3GPP最新NB-IoT标准
最新NB-IoT网络架构、数据传输优化方案
NB-IoT网络架构、数据传输优化方案NB-IoT的引入,给LTE/EPC网络带来了很大的改进要求。
传统的LTE网络的设计主要是为了适应宽带移动互联网的需求,即为用户提供高带宽、高响应速度的上网体验。
但是,NB-IoT却具有显著的区别:终端数量众多、终端节能要求高(现有LTE信令流程可能导致终端耗能高)、以小包收发为主(会导致网络信令开销远远大于数据载荷传输本身大小)、可能有非格式化的Non-IP数据(无法直接传输)等。
为了适应NB-IoT终端的接入需求,3GPP对网络整体架构和流程进行了增强,提出了一些解决方案,这主要包括如何适配小包业务的传输、无线侧怎么适配、怎么解决Non-IP数据的传输、怎么传输SMS短信业务等。
1 NB-IoT总体网络架构NB-IoT的端到端系统架构如下图所示。
»NB-IoT终端:通过空口连接到基站。
»eNodeB:主要承担空口接入处理,小区管理等相关功能,并通过S1-lite接口与IoT核心网进行连接,将非接入层数据转发给高层网元处理。
这里需要注意,NB-IoT可以独立组网,也可以与EUTRAN融合组网(在讲双工方式的时候谈到过,NB仅能支持FDD哦,所以这里必定跟FDD融合组网)»IoT核心网:承担与终端非接入层交互的功能,并将IoT业务相关数据转发到IoT平台进行处理。
同理,这里可以NB独立组网,也可以与LTE共用核心网。
需要注意的是,这里笼统的写成IoT核心网那是偷懒且毫不负责任的写法,下文将就此进行详细介绍,这里涉及到较多的技术细节。
»IoT平台:汇聚从各种接入网得到的IoT数据,并根据不同类型转发至相应的业务应用器进行处理。
» 应用服务器:是IoT数据的最终汇聚点,根据客户的需求进行数据处理等操作。
2 NB-IoT中UP和CP优化传输方案大PK为了适配NB-IoT的数据传输特性,协议上引入了CP和UP两种优化传输方案,即control plane CIoT EPS optimization和user plane CIoT EPS optimization。
最新NB-IoT三大模式分析
NB-IoT三大模式分析窄频物联网(Narrow Band Internet of Thing, NB-IoT)标准化的工作于第三代合作伙伴计划(3rd Generation Partnership Project, 3GPP)Release 13版本开始。
NB-IoT用户装置(User Equipment, UE)须具备低耗能、低复杂度、低成本等特性,但可容忍较大延迟。
为了达到涵盖范围延伸(Coverage Enhancement, CE)以满足布建在细胞(Cell)边缘或地下室等信道质量较低的NB-IoT UE,基地台与NB-IoT UE之间透过采用较少数量的子载波(Subcarrier)与将欲传递的数据作重复传送以利于接收端提高正确解出数据的成功率。
依照目前规格的规范,在随机存取(Random Access)信道、控制信道与数据信道所传递之讯息的重复传送次数最高可高达128、2,048与2,048次。
三种运行模式各有发挥灵活运用频段资源涵盖范围延伸(Coverage Enhancement Level, CE Level)共分为三种等级,分别为达到可对抗最大耦合损失(Maximum Coupling Loss, MCL)为144dB、154dB、164dB的讯号能量衰减。
基地台与NB-IoT UE间会根据所在的CE Level来选择相对应的讯息重复传送次数。
另一方面,为了使营运商能灵活地使用LTE频段或非LTE频段来布建NB-IoT系统以及考虑到对LTE系统的兼容性,单一载波带宽被限制为180KHz,相当于一个PRB(Physical Resource Block)的带宽。
NB-IoT支持在频段内(In-Band)、保护频段(Guard Band)以及独立(Stand-alone)共三种运行模式。
In-Band运行是利用LTE载波(Carrier)内的PRB进行数据传输,Guard Band运行是利用LTE载波内的Guard Band来进行数据传输,Stand-alone运行则是使用非LTE频段的载波来进行数据传输。
基于物联网的NB—loT标准及优势
基于物联网的NB—loT标准及优势NB-IoT是窄带物联网(Narrowband Internet of Things)的一种通信技术标准,目前已经成为物联网应用领域中最受关注的技术之一。
以下是关于NB-IoT标准及其优势的详细介绍。
NB-IoT标准是由3GPP(第三代合作伙伴计划)组织制定的一种低功耗广域网(LPWAN)技术标准,其主要目标是为物联网应用提供更广阔、更可靠的无线覆盖。
与传统的通信技术相比,NB-IoT有以下特点和优势:1. 增强的覆盖范围:NB-IoT技术通过使用窄带信道和信号传输技术,实现了更广阔的覆盖范围。
相比于传统的GSM网络,NB-IoT的覆盖范围可以增加10倍以上,能够在各种室内和室外环境中提供稳定的通信连接。
2. 低功耗:NB-IoT标准专门为低功耗应用而设计,使设备能够长时间运行,甚至在电池供电的情况下也能持续工作数年。
其低功耗的优势是通过使用节能的调制方式、功率控制和低频带宽进行实现的。
3. 低速率和窄带宽:NB-IoT通信的速率相对较低,一般在100bps到250kbps之间。
这使得NB-IoT非常适用于一些对数据传输速率要求不高的应用,例如智能电表、城市停车管理、环境监测等。
4. 连接密度高:NB-IoT支持大量设备同时连接,每个基站可以支持数百个设备连接,这可以满足物联网应用中大规模设备连接和数据传输的需求。
NB-IoT还支持设备之间的直接通信,提供了更高效的通信方式。
5. 高安全性:NB-IoT标准采用了先进的加密和安全认证技术,保护设备与网络之间的通信安全。
这对于物联网应用来说至关重要,因为这些设备涉及到很多敏感数据和隐私。
6. 兼容性:NB-IoT技术可以在现有的移动网络基础设施上进行部署,这样可以减少新设备和基础设施的投资。
NB-IoT还与其他通信技术(如LTE和GSM)相兼容,可以实现与现有网络的无缝演进和集成。
7. 低成本:由于NB-IoT使用的是窄带信道和低频带宽,相对于其他物联网通信技术,其建设、维护和运营的成本更低。
nb 标准
nb 标准NB标准是指“窄带物联网”标准,它是专门针对窄带物联网通信技术领域而制定的一项国际标准。
窄带物联网是一种物联网的子集,它可以支持大量低功耗设备进行长期的数据传输,为物联网的发展提供了重要的技术支撑。
下面将从NB标准的意义、标准的制定过程以及标准的应用等几个方面进行介绍。
一、NB标准的意义随着物联网技术的不断发展,越来越多的设备将被联网,人们对于智能家居、智能城市等应用的需求也越来越高。
而NB标准恰恰是满足这个需求的重要标准之一。
它采用了窄带频率,可以支持低功耗设备进行长时间的数据传输,而且信号覆盖范围广,具有较高的穿透力和可靠性,非常适合物联网场景下的数据传输。
同时,NB标准还有着稳定、安全、低成本等优点,能够为物联网的发展提供重要的技术支撑。
二、标准的制定过程NB标准是由3GPP(第三代合作伙伴计划)组织制定的。
3GPP是一个跨国非营利性组织,由全球移动通信领域的运营商、设备供应商、技术供应商以及其他相关企业组成。
在NB标准的制定过程中,3GPP组织先是在2010年提出了一项针对窄带物联网的研究项目。
经过多年的研究和实验,3GPP组织于2015年正式发布了NB-IoT(NB物联网)第一个版本的技术标准。
此后,标准不断完善,目前已经发展到了第三个版本。
三、标准的应用NB标准在物联网领域有着广泛的应用。
以智能家居为例,很多家庭设备如智能门锁、智能家电、智能照明等都可以通过NB技术实现联网。
这些设备可以通过智能手机等终端控制,实现远程开关、调节、设置等功能,提高了生活的便利性和智能化水平。
另外,NB技术在能源监测、环境监测、医疗物联网等领域也有不少应用。
它可以监测各种设备和环境数据,从而减少人工干预的时间和成本,提高工作效率和准确性。
总之,NB标准是物联网发展的重要标准之一,它采用窄带频率,为物联网的窄带物联通信提供了技术支持。
目前,NB技术已经得到广泛应用,未来还将进一步发挥其作用,为物联网的可持续发展提供支撑。
基于物联网的NB—loT标准及优势
基于物联网的NB—loT标准及优势NB-IoT(Narrowband Internet of Things)是一种基于物联网的无线通信技术标准,可以实现低功耗、广覆盖、低成本的物联网连接。
该技术标准在2016年由3GPP(第三代合作伙伴计划)制定,旨在为物联网设备提供可靠的连接解决方案。
NB-IoT标准有以下几个优势:1. 低功耗:NB-IoT设备采用低功耗设计,可以实现长时间运行,提供长寿命的电池供电解决方案。
这对于那些需要长时间运行的物联网设备,如环境传感器、智能电表等是非常重要的。
2. 广覆盖:NB-IoT技术在设计时考虑到了物联网设备通常需要在较远距离和困难环境下进行通信的需求。
NB-IoT可以实现广覆盖,有效地解决了传统无线网络无法覆盖的问题。
3. 低成本:与传统的无线通信技术相比,NB-IoT采用了低成本的硬件和较低的部署成本。
这使得NB-IoT技术在物联网应用场景中更具有竞争力,能够降低物联网设备的制造成本和使用成本。
4. 高可靠性:NB-IoT技术采用了低速和低功耗的通信方式,能够在较差的信号环境下保持稳定的连接。
这样,即使在信号弱或干扰严重的情况下,NB-IoT设备也能保持可靠的通信。
5. 安全性:NB-IoT采用了高级的加密和身份认证技术,能够保证物联网设备的安全通信。
这对于那些采集和传输敏感数据的物联网设备,如智能家居、智能健康设备等是非常重要的。
NB-IoT标准可以广泛应用于各种物联网场景,如智能城市、智能农业、智能交通等。
它为物联网设备提供了更稳定、低功耗和低成本的连接解决方案,能够满足多样化的需求。
与此NB-IoT还可以与其他无线通信技术结合使用,如WiFi、蓝牙等,实现更灵活、多样化的物联网连接方式。
NB-IoT标准凭借其低功耗、广覆盖、低成本、高可靠性和安全性等优势,在物联网领域具有巨大的潜力和应用前景。
随着NB-IoT技术的不断发展和成熟,预计将会有越来越多的物联网设备采用这一标准,推动物联网技术的进一步发展。
nb-iot水表数据传输 协议 标准
主题:NB-IoT水表数据传输协议标准---近年来,随着物联网技术的快速发展,智能水表的应用越来越广泛,为了实现水表数据的高效传输和信息的安全保障,各国家和地区都在积极研究和制定相关的数据传输协议标准。
其中,NB-IoT技术作为一种低功耗广域网通信技术,具有覆盖范围广、连接稳定、功耗低等优势,因此成为智能水表数据传输的首选技术之一。
本文将从NB-IoT水表数据传输的相关标准和协议进行探讨。
一、 NB-IoT技术概述---1. NB-IoT(Narrow Band-Internet of Things)技术是一种专门为物联网应用设计的低功耗广域网通信技术,其特点包括窄频带、低功耗、广覆盖、大连接数等。
2. NB-IoT技术采用的窄带宽信道,能够在现有的GSM、UMTS或LTE网络中通过软件升级来实现,降低了网络部署成本。
3. NB-IoT技术具有优异的穿墙能力和抗干扰能力,使得智能水表不受环境影响,数据传输更加稳定可靠。
二、 NB-IoT在智能水表领域的应用---1. NB-IoT技术在智能水表领域的应用十分广泛,可以实现水表的远程抄表、远程关闭和开启阀门、水质监测等功能。
2. NB-IoT技术的低功耗特性,使得智能水表可以实现长时间的远程监测,无需频繁更换电池。
3. 借助NB-IoT技术,智能水表可以实现与智能家居设备的互联互通,实现更加智能化的管理和控制。
三、 NB-IoT水表数据传输协议标准---1. 数据采集协议:NB-IoT水表数据采集协议通常采用物联网行业通用的CoAP(Constrained Application Protocol)协议。
该协议能够在低带宽、高时延、高丢包率的网络环境下进行数据传输,非常适合智能水表数据的采集和传输。
2. 安全通信协议:在NB-IoT水表数据传输过程中,安全通信协议至关重要。
目前,通用的安全通信协议包括DTLS(Datagram Transport Layer Security)和TLS(Transport Layer Security)协议,能够保障数据传输过程中的安全性和完整性。
基于物联网的NB—loT标准及优势
基于物联网的NB—loT标准及优势物联网(IoT)是一种新兴的技术,它通过连接各种物理设备和传感器,实现设备之间的通信和数据交换。
NB-IoT(Narrowband-IoT)作为物联网技术的一种标准,具有窄带宽、低功耗、广覆盖等特点,为物联网的发展提供了更广阔的空间。
本文将介绍NB-IoT的标准和优势。
NB-IoT是3GPP标准化组织定义的一种物联网技术,它采用窄带宽的无线连接,能够支持大规模的物联网设备连接。
NB-IoT的标准制定是为了解决传统蜂窝网络在物联网应用中存在的一些问题,比如功耗高、成本高、覆盖范围窄等。
NB-IoT标准主要包括物理层、链路层和网络层等方面的内容,它采用了一系列技术来实现设备之间的连接和数据传输,具有以下几个特点:1. 窄带宽:NB-IoT采用了窄带宽技术,可以支持更多的设备接入,提高了网络的容量和效率。
2. 低功耗:NB-IoT设备的功耗非常低,可以使用电池供电,大大延长了设备的使用寿命。
3. 广覆盖:NB-IoT网络可以覆盖更广阔的范围,包括室内和室外,可以满足物联网设备在不同环境下的连接需求。
4. 成本低:NB-IoT设备的制造成本低,可以大规模部署,降低了物联网设备的使用成本。
5. 高安全性:NB-IoT网络采用了严格的安全机制,保护设备和数据不受到攻击和泄露。
通过以上特点,NB-IoT标准可以更好地满足物联网应用中的需求,为物联网设备的连接和数据传输提供了更可靠、高效、低成本的解决方案。
NB-IoT的优势主要体现在以下几个方面:2. 高效能:NB-IoT网络采用窄带宽技术,可以支持更多的设备接入,提高了网络的容量和效率。
这意味着NB-IoT网络可以满足大规模物联网设备的连接需求,为物联网应用提供更优质的服务。
NB-IoT作为物联网的一种标准,具有窄带宽、低功耗、广覆盖、低成本、高安全性等特点,为物联网应用提供了更优质、可靠、高效的连接服务。
随着物联网技术的不断发展和完善,NB-IoT标准的应用范围将越来越广,为各个行业的物联网应用带来更多的机遇和挑战。
基于物联网的NB—loT标准及优势
基于物联网的NB—loT标准及优势NB-IoT(Narrowband Internet of Things)是一种基于物联网的通信技术标准,主要应用于低功耗、大规模部署的物联网设备。
下面将从NB-IoT的标准及其优势两个方面来详细介绍。
NB-IoT标准是由3GPP(3rd Generation Partnership Project)组织制定的,与传统的3G和4G通信标准相比,NB-IoT更加注重低功耗、宽区域覆盖和大规模连接。
具体来说,其标准有以下特点:1. 低功耗:NB-IoT采用低复杂度的调制解调器,优化了传输过程中的功耗,使得物联网设备可以长时间运行,减少了电池更换的频率。
NB-IoT还支持电池的静态休眠模式,可以进一步降低功耗。
2. 宽带覆盖:NB-IoT采用窄带通信技术,与传统宽带通信相比,窄带通信能够提供更好的室内和地下覆盖能力。
这意味着无论是在城市密集区域、偏远农村还是地下停车场等复杂环境中,NB-IoT都能提供稳定的通信连接。
3. 大规模连接:NB-IoT标准支持大规模设备的连接,一个基站可以同时连接数千个设备。
这对于物联网设备的广泛应用来说,可以提供更好的网络支持。
4. 互操作性:NB-IoT采用全球通用的物联网频段,实现了不同设备之间的互操作性。
无论是不同厂商生产的设备还是不同地区部署的设备,只要符合NB-IoT标准,都可以无缝接入。
5. 高安全性:NB-IoT采用了多种安全机制保障数据传输的安全性。
NB-IoT使用SIM卡进行身份认证,防止未经授权的设备接入网络。
NB-IoT还支持端到端的加密机制,保护数据在传输过程中的安全性。
NB-IoT的这些特点使其在物联网应用中具有一系列优势:1. 低成本:由于NB-IoT采用窄带通信技术,省去了大规模部署所需的高昂费用,降低了设备的成本。
低功耗的特点也减少了设备的运维成本。
2. 高覆盖:NB-IoT的宽带覆盖能力使得物联网设备可以在各种环境下稳定连接,无论是城市还是乡村,无论是室内还是室外,都能提供可靠的通信服务。
nb-iot标准
nb-iot标准NB-IoT(Narrowband Internet of Things)是一种低功耗、广覆盖、成本低廉的物联网技术,它为物联网设备提供了更长的电池寿命和更广泛的覆盖范围。
NB-IoT标准的制定和推广对于推动物联网技术的发展具有重要意义。
本文将对NB-IoT标准进行深入探讨,以便更好地了解这一技术的特点和应用。
首先,NB-IoT标准是由3GPP组织制定的,旨在为物联网设备提供低功耗、广覆盖的连接。
与传统的移动通信技术相比,NB-IoT具有更低的功耗和更广泛的覆盖范围,这使得它非常适合于那些需要长时间运行且部署在偏远地区的物联网设备。
此外,NB-IoT还支持大规模连接,能够同时连接数以百万计的设备,这为物联网的发展提供了强大的支持。
其次,NB-IoT标准采用窄带通信技术,这意味着它能够在较窄的频段内实现更高的覆盖范围和更好的穿透能力。
这使得NB-IoT可以穿透混凝土、地下室等复杂环境,为物联网设备提供了更可靠的连接。
同时,窄带通信技术还能够降低设备的功耗,延长电池寿命,这对于那些需要长时间运行的物联网设备来说尤为重要。
另外,NB-IoT标准还具有较低的部署成本,这主要得益于其对现有基础设施的兼容性。
由于NB-IoT可以在现有的GSM、UMTS或LTE网络上部署,因此无需建设新的基站和网络设备,大大降低了部署物联网设备的成本。
这使得NB-IoT成为了许多物联网应用的首选技术,例如智能家居、智能城市、工业自动化等领域。
总的来说,NB-IoT标准作为一种低功耗、广覆盖、成本低廉的物联网技术,具有许多优势,包括长电池寿命、广泛覆盖、大规模连接、窄带通信和低部署成本。
这些优势使得NB-IoT成为了推动物联网技术发展的重要力量,为各种物联网应用提供了可靠的连接和支持。
随着NB-IoT技术的不断成熟和推广,相信它将在未来的物联网领域发挥越来越重要的作用。
综上所述,NB-IoT标准的制定和推广对于推动物联网技术的发展具有重要意义。
nbiot的频段
nbiot的频段NB-IoT(Narrowband Internet of Things)是一种低功耗、宽覆盖、低成本的无线通信技术,专门为物联网(IoT)设备设计。
NB-IoT的频段主要参考以下内容:1. 3GPP标准:NB-IoT的频段参考了3GPP标准中定义的频段分配。
3GPP是一个国际标准化组织,负责制定移动通信技术的全球标准。
NB-IoT采用了3GPP标准中定义的可用频段,以确保设备在不同地区和国家可以无缝运行。
2. GSM频段:NB-IoT的某些频段与GSM(Global System for Mobile Communications)频段有部分重叠。
GSM是一种使用时分多址(TDMA)技术的第二代移动通信系统。
NB-IoT可以在GSM频段中选择合适的频段进行通信,以利用现有的移动通信基础设施。
3. LTE频段:NB-IoT与LTE(Long-Term Evolution)频段也有部分重叠。
LTE是一种第四代(4G)移动通信技术,提供高速数据传输和较低的延迟。
NB-IoT可以在LTE频段中使用一部分频段进行通信,以充分利用LTE网络的覆盖范围和带宽特性。
4. 中国频段:NB-IoT的频段参考了中国移动通信行业的需求和标准。
中国是全球最大的NB-IoT市场之一,许多中国电信运营商都在不同的频段上部署了NB-IoT网络。
NB-IoT的频段选择必须考虑中国市场的特殊需求和要求。
5. 国际频段:除了以上提到的频段,NB-IoT还在国际范围内采用了其他一些频段。
这些频段通常是由各个国家和地区的电信管理机构分配和规定的,以满足本地市场的需求。
总结起来,NB-IoT的频段选择是一个复杂的任务,需要考虑到各个国家和地区的标准、需求和现有的移动通信基础设施。
在选择频段时,需要平衡覆盖范围、传输速率、频谱利用效率等多个因素。
由于频段选择与特定国家和地区的电信政策和规定紧密相关,具体的频段信息可以咨询相关的电信运营商或3GPP标准文档等资料。
基于物联网的NB—loT标准及优势
基于物联网的NB—loT标准及优势一、NB-IoT标准的概念及特点NB-IoT是一种低功耗、广覆盖、连接大规模设备的物联网技术标准。
它是3GPP(第三代合作伙伴计划)组织定义的一种物联网通信技术,采用的是窄带技术,主要用于连接低功耗、低速率的设备,能够有效地支持物联网中的大规模设备连接。
NB-IoT技术具有以下几个特点:1. 低功耗:NB-IoT技术采用特殊的调制方式和信道编码,能够在较低的信号功率下传输数据,从而实现设备长时间的待机和低功耗运行;2. 广覆盖:NB-IoT技术采用扩频技术,能够在弱信号覆盖区域内实现稳定的数据传输,覆盖范围广,适用于大规模设备连接需求;3. 连接密集:NB-IoT技术采用窄带技术,支持更多设备的连接,能够满足物联网中设备密集的需求;4. 低成本:NB-IoT技术基于现有4G网络或5G网络部署,与现有网络设施兼容,无需额外的网络建设投资,能够降低物联网连接的成本。
1. 低成本高效率NB-IoT技术利用现有的4G网络或5G网络进行部署,无需额外的网络建设和投资,能够有效地降低物联网连接的成本。
NB-IoT技术在设备连接密集的场景下能够实现更高的频谱效率,提高网络容量和覆盖范围,从而更好地满足大规模设备连接的需求。
2. 高可靠性NB-IoT技术采用窄带技术,具有较强的穿透能力和抗干扰能力,能够在弱信号覆盖区域内实现稳定的数据传输,提高了设备连接的可靠性。
这一特点使得NB-IoT技术在物联网中广泛应用于需要高可靠性的场景,如智能城市、智能家居等领域。
3. 高安全性NB-IoT技术在安全性方面也有着非常高的要求和标准,采用了多种安全机制和算法,能够有效地防范各种网络攻击和安全威胁,保障物联网设备和数据的安全。
4. 高覆盖范围5. 长续航NB-IoT技术采用了领先的低功耗技术,能够在较低的信号功率下传输数据,从而实现设备长时间的待机和低功耗运行,延长设备的续航时间,降低了设备维护和管理的成本。
nb-iot标准
nb-iot标准NB-IoT标准。
NB-IoT(Narrowband Internet of Things)是一种面向物联网应用的低功耗、广覆盖、连接稳定的无线通信技术。
它是3GPP标准组织定义的一种窄带物联网技术,旨在为大规模物联网应用提供更好的连接性能和覆盖范围。
NB-IoT标准的制定和推广对于推动物联网技术的发展和应用具有重要意义。
首先,NB-IoT标准在连接性能方面具有独特优势。
由于NB-IoT采用窄带技术,其信号穿墙能力强,可以在深度室内和地下环境中实现良好的连接。
同时,NB-IoT还具有较强的抗干扰能力,可以在复杂的电磁环境下保持稳定的通信,为物联网设备提供可靠的连接支持。
其次,NB-IoT标准在覆盖范围方面具有显著优势。
由于NB-IoT采用了低功耗广域技术,其信号覆盖范围广,可以实现城市、乡村甚至偏远地区的全面覆盖。
这使得NB-IoT技术可以应用于各种场景,包括智能家居、智慧城市、工业自动化等领域,为物联网应用提供了更广阔的空间。
此外,NB-IoT标准在连接稳定性方面表现出色。
由于NB-IoT采用了蜂窝网络架构,其连接稳定性较高,可以保障物联网设备长时间稳定运行。
同时,NB-IoT还支持移动性管理和切换功能,可以实现设备在不同基站之间的平滑切换,保证连接的稳定性和连续性。
总的来说,NB-IoT标准作为一种窄带物联网技术,具有连接性能优越、覆盖范围广阔、连接稳定性强的特点,为物联网应用提供了更加可靠和稳定的连接支持。
随着5G技术的不断发展,NB-IoT标准将会进一步完善和拓展,为物联网技术的发展和应用注入新的活力,推动物联网行业迈向更加广阔的未来。
nbiot协议详解
nbiot协议详解NB-IoT(Narrowband Internet of Things)是一种新型的物联网通信技术,它专门针对低功耗、广覆盖、大规模连接和成本效益等要求。
本文将详细解析NB-IoT协议的相关内容。
一、NB-IoT协议的概述NB-IoT协议是由3GPP(第三代合作伙伴计划)组织制定的,它是一种基于蜂窝网络的低功耗、宽覆盖的物联网通信技术。
相比于传统的蜂窝网络,NB-IoT协议具有更低的功耗、更广的覆盖范围和更高的连接密度。
二、NB-IoT协议的特点1. 低功耗:NB-IoT设备通信的功耗非常低,可以使用电池供电长达数年,这使得它非常适合在无电源或难以更换电池的环境中应用。
2. 宽覆盖:NB-IoT协议采用了窄带通信技术,使得信号可以穿透混凝土、墙壁等障碍物,覆盖范围更广,可以实现室内和室外的全面覆盖。
3. 高连接密度:NB-IoT协议支持大规模设备的连接,每个基站可以同时连接上千个设备,满足物联网中海量设备的需求。
4. 成本效益:NB-IoT协议利用现有的蜂窝网络基础设施,无需额外投资,可以降低物联网的建设和运营成本。
三、NB-IoT协议的技术原理NB-IoT协议通过对现有的LTE蜂窝网络进行优化,实现了低功耗、宽覆盖和高连接密度的特性。
其核心技术包括以下几个方面:1. 窄带通信:NB-IoT采用了窄带通信技术,使得带宽更窄,信号传输更远,抗干扰能力更强。
2. 重复码:NB-IoT协议在物理层和MAC层使用了更多的重复码,提高了信号的覆盖范围和接收灵敏度。
3. 长时隙:NB-IoT采用了长时隙传输的方式,降低了功耗,延长了设备的续航时间。
4. 延迟优化:NB-IoT协议通过优化传输协议和调度算法,降低了数据传输的延迟,提高了实时性。
5. 降噪技术:NB-IoT协议利用了OFDM(正交频分复用)技术和MIMO(多输入多输出)技术,降低了信号的噪声干扰。
四、NB-IoT协议的应用场景NB-IoT协议广泛应用于各个领域的物联网应用,包括智能家居、智能城市、智能农业、智能交通等。
nb iot标准发展过程
nb iot标准发展过程NB-IoT(Narrowband Internet of Things)是一种低功耗、广覆盖、连接性强的物联网技术,它为物联网设备提供了更加可靠和高效的连接方式。
NB-IoT技术的发展经历了一系列标准化过程,下面将对NB-IoT标准的发展过程进行详细介绍。
首先,NB-IoT的标准化工作始于3GPP(第三代合作伙伴计划)的Release 13版本。
在这一版本中,3GPP首次提出了NB-IoT的概念,并开始了相关技术规范的讨论和制定工作。
随后,随着对NB-IoT技术需求的不断增加,3GPP陆续发布了Release 14、Release 15等版本,逐步完善了NB-IoT的标准规范,包括物理层、MAC层、RRC层等方面的技术细节,为NB-IoT的商用部署奠定了坚实的技术基础。
其次,NB-IoT的标准发展过程中,各个运营商和设备厂商也积极参与其中,提出了大量的技术建议和优化方案。
通过3GPP的标准化会议和工作组讨论,这些建议和方案得到了充分的讨论和验证,最终被纳入了NB-IoT的标准规范中。
这些参与者的共同努力,为NB-IoT技术的标准化工作提供了宝贵的经验和技术支持,推动了NB-IoT技术标准的不断完善和发展。
此外,随着NB-IoT技术的商用部署和实际应用,各个行业和领域对NB-IoT 的需求也在不断增加。
为了更好地满足这些需求,3GPP和相关标准组织不断组织和推动NB-IoT标准的演进和优化工作。
通过持续的技术研究和标准化工作,NB-IoT的性能和功能得到了进一步提升,为更广泛的物联网应用场景提供了更加可靠和高效的连接服务。
总的来说,NB-IoT标准的发展过程经历了多个版本的演进和优化,得到了各个参与者的积极参与和支持。
通过持续的标准化工作,NB-IoT技术得到了不断完善和发展,为物联网的快速发展和普及提供了坚实的技术基础。
未来,随着5G技术的不断成熟和商用,NB-IoT技术将进一步融合和发展,为物联网的发展开辟更加广阔的前景。
基于物联网的NB—loT标准及优势
基于物联网的NB—loT标准及优势物联网(IoT)是指通过互联网将各种物品进行连接,使它们能够相互通信、交换数据和实现智能化控制的技术。
NB-IoT是一种以Narrow Band(窄带)技术为基础的物联网通信标准,它采用的是窄带物理层技术,能够在现有网络的基础上对物联网进行部署,是一种低功耗、广覆盖、低成本的物联网通信技术。
本文将介绍NB-IoT的相关标准和优势。
一、NB-IoT标准NB-IoT的发展历程主要分为三个阶段,分别是Release 13、Release 14和Release 15。
在2016年6月,3GPP发布了NB-IoT的第一个版本——Release 13,在此版本中主要制定了NB-IoT的物理层技术、MAC(Medium Access Control)层技术和RRC(Radio Resource Control)层技术。
在这个版本中,NB-IoT实现了低功耗、广覆盖、低成本的特性,能够满足大规模物联网设备的连接需求。
而在2017年12月,发布了Release 14,主要优化了NB-IoT的功能、性能和接口规范,同时还进一步完善了NB-IoT的设备分类、部署和优化规范。
最新的Release 15在2018年6月发布,加强了NB-IoT的网络能力,包括更灵活的载波聚合、更高的频点资源等,进一步提升了NB-IoT的性能和竞争力。
1. 低功耗NB-IoT采用窄带技术,功耗低。
在物联网设备中,能源往往是非常宝贵的资源,NB-IoT能够大大降低设备的功耗,延长了设备的使用寿命。
在NB-IoT中,设备可以进入低功耗模式,在空闲时进行深度休眠,大大降低了设备的功耗。
2. 广覆盖NB-IoT的覆盖范围广,能够覆盖更远的距离。
在传统的蜂窝网络中,室内和地下场所的覆盖常常是一个难题,而NB-IoT则能够轻松覆盖这些场所。
NB-IoT还支持更大范围的覆盖,可以穿透更多的障碍物,满足了物联网设备的不同应用场景的覆盖需求。
nb-iot标准
nb-iot标准NB-IoT标准。
NB-IoT是Narrow Band Internet of Things的缩写,是一种低功耗广域网技术,旨在为物联网设备提供长距离连接和低功耗消耗。
NB-IoT标准是由3GPP组织制定的,它在现有的蜂窝网络基础上进行了优化,以满足物联网设备对长电池寿命、广覆盖和低成本连接的需求。
首先,NB-IoT标准采用了窄带技术,其带宽仅为180kHz,相比于传统的蜂窝网络,其带宽更窄,可以更好地适应物联网设备的低数据传输需求。
窄带技术还可以提高信号的穿透能力,使得NB-IoT 可以在深度室内和地下环境中实现连接,从而满足了物联网设备对广覆盖的需求。
其次,NB-IoT标准采用了低功耗设计,可以实现物联网设备长达10年的电池寿命。
这是通过降低设备的传输功率和采用节能的睡眠模式来实现的。
低功耗设计使得NB-IoT可以应用于需要长期运行而无法定期更换电池的设备,例如智能电表、智能停车传感器等。
此外,NB-IoT标准还支持大规模连接,可以同时连接数以亿计的设备,满足了物联网设备日益增长的连接需求。
它还具有良好的抗干扰能力,可以在复杂的无线环境中稳定运行,确保了物联网设备的稳定连接。
总的来说,NB-IoT标准具有窄带、低功耗、广覆盖和大规模连接的特点,可以满足物联网设备对长距离连接和低功耗消耗的需求。
它已经被广泛应用于智能城市、智能家居、智能农业等领域,为物联网设备的发展提供了可靠的连接技术支持。
在未来,随着5G技术的发展,NB-IoT标准还将得到进一步优化,提供更高的数据传输速率和更低的延迟,为物联网设备带来更多的应用场景和商业机会。
同时,NB-IoT标准还将与其他物联网技术相结合,形成更加完善的物联网生态系统,推动物联网技术的全面发展。
综上所述,NB-IoT标准是一种重要的物联网连接技术,具有窄带、低功耗、广覆盖和大规模连接的特点,为物联网设备提供了可靠的连接支持。
随着物联网技术的不断发展,NB-IoT标准将在更多的应用场景中发挥重要作用,推动物联网技术的进步和创新。
基于物联网的NB—loT标准及优势
基于物联网的NB—loT标准及优势一、NB-IoT的定义NB-IoT即Narrow Band-IoT,是3GPP发布的一种低成本、低功耗、宽覆盖的物联网通信技术。
它的主要特点是窄带宽、高室内覆盖、低功耗、连接密度大等,适用于追踪、远程监控、智能家居、智慧城市等应用场景。
NB-IoT技术的标准由3GPP进行制定,它是在现有LTE网络下进行规划和优化的一种低功耗广域物联网通信技术。
NB-IoT标准的发布,使得物联网应用可以通过现有网络平台进行连接和管理,降低了部署和运维成本,同时提高了设备的安全性和稳定性。
1. 低成本NB-IoT采用窄带技术,能够在现有的基站和频段上实现物联网设备的连接,无需额外的投资。
NB-IoT设备的芯片成本也较低,这使得NB-IoT技术成为大规模部署物联网设备的理想选择。
2. 高室内覆盖NB-IoT技术采用了更低的频段和更窄的带宽,能够穿透混凝土和钢筋混凝土等厚层障碍物,实现更广泛的室内覆盖。
这使得NB-IoT技术适用于室内环境监测、智能家居等应用场景。
3. 低功耗NB-IoT设备采用了一系列的优化技术,包括功耗控制、快速入网、睡眠唤醒等,能够实现长周期的待机,大大延长了设备的电池寿命。
这使得NB-IoT设备可以长时间运行,无需频繁更换电池,降低了使用成本。
4. 连接密度大NB-IoT技术能够支持大量设备同时连接一个基站,实现更大规模的物联网设备部署。
这使得NB-IoT技术适用于智慧农业、智慧城市等应用场景,能够实现设备之间的信息共享和互动。
1. 远程监控NB-IoT技术能够实现对远程设备的状态监测和数据采集,并能够实现对设备的远程控制。
这使得NB-IoT技术适用于智慧农业、环境监测、工业设备监控等领域。
2. 物联网连接NB-IoT技术能够将各种智能设备连接到互联网,实现设备之间的信息交换和共享,为用户提供更便利的智能化生活体验。
3. 智慧城市NB-IoT技术能够实现城市各种设施的数据采集和监测,例如垃圾桶的填充情况监测、道路的交通情况监测等,为城市管理部门提供更精准的数据支持,实现智慧城市的建设和管理。
nb-iot标准
nb-iot标准
NB-IoT标准。
NB-IoT(Narrow Band Internet of Things)是一种低功耗广域网(LPWAN)技术,它为物联网设备提供了更广阔的覆盖范围和更长的电池寿命。
NB-IoT标准是由3GPP(第三代合作伙伴计划)定义的,它为物联网设备提供了连接到移动网络的能力,为各种垂直市场和应用提供了支持。
NB-IoT标准的特点之一是其窄带宽,这意味着它可以在现有的移动网络频谱上运行,而无需进行昂贵的频谱重新分配。
另一个重要特点是其低功耗,NB-IoT设备可以在数年的时间内持续运行,这使得它非常适合那些需要长时间运行的应用,如智能城市、智能家居和智能农业等领域。
此外,NB-IoT标准还具有较强的抗干扰能力和覆盖范围广的特点,这使得它可以在各种复杂的环境中稳定可靠地运行。
它还支持大规模连接,可以同时连接数百万甚至上亿的设备,为大规模部署提供了可能。
在NB-IoT标准中,安全性也是一个重要考虑因素。
它采用了多
种安全机制,如身份验证、加密通信等,以确保物联网设备和数据
的安全性。
NB-IoT标准的推出为物联网的发展带来了新的机遇和挑战。
它
为各种行业提供了更多的可能性,如智能电表、智能停车、智能健
康监测等。
同时,NB-IoT的部署也需要考虑到网络覆盖、设备成本、电池寿命等方面的问题。
总的来说,NB-IoT标准的推出将推动物联网技术的发展,为各
种行业带来更多的创新和应用。
随着技术的不断进步和市场的不断
成熟,NB-IoT标准将在未来发挥越来越重要的作用,为我们的生活
和工作带来更多的便利和可能性。
NB-IOT信号强度相关参数说明
RSRP (Reference Signal Receiving Power):在3GPP的协议中,参考信号接收功率(RSRP),定义为在考虑测量频带上,承载小区专属参考信号的资源粒子的功率贡献(以W 为单位)的线性平均值。
通俗的理解,可以认为RSRP的功率值就是代表了每个子载波的功率值。
RSSI( Received Signal Strength Indicator):在3GPP的协议中,接收信号强度指示(RSSI)定义为:接收宽带功率,包括在接收机脉冲成形滤波器定义的带宽内的热噪声和接收机产生的噪声。
测量的参考点为UE的天线端口。
即RSSI(Received Signal Strength Indicator)是在这个接收到Symbol内的所有信号(包括导频信号和数据信号,邻区干扰信号,噪音信号等)功率的平均值。
虽然也是平均值,但是这里还包含了来自外部其他的干扰信号,因此通常测量的平均值要比带内真正有用信号的平均值要高。
RSRQ (Reference Signal Receiving Quality) :在3GPP中有该参数的介绍,参考信号接收质量(RSRQ) i定义为比值N×RSRP/(E-UTRA carrier RSSI),其中N表示E-UTRA carrier RSSI 测量带宽中的RB的数量。
分子和分母应该在相同的资源块上获得。
E-UTRA 载波接收信号场强指示(E-UTRA Carrier RSSI),由UE从所有源上观察到的总的接收功率(以W 为单位)的线性平均,包括公共信道服务和非服务小区,邻仅信道干扰,热噪声等。
RSRP (Reference Signal Receiving Power,参考信号接收功率) 是LTE网络中可以代表无线信号强度的关键参数以及物理层测量需求之一,是在某个符号内承载参考信号的所有RE(资源粒子)上接收到的信号功率的平均值。
RSRQ(Reference Signal Receiving Quality)参考信号接收质量,则是RSRP 和RSSI的比值,当然因为两者测量所基于的带宽可能不同,会用一个系数来调整,也就是RSRQ =N*RSRP/RSSIRSSI(Received Signal Strength Indicator)接收信号的强度指示,指的是手机接收到的总功率,包括有用信号、干扰和底噪,和UMTS中的RSSI概念是一致的RSRP(Reference Signal Received Power参考信号接收功率):小区下行公共导频在测量带宽内功率的线性值(每个RE上的功率),当存在多根接收天线时,需要对多根天线上的测量结果进行比较,上报值不低于任何一个分支对应的RSRP值,max(RSRP00,RSRP01)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Javier GozalvezNew 3GPP Standard for IoTInternet of Thingsmajor milestone was achieved inthe Third-Generation Partner-ship Project’s (3GPP’s) Radio AccessNetwork Plenary Meeting 69 with thedecision to standardize the narrow-band (NB) Internet of Things (IoT), anew NB radio technology to addressthe requirements of the IoT. The newtechnology will provide improved in-door coverage, support of a massivenumber of low-throughput devices,low delay sensitivity, ultralow devicecost, low device power consump-tion, and optimized network archi-tecture. The technology can bedeployed in-band, utilizing resourceblocks within a normal long-termevolution (L TE) carrier, or in the un-used resource blocks within an L TEcarrier’s guard-band, or stand alonefor deployments in dedicated spec-trum. The NB-IoT is also particularlysuitable for the refarming of GlobalSystem for Mobile Communications(GSM) channels.Ericsson, AT&T, and Altair dem-onstrated over ten years of batterylife using LTE power-saving mode(PSM) on a commercial LTE IoT chipset platform. The demonstrationruns on Ericsson networks and Al-tair’s FourGee-1160 Cat-1 chip set fea-turing ultralow power consumption.Long-term battery life has becomea prerequisite for a vast number ofIoT applications. PSM is an EricssonEvolved Packet Core (EPC) featurebased on 3GPP (Release 12) for bothGSM and LTE networks. The featureis able to dramatically extend I oTdevice battery life up to ten yearsor more for common use cases andtraffic profiles. This capability isdefined for both LTE and GSM tech-nologies and lets devices enter anew deep-sleep mode—for hours oreven days at a time—and only wakeup when needed.Ericsson, Sony Mobile, and SKTelecom conducted lab testing ofthe key functionalities of LTE deviceCategory 0 and Category M (Machine-Type Communication). LTE Category0 has been standardized in the3GPP LTE Release 12 and is the firstdevice category specifically target-ing reduced complexity and, thus,reduced cost for the IoT. LTE CategoryM is a key theme in LTE Release 13,representing further cost savings andimproving battery lifetime. Wearabledevices and related applications wereselected for the user scenarios beingtested and trialed. The wearabledevice test use cases are focused onconsumer lifestyle and wellness ap-plications enabled through multiplesensors providing accelerometer,identification, pulse meter, and globalpositioning system functionality.Orange and Ericsson announceda trial of optimized, low-cost, low-complexity devices and enhancednetwork capabilities for cellular IoTover GSM and LTE. What the compa-nies claim will be the world’s first ex-tended coverage (EC) GSM trial willbe conducted in France using the900-MHz band, with the aim of en-hancing device reachability by up to20 dB, or a sevenfold improvementin the range of low-rate applications.This further extends the dominantglobal coverage of GSM in Europeand Africa to reach challenging lo-cations, such as deep indoor base-ments, where many smart metersare installed, or remote areas inwhich sensors are deployed for agri-culture or infrastructure monitoringuse cases. I n addition, EC-GSM willreduce device complexity and, thus,lower costs, enabling large-scale IoTdeployments. In parallel, the compa-nies will carry, in partnership withSequans, what they believe is theworld’s first LTE IoT trial using low-cost, low-complexity devices withone receive antenna (instead of two),and half-duplex frequency divisionduplex (FDD). This simplifies thedevice hardware architecture andreduces expensive duplex filters, al-lowing for a 60% cost reduction incomparison with the existing LTECategory 4. Ericsson will also dem-onstrate, together with Sequans,energy efficiency over GSM and LTEnetworks with the PSM technology.The PSM feature is applicable toboth GSM and LTE and supportedby EPC.Digital Object Identifier 10.1109/MVT.2015.2512358Date of publication: 24 February 2016AEricsson, MyOmega System Tech-nologies, Intel, and Telenor Connex-ion have partnered to build what they claim is the world’s first end-to-end site implementation of secure oT connectivity service for wine-makers. The service will enable wine-makers to collect data on air and soil humidity and temperature, as well as solar intensity, using IoT sensors and ntel-based oT gateways con-nected to a cloud service. The data can be used to perform a predictive analysis and to support resource management and real-time remote monitoring. Ericsson’s secure I oT service is based on the Ericsson De-vice Connection Platform integrated with the Authentication Federation Gateway. Built on the 3GPP standard Generic Bootstrapping Architecture for LTE, the implementation features what Ericsson claims is the world’s first end-to-end security and authen-tication capabilities for transferring sensor data to the cloud for process-ing and analysis.Berg I nsight estimates that LTE will be the leading technology for cellular I oT devices in 2019. The company estimates that global ship-ments of cellular oT devices will grow at a compound annual growth rate (CAGR) of 20.1% to reach 239.7 million units in 2020.Gartner estimates that 6.4 bil-lion connected things will be in use worldwide in 2016, which repre-sents an increase of 30% from 2015. This figure will reach 20.8 billion by 2020. The firm expects that IoT will support total services spending of US$235 billion in 2016, which repre-sents an increase of 22% from 2015. Fifth GenerationThe Radiocommunication Assembly of the International Telecommunica-tion Union (ITU) has endorsed a res-olution that establishes the road map for the development of fifth-generation (5G) mobile and the term that will apply to it: “I nternational Mobile Telecommunications (I MT) 2020.” The overall vision for the 5G systems, along with the goals, pro-cess, and time line for its develop-ment, is now in place. The detailedtechnical performance requirementsfor the radio systems to support 5Gwill be developed, in close collabo-ration with industry and nationaland regional standards organiza-tions, following the stringent timelines defined by ITU. New demands,including applications requiringvery high-data-rate communica-tions, many more devices withdiverse service requirements, betterquality of user experience, and bet-ter affordability, will require anincreasing number of innovativesolutions. Low-latency and high-reli-ability communication are perceivedas an enabler for the future develop-ment of new applications in healthcare, safety, business, entertain-ment, and other sectors.NTT DOCOMO, I nc., announcedthat a 5G trial it conducted withNokia Networks at the RoppongiHills high-rise complex in Tokyo, Ja-pan, achieved ultrahigh-speed datatransmission in excess of 2 Gb/s.The trial used millimeter-wave-length signals with an extremelyhigh frequency of 70 GHz, a key de-velopment for the eventual commer-cial use of 5G wireless technology inactual-use environments. Accordingto the company, to date, no test hadachieved a 5G data transmission ina commercial complex, such as ashopping mall, due to problems withbase stations being out of line ofsight and diffused reflections caus-ing the attenuation of highly direc-tional millimeter signals. This time,however, the trial was successfulbecause of the use of two technolo-gies: 1) beamforming, which focusesradio waves in a specific direction,and 2) beam tracking to controlbeam direction according to the mo-bile device’s location. n addition,in a separate trial that DOCOMOconducted with Samsung Electron-ics in Suwon-city, South Korea, amaximum data-receiving speed ofmore than 2.5 Gb/s was achievedin a vehicle travelling with a speedof 60 km/h. The trial used a 28-GHzhigh-frequency signal in combina-tion with beamforming with a highnumber of antenna elements andbeam tracking.DOCOMO conducted other tri-als recently in collaboration withvendors: DOCOMO and Ericssonverified the feasibility of a mas-sive multiple-input, multiple-output(MI MO) technology by achieving areal-time data-receiving speed ofmore than 10 Gb/s using Ericsson5G radio prototypes with a 15-GHzfrequency band. DOCOMO and Fu-jitsu confirmed a multi-base-stationcooperative transmission system byachieving a data-receiving speed ofover 11 Gb/s in a total of four mobiledevices with a 4.6-GHz signal. Anoutdoor data-transmission trial con-ducted by DOCOMO, DOCOMO Bei-jing Communications Laboratories,and Huawei Technologies achieveda multiuser (MU) MI MO transmis-sion of 43.9 b/s/Hz/cell, which was3.6-times more efficient than thepast outdoor trials of the LTE-Ad-vanced-based MU-M I MO technol-ogy. According to the companies,the trial with Huawei representsthe first large-scale MU-MIMO tech-nology test, with a concurrent con-nectivity of 24 user devices in themacrocell environment on the sub-6-GHz frequency band. Huawei alsoclaims that it was the first time theperformance of sparse code mul-tiple access and filtered orthogo-nal frequency-division multiplexing(F-OFDM) was validated in the field.SK Telecom and Nokia Networksdemonstrated Nokia Networks’ centi-meter-wave technology in a joint 5Gtrial in South Korea. The two compa-nies achieved 19.1-Gb/s transmission B erg I nsIght estImates that Lte wILL Be the LeadIng technoLogy for ceLLuLar I o t devIces In 2019.speed over the air using 256 quadra-ture amplitude modulation (QAM), 8 # 8 MIMO transmission and 400 MHz of bandwidth.Ericsson published its Mobil-ity Report that provides insight into the future of 5G networks, including a forecast of 150 million 5G mobile subscriptions by 2021. South Korea, Japan, China, and the United States are predicted to lead with the first, and fastest, 5G subscription uptake. 5G will connect new types of devic-es, enabling new use cases related to the I oT; the transition will open up new industries and verticals to information and communications technologies (I CTs) transformation. The report also reveals a signifi-cant increase in mobile video con-sumption, which is driving around six-times-higher traffic volumes per smartphone in North America and Europe (2015–2021). North America data traffic per active smartphone will grow from 3.8 to 22 GB per month by 2021; in Western Europe, the increase is from 2 to 18 GB per month. Other highlights from the lat-est Ericsson Mobility Report include: global mobile data traffic is forecast to grow tenfold by 2021, and video is forecast to account for 70% of to-tal mobile traffic in the same year;20 new mobile broadband subscrip-tions are activated every second; by the end of 2015, there will be one billion mobile subscriptions across Africa; ICT will enable savings in en-ergy consumption and greenhouse gas (GHG) emissions across all other industrial sectors, with a total emis-sion reduction that could be up to 10 Gt of carbon dioxide emissions (15% of global GHG emissions in 2030). SpectrumThe World Radiocommunication Con-ference 2015 (WRC-15) concluded its deliberations as delegates signed the Final Acts that revise the Radio Regu-lations, the international treaty gov-erning the use of radio-frequency (RF) spectrum and satellite orbits. Around 3,300 participants, represent-ing 162 out of I TU’s 193 memberstates attended the four-week confer-ence 2–27 November 2015. Approxi-mately 500 participants representing130 other entities, including industry,also attended the conference as ob-servers. WRC-15 addressed morethan 40 topics related to frequency al-location and frequency sharing forthe efficient use of spectrum and or-bital resources. Following the grow-ing demand for spectrum for mobilebroadband services, WRC-15 identi-fied frequency bands in the L-band(1,427–1,518 MHz) and in the lowerpart of the C-band (3.4–3.6 GHz).WRC-15 achieved agreement on someadditional portions in other bandsthat were also allocated to mobilebroadband services to be used in re-gions where there was no interfer-ence with other ser vices. Tocounteract the difficulties encoun-tered in finding additional spectrumfor I MT in bands below 6 GHz,WRC-15 decided to include studies inthe agenda for the next WRC in 2019for the identification of bands above6 GHz that will allow technology tomeet demand for greater capacity.WRC-15 made a key decision that willprovide enhanced capacity for mo-bile broadband in the 694–790-MHzfrequency band in ITU Region 1 (Eu-rope, Africa, the Middle East, andCentral Asia) and a globally harmo-nized solution for the implementationof the digital dividend. Full protectionhas been given to television broad-casting as well as to the aeronauticalradionavigation systems operating inthis frequency band. The decision al-locates this band to the mobile ser-vice and identifies it for I MT in I TURegion 1, similarly to what was decid-ed by the WRC in 2007 for ITU Region2 (Americas) and Region3 (Asia-Pa-cific). WRC-15 identified spectrum inthe 694–894-MHz frequency band tofacilitate mobile broadband commu-nications for robust and reliable mis-sion critical emergency services inpublic protection and disaster relief,such as police, fire, ambulances,and disaster-response teams. WRC-15opened the way for the developmentby the International Civil Aviation Or-ganization of worldwide standards forunmanned aircraft systems, and iden-tified the regulatory conditions thatmay be applied to such systems inter-nationally. WRC-15 also agreed onspectrum for wireless avionics intra-communications to allow for theheavy and expensive wiring used inaircraft to be replaced by wire-less systems.Ofcom (United Kingdom) has con-firmed plans for releasing valuablenew airwaves that could be used tomeet the growing demand for mo-bile broadband services. An auctionis planned to take place in early 2016for the spectrum, which has beenmade available by the U.K. Ministryof Defence as part of a wider govern-ment initiative to free up public sec-tor spectrum for civil uses. A totalof 190 MHz of high-capacity spec-trum is being made available in twobands—2.3 and 3.4 GHz—which areparticularly suited for high-speedmobile broadband services. Ofcomproposes to auction the spectrum inlots of 10 MHz for the 2.3-GHz bandand 5 MHz for the 3.4-GHz band.Fourth GenerationChina Mobile Shanghai and The Re-search I nstitute of China Mobile, to-gether with Huawei, has successfullycompleted what they assert is theworld’s first massive MI MO solutiondeployment (ultralarge-scale multian-tenna system) on the fourth-genera-tion (4G) commercial network. Theresults of the tests indicated a down-link throughput per single cell ex-ceeding 630 Mb/s with a single20-MHz carrier. The massive MI MOsolution is an integral feature of L TEtime-division duplex (TDD) evolution[4.5G (4.5 generation)] and can po-tentially increase spectrum efficiencyby six to ten times in the future. I tscore is an ultralarge-scale multianten-na system, where each module inte-grates 128 RF channels and 128built-in antennas. The solution sup-ports all mainstream LTE-TDDfrequency bands. By using the three-dimensional (3-D) beamforming tech-nology, a single massive MI MO eNodeB installed at a height of 25 m is capable of providing 3-D coverageto a building 75-m tall as well as the surrounding roads. This demon-stration indicated that a single site could effectively solve coverage problems that previously could only be resolved with multiple legacy base stations.Ericsson, Vodafone, and Qual-comm Technologies, I nc., conduct-ed what they claim is the world’s first live testing of advanced carrier aggregation (CA) of LTE in licensed and unlicensed bands on a com-mercial mobile network. The trial uses the Ericsson RBS 6,402 indoor small cell, which supports LTE CA between licensed and unlicensed bands on Vodafone’s commercial network, connected to an LTE un-licensed-band-capable test device developed by Qualcomm Technolo-gies, I nc. The latest over-the-air re-sults were achieved by aggregating 20 MHz of Vodafone spectrum in Band 3 (1,800 MHz) with 20 MHz of the unlicensed 5-GHz band U-NI I-1 band. The testing validated LTE per-formance in the unlicensed band and fair coexistence with other tech-nologies like Wi-Fi within the unli-censed 5-GHz band. The Ericsson RBS 6402 indoor picocell includes a 5-GHz LTE-enabled radio in addi-tion to multiple LTE radio variants and an optional 2.4-GHz Wi-Fi mod-ule. The user equipment utilized in this trial is a test device powered by the Qualcomm Snapdragon X12 LTE modem.HKT and Huawei successfully demonstrated what they believe is the world’s first 4.5G 1-Gb/s mobile network. The demonstration intro-duces what the companies claim is a world-first four-component carrier CA network.Nokia Networks and TeliaSonera have conducted a live demonstra-tion of LTE-Advanced three-band CA (3# CA) using Category 9 devices. The companies showcased whatthey claim are record-breaking datarates of up to 375 Mb/s on a commer-cial network, marking an industryfirst in the Nordic region. The end-to-end demo, performed on Sonera’scommercial network in Helsinki, ag-gregated three LTE FDD carriers of20, 20, and 10-MHz bandwidth.Alcatel-Lucent has launched theDistributed Antenna System (DAS)RF Module (RFM), a widebandlow-power LTE interface card thatremoves the need for bulky radiotechnology in a public installation.To connect to a DAS today, serviceproviders must deploy remote ra-dio heads alongside duplexers andattenuators to reduce output pow-er, as well as cooling equipmentin areas where there is often lim-ited space. Working together withAlcatel-Lucent’s LTE radio accessportfolio, the DAS RFM connects toAlcatel-Lucent’s digital basebandunit, working directly with the ana-log DAS through RF signals that con-sume just one-eighth of the powerand heat dissipation of an averageremote radio head, reducing spacerequirements and optimizing costs.Bell Labs has completed a study onthe cost savings delivered by thenew DAS RFM, compared with atraditional remote radio head andassociated equipment. The studyshows that service providers can re-alize up to 30% cost savings in termsof the wireless and DAS equipmentrequired, up to 81% cost savings interms of power and cooling; up to78% cost savings in terms of energy.Ericsson and SK Telecom havenow deployed Ericsson Lean Carrierin urban, suburban, and rural areas.Ericsson Lean Carrier reduces, ormakes lean, the level of referencesignalling needed for good networkperformance. This leads to a cor-responding improvement of thedownlink data speed, which appliesto all parts of the 4G LTE network,with the highest performance gainsoccurring in the areas with mostcell overlap. In a large-scale deploy-ment, users can enjoy up to a 50% in-crease in downlink data speed witha network average increase of about10%. By reducing interference, Erics-son Lean Carrier enables new 256-QAM higher-order modulation to beutilized over a broader area, extend-ing the higher data speed advantageto the outdoor macro environment.According to Ericsson, its Lean Car-rier solution increases the use of256 QAM by up to 280%.Nokia Networks has delivered anew Flexi Zone outdoor modular basestation that it claims is the world’sfirst small cell to achieve over 1-Gb/speak data rate. A bundle of servicessimplify small-cell deployment andhelp operators to evolve to ultra-dense networks. Nokia Networks’new Flexi Zone G2 Multiband CA Out-door Micro-/Pico- Base Station (BTS)platform delivers capacity and great-er than 1 Gb/s peak data rates. By us-ing three RF module slots, operatorscan deploy and aggregate betweenvarious radio access technologiesand spectrum combinations, includ-ing up to three LTE licensed carrierbands or configurations offering acombination of LTE licensed carrierbands, unlicensed LTE bands (LTE-Uor LAA) and Wi-Fi.Nokia Networks, Deutsche Tele-kom, and Cosmote have demonstrat-ed what they claim is a world-first:LTE-Advanced 3 CA combining LTE-FDD in Band 3 (1.8 GHz) with LTE-TDD in Band 42 (3.5 GHz). With 400MHz of TDD spectrum bandwidthavailable in many countries, the com-panies believe that 3.5 GHz providesa good solution for capacity expan-sion to meet future demand based onLTE and LTE-A Pro technologies. hKt and h uaweI successfuLLy demonstrated what they cLaIm Is the worLd’s fIrst 4.5g 1-g B/s moBILe networK.StarHub has successfully de-ployed Nokia Networks’ TD-LTE, FDD-LTE, and outdoor small-cells solution as part of its 4G HetNet in Singapore. The HetNet showcased what the companies claim is the in-dustry’s first TDD-FDD voice-over-LTE handover, with zero call drops and high-definition voice continuity for subscribers. As part of the solu-tion, LTE-Advanced CA delivered high data rates, while Nokia Flexi Zone small cells were installed at strategic traffic hot spots to handle peak-hour data demand.4G Americas announced that LTE-Advanced has been commercially deployed on 100 networks world-wide in 49 countries. There are glob-ally 430 commercial LTE networks with 907 million total LTE subscrib-ers (with an expected forecast of 3.6 billion by 2020). The first LTE-Ad-vanced networks were deployed in South Korea in June 2013 and utilized CA. CA allows operators the ability to utilize disparate spectrum bands to create larger spectrum swaths to increase efficiencies and download speeds. LTE-Advanced will continue to evolve through LTE-Advanced Pro (3GPP Release 13 and beyond) even as 5G technologies are standardized in Release 14 and onward.A new report from the Global Mobile Suppliers Association, “Eval-uating the LTE Broadcast Opportu-nity,” forecasts that the market for LTE broadcast services will reach US$14 billion worldwide by 2020. The report also expects that LTE Broad-cast will reach a potential customer base of 2 billion by 2020. Over 30 mobile operators have been involved in technical lab or field trials of Evolved Multimedia Broadcast Multi-cast Service with a view to using it to reduce the load on their networks by broadcasting popular TV and videocontent rather than sending it toeach viewer individually.Research and T echnologyZTE Corporation announced thecompletion of what it claims is theworld’s first precommercial test ofdistributed MIMO (D-MIMO) technol-ogy. The field test, conducted jointlyby ZTE and a partner, demonstratedan up to nine-times increase in datarate at the cell edge through the useof D-MI MO technology based onZTE’s proprietary Cloud Radio solu-tion. The outdoor part of the testcovered single-user and multiple-us-er scenarios in an environment withmultiple overlapping base stationsand used commercially available mo-bile device terminals.The coherent-joint transmission(JT) technology used in ZTE’s new D-MIMO system ensures full-phase syn-chronization among base stations sothat the jointly transmitted signal isamplified to the maximum level as itarrives at the antenna of a user ter-minal, minimizing interference withother terminals. Compared with thelegacy noncoherent-JT technology,ZTE reported that coherent-JT pro-vides 3 dB of additional gain at theantenna of a target user terminal andforms null steering at the antennasof other user terminals to minimizesignal interference, achieving MU-JT.The D-MI MO technology can ef-fectively improve the data rate at thecell edge through coordinated trans-mission among base stations, resolv-ing a major challenge facingoperators. The indoor D-MI MO testresult showed that the MU-JT tech-nology can form null steering to-wards multiple users to guaranteegood multiuser joint transmission inan enclosed and small space. Thecompany said that the service datarate of a single testing cell was atleast quadrupled in an ideal nonin-terference situation, and a number oftesting cells have enhanced their re-sistance to interference by morethan a hundred times.Alcatel-Lucent released figuresshowing that in the first half of 2015,the number of security threats onmobile networks has come increas-ingly from a seemingly unlikelysource—personal computers andlaptops. The research also found asignificant increase in the number ofspy-phone applications being detect-ed on both Android and iOS mobiledevices. The Motive Security LabsH1 2015 Malware Report examinesgeneral trends and statistics for mal-ware infections in devices connectedthrough mobile and fixed networks.Data are aggregated across fixed andmobile networks, where Motive Se-curity Guardian malware detectiontechnology is deployed, coveringmore than 100 million devices. In thefirst half of 2015, Alcatel-Lucent esti-mates that an 80% of malware infec-tions detected on mobile networkshave been traced to Windows-basedcomputers and laptops. This findingrepresents a significant change from2013 and 2014 when the source of mo-bile network infections were roughlysplit 50:50 between Android and Win-dows-supported devices. The Motivereport also found that cybercrimi-nals are quickly taking advantage ofunique opportunities in the mobileecosystem to spread spyware. I nfact, 10 of the 25 most prolific threatson smartphones are in the mobilespyware category and are often de-livered bundled with games and freesoftware. These sophisticated spy-ware applications enable the remotetracking of a phone owner’s move-ments as well as the monitoring ofphone calls, text messages, e-mails,and browsing habits.Qualcomm Technologies, I nc.announced the introduction ofQualcomm Snapdragon Smart Pro-tect. The upcoming Qualcommt he d-mImo technoLogy can effectIveLy Improvethe data rate at the ceLL edge through coordInated transmIssIon among Base statIons, resoLvIng a major chaLLenge facIng operators.Snapdragon 820 processor is the first platform offering Snapdragon Smart Protect, providing real-time, on-device machine learning designed to support accurate and effective de-tection of zero-day malware threats for improved personal privacy and device security. Snapdragon Smart Protect is also the first application to utilize Qualcomm Zeroth technol-ogy, augmenting conventional anti-malware solutions by supporting on device real-time malware detection, classification, and cause analysis us-ing an advanced cognitive computing behavioral engine. Snapdragon Smart Protect complements existing signa-ture-based antimalware solutions by analyzing and identifying new threats prior to new signature updates.University of Washington (UW) engineers have developed a novel technology that uses a Wi-Fi router—a source of ubiquitous but untapped energy in indoor environments—to power devices. The UW team used ambient signals from this Wi-Fi rout-er to power sensors in a low-resolu-tion camera and other devices. The team of UW computer science and electrical engineers found that the peak energy contained in untapped, ambient Wi-Fi signals often came close to meeting the operating re-quirements for some low-power de-vices. But because the signals are sent intermittently, energy leaked out of the system during silent pe-riods. The team fixed that problem by optimizing a router to send out superfluous power packets on Wi-Fi channels not currently in use—es-sentially beefing up the Wi-Fi signal for power delivery—without affect-ing the quality and speed of data transmission. The team also devel-oped sensors that can be integrated into devices to harvest the power. In its proof-of-concept experiments, the team demonstrated that the power over Wi-Fi system could wire-lessly power a grayscale, low-power Omnivision VGA camera from 17 ft away, allowing it to store enough energy to capture an image every 35 min. It also recharged the batteryof a Jawbone Up24 wearable fitnesstracker from zero to 41% in 2.5 h.Watt Lab, which belongs to theCentral Research Institute at HuaweiTechnology Corporation Limited,unveiled its new quick-charging lith-ium-ion batteries. These new batter-ies have achieved a charging speedten-times faster than that of nor-mal batteries, reaching about 50%capacity in mere minutes. Huaweipresented videos of the two typesof quick-charging lithium-ion bat-teries: one battery with a 600-mAhcapacity that can be charged to 68%capacity in 2 min and another witha 3,000-mAh capacity and an energydensity above 620 Wh/L, which canbe charged to 48% capacity in fiveminutes to allow 10 h of phone callson Huawei mobile phones. Thesequick-charging batteries underwentmany rounds of testing and havebeen certified by Huawei’s terminaltest department.Electrical engineers at the Uni-versity of California, San Diego,demonstrated a new wireless com-munication technique that works bysending magnetic signals throughthe human body. The new technol-ogy could offer a lower-power andmore secure way to communicateinformation between wearableelectronic devices, providing animproved alternative to existingwireless communication systems.An advantage of this system is thatmagnetic fields are able to pass free-ly through biological tissues, so sig-nals are communicated with muchlower path losses and potentially,much lower power consumption.I n their experiments, researchersdemonstrated that the magneticcommunication link works well onthe body, but they did not test thetechnique’s power consumption.Researchers showed that the pathlosses associated with magneticfield human body communicationare upwards of 10 million timeslower than those associated withBluetooth radios. The researchersbelieve that this technique does notpose any serious health risks. Sincethis technique is intended for appli-cations in ultralow-power commu-nication systems, the transmittingpower of the magnetic signals sentthrough the body is expected to bemany times lower than that of mag-netic resonance imaging scannersand wireless implant devices.IBM Research and Carnegie Mel-lon University (CMU) announcedwhat they claim is the first openplatform designed to support thecreation of smartphone applica-tions that can enable the blind tobetter navigate their surroundings.The IBM and CMU researchers usedthe platform to create a pilot appcalled NavCog that draws on exist-ing sensors and cognitive technolo-gies to inform blind people on theCMU campus about their surround-ings by whispering into their earsthrough earbuds or by creating vi-brations on smartphones. The appanalyzes signals from Bluetoothbeacons located along walkwaysand from smartphone sensors tohelp enable users to move withouthuman assistance, whether insidecampus buildings or outdoors. Thefirst set of cognitive assistance toolsfor developers is now available viathe cloud through IBM Bluemix. Theopen toolkit consists of an app fornavigation, a map editing tool andlocalization algorithms that canhelp the blind identify in real timewhere they are, which direction theyare facing, and additional surround-ing environmental information. Thecomputer vision navigation applica-tion tool turns smartphone imagesof the surrounding environmentinto a 3-D space model to help im-prove localization and navigationfor the visually impaired.Industry Forecasts and SurveysITU has released its flagship annualMeasuring the I nformation SocietyReport. The report reveals that3.2 billion people are now online,representing 43.4% of the global。