无损检测超声波
超声波无损检测原理及应用
![超声波无损检测原理及应用](https://img.taocdn.com/s3/m/3da77f7aa22d7375a417866fb84ae45c3b35c282.png)
超声波无损检测原理及应用超声波无损检测(Ultrasonic Testing,简称UT)是一种利用超声波的传播和反射来检测材料内部缺陷和性能的方法。
它是一种广泛应用于工业领域的无损检测技术,常用于材料、结构件和零部件的质量控制以及故障诊断等领域。
超声波无损检测的原理是基于声波在材料中传播的特性。
当超声波传播到材料中的一个界面时,一部分能量将被反射回来,形成回波。
这些回波会受到材料中各种内部缺陷或不均匀性的影响,如裂纹、气孔、夹杂物等,从而产生回波的幅度变化。
通过分析回波的特征,可以确定材料的缺陷位置、形态和尺寸,并评估材料的性能。
超声波无损检测的应用范围非常广泛。
其中,最常见的应用是材料缺陷检测。
通过超声波检测,可以检测到各种类型的内部缺陷,如裂纹、气孔、夹杂物等。
这对于确保材料的质量非常重要,尤其是在高强度材料的使用过程中,如航空航天、汽车、船舶等领域。
另外,超声波无损检测还可以应用于材料的表面质量评估,例如检测涂层的附着性能、测量涂层厚度等。
此外,超声波无损检测还可以应用于结构件的评估和故障诊断。
比如对于钢结构、混凝土结构等进行超声波扫描,可以检测到隐藏在结构内部的裂纹、腐蚀等缺陷,从而评估结构的完整性和安全性。
同样地,在机械设备中,超声波无损检测可以用于检测轴承、齿轮等关键部件的健康状态,发现潜在的故障迹象,预防机械故障。
此外,超声波无损检测还在医学领域有着重要的应用。
医学超声波技术是利用超声波在人体组织中的传播和反射来获取人体内部结构和器官的图像信息,用于诊断疾病、指导手术等。
这种应用基于超声波的安全性和无创性,无需辐射,对患者无损伤。
总的来说,超声波无损检测是一种非常重要和广泛应用的无损检测技术。
它在工业、医学、科研等领域都有着重要的作用,可以高效、准确地检测材料的缺陷和性能,并提供重要的信息用于决策和改进。
随着科学技术的不断发展,超声波无损检测方法和设备也在不断改进和创新,为各个领域的应用提供更多可能性。
无损检测之超声波介绍
![无损检测之超声波介绍](https://img.taocdn.com/s3/m/217a302176eeaeaad0f3307f.png)
无损检测之超声波介绍如安在民众号中发送XXX重点字?超声波检测合用于金属、非金属和复合资料等多种试件的无损检测,缺点定位正确,检测成本低,速度快,设施轻巧。
先来一段视频认识下:视频:超声波探伤原理简介▼一原理与简介超声波探伤是利用超声能透入金属资料的深处,并由一截面进入另一截面时,在界面边沿发生反射的特色来检查零件缺点的一种方法,当超声波束自零件表面由探头通至金属内部,碰到缺点与零件底面时就分别发生反射波,在荧光屏上形成脉冲波形,能够经过这些脉冲波形来判断缺点地点和大小。
图:超声探伤原理表示图超声波检测依照其原理可分为缺点回波法、穿透法、共振法。
按波形分可分为纵波、横波、表面波和板波等。
纵波是用来探测金属铸锭、坯料、中厚板、大型锻件和形状比较简单的制件中所存在的缺点;横波是探测管材中的周向和轴向裂痕、划伤、焊缝中的气孔、夹渣、裂痕、未焊透等缺点;表面波可探测形状简单的铸件上的表面缺点;板波可探测薄板中的缺点。
图:纵波&横波表示图二、检测过程超声检测方法可采纳多种检测技术,每种检测技术在实行过程中,都有其需要考虑的特别问题,其检测过程也各有特色。
但各样超声检测技术又都存在着通用的技术问题。
其检测过程也大概可分为以下几步:1、试件的准备为了提升检测结果的靠谱性,应付受检件的资料牌号、性能,制造方法和工艺特色,影响其使用性能的缺点种类及形成原由、缺点的最大可能取向及大小、受检部位受力状态及检收标准进行认识。
2、检测条件确实定,包含超声波检测仪、探头、试块等的选择入射方向的选择应使声束中心线与缺点延长平面,特别是与最大受力方向垂直的缺点面尽可能地靠近垂直,并力争获得缺点最大信号,别的,为防止被探工件形状和构造可能产生反射或变型信号对缺点的鉴别造成困难,入射方向还应选择在不会出现这些扰乱信号的方向上。
必需时应从正、反两面进行检查。
探头的选择也是尤其重要的。
作为超声检测的重要工具之一,探头的种类好多,构造型式也各不同样。
超声波检测
![超声波检测](https://img.taocdn.com/s3/m/2457abfe7c1cfad6195fa7c2.png)
超声波检测
一.无损检测概述
1.原理 • 无损检测----在不损坏试件的前提下,对试
件表面及内部进行检查和测试的方法。
• 无损检测----通常包括磁粉检测、渗透检测、
射线检测和超声波检测等。
2.无损检测技术发展的三个阶段 • 无损探伤(NDI): 探测和发现缺陷 • 无损检测(NDT): 不仅仅是探测缺陷,还包括探测被检对象的 一些其他信息,例如结构、性质、状态等, 并试图通过测试,掌握更多的质量信息。
陷的回波,B表示底面回波。
B型显示显示的是试件的一个二维截面图,屏
幕纵坐标代表探头在探测面上沿一直线移动扫查
的位置坐标,横坐标是声传播的时间(或距离)。
该方式可以直观地显示出被探工件任一纵截面上 缺陷的分布及缺陷的深度等信息。
C型显示显示的是试件的一个平面投影图, 探头在试件表面做二维扫查,屏幕的二维 坐标对应探头的扫查位置。探头在每一位 置接收的信号幅度以光点辉度表示。该方 式可形象地显示工件内部缺陷的平面投影 图像,但不能显示缺陷的深度。
图2 超声波检测仪 (a)、 (b)、 (c) 数字式超声检测仪; (d) 探伤小车
3.2探头 直探头:主要检测钢板、锻件、铸件 斜探头:主要检测焊缝、锻件 (1) 超声波探头的作用。 超声波探头用于实现声能和电能 的互相转换。它是利用压电晶体的正、逆压电效应进行换 能的。探头是组成检测系统的最重要的组件,其性能的好 坏直接影响超声检测的效果。 (2) 常用超声波探头的类型。超声波检测中由于被探测工 件的形状和材质、探测的目的、探测的条件不同, 因而 要使用各种不同形式的探头。其中最常用的是接触式纵波 直探头、接触式横波斜探头、双晶探头、水浸探头与聚焦 探头等。一般横波斜探头的晶片为方形,纵波直探头的晶 片为圆形,而聚焦声源的圆形晶片为声透镜。 所以声场 就有圆盘源声场、聚焦声源声场和斜探头发射的横波声场。
超声波无损检测原理及应用
![超声波无损检测原理及应用](https://img.taocdn.com/s3/m/186add7242323968011ca300a6c30c225901f08e.png)
超声波无损检测原理及应用超声波无损检测(Ultrasonic Testing,简称UT)是一种利用超声波传播特性来检测材料内部缺陷的无损检测技术。
其原理基于声波在材料中的传播和反射。
超声波无损检测具有高灵敏度、高分辨率、快速、非接触、定量等优点,广泛应用于工业领域。
超声波无损检测的原理是利用超声波在材料中传播时发生反射、折射、散射等现象来检测材料内部的缺陷。
超声波在材料中的传播速度和传播路径受到材料的物理性质和几何形状的影响,当超声波遇到材料中的缺陷时,会发生多次反射和散射,从而产生回波信号。
通过接收这些回波信号可以确定材料中缺陷的位置、大小、形态等信息。
1.金属材料检测:超声波无损检测在金属材料中的应用非常广泛,可以检测金属材料中的裂纹、疲劳损伤、气孔、夹杂物等缺陷。
这对于确保金属材料的质量和结构完整性非常重要,尤其是在航空航天、桥梁、汽车、石油化工等领域。
2.建筑材料检测:超声波无损检测可以用于检测混凝土、石材、玻璃等建筑材料中的缺陷,如空洞、裂缝、腐蚀等。
这有助于评估建筑材料的结构强度和使用寿命,以及修复和维护工作的安全性和可行性。
3.聚合物材料检测:超声波无损检测也可以用于检测聚合物材料中的质量和缺陷,比如塑料、橡胶、复合材料等。
这对于保障聚合物制品的质量和性能至关重要,如航空航天器件、电子产品、汽车零部件等。
4.医学诊断:超声波无损检测在医学领域的应用非常广泛,用于检测人体内部的器官和组织,如心脏、肝脏、肾脏等。
超声波无损检测在医学诊断中无辐射、无创伤,对于早期疾病的诊断和评估、手术引导等起着重要作用。
总之,超声波无损检测原理简单而有效,应用范围广泛,对于确保材料和产品的质量和安全至关重要。
它在不同领域的应用有助于提高造价效益,减少事故风险,并推动相关行业的发展。
超声波无损检测原理
![超声波无损检测原理](https://img.taocdn.com/s3/m/c126667211661ed9ad51f01dc281e53a5802511d.png)
超声波无损检测原理《超声波无损检测原理》超声波无损检测是一种常用的无损检测方法,广泛应用于工业领域。
它利用超声波在材料中的传播特性,检测材料内部的缺陷和异物,从而判断材料的质量和可靠性。
超声波是一种频率高于人类听觉范围的声波。
在超声波无损检测中,通常使用的频率是1MHz 至30MHz。
超声波在材料中的传播速度和传播路径会受到材料的密度、弹性模量和材料内部缺陷的影响。
通过测量超声波的传播时间和接收到的超声波信号强度,可以得到材料内部的缺陷位置、尺寸和性质。
超声波无损检测系统主要由超声波发射器、超声波接收器、脉冲发生器、探头和数据处理单元组成。
首先,脉冲发生器会产生一系列超声波脉冲信号,经过放大后,通过探头发射到被测材料上。
当超声波遇到材料内部的缺陷或界面,会发生反射和散射,一部分超声波信号被接收器接收到。
接收到的超声波信号经过放大和滤波处理后,传送给数据处理单元进行分析和处理。
通过分析接收到的超声波信号的幅度和时间,可以确定材料内部缺陷的位置和尺寸。
同时,还可以根据超声波在材料中的传播速度和幅度的变化,判断材料的质量和可靠性。
超声波无损检测具有许多优点。
首先,超声波可以透过一些不透明的材料进行检测,无需破坏材料表面。
其次,超声波可以控制传播路径和方向,能够定位和定量分析材料内部的缺陷。
此外,超声波无损检测对被测材料的影响非常小,不会导致材料变形或损伤。
总之,超声波无损检测原理基于超声波在材料中的传播特性,通过测量超声波的传播时间和接收到的信号强度,可以得到材料内部缺陷的位置、尺寸和性质。
这种检测方法具有非破坏性、定位准确等优势,在工业生产中有着广泛的应用前景。
《无损检测》超声波课件
![《无损检测》超声波课件](https://img.taocdn.com/s3/m/4ed8aa68492fb4daa58da0116c175f0e7cd1199c.png)
环境控制
保持检测环境的清洁和干 燥,避免灰尘、潮湿等因 素对设备的影响。
04 超声波检测技术在实际应 用中的案例分析
金属材料的超声波检测
总结词
高效、准确、无损
详细描述
超声波检测技术广泛应用于金属材料的检测,如钢、铝、铜等。通过高频声波 的反射和传播特性,可以快速准确地检测出金属材料内部的缺陷、夹杂物和晶 界结构,为产品质量控制和安全性评估提供有力支持。
感谢您的观看
超声波的接收与处理
超声波的接收
通过超声探头将超声波转换为电信号,便于后续的信号处理 。
信号处理技术
对接收到的电信号进行放大、滤波、检波等处理,提取出有 用的信息。
超声波检测的信号处理技术
信号预处理
对原始信号进行去噪、增益调 整等处理,以提高信号质量。
信号特征提取
提取出反映被测物体特性的信 号特征,如幅度、频率、相位 等。
超声波检测技术的挑战与机遇
技术创新
不断推动超声波检测技术的理论研究和应用创新, 提高检测精度和可靠性,拓展应用领域。
人才培养
加强超声波检测技术的人才培养和队伍建设,提 高技术人员的专业素质和技术水平。
市场拓展
加强市场推广和宣传,提高超声波检测技术的社 会认知度和市场占有率,促进产业发展。
THANKS FOR WATCHING
件等。
表面波探头
适用于检测材料表面和 近表面的细微缺陷,如
玻璃、陶瓷等。
兰姆波探头
适用于检测复合材料、 胶接结构等特殊材料的
缺陷。
超声波检测仪器的性能指标
频率
超声波的频率决定了检测的分辨率和 穿透能力,应根据不同的检测需求选 择合适的频率。
动态范围
超声无损检测报告
![超声无损检测报告](https://img.taocdn.com/s3/m/86992172182e453610661ed9ad51f01dc381575f.png)
超声无损检测报告
第29页
4. 超声相控阵
※ 扫查方式
常见三种相控阵扫查方式
➢ 线性扫查:将相邻若干阵元视为一组,按 照一定时间间隔对各组阵元施加相同聚 焦法则。合成声束将以恒定角度和聚焦深度 沿阵元延伸方向进行扫查。
超声无损检测报告
第30页
超声无损检测报告
第32页
4. 超声相控阵
※ 超声相控阵发射聚焦延时计算
P点坐标为:
超声无损检测报告
发射延时计算坐标系
P点到F相对于阵列中心点时延为
结果为负表示第i个阵元相对于阵列中心点提
前发射,反之则延迟发射。
第33页
5. 硬件电路设计
※ 硬件电路结构
探头:产生超声波器件 发射前端:由FPGA控制产生高压脉冲信号,使探头发
➢ 能够控制声束偏转和聚焦,波束指向灵活,能够检 测到传统方法无法检测区域
➢ 不需要设计复杂扫查装置,也不需要频繁更换探 头,机构简单,操作方便
➢ 较低驱动电压下也能得到声场强度较大扫描信号 ➢ 提升系统检测分辨力,信噪比和灵敏度 ➢ 抗干扰能力增强
超声无损检测报告
第24页
4. 超声相控阵
※ 超声相控阵发射聚焦和发射偏转技术
第5页
2. 脉冲反射法
※ 工作原理
➢ 工件内部缺点造成材质不连续,进而造成声阻抗不一致 ➢ 造成工缺点处产生一个两侧声阻抗特征不一样接触面 ➢ 超声波传输到此处,一个别会被反射回去,另一个别继续向
前传输 ➢ 反射回来超声波能量大小与接触面两侧声阻抗差异及接
触面大小、取向相关,即与缺点情况相关
超声无损检测报告
理论基础—波叠加和干涉
超声波无损检测概述
![超声波无损检测概述](https://img.taocdn.com/s3/m/8d1f4e634a35eefdc8d376eeaeaad1f347931144.png)
超声波无损检测概述超声波无损检测(Ultrasonic Testing,UT)是一种常用的无损检测方法,广泛应用于材料、结构和设备的评价和质量控制。
它利用超声波的传播特性,通过对材料内部缺陷的检测和测量来评估材料的完整性和性能。
超声波无损检测是一种非破坏性检测方法,不会对被检测材料造成损伤。
它基于超声波在材料中的传播和反射规律进行检测,通过分析声波在材料中的传播速度和幅度的变化,可以探测出材料中的各种缺陷,例如裂纹、夹杂、气泡等。
超声波无损检测的基本原理是利用声波在介质中传播的速度和振动形态来检测材料内部的缺陷。
在超声波检测中,一台超声波探头产生高频的声波短脉冲,并将其发送到被检测材料。
声波的传播速度受材料的密度、弹性模量、导热性等因素影响,当声波遇到材料的界面或内部缺陷时,部分声波能量会反射回来,并由探头接收。
探头接收到的反射波信号经过放大和处理后,可以得到材料中的缺陷信息。
根据声波的传播速度和反射振幅的变化,可以计算出缺陷的深度、大小和位置等参数。
同时,通过对声波的幅度和频率的分析,还可以评估材料的强度、硬度、粘度等性能指标。
超声波无损检测有许多优点。
首先,它是一种无损的检测方法,不会对被测材料造成任何损伤。
其次,超声波可以穿透较厚的材料,对内部缺陷的检测能力强。
此外,超声波的传播速度和振幅变化可以提供丰富的缺陷信息,能够准确评估材料的完整性和性能。
超声波无损检测广泛应用于各个行业和领域。
在制造业中,它常用于对焊缝、铸件、锻件等工件进行质量评估和缺陷检测。
在航空航天领域,它被广泛用于飞机结构、发动机零部件等重要部位的检测。
在能源行业,超声波无损检测可以用于对核电厂设备、水电站管道等进行安全评估。
在建筑行业,它可以用于对混凝土结构、钢桥梁等进行评估和检查。
总之,超声波无损检测是一种高效、可靠的无损检测方法。
它利用超声波在材料中的传播和反射规律,通过分析声波的传播速度和振幅变化,能够检测出材料中的缺陷并评估其完整性和性能。
超声无损检测的工作原理
![超声无损检测的工作原理](https://img.taocdn.com/s3/m/381514d0112de2bd960590c69ec3d5bbfd0ada0d.png)
超声无损检测的工作原理
超声无损检测是利用超声波在材料中传播时受到材料内部缺陷的反射、散射和透射等现象,来检测材料内部缺陷的检测技术。
具体工作原理如下:
1. 发射超声波:将超声波发射器发送出来的超声波通过探头传入被检测物体内部。
2. 受反射:当超声波遇到对象边界或缺陷时,将会发生反射波,这时探头会接收到这个反射波信号。
超声波可以检测到物体内部的各种缺陷,如气孔、夹杂、裂纹等。
3. 接收信号:反射波信号通过探头传回电子仪器中,并将其转化成电信号。
4. 信号处理:通过信号处理器对接收到的信号进行调整和优化,使其更适合于人工或自动分析;
5. 分析结果:通过分析软件进行数据分析和处理,最后得出针对缺陷的定量定性分析结果。
通过上述过程,可以探测出被检测物体内部的缺陷,并获得相应的信号和数据,
从而进行分析评估。
超声波无损检测标准
![超声波无损检测标准](https://img.taocdn.com/s3/m/001d48da50e79b89680203d8ce2f0066f53364ff.png)
超声波无损检测标准
超声波无损检测是一种常见的无损检测方法,用于检测材料的内部缺陷和结构,并评估其完整性和性能。
超声波无损检测标准主要包括以下几个方面:
1. 超声波设备标准:包括超声波检测仪器的技术要求、性能指标、工作范围和使用方法等。
例如,设备必须符合安全要求,能够提供稳定的超声波信号,并具备合适的探头和耦合剂。
2. 检测方法标准:包括超声波检测的步骤、参数选择和评估方法等。
例如,检测人员需要根据具体情况选择合适的超声波探头和频率,并进行标定和校准。
3. 缺陷评估标准:根据不同材料和应用要求,制定相应的缺陷评估标准。
例如,对钢材进行超声波探伤时,可以参考美国标准协会(ASME)的相关标准,评估缺陷的类型、大小、位置
和对材料性能的影响等。
4. 检测人员培训标准:要求进行超声波无损检测的人员具备一定的专业知识和技能,可以根据不同级别和应用领域设定相应的培训标准。
例如,按照美国无损检测协会(ASNT)的要求,可以进行超声波检测人员的培训和认证。
综上所述,超声波无损检测标准包括设备标准、方法标准、缺陷评估标准和人员培训标准等方面,以保证超声波无损检测的准确性和可靠性。
无损检测——超声波探伤检测实施细则
![无损检测——超声波探伤检测实施细则](https://img.taocdn.com/s3/m/49de2f2458fb770bf78a5594.png)
无损检测——超声波探伤检测实施细则1.1超声波检测的目的检测压力容器和钢结构焊缝的缺陷,并确定缺陷位置、尺寸、缺陷评定的一般方法及检测结果的等级评定。
1.2适用范围本方法适用于压力容器和钢结构焊缝缺陷的超声检测和检测结果的等级评定。
本方法适用于母材厚度为8~300mm的铁素体类钢全焊透熔化焊对接焊缝的超声检测。
本方法不适用于铸钢及奥氏体不锈钢焊缝;外径<159mm的钢管对接焊缝;内径≤200mm的管座角焊缝及外径<250mm和内外径之比<80%的纵向焊缝检测。
1.3超声波检测依据标准a.JB4730-94 《压力容器无损检测》b.GB11345-89 《钢焊缝手工超声波探伤方法和探伤结果分级》1.4仪器设备A.探伤仪、探头及系统性能a.探伤仪采用A型脉冲反射式超声波探伤仪,其工作频率范围为1~5MHz,仪器至少在荧光屏满刻度的80%范围内呈线性显示。
探伤仪应具有80dB 以上的连续可调衰减器,步进级每挡不大于2dB,其精度为任意相邻12dB误差在±1dB以内,最大累计误差不超过1dB。
水平线性误差不大于1%,垂直线性误差不大于5%。
其余指标应符合国家现行有效规范规定。
b. 探头(1) 超声检测常用探头有单直探头、单斜探头、双晶探头、水浸探头、可变角探头和聚焦探头等。
具体划分应符合国家现行有效规范规定。
(2) 晶片有效面积一般不应超过500mm2,且任一边长不应大于25mm。
(3)单斜探头声束轴线水平偏离角不应大于2°。
主声束垂直方向不应有明显的双峰。
c. 超声探伤仪和探头的系统性能(1) 在达到所探工件的最大检测声程时,其有效灵敏度余量应≥10dB。
(2) 仪器和探头的组合频率与公称频率误差不得大于±10%。
(3) 仪器和直探头组合的始脉冲宽度:对于频率为5MHz的探头,其占宽不得大于10mm;对于频率为 2.5MHz的探头,其占宽不得大于15mm。
(4) 直探头的远场分辨力应大于或等于30dB,斜探头的远场分辨力应大于或等于6dB。
无损检测 原理
![无损检测 原理](https://img.taocdn.com/s3/m/86e510bf7d1cfad6195f312b3169a4517723e506.png)
无损检测原理无损检测是一种非侵入性的检测方法,其原理是利用物体本身的特性,通过无需破坏物体表面或内部结构的方式,对物体的质量、结构、缺陷等进行评估和诊断。
无损检测可以使用多种技术,包括超声波检测、磁粉检测、涡流检测、X射线检测、红外热像仪检测等。
以下是各种无损检测技术的原理简介:1. 超声波检测:利用超声波在物体中传播的特性,通过发射超声波探头对物体进行扫描。
当波束遇到缺陷或界面时,部分能量会被反射或散射,从而形成回波。
通过分析回波的特征,可以确定物体的缺陷位置、尺寸和性质。
2. 磁粉检测:在被检测物体表面涂覆磁性颗粒,然后通过施加磁场,观察颗粒在表面的分布情况。
如果存在表面裂纹、焊接缺陷等,会导致磁粉在这些区域产生畸变,进而显示出明显的磁粉堆积。
3. 涡流检测:通过在被检测物体附近放置线圈,通过交变电流在线圈中产生涡流。
当涡流与物体中的缺陷相互作用时,会引起感应电流的变化。
通过测量这种变化,可以检测到物体中的缺陷。
4. X射线检测:利用X射线的穿透性,通过对物体进行照射,观察透射的X射线强度和分布。
当物体存在缺陷时,X射线会被缺陷处的材料吸收或散射,从而形成暗影或亮斑。
通过对这些暗影或亮斑进行分析,可以确定物体的缺陷情况。
5. 红外热像仪检测:利用物体辐射的红外热量,通过红外热像仪对其进行热成像。
物体表面温度的变化与其内部结构和缺陷之间存在一定的关系。
通过分析热图,可以确定物体的热分布,进而推断出可能存在的结构或缺陷。
综上所述,无损检测通过利用物体本身的特性,结合不同的检测技术,可以对物体进行全面、高效的质量和结构评估,为工程和生产领域提供了重要的技术手段。
超声波无损检测方案及工作分解
![超声波无损检测方案及工作分解](https://img.taocdn.com/s3/m/59e473d3112de2bd960590c69ec3d5bbfc0ada41.png)
超声波无损检测方案及工作分解超声波无损检测(Ultrasonic Testing,简称UT)是一种利用超声波传播于被测物质中进行缺陷检测的方法。
它广泛应用于工业领域,包括航空航天、石油化工、船舶制造等各个领域。
下面将介绍超声波无损检测的方案及工作分解。
1.确定检测目标:首先需要明确待检测的目标物,包括其材质、尺寸和形状等各项参数。
这是为了选择合适的超声波探头和适当的检测方法。
2.设计检测方案:根据目标物的特点,确定适用的超声波探头和检测方法。
常用的超声波探头包括接触式探头和非接触式探头。
接触式探头适用于平面物体的检测,而非接触式探头则适用于不规则形状或曲面的物体。
检测方法包括脉冲超声波和连续超声波,选择不同的方法要根据被测物体的具体情况来定。
3.实施检测:根据设计好的方案,进行超声波无损检测。
首先需要对探头进行校准,包括延迟校准、增益校准和灵敏度校准等。
然后,将探头与被测物体接触或保持适当的距离,通过控制仪器发射超声波信号。
当超声波遇到缺陷或界面时,一部分超声波将被反射回来,通过接收器接收并转换成电信号。
最后,根据接收到的信号进行分析和判读,得出检测结果。
4.分析和判读:对接收到的信号进行分析和判读,判断是否存在缺陷。
通常采用的方法包括振幅比较法、声速比较法、多次反射法等。
对不同类型的缺陷,采用不同的判读标准。
同时,还需要根据检测结果对缺陷进行评估和分类。
5.缺陷评估和报告编写:根据检测结果,对缺陷进行评估,并编写检测报告。
评估缺陷的大小、形状和位置等,并分析缺陷对被测物体的影响。
根据需要,还可以提供修复建议和预防措施。
最终将检测结果和评估报告交给相关部门或客户。
总结起来,超声波无损检测方案及工作分解可以概括为:确定检测目标、设计检测方案、实施检测、分析和判读、缺陷评估和报告编写。
这些步骤在实际工作中是密不可分的,每一步都需要认真执行,以确保检测结果准确可靠。
无损检测-超声波检测
![无损检测-超声波检测](https://img.taocdn.com/s3/m/493da469effdc8d376eeaeaad1f34693daef1024.png)
(3)声强 单位时间内垂直通过单位面积的声能称为 声强, 常用I表示。单位是瓦/厘米2( W/cm2)或焦耳/厘米2·秒(J/cm2·s)。
14
三、超声波在异质界面的反射、透射、折射与波型转换 1.超声波垂直入射到单一平界面时的反射和透射 当超声波垂直入射到两种介质的界面时, 如图2-8所示 , 一部分能量透过界面进入第二种介质, 成为透射波(声强 为It), 波的传播方向不变;另一部分能量则被界面反射回 来, 沿与反射波相反的方向传播, 成为反射波(声强Ir)。
22
四、超声波的衰减特性
1. 扩散衰减
2.超声波在传播过程中, 由于声束的扩散, 使超声波的声
强随距离增加而逐渐减弱的现象称为扩散衰减。扩散衰
减仅取决于波阵面的形状, 与介质的性质无关。
3. 散射衰减
4.超声波在介质中传播时, 遇到晶粒的界面—晶界时产生
散乱反射引起衰减的现象, 称为散射衰减。当材质晶粒
19
第一临界角: 如果CL2> CL1,当αL增加到一定程度 时, βL=90°,这时所对应的纵波入射角称为第一临 界角。 α1=arcsin(CL1/CL2) 第二临界角: CS2> CL1,当αL增加到一定程度时, β S=90°, 这时所对应的纵波入射角称为第二临界角。
αⅡ=arcsin(CL1/CS2)
18
2.超声波倾斜入射到界面时的反射和折射
(1)纵波倾斜入射时的反射和折射 如图2-9所示,当纵波L以一定的入射角度倾斜入射 到固/固平界面时,除会形成反射的纵波与折射的 纵波外,还会转换出反射的横波与折射横波,超声 波的传播方向用波的传播方向与界面的法线的夹角 来描述,各种反射波和折射波的传播符合反射、折 射定律:
29
无损检测-超声波检测概述
![无损检测-超声波检测概述](https://img.taocdn.com/s3/m/b263dc6fac02de80d4d8d15abe23482fb4da0239.png)
无损检测-超声波检测概述无损检测(Non-Destructive Testing,NDT)是指在不破坏材料和结构的前提下,通过对材料和结构进行检测、分析和评估,获得材料和结构损伤、缺陷以及性能状况的方法和技术。
无损检测广泛应用于工业生产、科研领域和安全监督等领域,可以提高产品质量和安全性。
超声波检测是无损检测中常用的一种方法,它利用声波在介质中传播的特性来检测材料和结构的内部缺陷和性能状态。
超声波检测主要包括超声波传播、超声波发射和接收、信号处理和数据分析等环节。
超声波是一种频率高于人耳听力范围的声波,它的频率一般在1MHz到1GHz之间。
超声波在材料中的传播速度与材料的密度、刚度、损耗和传播路径等有关。
当超声波遇到材料的界面或缺陷时,会发生反射、折射、衍射等现象,通过检测这些波的变化可以确定材料的缺陷位置、大小和类型等信息。
超声波检测通常需要使用超声发射和接收设备,其中超声发射器将电能转换为机械振动,通过与材料接触或间接耦合的方式将超声波传入材料中。
超声接收器将机械振动转换为电能,将接收到的信号发送到信号处理设备进行分析和评估。
在信号处理环节,需要对接收到的信号进行放大、滤波、增益调节、噪声剔除等操作,以提高信号质量和分辨率。
常用的信号处理技术包括时域分析、频域分析和图像处理等,可以提取出材料的相位、强度和幅度等信息。
超声波检测可用于材料的缺陷检测、定位和评估。
常见的超声波检测应用包括焊缝检测、铁轨检测、管道检测、混凝土结构检测等。
在焊接中,超声波可以用于检测焊缝中的裂纹、夹渣、气孔等缺陷;在铁路领域,超声波可以用于监测铁轨中的疲劳裂纹和应力腐蚀开裂等缺陷;在管道工程中,超声波可以用于检测管道壁厚、管道腐蚀和管道连接等问题;在混凝土结构中,超声波可以用于评估混凝土强度和检测混凝土中的裂纹和空洞等缺陷。
超声波检测具有检测灵敏、无污染、快速、准确和可视化等优点。
它可以检测到微小的内部缺陷,能够评估材料和结构的性能状态,并且可以实时显示和记录检测结果。
超声波无损检测技术的使用方法
![超声波无损检测技术的使用方法](https://img.taocdn.com/s3/m/bf9d81052a160b4e767f5acfa1c7aa00b42a9d5b.png)
超声波无损检测技术的使用方法超声波无损检测技术是一种非破坏性的检测方法,广泛应用于工程领域中。
它通过利用超声波的传播特性来检测材料内部的缺陷、损伤及其它物理性能的情况。
本文将详细介绍超声波无损检测技术的使用方法,包括准备工作、仪器设备、检测步骤和结果分析等方面。
在进行超声波无损检测之前,首先需要做一些准备工作。
这包括确定检测目标、确认检测区域和选择合适的检测仪器。
确定检测目标意味着明确需要检测的材料或构件,例如钢铁、铝等。
确认检测区域是指确定在材料或构件上需要进行检测的具体区域,例如焊缝、腐蚀区等。
选择合适的检测仪器是根据实际需求来确定使用的超声波无损检测设备,包括超声波发射器、接收器、探头等。
接下来是具体的检测步骤。
首先,将超声波发射器与接收器连接到检测仪器上,并将探头正确安装在被测材料上。
然后,将超声波发射器发送的超声波通过探头输入到被测材料中。
超声波将在材料内部传播,并在遇到缺陷或不同材料界面时发生反射或散射。
这些反射或散射的信号由接收器接收并通过仪器转化成可视化的数据或图像。
在检测过程中,需要注意一些技巧和要点。
首先,探头的选择很关键,不同检测需求需要选择不同频率的探头。
高频探头适用于检测细小的缺陷,而低频探头适用于检测深层的缺陷。
其次,探头的角度和位置也要正确选择,以保证超声波能够充分穿透被测材料,并有效地检测到缺陷。
另外,超声波无损检测技术还可以结合数据分析来评估材料的性能和质量。
通过对接收到的信号进行处理和分析,可以得到材料的声速、声阻抗等性能参数。
同时,通过比较不同区域的信号差异,可以判断材料内部的缺陷或损伤的性质、位置和大小。
通过这些分析结果,可以评估材料的可靠性和使用寿命,帮助工程人员进行维修、更换或改进工艺。
综上所述,超声波无损检测技术是一种非常实用的材料检测方法。
通过正确的准备工作,选择合适的仪器设备,以及注意检测步骤和数据分析,可以准确地检测材料内部的缺陷和损伤,评估材料的性能和质量。
五大无损检测的原理及应用
![五大无损检测的原理及应用](https://img.taocdn.com/s3/m/5785ce2e1fb91a37f111f18583d049649a660e5b.png)
五大无损检测的原理及应用五大无损检测的原理及应用如下:1. 超声波检测(Ultrasonic T esting, UT)原理:超声波通过材料中的传播而发生不同程度的反射、折射、衍射等现象,通过对反射回波和传播时间的测量,可以判断材料内部是否存在缺陷。
应用:超声波检测广泛应用于金属材料的缺陷检测,如焊接接头、铸件、锻件等。
在航空航天、船舶制造、石油化工等领域中有着重要的应用。
2. 磁粉检测(Magnetic Particle Testing, MT)原理:在被检测材料的表面施加直流或交流磁场,通过涂覆磁粉或喷射磁粉,当磁粉聚集在材料表面附近的缺陷处时,形成可见的磁粉堆积痕迹。
应用:磁粉检测用于检测表面和近表面的裂纹、裂纹痕迹以及其他磁性材料的缺陷。
广泛应用于航空、电力、汽车、船舶等行业。
3. 渗透检测(Dye Penetrant Testing, PT)原理:将高表面张力的渗透液涂覆在被检材料表面,经过适当的渗透时间后,渗透液会通过缺陷的毛细作用进入缺陷内部,再通过涂上显色剂和溶剂,显示缺陷的位置和形状。
应用:渗透检测适用于检测金属和非金属表面的细小裂纹、孔洞以及其他缺陷。
常用于航空、汽车、造船和金属制造等领域。
4. X射线检测(X-ray Testing, RT)原理:通过X射线的穿透、吸收和散射,检测材料内部的缺陷。
传统的X射线检测主要基于矢量模型,现代技术越来越多地使用CT(计算机断层扫描)技术。
应用:X射线检测广泛应用于检测金属和非金属材料的内部缺陷,如焊接缺陷、夹杂物、孔洞等。
在航空航天、核能、汽车、电子等行业中得到重要应用。
5. 热波无损检测(Thermal/Infrared T esting, IR)原理:基于材料或构件的热学性质差异,检测材料内部的缺陷或异物。
通过测量材料散热或吸热的温度变化,获得缺陷位置及性质的信息。
应用:热波无损检测适用于检测钢铁、塑料、陶瓷和复合材料等材料的内部和表面缺陷。
无损检测技术中的超声波检测操作要点
![无损检测技术中的超声波检测操作要点](https://img.taocdn.com/s3/m/62418472590216fc700abb68a98271fe900eaf58.png)
无损检测技术中的超声波检测操作要点超声波检测是无损检测技术中常用的一种方法,其在许多行业中被广泛应用。
无损检测是指通过对材料或结构进行检测,不对其产生明显影响或破坏的技术。
超声波检测通过传递超声波波束到被测试物体中,并监测反射或传播的声波信号来评估材料的完整性或确定潜在缺陷的位置和性质。
在进行超声波检测时,以下几个操作要点需要特别注意:1. 超声波检测设备的选择与校准选择合适的超声波检测设备是确保检测准确性的首要任务。
在选择设备时,需根据被测试物体的类型和要求确定适当的频率和探头。
设备还需经过校准,以确保测量结果的准确性。
校准包括对设备的内部参考标准进行验证和调整,以使其能够正确地读取和解释超声波信号。
2. 被测试物体的准备工作在进行超声波检测之前,被测试物体需要进行适当的准备工作。
这包括清洁表面以排除杂质、涂用耦合剂以增加超声波的传播效果,并确保被测试物体与探头之间的接触良好。
3. 探头的正确使用探头是超声波检测中至关重要的组成部分。
不同类型的探头适用于不同类型的材料和结构,因此正确选择和使用探头是确保检测准确性的关键。
在使用探头之前,需检查其是否完好无损,并注意探头的角度和位置。
探头的角度和位置对检测结果具有重要影响,因此操作人员需经过专业培训,以熟悉不同探头的使用方法和特点。
4. 超声波波束的校准超声波波束的校准对于准确检测被测试物体中的缺陷至关重要。
波束校准包括确定波束的传播速度和调整传输路径。
操作人员需要采取适当的校准措施,以确保波束的准直性和聚焦效果,从而获得准确的检测结果。
5. 数据的分析与解读超声波检测生成的数据往往需要经过分析和解读才能得出结论。
在进行数据分析时,操作人员需要了解不同类型的缺陷特征,以便能够识别和评估检测结果中的异常信号。
同时,还需要对测量结果进行记录和文档化,以备后续参考和追踪。
6. 标准与规范的遵循无损检测领域有许多标准与规范可供参考,操作人员在进行超声波检测时应遵循相应的标准与规范要求。
超声波无损检测实验报告
![超声波无损检测实验报告](https://img.taocdn.com/s3/m/f10533a409a1284ac850ad02de80d4d8d05a0167.png)
超声波无损检测实验报告一、实验目的本次超声波无损检测实验的主要目的是通过使用超声波检测技术,对给定的试件进行检测,以确定其内部是否存在缺陷,并对缺陷的位置、大小和形状进行评估。
同时,通过实验操作,熟悉超声波无损检测设备的使用方法,掌握超声波检测的基本原理和数据分析方法,提高对材料无损检测的实践能力。
二、实验原理超声波无损检测是利用超声波在材料中的传播特性来检测材料内部缺陷的一种方法。
当超声波在均匀介质中传播时,其传播速度、波长和频率等参数保持不变。
然而,当超声波遇到缺陷时,会发生反射、折射、散射等现象,导致超声波的传播路径和能量发生变化。
通过接收和分析这些变化,可以判断材料内部是否存在缺陷以及缺陷的相关信息。
超声波在材料中的传播速度与材料的弹性模量、密度等物理参数有关。
对于特定的材料,可以通过测量超声波的传播时间和传播距离来计算其传播速度。
同时,根据反射波的到达时间和幅度,可以确定缺陷的位置和大小。
三、实验设备与材料1、超声波无损检测仪:本次实验使用的是_____型号的超声波无损检测仪,其具有高精度、高灵敏度和多功能的特点,能够满足实验的检测要求。
2、探头:选用了_____频率的直探头和斜探头,分别用于检测不同类型的缺陷。
3、试件:准备了若干个含有不同类型和大小缺陷的金属试件,如钢板、钢管等。
4、耦合剂:使用了_____耦合剂,以保证超声波能够有效地传入试件内部。
四、实验步骤1、仪器准备开启超声波无损检测仪,进行预热和校准。
设置检测参数,如探头频率、增益、扫描范围等。
2、试件表面处理用砂纸打磨试件表面,去除氧化层和污垢,保证探头与试件之间良好的耦合。
3、涂抹耦合剂在试件检测表面均匀涂抹耦合剂,减少超声波的能量损失。
4、探头安装将直探头或斜探头安装在检测仪的探头上,并确保探头与试件表面垂直或成一定角度。
5、检测操作手持探头在试件表面缓慢移动,观察检测仪屏幕上的波形变化。
对可疑区域进行重点检测,记录反射波的位置、幅度和形状等信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 超声波检测技术基础
• (3)吸收衰减: • 超声波在介质中传播时, • 由于介质质点间的内摩擦和热传导, • 引起的声波能量减弱的现象, • 叫做超声波的吸收衰减。
2.1 超声波检测技术基础
(3)只能在弹性介质中传播,不能在真空(空 气近似看成真空)中传播; 强调:横波不能在气体、液体中传播!表面波看作是纵波与横波的合成, 所以,也不能在气体、液 体中传播!
(4)遇到界面将产生: 反射、折射和波型转换现象;
(5)对人体无害——优于射线的性质。
压电晶片
N 近场区长度
N=D2 /4λ
超声场及 近场区
主声轴
2.1 超声波检测技术基础
• 3.24?
2.2 超声波在介质中的传播
2.2.1 超声波在金属中的衰减定律
超声波在金属中主要的衰减原因是散射和扩散;在液体中主要是吸收。
• 一般说来: • 超声波通过异质薄层时: • 声压反射率和透射率,不仅与介质声阻抗和薄层声阻抗有关,而且与薄层厚度同其波长之比( )
有关。
d2 / 2
• (1)、当一、三介质为同一介质时,对均匀介质中的异质薄层有如下规律性:
•
(反射) 2-21
•
•
•
1 (m 1()透2 s射in)2 22-22d2
研究表明,超声波在金属中的衰减规律可用下面的关系式表达:
PX = P0 ·e-α·x α——衰减系数;dB/m
(2-2)
x ——声束传播的距离,即声程 m。
• (2-2)式表明,超声波的声压在其传播的路径上,呈负指数规律衰减。
• 这里强调指出:衰减系数α为频率f4和晶粒尺寸d3的函数。
所以,对粗晶检测时,应适当降低超声波频率,弥补能量的不足。
2.1 超声波检测技术基础
• (1)扩散衰减 • 声波在介质中传播时,因其波前在逐渐扩展, • 从而导致声波能量逐渐减弱的现象叫做超声波的 扩散衰减。 • 它主要取决于波阵面的几何形状, • 而与传播介质无关。
2.1 超声波检测技术基础
• (2)散射衰减 • 散射是物质不均匀性产生的。 • 不均匀材料含有声阻抗急剧变化的界面, • 在这两种物质的界面上, • 会产生声波的反射、折射和波型转换现象, • 必然导致声能的降低。
2.3 超声波在介质中的传播
• 描述: 超声场的物理量 • 充满超声波的空间,或在介质中超声振动波所及的“质点占据的范围”叫超声场。 • 对超声场我们常用: • 1.声压、 • 2.声强、 • 3.声阻抗、 • 4.质点振动位移和质点振动速度
等物理量,来描述超声波声场。
2.3 超声波在介质中的传播
r
4
m
2
1 1 (m 1 )2 sin2 2d2
4
m
2
1
t 11(m 1)2 sin2 2d2
4m
2
• 式中:d2-异质薄层的厚度,
-异质薄层的波长,
-两种介质的声阻抗之比,
• 由公式(2-21)(2-22)可知:
• ①当
时(n为2 正整数),
。
• ②当 • ③当
m 时(n为正整数),r最高, 。
2.1 超声波检测技术基础
(4)板波 ——板厚与波长相当的薄板中传播的超声波,板的两表面介质质点沿介质表面做椭圆运动, 板中间也有超声波传播。又称兰姆波;a)对称型 b)非对称型
• 注意! ① 液体和气体介质(不能传递切向力) 中,所以只能传播纵波! ② 同一介质中,声速的关系有:
CL > CS > CR ③ 同一介质中,声速、波长、频率之间
2.1.3 超声波波型的分类 • 按质点的振动方向与声波的传播方向之间的关系分为: (1)纵波 L—— 介质质点的振动方向与波的传播方向一致;
2.1 超声波检测技术基础 (2)横波 S—— 介质质点的振动方向与波的传播方向垂直;
2.1 超声波检测技术基础 (3)表面波 R——介质质点沿介质表面做椭圆运动;又称瑞利波;
• 注意: • 在垂直入射时, • 介质两侧的声波必须满足两个边界条件: (1)、一侧总声压等于另一侧总声压。 否则界面两侧受力不等,将会发生界面运动。 (2)、两侧质点速度振幅相等,以保持波的连续性。
• 上述的是超声波纵波:
• 垂直入射到单一平界面上的,声压、声强与其反射率、透射率的计算公式,同样适用于横波入射的 情况。
具有压电效应的晶体材料就称为压电材料。
• 压电效应图解
压电效应
正压电效应 --------
++++++++
逆压电效应
-/+ ~
+/-
a. 拉伸或压缩时表面产生电荷
b. 施加交流电场时内部质点产生振动
(2) 超声波的发射与接收
①发射——在压电晶片制成的探头中,对压电晶片施以超声频率的交变电压,由于逆压电效应,晶片中 就会产生超声频率的机械振动——产生超声波;
• 研究表明,声压p与超声波探伤仪示波屏上的波高h成正比关系:
p1/p2 = h1/h2
(2-3)
• 实际探测时,超声波探伤仪示波屏上的波高h能够反映声波的衰减状况。
超声波探伤仪示波屏上 波高h的衰减状况
• 这里,B1~ B6代表超声波在工件底面的 6次反射波。波高h依次递减。
T B1 B2 B6
• 按声耦和方式不同分为: 直接接触法、液浸法超声检测;
• 本章将重点介绍: 脉冲反射法原理、 直接接触法、 A型显示方式、 纵波法、横波法 超声检测技术。
2.1 超声波检测技术基础
2.1.1 超声波的物理本质 它是频率大于2万赫兹的机械振动在弹性介质中的转播行为。 即超声频率的机械波。 一般地说,超声波频率越高,其能量越大,探伤灵敏度也越高。 超声检测常用频率在 0.5~10 MHZ。
束射性,象手电筒的光束一样,能集中在超声场内定向辐射。
声束的扩散角满足如下关系:
θ= arcsin 1.22(λ/D)
(2-1)
可见: 波长越短,扩散角θ越小,
声能越集中。
2.1 超声波检测技术基础
(2)具有较强的穿透性,但有衰减; 穿透性——来自于它的高能量,因为声强正比于频率的平方; 所以,超声波的能量比普通声波大100万倍!可穿透金属达数米! 衰减性——源于三个方面: 扩散、散射、吸收;
2.3 超声波在介质中的传播
• 超声波的声强: ①、正比于质点振动位移振幅的平方; ②、正比于质点振动角频率的平方; ③、正比于质点振动速度振幅的平方。
• 注意: 由于超声波的频率高,其强度(能量)是远远大于 可闻声波 的强度。
• 例如: 1MHz声波的能量等于100kHz声波能量的100倍,等于lkHz声波能量的100万倍。
• 1、在单一界面上反射波声压与入射波声压之比,称为界面的 声压反射率: 用表示。
式中: • Z1- 介质1的声阻抗, • Z2-介质2的声阻抗。
r pr Z2 Z1 p0 Z2 Z1
• 2、在单一界面上透射波声压与入射波声压之比,称为界面的 声压透射率:
• 用t表示:
•
• 3、在界面上反射波声强与入射波声强之比,称为 声强反射率:
2.1.2 超声波的产生(发射)与接收 (1) 超声波的产生机理——利用了压电材 料的压电效应。 试验发现,某些晶体材料(如石英晶体)做成的晶体薄片,当其受到拉伸或压缩时,表面就会产生 电荷;此现象称为正压电效应; 反之,当对此晶片施加交变电场时,晶体内部的质点就会产生机械振动,此现象称为逆压电效应。
的关系为: C = λ·f = 常数。
• 按超声波振动持续时间分为: (1)连续波——在有效作用时间内声波不间 断地发射;
(2)脉冲波——在有效作用时间内声波以脉 冲方式间歇地发射。
注意: 超声波检测过程常采用脉冲波。
2.1.4 超声波的基本性质
(1)具有良好的指向性:
直线传播,符合几何光学定律;象光波一样,方向性好;
时,即 时,则薄层厚度愈小,透射率愈大,反射率愈小。
d2
n 2
2
d2 (2n1) 4
d2 0
d2Leabharlann 4r0,t 1t 0
• •
(例2)如、:晶片Z—,1保即护非Z薄均2膜匀—介工Z质3件中,的或薄晶层片有—如耦下合规剂律—性工:件等情况。
• 此时 声压往复透射率 为:
•
(2-23)
T(Z1Z3)2co2 sd 224 Z (1Z Z2 3Z Z 1Z 23)2si2n 2 d 22
反射系数K % 0
81 77 88 17 100 100
④反射现象的辩证分析 反射现象: 对发射超声波不利 ; 对脉冲反射法接收有利。
⑤影响反射系数K的因素 反射系数K值的大小,决定于相邻介质的声阻抗之差: Δ Z =| Z 2-Z 1| Δ Z 越大,K 值越大。 而与何者为第一介质无关。
• (一)、在单一界面上 • 当超声波垂直入射到足够大的光滑平界面时: • ①.在第一介质中产生一个与入射波方向相反的反射波。 • ②.在第二介质中产生一个与入射波方向相同的透射波。 • ③.反射波与透射波的声压(声强)是按一定比例分配。 • ④.分比例由声压反射率(或声强反射率), • 和声压透射率(或声强透射率)来表示。
• A-介质质点的振幅,
•
-介质中质点振动的圆频率(),
• A -质点振动的速度振幅(),
• T -时间,
• x-至波源的距离。
•
且有关系式:
•
式中: -声压的极大值。
pm cA
pm
2.3 超声波在介质中的传播
• 可见: 声压的绝对值,与波速、质点振动的速度振幅(或角频率)成正比。
• 因为超声波的频率高,所以超声波比声波的声压大。
• (一)声压
• 超声场中某一点在某一瞬间所具有的压强 ,与没有超声场存在时,同一点的静态压强之差为该点的