体施加30N 的拉力,(g 取10m/s 2).求:(1)物体运动时加速度的大小; (2)物体运动3s 时速度的大小;(3)物体从开始运动到位移为20m 时经历的时间. 【答案】(1)10m/s 2(2)30m/s (3)2s 【解析】 【详解】(1)根据牛顿第二定律得:2230m/s 10m/s 3F a m ===; (2)物体运动3s 时速度的大小为 :103m/s 30m/s v at ==⨯=;(3)由位移与时间关系:212x at =则:2120m 102t =⨯⨯,则:2s t =. 【点睛】本题是属性动力学中第一类问题,知道受力情况来确定运动情况,关键求解加速度,它是联系力与运动的纽带.6.如图是利用传送带装运煤块的示意图.其中,传送带的从动轮与主动轮圆心之间的距离为3s m =,传送带与水平方向间的夹角37θ=o ,煤块与传送带间的动摩擦因数0.8μ=,传送带的主动轮和从动轮半径相等,主动轮轴顶端与运煤车底板间的竖直高度1.8H m =,与运煤车车箱中心的水平距离0.6.x m =现在传送带底端由静止释放一煤块(可视为质点).煤块恰好在轮的最高点水平抛出并落在车箱中心,取210/g m s =,sin370.6=o ,cos370.8=o ,求:(1)主动轮的半径; (2)传送带匀速运动的速度;(3)煤块在传送带上直线部分运动的时间.【答案】(1)0.1m (2)1m/s ;(3)4.25s 【解析】 【分析】(1)要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零,根据平抛运动的规律求出离开传送带最高点的速度,结合牛顿第二定律求出半径的大小. (2)根据牛顿第二定律,结合运动学公式确定传送带的速度.(3)煤块在传送带经历了匀加速运动和匀速运动,根据运动学公式分别求出两段时间,从而得出煤块在传送带上直线部分运动的时间. 【详解】(1)由平抛运动的公式,得x vt = ,21H gt 2= 代入数据解得v =1m/s要使煤块在轮的最高点做平抛运动,则煤块到达轮的最高点时对轮的压力为零, 由牛顿第二定律,得2v mg m R=,代入数据得R =0.1m (2)由牛顿第二定律得mgcos mgsin ma μθθ=﹣ ,代入数据解得a =0.4m/s 2由212v s a=得s 1=1.25m <s ,即煤块到达顶端之前已与传送带取得共同速度,故传送带的速度为1m/s .(3)由v=at 1解得煤块加速运动的时间t 1=2.5s 煤块匀速运动的位移为s 2=s ﹣s 1=1.75m ,可求得煤块匀速运动的时间t 2=1.75s煤块在传送带上直线部分运动的时间t =t 1+t 2代入数据解得t =4.25s7.如图所示,水平传送带长L=5m ,以速度v=2m/s 沿图示方向匀速运动现将一质量为1kg 的小物块轻轻地放上传送带的左端,已知小物块与传送带间的动摩擦因数为μ=0.2,g=10m/s 2。

高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)

高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)

高考物理牛顿运动定律的应用解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少?【答案】(1)5 N (2)v A’=2m/s v B’=8m/s【解析】【分析】【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a对木板和B :μmg =(m +M )a解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ;(2)物块的加速度大小为:24A F mg a m s m μ-==∕ 木板和B 的加速度大小为:B mga M m =+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L 即221122A B a t a t L -= 解之得:t =2 sv A =a A t=8m/sv B =a B t=2m/s AB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B ' 机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s2.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求:(1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m【解析】【分析】【详解】设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2物体2:T +μmg = ma 2物体3:mg –T = ma 3且a 2= a 3 由以上两式可得:22g g a μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v t x ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速T =2m a mg —T =ma 即mg =3m a 得3g a = 对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2物体2:T —μmg = ma 4物体3:mg –T = ma 5且a 4= a 5 得:42g g a μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.3.在一个水平面上建立x 轴,在过原点O 垂直于x 轴的平面的右侧空间有一个匀强电场,场强大小E=6.0×105 N/C ,方向与x 轴正方向相同,在原点O 处放一个质量m=0.01 kg带负电荷的绝缘物块,其带电荷量q = -5×10-8 C .物块与水平面间的动摩擦因数μ=0.2,给物块一个沿x 轴正方向的初速度v 0=2 m/s.如图所示.试求:(1)物块沿x 轴正方向运动的加速度;(2)物块沿x 轴正方向运动的最远距离;(3)物体运动的总时间为多长?【答案】(1)5 m/s 2 (2)0.4 m (3)1.74 s【解析】【分析】带负电的物块以初速度v 0沿x 轴正方向进入电场中,受到向左的电场力和滑动摩擦力作用,做匀减速运动,当速度为零时运动到最远处,根据动能定理列式求解;分三段进行研究:在电场中物块向右匀减速运动,向左匀加速运动,离开电场后匀减速运动.根据运动学公式和牛顿第二定律结合列式,求出各段时间,即可得到总时间.【详解】(1)由牛顿第二定律可得mg Eq ma μ+= ,得25m/s a =(2)物块进入电场向右运动的过程,根据动能定理得:()210102mg Eq s mv μ-+=-. 代入数据,得:s 1=0.4m(3)物块先向右作匀减速直线运动,根据:00111••22t v v v s t t +==,得:t 1=0.4s接着物块向左作匀加速直线运动:221m/s qE mg a m =μ-=. 根据:212212s a t = 得220.2t s = 物块离开电场后,向左作匀减速运动:232m/s mg a g m μμ=-=-=-根据:3322a t a t = 解得30.2t s =物块运动的总时间为:123 1.74t t t t s =++=【点睛】 本题首先要理清物块的运动过程,运用动能定理、牛顿第二定律和运动学公式结合进行求解.4.如图,光滑绝缘水平面上静置两个质量均为m 、相距为x 0的小球A 和B ,A 球所带电荷量为+q ,B 球不带电。

高中物理牛顿运动定律解题技巧分析及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧分析及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。

某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。

重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。

【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)含解析

高考物理牛顿运动定律的应用答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求:(1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】(1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得:F =7.5N.(2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有:mgh =212mv 解得v 2gh ;滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有:μmgL =2201122mv mv 代入数据得:μ=0.25(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为:x=v 0t对物体有:v 0=v −atma=μmg滑块相对传送带滑动的位移为:△x =L−x相对滑动产生的热量为:Q=μmg △x代值解得:Q =0.5J 【点睛】对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移.2.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。

高中物理牛顿运动定律解题技巧和训练方法及练习题(含答案)含解析

高中物理牛顿运动定律解题技巧和训练方法及练习题(含答案)含解析

高中物理牛顿运动定律解题技巧和训练方法及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。

t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。

已知圆轨道的半径R=0.5 m。

(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。

如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。

【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C点落到A点物块从A到C,由动能定律可得:解得:2.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为s0=10m,传送带与行李箱间的动摩擦因数μ=0.2,当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从A端传送到B端所用时间t;(3)整个过程行李对传送带的摩擦力做功W。

高中物理牛顿运动定律解题技巧及练习题(含答案)

高中物理牛顿运动定律解题技巧及练习题(含答案)

高中物理牛顿运动定律解题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.如图所示,在光滑的水平面上有一足够长的质量M=4kg 的长木板,在长木板右端有一质量m=1kg 的小物块,长木板与小物块间的动擦因数μ=0.2,开始时长木板与小物块均静止.现用F=14N 的水平恒力向石拉长木板,经时间t=1s 撤去水平恒力F ,g=10m/s 2.求(1)小物块在长木板上发生相对滑幼时,小物块加速度a 的大小; (2)刚撤去F 时,小物块离长木板右端的距离s ; (3)撒去F 后,系统能损失的最大机械能△E . 【答案】(1)2m/s 2(2)0.5m (3)0.4J 【解析】 【分析】(1)对木块受力分析,根据牛顿第二定律求出木块的加速度;(2)先根据牛顿第二定律求出木板的加速度,然后根据匀变速直线运动位移时间公式求出长木板和小物块的位移,二者位移之差即为小物块离长木板右端的距离;(3)撤去F 后,先求解小物块和木板的速度,然后根据动量守恒和能量关系求解系统能损失的最大机械能△E . 【详解】(1)小物块在长木板上发生相对滑动时,小物块受到向右的滑动摩擦力,则:µmg=ma 1, 解得a 1=µg=2m/s 2(2)对木板,受拉力和摩擦力作用, 由牛顿第二定律得,F-µmg=Ma 2, 解得:a 2= 3m/s 2. 小物块运动的位移:x 1=12a 1t 2=12×2×12m=1m , 长木板运动的位移:x 2=12a 2t 2=12×3×12m=1.5m , 则小物块相对于长木板的位移:△x=x 2-x 1=1.5m-1m=0.5m .(3)撤去F 后,小物块和木板的速度分别为:v m =a 1t=2m/s v=a 2t=3m/s 小物块和木板系统所受的合外力为0,动量守恒:()m mv Mv M m v +=+' 解得 2.8/v m s ='从撤去F 到物体与木块保持相对静止,由能量守恒定律:222111()222m mv Mv E M m v +=∆'++ 解得∆E=0.4J 【点睛】该题考查牛顿第二定律的应用、动量守恒定律和能量关系;涉及到相对运动的过程,要认真分析物体的受力情况和运动情况,并能熟练地运用匀变速直线运动的公式.2.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N3.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+=由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ=由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得23t s =故经过时间12310.913t t t s +=+=≈ 物块滑落.4.如图,光滑固定斜面上有一楔形物体A 。

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)含解析

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)含解析

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为s0=10m,传送带与行李箱间的动摩擦因数μ=0.2,当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1)行李箱开始运动时的加速度大小a;(2)行李箱从A端传送到B端所用时间t;(3)整个过程行李对传送带的摩擦力做功W。

【答案】(1) (2) (3)【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为a(2) 行李在传送带上做匀加速直线运动,加速的时间为t1所以匀加速运动的位移为:行李随传送带匀速前进的时间:行李箱从A传送到B所需时间:(3) t1传送带的的位移为:根据牛顿第三定律可得传送带受到行李摩擦力为:整个过程行李对传送带的摩擦力做功:2.如图所示,水平面上AB间有一长度x=4m的凹槽,长度为L=2m、质量M=1kg的木板静止于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A点右侧静止一质量m1=0.98kg的小木块.射钉枪以速度v0=100m/s 射出一颗质量m0=0.02kg的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数μ=0.05,其它摩擦不计.若木板每次与A 、B 相碰后速度立即减为0,且与A 、B 不粘连,重力加速度g=10m/s 2.求:(1)铁钉射入木块后共同的速度v ;(2)木块经过竖直圆轨道最低点C 时,对轨道的压力大小F N; (3)木块最终停止时离A 点的距离s.【答案】(1)2/v m s = (2)12.5N F N = (3) 1.25L m ∆= 【解析】(1) 设铁钉与木块的共同速度为v ,取向左为正方向,根据动量守恒定律得:0001()m v m m v =+解得:2m v s =;(2) 木块滑上薄板后,木块的加速度210.5m a g s μ==,且方向向右板产生的加速度220.5mgma s Mμ==,且方向向左设经过时间t ,木块与木板共同速度v 运动则:12v a t a t -=此时木块与木板一起运动的距离等于木板的长度22121122x vt a t a t L ∆=--=故共速时,恰好在最左侧B 点,此时木块的速度11m v v a t s '=-= 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2N v F mg m R-=代入相关数据解得:F N =12.5N.由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ; (3) 木块还能上升的高度为h ,由机械能守恒有:201011()()2m m v m m gh +=+ 0.050.4h m m =<木块不脱离圆弧轨道,返回时以1m/s 的速度再由B 处滑上木板,设经过t 1共速,此时木板的加速度方向向右,大小仍为a 2,木块的加速度仍为a 1, 则:21121v a t a t -=,解得:11t s =此时2211121110.522x v t a t a t m ∆=--='' 3210.5m v v at s=-=碰撞后,v 薄板=0,木块以速度v 3=0.5m/s 的速度向右做减速运动 设经过t 2时间速度为0,则3211v t s a == 2322210.252x v t a t m =-=故ΔL=L ﹣△x'﹣x=1.25m即木块停止运动时离A 点1.25m 远.3.质量m =2kg 的物块自斜面底端A 以初速度v 0=16m/s 沿足够长的固定斜面向上滑行,经时间t =2s 速度减为零.已知斜面的倾角θ=37°,重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.试求:(1)物块上滑过程中加速度大小; (2)物块滑动过程摩擦力大小; (3)物块下滑所用时间.【答案】(1)8m/s 2;(2)4N ;(3)s【解析】 【详解】(1)上滑时,加速度大小(2)上滑时,由牛顿第二定律,得:解得(3)位移下滑时,由牛顿第二定律,得解得 由,解得=s4.5s 后系统动量守恒,最终达到相同速度v′,则()12mv Mv m M v +='+ 解得v′=0.6m/s ,即物块和木板最终以0.6m/s 的速度匀速运动.(3)物块先相对木板向右运动,此过程中物块的加速度为a 1,木板的加速度为a 2,经t 1时间物块和木板具有相同的速度v′′, 对物块受力分析:1mg ma μ= 对木板:2F mg Ma μ+= 由运动公式:021v v a t =-''11v a t ''=解得:113t s =2/3v m s '=' 此过程中物块相对木板前进的距离:01122v v v s t t '-'''+= 解得s=0.5m ;t 1后物块相对木板向左运动,这再经t 2时间滑落,此过程中板的加速度a 3,物块的加速度仍为a 1,对木板:3-F mg Ma μ= 由运动公式:222122321122v t a t v t a t s ''⎛⎫---= ⎪⎝⎭'' 解得233t s =故经过时间12310.913t t t s +=+=≈ 物块滑落.5.如图,光滑固定斜面上有一楔形物体A 。

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析

高考物理牛顿运动定律的应用解题技巧和训练方法及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.传送带与平板紧靠在一起,且上表面在同一水平面内,两者长度分别为L 1=2.5 m 、L 2=2 m .传送带始终保持以速度v 匀速运动.现将一滑块(可视为质点)轻放到传送带的左端,然后平稳地滑上平板.已知:滑块与传送带间的动摩擦因数μ=0.5,滑块与平板、平板与支持面的动摩擦因数分别为μ1=0.3、μ2=0.1,滑块、平板的质量均为m =2 kg ,g 取10 m/s 2.求:(1)若滑块恰好不从平板上掉下,求滑块刚滑上平板时的速度大小; (2)若v =6 m/s ,求滑块离开平板时的速度大小. 【答案】(1)4/m s (2)3.5/m s 【解析】 【详解】(1)滑块在平板上做匀减速运动,加速度大小:a 1=1mgmμ=3 m/s 2由于μ1mg>2μ2mg故平板做匀加速运动,加速度大小:a 2=122mg mgmμμ-⨯=1 m/s 2设滑块滑至平板右端用时为t ,共同速度为v′,平板位移为x ,对滑块: v′=v -a 1t(1分)L 2+x =vt -12a 1t 2 对平板:v′=a 2tx =12a 2t 2 联立以上各式代入数据解得:t =1 s ,v =4 m/s. (2)滑块在传送带上的加速度:a 3=mgmμ=5 m/s 2若滑块在传送带上一直加速,则获得的速度为:v 1=112a L =5 m/s<6 m/s 即滑块滑上平板的速度为5 m/s设滑块在平板上运动的时间为t′,离开平板时的速度为v″,平板位移为x′ 则v″=v 1-a 1t′ L 2+x′=v 1t′-12a 1t′2 x′=12a 2t′2 联立以上各式代入数据解得:t′1=12s ,t′2=2 s(t′2>t ,不合题意,舍去) 将t′=12s 代入v″=v -a 1t′得:v″=3.5 m/s.3.质量M =0.6kg 的平板小车静止在光滑水面上,如图所示,当t =0时,两个质量都为m =0.2kg 的小物体A 和B ,分别从小车的左端和右端以水平速度1 5.0v =m/s 和2 2.0v =m/s 同时冲上小车,当它们相对于小车停止滑动时,恰好没有相碰。

高中物理牛顿运动定律及其解题技巧及练习题(含答案)及解析

高中物理牛顿运动定律及其解题技巧及练习题(含答案)及解析

高中物理牛顿运动定律及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量M=0.4kg的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m,某时刻另一质量m=0.1kg的小滑块(可视为质点)以v0=2m/s的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。

已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m/s2,小滑块始终未脱离长木板。

求:(1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰;(2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。

【答案】(1)1.65m (2)0.928m【解析】【详解】解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒:解得:对长木板:得长木板的加速度:自小滑块刚滑上长木板至两者达相同速度:解得:长木板位移:解得:两者达相同速度时长木板还没有碰竖直挡板解得:(2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒:最终两者的共同速度:小滑块和长木板相对静止时,小滑块距长木板左端的距离:2.如图所示,传送带水平部分x ab=0.2m,斜面部分x bc=5.5m,bc与水平方向夹角α=37°,一个小物体A与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v=3m/s运动,若把物体A轻放到a处,它将被传送带送到c点,且物体A不脱离传送带,经b点时速率不变.(取g=10m/s2,sin37°=0.6)求:(1)物块从a 运动到b 的时间; (2)物块从b 运动到c 的时间. 【答案】(1)0.4s ;(2)1.25s . 【解析】 【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间. 【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得:10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+= 2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v vs a -=共代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑 由牛顿第二定律得:23sin 37mg f ma ︒-= 2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=3.某种弹射装置的示意图如图所示,光滑的水平导轨MN 右端N 处于倾斜传送带理想连接,传送带长度L=15.0m ,皮带以恒定速率v=5m/s 顺时针转动,三个质量均为m=1.0kg 的滑块A 、B 、C 置于水平导轨上,B 、C 之间有一段轻弹簧刚好处于原长,滑块B 与轻弹簧连接,C 未连接弹簧,B 、C 处于静止状态且离N 点足够远,现让滑块A 以初速度v 0=6m/s 沿B 、C 连线方向向B 运动,A 与B 碰撞后粘合在一起.碰撞时间极短,滑块C 脱离弹簧后滑上倾角θ=37°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C 与传送带之间的动摩擦因数μ=0.8,重力加速度g=10m/s 2,sin37°=0.6,cos37°=0.8.(1)滑块A 、B 碰撞时损失的机械能; (2)滑块C 在传送带上因摩擦产生的热量Q ;(3)若每次实验开始时滑块A 的初速度v 0大小不相同,要使滑块C 滑离传送带后总能落至地面上的同一位置,则v 0的取值范围是什么?(结果可用根号表示)【答案】(1)9J E ∆= (2)8J Q =0v ≤≤ 【解析】试题分析:(1)A 、B 碰撞过程水平方向的动量守恒,由此求出二者的共同速度;由功能关系即可求出损失的机械能;(2)A 、B 碰撞后与C 作用的过程中ABC 组成的系统动量守恒,应用动量守恒定律与能量守恒定律可以求出C 与AB 分开后的速度,C 在传送带上做匀加速直线运动,由牛顿第二定律求出加速度,然后应用匀变速直线运动规律求出C 相对于传送带运动时的相对位移,由功能关系即可求出摩擦产生的热量.(3)应用动量守恒定律、能量守恒定律与运动学公式可以求出滑块A 的最大速度和最小速度.(1)A 与B 位于光滑的水平面上,系统在水平方向的动量守恒,设A 与B 碰撞后共同速度为1v ,选取向右为正方向,对A 、B 有:012mv mv = 碰撞时损失机械能()220111222E mv m v ∆=- 解得:9E J ∆=(2)设A 、B 碰撞后,弹簧第一次恢复原长时AB 的速度为B v ,C 的速度为C v 由动量守恒得:122B C mv mv mv =+由机械能守恒得:()()222111122222B C m v m v mv =+解得:4/c v m s =C 以c v 滑上传送带,假设匀加速的直线运动位移为x 时与传送带共速由牛顿第二定律得:210.4/a gcos gsin m s μθθ=-= 由速度位移公式得:2212C v v a x -=联立解得:x=11.25m <L 加速运动的时间为t ,有:12.5Cv v t s a -== 所以相对位移x vt x ∆=- 代入数据得: 1.25x m ∆=摩擦生热·8Q mgcos x J μθ=∆= (3)设A 的最大速度为max v ,滑块C 与弹簧分离时C 的速度为1c v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为2a 的匀减速直线运动直到P 点与传送带共速则有:22212c v v a L -=根据牛顿第二定律得:2212.4/a gsin gcos m s θμθ=--=-联立解得:1/c v s =设A 的最小速度为min v ,滑块C 与弹簧分离时C 的速度为2C v ,AB 的速度为1B v ,则C 在传送带上一直做加速度为1a 的匀加速直线运动直到P 点与传送带共速则有:22112c v v a L -=解得:213/c v m s =对A 、B 、C 和弹簧组成的系统从AB 碰撞后到弹簧第一次恢复原长的过程中 系统动量守恒,则有:112max B C mv mv mc =+ 由机械能守恒得:()()22211111122222B C m v m v mv =+ 解得:133397/22max c v v m s == 同理得:313/2min v m s = 所以03313/397/22m s v m s ≤≤4.如图甲所示,质量为m=2kg 的物体置于倾角为θ=37°的足够长的固定斜面上,t=0时刻对物体施以平行于斜面向上的拉力F ,t 1=0.5s 时撤去该拉力,整个过程中物体运动的速度与时间的部分图象如图乙所示,不计空气阻力,g=10m /s 2,sin37°=0.6,cos37°=0.8.求:(1)物体与斜面间的动摩擦因数μ (2)拉力F 的大小(3)物体沿斜面向上滑行的最大距离s . 【答案】(1)μ=0.5 (2) F =15N (3)s =7.5m 【解析】 【分析】由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和物块与斜面的动摩擦因数为 μ.根据v-t 图象面积求解位移. 【详解】(1)由图象可知,物体向上匀减速时加速度大小为:2210510/10.5a m s -==- 此过程有:mgsinθ+μmgcosθ=ma 2 代入数据解得:μ=0.5(2)由图象可知,物体向上匀加速时加速度大小为:a 1=210/0.5m s =20m/s 2 此过程有:F-mgsinθ-μmgcosθ=ma 1代入数据解得:F=60N(3)由图象可知,物体向上滑行时间1.5s ,向上滑行过程位移为:s =12×10×1.5=7.5m 【点睛】本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二定律求解物体的受力情况.5.如图甲所示,在平台上推动物体压缩轻质弹簧至P 点并锁定.解除锁定,物体释放,物体离开平台后水平抛出,落在水平地面上.以P 点为位移起点,向右为正方向,物体在平台上运动的加速度a 与位移x 的关系如图乙所示.已知物体质量为2kg ,物体离开平台后下落0.8m 的过程中,水平方向也运动了0.8m ,g 取10m/s 2,空气阻力不计.求:(1)物体与平台间的动摩擦因数及弹簧的劲度系数; (2)物体离开平台时的速度大小及弹簧的最大弹性势能. 【答案】(1)0.2μ=,400/k N m =(2)2/v m s =, 6.48p E J = 【解析】 【详解】(1)由图象知,弹簧最大压缩量为0.18x m ∆=,物体开始运动时加速度2134/a m s =,离开弹簧后加速度大小为222/a m s =.由牛顿第二定律1k x mg ma μ⋅∆-=①,2mg ma μ=②联立①②式,代入数据解得0.2μ=③400/k N m =④(2)物体离开平台后,由平抛运动规律得:212h gt =⑤ d vt =⑥物体沿平台运动过程由能量守恒定律得:212p E mgx mv μ-=⑦ 联立①②⑤⑥⑦式,代入数据得2/v m s =⑧6.48p E J =⑨6.一物块以一定的初速度沿斜面向上滑动,利用速度传感器可以在计算机屏幕上得到其速度大小随时间的变化的关系如图所示.求: (1)斜面的倾角θ(2)物块与斜面间的动摩擦因μ.【答案】(1)030θ=;(2)3μ= 【解析】 【分析】对上滑过程和下滑过程分别运用牛顿第二定律求出斜面的倾角和动摩擦因数。

高考必备物理牛顿运动定律技巧全解及练习题(含答案)含解析

高考必备物理牛顿运动定律技巧全解及练习题(含答案)含解析

高考必备物理牛顿运动定律技巧全解及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。

某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。

重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。

【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)含解析

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)含解析

高考物理牛顿运动定律解题技巧讲解及练习题(含答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。

t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。

已知圆轨道的半径R=0.5 m。

(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。

如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。

【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C 点落到A 点物块从A 到C ,由动能定律可得:解得:2.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。

木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。

t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。

高中物理牛顿运动定律解题技巧讲解及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧讲解及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一倾角为37°,长L=3.75 m的斜面AB上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B处,C为圆弧轨道的最高点。

t=0时刻有一质量m=1 kg的物块沿斜面上滑,其在斜面上运动的v–t图象如图乙所示。

已知圆轨道的半径R=0.5 m。

(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C点时对轨道的压力F N的大小;(3)试通过计算分析是否可能存在物块以一定的初速度从A点滑上轨道,通过C点后恰好能落在A点。

如果能,请计算出物块从A点滑出的初速度;如不能请说明理由。

【答案】(1)μ=0.5 (2)F'N=4 N (3)【解析】【分析】由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定理得物块到达C点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达C点时对轨道的压力F N的大小;物块从C到A,做平抛运动,根据平抛运动求出物块到达C点时的速度,物块从A到C,由动能定律可求物块从A点滑出的初速度;【详解】解:(1)由图乙可知物块上滑时的加速度大小为根据牛顿第二定律有:解得(2)设物块到达C点时的速度大小为v C,由动能定理得:在最高点,根据牛顿第二定律则有:解得:由根据牛顿第三定律得:物体在C点对轨道的压力大小为4 N(3)设物块以初速度v1上滑,最后恰好落到A点物块从C到A,做平抛运动,竖直方向:水平方向:解得,所以能通过C 点落到A 点物块从A 到C ,由动能定律可得:解得:2.一长木板置于粗糙水平地面上,木板右端放置一小物块,如图所示。

木板与地面间的动摩擦因数μ1=0.1,物块与木板间的动摩擦因数μ2=0.4。

t=0时刻开始,小物块与木板一起以共同速度向墙壁运动,当t=1s 时,木板以速度v 1=4m/s 与墙壁碰撞(碰撞时间极短)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理牛顿运动定律解题技巧讲解及练习题(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理牛顿运动定律解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求:(1)刚放上传送带时物块的加速度;(2)传送带将该物体传送到传送带的右端所需时间.【答案】(1)24/a g m s μ==(2)1t s =【解析】【分析】先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间.【详解】(1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ=代入数据得:24/a g m s μ==(2)设物体加速到与传送带共速时运动的位移为0s根据运动学公式可得:202as v =运动的位移: 20842v s m a==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有212l at = 解得 1t s =【点睛】物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力.2.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s =,求:()1小物块与长木板间动摩擦因数的值;()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J【解析】【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值. ()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量.【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=;11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得2222mg ma μ⋅=;220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s =联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=;031m v v a t =-;在整个过程中,由系统的能量守恒得 2012Q mv =联立解得40.5Q J = 【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.3.如图所示,传送带水平部分x ab =0.2m ,斜面部分x bc =5.5m ,bc 与水平方向夹角α=37°,一个小物体A 与传送带间的动摩擦因数μ=0.25,传送带沿图示方向以速率v =3m/s 运动,若把物体A 轻放到a 处,它将被传送带送到c 点,且物体A 不脱离传送带,经b 点时速率不变.(取g =10m/s 2,sin37°=0.6)求:(1)物块从a 运动到b 的时间;(2)物块从b 运动到c 的时间.【答案】(1)0.4s ;(2)1.25s .【解析】【分析】根据牛顿第二定律求出在ab 段做匀加速直线运动的加速度,结合运动学公式求出a 到b 的运动时间.到达b 点的速度小于传送带的速度,根据牛顿第二定律求出在bc 段匀加速运动的加速度,求出速度相等经历的时间,以及位移的大小,根据牛顿第二定律求出速度相等后的加速度,结合位移时间公式求出速度相等后匀加速运动的时间,从而得出b 到c 的时间.【详解】(1)物体A 轻放在a 处瞬间,受力分析由牛顿第二定律得:1mg ma μ=解得:21 2.5m/s a =A 与皮带共速需要发生位移:219 1.8m 0.2m 25v x m a ===>共 故根据运动学公式,物体A 从a 运动到b :21112ab x a t =代入数据解得: 10.4s t =(2)到达b 点的速度:111m/s 3m/s b v a t ==<由牛顿第二定律得:22sin 37mg f ma ︒+=2cos37N mg =︒且22f N μ=代入数据解得:228m/s a =物块在斜面上与传送带共速的位移是:2222b v vs a -=共 代入数据解得:0.5m 5.5m s =<共时间为:2231s 0.25s 8b v v t a --=== 因为22sin 376m/s cos372m/s g g μ︒=︒=>,物块继续加速下滑由牛顿第二定律得:23sin 37mg f ma ︒-=2cos37N mg =︒,且22f N μ=代入数据解得:234m/s a =设从共速到下滑至c 的时间为t 3,由23331 2bc x s vt a t -=+共,得: 31s t =综上,物块从b 运动到c 的时间为:23 1.25s t t +=4.如图所示,斜面体ABC 放在粗糙的水平地面上,滑块在斜面地端以初速度0υ,沿斜面上滑。

斜面倾角037θ=,滑块与斜面的动摩擦因数μ。

整个过程斜面体保持静止不动,已知小滑块的质量m=1kg ,sin37°=0.6,cos37°=0.8,g 取10 m /s 2。

试求:(1)若0.8μ=,012.4/m s υ=,求滑块从C 点开始在2s 内的位移。

(2)若0.45μ=,09.6/m s υ=,求滑块回到出发点时的速度大小。

【答案】(1) 6.2x m = (2) 4.8 /v m s =【解析】【详解】(1)若0.8μ=,滑块上滑过程中,由牛顿第二定律有:0 mgsin mgcos ma θμθ+= , 解得滑块上滑过程的加速度大小2012.4 /,a m s = 上滑时间0001 v t s a ==, 上滑位移为2002.162x m a t == (2)若0.45μ=,滑块沿斜面上滑过程,由牛顿第二定律:1 mgsin mgcos ma θμθ+= , 解得219.6 /a m s =设滑块上滑位移大小为L ,则由2012v a L = ,解得 4.8 L m = 滑块沿斜面下滑过程,由牛顿第二定律:2 mgsin mgcos ma θμθ-= , 解得22 2.4 /a m s =根据222v a L = , 解得滑块回到出发点处的速度大小为 4.8 /v m s =5.在水平力F 作用下,质量为0.4kg 的小物块从静止开始沿水平地面做匀加速直线运动,经2s 运动的距离为6m ,随即撤掉F ,小物块运动一段距离后停止.已知物块与地面之间的动摩擦因数μ=0.5,g=10m/s 2.求:(1)物块运动的最大速度;(2)F 的大小;(3)撤去F 后,物块克服摩擦力做的功【答案】(1)6m/s (2)3.2N (3)7.2J【解析】【分析】(1)物块做匀加速直线运动,运动2s 时速度最大.已知时间、位移和初速度,根据位移等于平均速度乘以时间,求物块的最大速度.(2)由公式v=at 求出物块匀加速直线运动的加速度,由牛顿第二定律求F 的大小. (3)撤去F 后,根据动能定理求物块克服摩擦力做的功.【详解】(1)物块运动2s 时速度最大.由运动学公式有:x= 2v t 可得物块运动的最大速度为:2266/2x v m s t ⨯=== (2)物块匀加速直线运动的加速度为:a=6 2vt ==3m/s 2.设物块所受的支持力为N ,摩擦力为f ,根据牛顿第二定律得:F-f=maN-mg=0,又 f=μN联立解得:F=3.2N(3)撤去F 后,根据动能定理得:-W f =0-12mv 2 可得物块克服摩擦力做的功为:W f =7.2J【点睛】本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁,要注意撤去F 前后摩擦力的大小是变化的,但动摩擦因数不变.6.我国科技已经开启“人工智能”时代,“人工智能”己经走进千家万户.某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53s ,最后再匀减速1s 恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1m/s ,高度为56m .货物质量为2kg ,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10m/s 2.求(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力.【答案】(1)2.5m ;(2)20.8N【解析】【详解】(1)无人机匀速上升的高度:h 2=vt 2无人机匀减速上升的高度:h 3=2v t 3 无人机匀加速上升的高度:h 1=h -h 2-h 3联立解得:h 1=2.5 m(2)货物匀加速上升过程:v 2=2ah 1货物匀加速上升的过程中,无人机对货物的作用力最大,由牛顿运动定律得: F -mg -0.02mg =ma联立解得:F =20.8 N7.“复兴号”动车组共有8节车厢,每节车厢质量m=18t ,第2、4、5、7节车厢为动力车厢,第1、3、6、8节车厢没有动力。

假设“复兴号”在水平轨道上从静止开始加速到速度v=360km/h ,此过程视为匀加速直线运动,每节车厢受到f=1.25×103N 的阻力,每节动力车厢的牵引电机提供F=4.75×104N 的牵引力。

求:(1)该过程“复兴号”运动的时间;(2)第4节车厢和第5节车厢之间的相互作用力的大小。

【答案】(1)80s (2)0【解析】【分析】(1)以动车组为研究对象,根据牛顿第二定律结合运动公式求解该过程“复兴号”运动的时间;(2)以前4节车厢为研究对象,由牛顿第二定律列式求解第4节车厢和第5节车厢之间的相互作用力的大小.【详解】(1)以动车组为研究对象,由牛顿第二定律:4F-8f=8ma动车组做匀加速运动,则v=at解得t=80s(2)以前4节车厢为研究对象,假设第4、5节车厢间的作用力为N,则由牛顿第二定律:2F-4f+N=4ma解得N=0.8.一种巨型娱乐器械可以使人体验超重和失重.一个可乘十多个人的环形座舱套装在竖直柱子上,由升降机送上几十米的高处,然后让座舱自由落下.落到一定位置时,制动系统启动,到地面时刚好停下.已知座舱开始下落时的高度为75m ,当落到离地面30m 的位置时开始制动,座舱均匀减速.重力加速度g 取102/m s ,不计空气阻力.(1)求座舱下落的最大速度;(2)求座舱下落的总时间;(3)若座舱中某人用手托着重30N 的铅球,求座舱下落过程中球对手的压力.【答案】(1)30m/s (2)5s .(3)75N .【解析】试题分析:(1)v 2=2gh;v m =30m/s⑵座舱在自由下落阶段所用时间为:2112h gt =t 1=3s 座舱在匀减速下落阶段所用的时间为:t 2=2hv ==2s所以座舱下落的总时间为:t =t 1+t 2=5s⑶对球,受重力mg 和手的支持力N 作用,在座舱自由下落阶段,根据牛顿第二定律有mg -N =mg解得:N =0根据牛顿第三定律有:N′=N =0,即球对手的压力为零在座舱匀减速下落阶段,根据牛顿第二定律有mg -N =ma根据匀变速直线运动规律有:a =2202v h -=-15m/s 2解得:N =75N (2分)根据牛顿第三定律有:N′=N =75N ,即球对手的压力为75N考点:牛顿第二及第三定律的应用9.一物块以一定的初速度沿斜面向上滑动,利用速度传感器可以在计算机屏幕上得到其速度大小随时间的变化的关系如图所示.求:(1)斜面的倾角θ(2)物块与斜面间的动摩擦因μ.【答案】(1)030θ=;(2)3μ 【解析】【分析】 对上滑过程和下滑过程分别运用牛顿第二定律求出斜面的倾角和动摩擦因数。

相关文档
最新文档