青贮饲料添加剂甲酸的应用

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青贮饲料添加剂甲酸的应用

青贮原料因植物种类、生长阶段和化学成分等不同,青贮难易程度也有不同。对于难青贮的植物原料(碳水化合物含量低、水分含量高、缓冲度高等)一般可以采用半干青贮、混合青贮或添加剂青贮。添加甲(蚁)酸青贮是目前国外广泛使用的一种加酸青贮方法。挪威近70的青贮添加甲酸,英国自1968年后亦广泛采用,其用量是每吨青贮原料加85甲酸2.85千克,美国用量为每吨青贮原料加90甲酸4.53千克。当然,甲酸的用量随其浓度、青贮难易程度和青贮目的不同亦有所不同,其添加量一般为青贮原料重量的0.3~0.5,或2~

4ml/kg。

1 甲酸青贮的原理

甲酸在有机酸中属于强酸,并具有较强的还原能力,是炼焦的副产物。添加甲酸比添加H2SO4、HCl等无机酸的效果好,因为无机酸只有酸化效果,而甲酸不但能降低青贮料的pH 值,而且还可以抑制植物呼吸和不良微生物(梭状芽孢杆菌、芽孢杆菌和某些革兰氏阴性菌)发酵。此外,甲酸在青贮料和瘤胃消化过程中,能分解成对家畜无毒的CO2和CH4,甲酸本身也可被吸收利用。加甲酸制成的青贮料,颜色鲜绿,具香味,品质高,蛋白质分解损失仅0.3~0.5,而在一般青贮中则达1.1~1.3。苜蓿、三叶草加甲酸青贮结果,粗纤维减少5.2~6.4,,且减少的这部分粗纤维水解变成低聚糖,可为动物吸收利用,而一般青贮粗纤维仅减少1.1~1.3。另外,加甲酸青贮可以使青贮料的胡萝卜素、维生素C、钙、磷等营养物质的损失比一般青贮少。

2 甲酸对青贮过程的影响

2.1 甲酸对pH的影响尽管甲酸在脂肪酸系列中其酸性最强,但比AIV法中使用的无机酸要弱的多。要把作物的pH降至4.0以下,一般不大量使用甲酸。添加甲酸在青贮初期可使pH迅速下降,但对青贮料的最终pH值则影响不一。甲酸对pH的改变程度同样受诸多因素的影响。Carpintero等(1979)添加85甲酸4ml/kg对牧草进行青贮,结果使乳酸菌(LAB)数量下降一半,青贮料pH略微升高。Henderson等(1989)添加甲酸(5ml/kg)青贮牧草,结果LAB下降55,pH从

3.70增加到3.91。 Berry等(1978a)研究了甲酸对可溶性碳水化合物(water soluble carbohydrates, WSC)含量低的青贮原料的典型影响。在

此项研究中,他们用低(1.5ml/kg)、中(3.0ml/kg)、高(6.0ml/kg)三个水平的85甲酸处理苜蓿青贮。结果pH都比对照组低,但随着甲酸浓度增加,pH从5.35降低到4.20,呈下降趋势。甲酸对WSC含量高的青贮原料的影响可以用Carpintero等(1979a)所做的研究来加以说明。他们用6个不同水平(分别为0、0.4、1.0、2.0、4.1、7.7ml/kg)的85甲酸处理黑麦草-三叶草青贮,50天后其pH分别为3.87、3.77、3.67、3.81、3.88和3.80,pH呈先降后升的趋势,最高水平甲酸(7.7ml/kg)青贮料50天的pH值超过了最初的pH值(3.50)。对于缓冲性较高的作物,比如豆科牧草,要想把pH降至理想水平,需酸量更大。Lancaster和Brunsuick(1980)建议苜蓿适宜的使用水平为5~6ml/kg。

2.2 甲酸对微生物区系的影响甲酸的抗菌作用与其他脂肪酸一样,是由于两种作用所至,一是氢离子浓度的作用,二是非游离酸对细菌的选择作用(Woolford,1984)。在同类脂肪酸系列中,氢离子浓度作用随分子量的增加而减少,但抗菌效果却增加,这种性质至少可上升到C12酸。Woolford(1975)经过测定指出甲酸在pH值为4时抑制细菌生长的效果最好。Mann也用坡度电极板技术测定了甲酸的抗菌活性,他发现在4.5ml/kg的甲酸水平中,白联珠菌(Leuconostoc)小球菌属(Pediococcus)和链球菌(Streptococcus)中的选定菌株全部被抑制,而乳酸杆菌(L.buchneri L.casei和L.plantarum)则未完全被抑制。此外,枯草杆菌(Bacillus subtilis)、短小芽孢杆菌(B.pumilis)以及短杆菌(B.brevis)的杆菌菌株也能够在4.5ml/kg的甲酸中生长。Carpintero等(1979)分别添加85甲酸

(4ml/kg)和50硫酸(3ml/kg)将青贮料的pH降至相似水平,发现甲酸大大阻止了LAB(甲酸组为66g/kgDM,对照组为122,硫酸组为102 )的活动,从而保存了大量的WSC(甲酸组为211g/kg,对照为12,硫酸组为64),这样可以为瘤胃微生物的生长多提供一些能量来源。酵母菌对甲酸具有特殊的耐受性,Henderson等(1972)发现用推荐水平的甲酸处理的青贮原料中,有大量这类生物体存在。青贮饲料内酵母的存在与活跃是我们所不希望的,在厌氧条件下酵母发酵糖类获得能量,并产生乙醇和使干物质减少。 Beck(1968)发现甲酸对梭状芽孢杆菌和肠道细菌有显著的抑制作用,但作用的强弱取决于所用酸的浓度,低浓度甲酸实际上反而会促进一些杂菌的生长。Chambelain和Quig(1987)指出在抑制肠杆菌方面,添加甲酸使pH降低,但不能使肠杆菌数量减少,而是乳酸菌的迅速生长使肠杆菌受到抑制,因为甲酸对肠杆菌的影响较乳酸菌小。他们指出,中等水平(3~4ml/kg)的甲酸可能会使乳酸菌受到的抑制大于肠杆菌,从而导致对发酵的不利影响;再略高的甲酸水平则使乳酸菌和肠杆菌都受到抑制。Henderson等(1972)对DM含量为360g/kg的多年生黑麦

草进行了研究,结果发现,甲酸(3.5g/kg)会减少微生物的总量,但对乳酸菌的活性影响不大。Jonsson(1990)用甲酸(4.0、8.0ml/kg)处理苜蓿(DM分别为25、35、40)大捆青贮,青贮中接种了梭菌和黄曲霉,120天后发现甲酸对梭菌数量没有影响,而对后者则有完全的抑制作用。甲酸还助长了镰刀菌属细菌的生长.

2.3 甲酸对青贮成分的影响甲酸对青贮料化学成分的影响随其施用水平、植物种类、生长阶段、DM和WSC含量以及青贮过程而不同。甲酸对WSC含量低的作物的典型影响可以用Berry等(1978b)的实验来加以说明。实验用低中高(分别为1.5、

3.0、6.0ml/kg)三个水平的甲酸处理用两种方法收获的苜蓿。在用链枷式收获的材料中,低甲酸处理实质上对阻止分解蛋白质的梭状芽孢杆菌无效,只有高水平甲酸才能有效保存。用精细切碎的材料,所有甲酸处理的青贮都保存的很好。甲酸组青贮料的DM和蛋白氮、乳酸含量升高,而乙酸、氨态氮含量降低。随着甲酸浓度的升高,乙酸和乳酸降低,WSC和蛋白氮增加。Phillp等(1990)加甲酸(

4.5ml/kg)于苜蓿青贮中,和对照组相比,乳酸含量略有下降,可溶性糖有所增加,其它成分并无多大变化。当把甲酸加到WSC含量丰富的作物中时,乳酸发酵占优势而使青贮储存良好,甲酸有限制乙酸、乳酸产生并保存WSC的作用。Carpintero等(1979b)用6个水平(0、0.4、1.0、。2.0、4.1、7.7ml/kg)的甲酸(85)处理DM含量为203g/kg的黑麦草-三叶草青贮。结果显示,最终WSC随甲酸水平的升高而升高,氨态氮、乙酸则反之,乳酸含量呈先升后降的趋势。另外,Carpintero等还发现,当用高水平(4.1、7.7ml/kg )甲酸时,青贮料中WSC含量分别为211、250g/kgDM,超过了青贮原料最初的WSC(199g/kgDM)。据推断,原因可能是在贮存期间发生了多糖水解。Martinsson(1992)加甲酸于猫尾草中,结果甲酸组青贮料乳酸、乙酸和氨态氮均略低于对照组,但对其它成分影响不大。郭金双(1998)用85甲酸(0、2.5、4.0、

5.5mlkg-1)分别处理蜡熟期收割的全株大麦和全株玉米,结果玉米青贮的可溶性糖含量显著增加,乳酸、乙酸、氨态氮含量有所降低;大麦青贮的乳酸含量极显著降低,氨态氮、乙酸也降低,但不明显,可溶性糖有所增加。

3 甲酸青贮对家畜生产性能的影响

实验充分证实,添加甲酸青贮有利于提高青贮干物质的随意采食量和家畜生产性能。直接收割后添加甲酸青贮能提高有机物表观消化率7,而萎蔫青贮仅提高2。若考虑到能量消化率,甲酸处理提高不到2。Waldo(1978)经过大量实验后认为,由于发酵存在损失,使

相关文档
最新文档