模拟退火算法基本原理介绍(可编辑修改word版)

合集下载

模拟退火算法解决优化问题

模拟退火算法解决优化问题

模拟退火算法解决优化问题模拟退火算法(Simulated Annealing,SA)是一种基于模拟固体退火过程的全局优化算法,被广泛应用于解决各种优化问题。

它的基本思想源于固体退火过程中的原子热运动,通过模拟原子在退火过程中的状态变化,寻找全局最优解。

本文将介绍模拟退火算法的基本原理、算法流程以及在解决优化问题中的应用。

一、模拟退火算法的基本原理模拟退火算法的基本原理来自于固体物理学中的固体退火过程。

在固体退火过程中,固体在高温下加热后逐渐冷却,原子会随着温度的降低而逐渐趋于稳定状态。

类比到优化问题中,算法在搜索过程中允许一定概率接受比当前解更差的解,以避免陷入局部最优解,最终达到全局最优解。

二、模拟退火算法的基本步骤1. 初始化:随机生成初始解,并设定初始温度和终止条件。

2. 选择邻域解:根据当前解生成邻域解。

3. 接受准则:根据一定概率接受邻域解,更新当前解。

4. 降温策略:根据降温策略逐渐降低温度。

5. 终止条件:达到终止条件时停止搜索,输出最优解。

三、模拟退火算法的应用模拟退火算法在解决各种优化问题中都有广泛的应用,包括组合优化、函数优化、图像处理等领域。

下面以组合优化问题为例,介绍模拟退火算法的具体应用。

1. 旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到一条最短路径经过所有城市并回到起点。

模拟退火算法可以通过不断调整路径来寻找最优解。

2. 排课问题:在学校排课过程中,需要合理安排老师和班级的上课时间,避免冲突和空闲时间过长。

模拟退火算法可以优化排课方案,使得课程安排更加合理。

3. 装箱问题:在物流领域中,需要将不同大小的物品合理装箱,使得装箱空间利用率最大化。

模拟退火算法可以帮助优化装箱方案,减少空间浪费。

四、总结模拟退火算法作为一种全局优化算法,具有较好的全局搜索能力和收敛性。

通过模拟退火算法,可以有效解决各种优化问题,得到较优的解决方案。

在实际应用中,可以根据具体问题的特点调整算法参数和策略,进一步提高算法的效率和准确性。

模拟退火算法详解讲解共54页文档

模拟退火算法详解讲解共54页文档
55、 为 中 华 之 崛起而 读书。 ——周 恩来
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟4、 唯 书 籍 不 朽。——乔 特
模拟退火算法详解讲解
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

模拟退火算法讲课文档

模拟退火算法讲课文档
3.5.1 30城市TSP问题(d*=423.741 by D B Fogel) 3.5.2 模拟退火算法在管壳式换热器优化设计中的应用
第三页,共51页。
现代优化计算
3.1 模拟退火算法及模型
3.1.1 物理退火过程
算法的提出
模拟退火算法最早的思想由Metropolis等(1953)提出 ,1983年Kirkpatrick等将其应用于组合优化。 算法的目的 解决NP复杂性问题;
3.2.1 马尔科夫链
定义
令{s1,s2,}为所有状态构成间 的, 解空 X(k)为k时刻状态变量的取值。 随机序{列 X(k)}称为马尔可夫链 n, Z若 ,满足 Pr{X(n) j X(0)i0,X(1)i1,,X(n1)i} Pr{X(n) j X(n1)i}
第二十页,共51页。
现代优化计算
固体在恒定温度下达到热平衡的过程可以用Monte Carlo方法(计算机随机模拟方法)加以模拟,虽然 该方法简单,但必须大量采样才能得到比较精确的 结果,计算量很大。
第十三页,共51页。
现代优化计算
3.1 模拟退火算法及模型
3.1.1 物理退火过程 Metropolis准则(1953)——以概率接受新状态
3.3.3 初温 方法
(1)均匀抽样一组状态,以各状态目标值得方差为初温; (2)随机产生一组状态,确定两两状态间的最大目标 值差,根据差值,利用一定的函数确定初温; (3)利用经验公式。
第二十六页,共51页。
现代优化计算
3.3 模拟退火算法关键参数和操作的设计
3.3.4 温度更新函数
时齐算法的温度下降函数
时齐算法——常用的Metropolis抽样稳定准则 (1)检验目标函数的均值是否稳定;

【免费下载】模拟退火算法基本原理介绍

【免费下载】模拟退火算法基本原理介绍
其中温度是一个 Metropolis 的重要控制参数,模拟退火可视为递减控制参数什时 Metroplis 算法的迭代。开始 T 值大,可能接受较差的恶化解,随着 T 的减小,只能接受较好的恶化 解,最后在 T 趋于 0 时,就不再接受任何恶化解了。
在无限高温时,系统立即均匀分布,接受所有提出的变换。T 的衰减越小,T 到达终点的 时间越长;但可使马可夫链越小,到达准平衡分布的时间越短,
算法设计与分析 计算机 101-04 顾鑫
局优化算法;模拟退火算法具有并行性。
三、模拟退火算法的应用领域 模拟退火算法是解 NP 完全组合优化问题的有效近似算法,将该算法应用于路径优化问
题,利用该算法对类似货郎担问题的路径问题进行求解;针对城市道路行走不同的目标条件 (路径最短、时间最短)进行优化,选择最佳行走路径;并将用该算法优化得到的计算结果与树 形算法进行比较,显示该算法能够克服传统优化算法易陷入局部极值的缺点,同时表明该算法 在解类似货郎担一定的实用价值。
重点抽样时,新状态下如果向下则接受(局部最优),若向上(全局搜索),以一定机率接 受。模拟退火方法从某个初始解出发,经过大量解的变换后,可以求得给定控制参数值时组合 优化问题的相对最优解。然后减小控制参数 T 的值,重复执行 Metropolis 算法,就可以在 控制参数 T 趋于零时,最终求得组合优化问题的整体最优解。控制参数的值必须缓慢衰减。
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配,料置不试技仅卷术可要是以求指解,机决对组吊电在顶气进层设行配备继置进电不行保规空护范载高与中带资负料荷试下卷高总问中体题资配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,.卷编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试5写交卷、重底保电要。护气设管装设备线置备4高敷动调、中设作试电资技,高气料术并中课3试中且资件、卷包拒料中管试含绝试调路验线动卷试敷方槽作技设案、,术技以管来术及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

模拟退火算法原理

模拟退火算法原理

模拟退火算法原理模拟退火算法是一种基于统计力学原理的全局优化算法,它模拟了固体物质退火过程中的原子热运动,通过不断降低系统能量来寻找全局最优解。

该算法最初由Kirkpatrick等人于1983年提出,被广泛应用于组合优化、神经网络训练、图像处理等领域。

模拟退火算法的原理基于一个基本的思想,在搜索过程中允许一定概率接受劣解,以避免陷入局部最优解。

其核心思想是通过随机扰动和接受概率来逐渐减小系统能量,从而逼近全局最优解。

算法流程如下:1. 初始化温度T和初始解x;2. 在当前温度下,对当前解进行随机扰动,得到新解x';3. 计算新解的能量差ΔE=E(x')-E(x);4. 若ΔE<0,则接受新解x'作为当前解;5. 若ΔE>0,则以一定概率P=exp(-ΔE/T)接受新解x';6. 降低温度T,重复步骤2-5,直至满足停止条件。

在模拟退火算法中,温度T起着至关重要的作用。

初始时,温度较高,接受劣解的概率较大,有利于跳出局部最优解;随着迭代次数的增加,温度逐渐降低,接受劣解的概率减小,最终收敛到全局最优解。

模拟退火算法的关键参数包括初始温度、降温速度、停止条件等。

这些参数的选择对算法的性能和收敛速度有着重要影响,需要根据具体问题进行调整。

总的来说,模拟退火算法通过模拟物质退火过程,以一定概率接受劣解的方式,避免了陷入局部最优解,能够有效地寻找全局最优解。

它在解决组合优化、参数优化等问题上表现出了很好的性能,成为了一种重要的全局优化算法。

通过对模拟退火算法原理的深入理解,我们可以更好地应用该算法解决实际问题,同时也可以为算法的改进和优化提供理论基础。

希望本文的介绍能够对大家有所帮助。

模拟退火算法

模拟退火算法

模拟退火算法模拟退火是一种通用概率算法,目的是在固定时间内在一个大的搜寻空间内寻求给定函数的全局最优解。

它通常被用于离散的搜索空间中,例如,旅行商问题。

特别地,对于确定的问题,模拟退火算法一般是优于穷举法。

这是由于我们一般只需得到一个可接受的最优解,而不是精确的最优解。

退火一词来源于冶金学。

退火(见图1)是将材料加热后再经特定速率冷却,目的是增大晶粒的体积,并且减少晶格中的缺陷。

材料中的原子原来会停留在使内能有局部最小值的位置,加热使能量变大,原子会离开原来位置,而随机在其他位置中移动。

退火冷却时速度较慢,使得原子有较多可能可以找到内能比原先更低的位置。

因此,我们将热力学的理论应用到统计学上,将搜寻空间内每一点想象成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。

而模拟退火算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火原理最早是 S. Kirkpatrick, C. D. Gelatt 和 M. P. Vecchi 在1983年所创造的。

而 V . Černý 在1985年也独立发明了此算法。

1. 问题描述数学上的最优化问题一般描述为如下形式:()()minimize()g 0,1,2,,subject to 0,1,2,,i i f x x i m h x i p≤=⎧⎪⎨==⎪⎩ 其中,():R n f x R →称作问题的目标函数,()g 0i x ≤称作问题的不等式约束条件,()0i h x =称作问题的等式约束条件。

寻求上述问题的最优解的过程就类似于从热动力系统的任意一个初始状态向内能最小的状态转移的过程,即退火过程。

2. 模拟退火算法基本思想模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有图1 物理退火原理图序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

模拟退火原理

模拟退火原理

模拟退火原理引言:模拟退火是一种基于物理退火过程的优化算法,常用于解决复杂的优化问题。

它通过模拟固体物质退火时的晶体结构变化,寻找全局最优解。

本文将介绍模拟退火原理及其应用领域。

一、模拟退火原理1. 模拟退火的概念模拟退火算法是一种基于模拟固体物质退火过程的优化算法。

物理退火是将物质加热至高温后缓慢冷却,使得其晶体结构逐渐达到最低能量状态。

同样地,模拟退火算法通过随机搜索和接受概率来避免陷入局部最优解,从而寻找全局最优解。

2. 算法步骤模拟退火算法包括初始化、状态更新和接受概率三个主要步骤:(1)初始化:确定问题的初始解及初始温度。

(2)状态更新:通过随机扰动当前解,生成一个新解。

新解可以是更优解、劣解或相同解。

(3)接受概率:根据Metropolis准则,确定是否接受新解。

接受劣解的概率随着温度的降低而逐渐减小。

(4)温度更新:降低温度,减小接受劣解的概率,逐渐趋向于全局最优解。

二、模拟退火的应用领域1. 组合优化问题模拟退火算法可以用于解决组合优化问题,如旅行商问题、装箱问题等。

通过不断更新状态,模拟退火算法能够搜索到接近最优解的解空间。

2. VLSI物理设计在Very Large Scale Integration(VLSI)物理设计中,模拟退火算法可以用于解决芯片布局问题。

通过优化芯片上各个模块的布局,可以提高芯片性能和功耗。

3. 机器学习模拟退火算法在机器学习领域也有广泛应用。

例如,在神经网络训练中,可以利用模拟退火算法调整网络参数,以提高模型的泛化能力。

4. 图像处理图像处理中的一些问题,如图像分割、图像匹配等,可以通过模拟退火算法求解。

通过不断调整参数,可以得到更好的图像处理效果。

5. 物流优化模拟退火算法可以应用于物流优化问题,如货物配送路径规划、仓库布局等。

通过优化路径和布局,可以降低物流成本、提高运输效率。

结论:模拟退火算法是一种基于物理退火过程的优化算法,通过模拟固体物质的退火过程,寻找全局最优解。

模拟退火算法详解

模拟退火算法详解

车间调度问题求解
总结词
模拟退火算法在车间调度问题求解中具有较好的应用 效果,能够提高生产效率。
详细描述
车间调度问题是一个复杂的优化问题,旨在合理安排生 产任务和资源分配,以提高生产效率。模拟退火算法通 过随机搜索和接受不良解的概率,能够找到较为满意的 调度方案。在车间调度问题中,模拟退火算法可以与其 他启发式方法结合使用,以获得更好的性能。此外,模 拟退火算法还可以应用于其他生产调度问题,如作业车 间调度、装配线平衡等。
旅行商问题求解
总结词
模拟退火算法在旅行商问题求解中具有较好的性能, 能够找到高质量的解。
详细描述
旅行商问题是一个NP难问题,旨在寻找一条旅行路线 ,使得一个旅行商能够访问一系列城市并返回到起始 城市,且总旅行距离最短,同时满足每个城市恰好经 过一次。模拟退火算法通过随机搜索和接受不良解的 概率,能够探索更广阔的解空间,从而找到高质量的 解。在旅行商问题中,模拟退火算法可以与其他启发 式方法结合使用,以获得更好的性能。
迭代更新
重复产生新解、计算能量差和降低温度的 过程,直到满足终止条件。
终止条件
达到最大迭代次数
当达到预设的最大迭代次数时,算法终止。
温度低于阈值
当温度低于一个预设的阈值时,算法终止。
解的质量满足要求
当当前解的质量满足预设的要求或与最优解 的差距在可接受范围内时,算法终止。
03
模拟退火算法参数设置
温度衰减率
总结词
温度衰减率是模拟退火算法中温度变化的速率,它决定了算法的收敛速度和全局搜索能 力。
详细描述
温度衰减率决定了算法在迭代过程中温度下降的速度。较小的衰减率可以使算法在迭代 过程中有更多的时间来探索解空间,但可能会导致算法收敛速度较慢;而较大的衰减率 则可以使算法更快地收敛到最优解,但可能会牺牲一些全局搜索能力。因此,选择合适

模拟退火算法

模拟退火算法

模拟退火算法(Simulated Annealing)是一种随机优化算法,其基本思想是将问题转化为能量最小化问题,在解空间中以概率形式进行搜索空间,从而达到全局优化的目的。

一、算法原理的原理源于冶金学中的“模拟退火”过程。

在冶金学中,模拟退火是一种将材料加热到足够高的温度,使得原子以无序方式排列,并随着温度逐渐下降,原子逐渐重新排列成为有序状态的过程。

类似地,在算法中,模拟退火过程由三个参数组成:初始温度、降温速率和停止温度。

算法从一个初始解开始,随机产生新解,并计算新解与当前解之间的能量差。

如果新解的能量小于当前解的能量,则直接接受新解,如果新解的能量大于当前解的能量,则以一定的概率接受新解,以避免过早陷入局部最优解。

通过不断降温的过程,在搜索空间中进行随机跳跃,并慢慢收敛到全局最优解。

二、算法流程的流程如下:1. 设定初始温度、降温速率和停止温度。

2. 随机生成一个初始解,并计算其能量。

3. 生成一个新解,并计算新解与当前解之间的能量差。

4. 如果新解的能量小于当前解的能量,则接受新解。

5. 如果新解的能量大于当前解的能量,则以一定的概率接受新解。

6. 降温,更新温度。

7. 判断算法是否收敛,如果未收敛则返回步骤2。

三、应用场景广泛应用于组合优化问题、图论问题、生产调度问题等领域。

例如:1. 旅行商问题:在旅行商问题中,可以通过搜索空间中随机跳跃的方式找到最短路径,从而达到全局最优解。

2. 排课问题:在学校的排课问题中,可以帮助学校最优化考虑不同的课程安排,得到最优化的课程表。

3. 生产调度问题:在生产调度问题中,可以帮助生产企业在限制资源的条件下找到最优化的生产方案,提高生产效率。

四、优缺点作为一种优化算法,具有以下优点:1. 全局搜索能力强:能够在搜索空间中进行全局搜索,并趋向于全局最优解。

2. 算法收敛性好:在算法搜索到解后,能够很快地达到最优解,收敛速度较快。

3. 收敛到局部最优解的可能性较小:由于算法在跳跃过程中具有随机性,因此收敛到局部最优解的可能性较小。

模拟退火算法介绍

模拟退火算法介绍

模拟退火算法介绍模拟退火算法(Simulated Annealing,SA)是一种基于蒙特卡洛方法的优化算法,由Kirkpatrick等人于1983年提出。

它模拟了固体物体从高温到低温时退火的过程,通过模拟这一过程来寻找问题的最优解。

首先,模拟退火算法需要生成一个初始解。

初始解是随机生成的,它代表了问题的一个可能解。

初始解的生成可以采用随机数生成方法,或者使用其他启发式算法生成。

然后,算法需要定义一个邻域结构来解空间。

邻域结构定义了问题的解的相邻解之间的关系。

在退火算法中,邻域结构是动态变化的,随着算法的进行,邻域结构会不断调整以适应的需求。

在退火准则方面,模拟退火算法使用了一个“接受准则”来决定是否接受一个邻域解。

接受准则基于Metropolis准则,它比较了当前解和邻域解之间的差异以及温度参数。

如果邻域解的质量更好,那么就接受它;否则,以一定的概率接受较差的解。

这个概率与温度成正比,随着温度降低,接受较差解的概率逐渐减小。

在算法的每个迭代中,温度参数会随着迭代次数逐渐降低,这意味着算法逐渐从随机转变为局部。

温度参数的降低速率决定了算法的接受较差解的概率的减小速率。

温度参数的决定是关键,它通常是一个退火函数的参数,根据经验选择。

总的来说,模拟退火算法是一种随机化的优化算法,通过模拟物理退火过程,在解空间时能够克服局部最优解,从而寻找全局最优解。

它的应用范围广泛,涵盖了诸多领域,如组合优化、图像处理、网络设计等。

但是,模拟退火算法的收敛速度相对较慢,需要很多次迭代才能找到最优解,因此在实际应用中需要根据具体问题进行合适的调整和优化。

模拟退火算法研究-PPT精选文档

模拟退火算法研究-PPT精选文档

三、模拟退火算法的主要应用
1、TSP问题概述 2、模拟退火算法解决TSP问题
1、TSP问题概述
旅行商问题(Traveling Salesman Problem, TSP)又译为旅行推销员问题、货郎担问题,简 称为TSP问题,是最基本的路线问题,该问题是 在寻求单一旅行者由起点出发,通过所有给定的 需求点之后,最后再回到原点的最小路径成本。
新解产生策略(随机,确定)
接受策略(贪心算法)
模拟退火算法特点及改进
特点: 快速收敛于局部最优解
遇到flat无所适从
模拟退火算法特点及改进
快速收敛于局部最优
模拟退火算法特点及改进
遇到flat则无所适从
模拟退火算法特点及改进
改进: (1) 设计合适的状态产生函数,使其根据搜索进程的需要 表现出状态的全空间分散性或局部区域性。 (2) 设计高效的退火策略。 (3) 避免状态的迂回搜索。 (4) 采用并行搜索结构。
标函数值E(xnew) ,并计算目标函数值的增量ΔE = E(xnew) - E(xbest) 。
3) 如果ΔE <0,则xbest = xnew; 4) 如果ΔE >0,则p = exp(- ΔE /T(i)); 1) 如果c = random[0,1] < p, xbest = xnew; 否则xbest = xbest。 5) End for 4) i = i + 1; 5) End Do 6) 输出当前最优点,计算结束。
能量
目标函数
二、模拟退火算法原理及改进
1、模拟退火算法原理
2、模拟退火算法要素
3、模拟退火算法特点及改进
1、模拟退火算法原理
模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火算法原理

模拟退火算法原理

模拟退火算法原理
模拟退火算法是一种启发式优化算法,通过模拟退火的过程来搜索问题的解空间。

该算法的基本原理来自于固体退火过程中的微观行为,通过慢慢降低温度来使得固体达到低能态的状态。

在模拟退火算法中,首先需要定义一个目标函数来评估解的质量。

然后,从解空间中随机生成一个初始解作为当前最优解,并设置初始温度。

接下来的迭代过程中,通过对当前解进行随机扰动和评估,同时根据一定的概率接受劣解,从而避免陷入局部最优解。

这个概率与温度息息相关,温度降低时,接受劣解的概率也降低。

当温度降到足够低时,模拟退火算法将停止并返回最优解。

具体地,模拟退火算法的迭代过程中,会不断地改变当前解,形成一条解的搜索路径。

根据Metropolis准则,如果新解的质
量优于当前解,则直接接受新解;如果新解质量差于当前解,则以一定的概率接受新解。

这个概率根据新解质量的差距和当前温度计算得出。

温度越高,接受劣解的概率越高;温度越低,接受劣解的概率越低。

随着迭代的进行,温度逐渐下降,接受劣解的概率减小,最终得到一个接近最优解的解。

模拟退火算法的关键点之一是如何设置降温的规则。

常见的降温策略包括指数降温、线性降温和对数降温等。

这些策略都可以根据问题的特性进行选择。

另外,模拟退火算法还需要合适的初始温度和终止条件来保证算法的效果和收敛性。

总之,模拟退火算法通过模拟退火的过程,通过逐渐降低温度
来搜索问题的解空间。

它可以在解空间中进行随机搜索,并以一定的概率接受劣解,从而避免陷入局部最优解。

通过合适的降温策略和终止条件,模拟退火算法能够找到一个接近最优解的解。

模拟退化算法

模拟退化算法

模拟退化算法一、引言模拟退火算法是一种基于概率的全局优化算法,它模拟了物质在高温下退火冷却的过程,通过不断降温来达到寻找全局最优解的目的。

模拟退火算法的应用范围非常广泛,包括图像处理、机器学习、组合优化等领域。

本文将介绍模拟退火算法的基本原理、优缺点以及应用实例。

二、模拟退火算法的基本原理模拟退火算法是一种基于概率的全局优化算法,它通过模拟物质在高温下退火冷却的过程来寻找全局最优解。

算法的基本流程如下:1. 初始化温度T和初始解x;2. 在当前温度下,随机生成一个新解x';3. 计算新解x'的目标函数值f(x')和当前解x的目标函数值f(x);4. 如果f(x')<f(x),则接受新解x';5. 如果f(x')>f(x),则以一定概率接受新解x',概率为exp(-(f(x')-f(x))/T);6. 降低温度T,重复步骤2-5,直到温度降至最低。

三、模拟退火算法的优缺点模拟退火算法具有以下优点:1. 全局搜索能力强:模拟退火算法能够在全局范围内搜索最优解,避免了局部最优解的陷阱;2. 可以处理非线性问题:模拟退火算法可以处理非线性问题,如组合优化问题、图像处理问题等;3. 算法简单易实现:模拟退火算法的算法流程简单,易于实现。

但是,模拟退火算法也存在以下缺点:1. 算法收敛速度慢:模拟退火算法需要不断降温才能达到全局最优解,因此算法收敛速度较慢;2. 参数设置困难:模拟退火算法需要设置初始温度、降温速度等参数,参数设置不当会影响算法的效果;3. 算法结果不稳定:模拟退火算法的结果受到随机因素的影响,因此算法结果不稳定。

四、模拟退火算法的应用实例模拟退火算法在实际应用中具有广泛的应用,以下是几个应用实例:1. 组合优化问题:模拟退火算法可以用于解决组合优化问题,如旅行商问题、背包问题等;2. 图像处理问题:模拟退火算法可以用于图像处理问题,如图像分割、图像去噪等;3. 机器学习问题:模拟退火算法可以用于机器学习问题,如神经网络训练、参数优化等。

模拟退火算法的原理及算法在优化问题上的应用共3篇

模拟退火算法的原理及算法在优化问题上的应用共3篇

模拟退火算法的原理及算法在优化问题上的应用共3篇模拟退火算法的原理及算法在优化问题上的应用1模拟退火算法的原理及算法在优化问题上的应用随着计算机科学的发展,越来越多的计算问题需要用到优化算法来得到最优解,而模拟退火算法(Simulated Annealing)是一种常用的优化算法之一。

本文将介绍模拟退火算法的原理,以及它在优化问题上的应用。

一、模拟退火算法的原理模拟退火算法最早由Kirkpatrick等人在1983年提出,是一种启发式优化算法。

其思想来源于固态物理学中的模拟退火过程,也就是将物质加热后缓慢冷却的过程。

这个过程中,原子系统会从高温状态演变到低温状态,从而达到低能量状态。

模拟退火算法的基本思路是从一个初状态开始,通过改变状态来不断寻找更优的解,直到达到最优解或者达到一定的停机条件。

其核心思想是在搜索过程中不断接受差解,以避免被困在局部最优解。

具体来说,模拟退火算法主要包含以下几个步骤:1. 随机初始化一个状态。

2. 初始化一个温度T,T越高,搜索过程越接受差解。

3. 在当前状态的附近随机生成一个新状态。

4. 计算当前状态与新状态的差异性,如果新状态更优则接受新状态,否则以一定的概率接受新状态。

5. 降低温度,温度降低的速度越来越慢,直到温度降到结束条件。

6. 如果结束条件没有满足,继续从第三步开始。

模拟退火算法的核心在于如何根据当前温度,以一定的概率接受差解,这就需要引入Metropolis准则:P(solution_i→solution_j) = min{1, exp((Ei - Ej) / T)},其中P(solution_i→solution_j) 为从解i转移到解j的概率,Ei为当前解的能量,Ej为新解的能量,T为温度。

通过Metropolis准则,模拟退火算法在搜索过程中可以接受一定的差解,从而避免陷入局部最优解。

二、模拟退火算法在优化问题上的应用模拟退火算法可以应用到很多优化问题中,例如旅行商问题、最大割问题等。

(完整版)模拟退火算法基本原理介绍

(完整版)模拟退火算法基本原理介绍

模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann 常数。

用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。

二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L(2) 对k=1,……,L做第(3)至第6步:(3) 产生新解S′(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6) 如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7) T逐渐减少,且T->0,然后转第2步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

模拟退火算法原理

模拟退火算法原理

模拟退火算法原理
1模拟退火算法
模拟退火算法(Simulated Annealing Algorithm)是一种随机搜索算法,它可以用来求解各种最优化问题。

模拟退火算法可以在给定要求下,以较小的步骤寻找局部最优值,从而实现全局搜索。

2基本原理
模拟退火算法是一种基于物理模型的搜索算法,它借鉴了金属固态材料的固熔变换原理。

一个金属在加热的过程中,先熔化再固化。

在它熔化的时候,可以使处于混乱的状态,然后在冷却的过程中,金属就会自动的变为一个更熔化状态的结构。

同样的,模拟退火算法也是在每次搜索过程中,建立一个限制使它位于搜索空间一个固定且局部最佳的点。

来达到现实生活中金属固化状态找到最优结构的目的。

3工作原理
模拟退火算法通常是从初始解出发搜索最优解。

每次搜索的时候,它会根据“退火温度”进行邻域搜索,并接受低于当前温度的任何节点,而拒绝更高温度的节点。

当温度逐渐降低时,节点被搜索概率就会减少,使得搜索更加局部化,从而提高搜索效率,因此可以找到更优的解决方案。

4应用
模拟退火算法可以应用于求解优化问题中,比如最小路径规划问题,解决非线性规划问题,投资运筹学中组合优化等。

此外,模拟退火算法还可以用于信息检索,图像处理,自然语言处理,建模,网络结构研究,机器学习研究,控制研究等。

模拟退火算法

模拟退火算法

在机器学习中的应用
总结词
模拟退火算法在机器学习中用于优化神经网 络结构和超参数调整。
详细描述
在机器学习中,神经网络结构和超参数的选 择对于模型性能至关重要。模拟退火算法可 以用于优化神经网络的结构,如神经元的数 量、层数等,以及调整超参数,如学习率、 正则化参数等。通过模拟退火算法,可以找 到一组最优的神经网络结构和超参数配置,
自适应调整策略
研究自适应调整策略,根据搜索过程 动态调整参数,以更好地适应问题变 化。
感谢您的观看
THANKS
局部搜索
在生成初始解之后,可以对初始解进行局部搜索,以改进其质量。局部搜索可以通过迭代更新当前解 的邻域来寻找更好的解。这种方法可以帮助模拟退火算法更快地收敛到全局最优解。
05
模拟退火算法应用实例
在旅行商问题中的应用
要点一
总结词
模拟退火算法在旅行商问题中表现出色,能够有效求解大 规模问题。
要点二
初始温度
初始温度的选择对算法的搜索效果有重要影响。初始温度太高可能导致算法陷入局部最优 解,而初始温度太低则可能使算法搜索不到全局最优解。通常,初始温度应根据问题的特 性进行设定。
最小温度
最小温度是算法终止时的温度,其选择同样重要。如果最小温度设置得太高,算法可能无 法收敛;如果设置得太低,则可能无法跳出局部最优解。最小温度通常根据问题的复杂度 和算法的迭代次数来设定。
模拟退火算法的相似性
通过模拟物理退火过程,模拟退火算法在搜索解空间时能够跳出局部最优解,寻找全局最优解。
Metropolis准则
Metropolis准则定义
对于当前解的任何小扰动,如果扰动后的解能量低于当前解,则接受该扰动;否则以一 定概率接受该扰动。

模拟退火算法简介:原理+实例

模拟退火算法简介:原理+实例

模拟退火算法(Simulated Annealing)主要内容◆算法原理◆算法应用◆作业现代智能优化算法,主要用于求解较为复杂的优化问题。

与确定性算法相比,其特点如下:第一,目标函数与约束函数不需要连续、可微,只需提供计算点处的函数值即可;第二,约束变量可取离散值;第三,通常情况下,这些算法能求得全局最优解。

现代智能优化算法,包括禁忌搜索,模拟退火、遗传算法等,这些算法涉及生物进化、人工智能、数学和物理学、神经系统和统计力学等概念,都是以一定的直观基础构造的算法,统称为启发式算法。

启发式算法的兴起,与计算复杂性理论的形成有密切的联系,当人们不满足常规算法求解复杂问题时,现代智能优化算法开始起作用。

现代智能优化算法,自20世纪80年代初兴起,至今发展迅速,其与人工智能、计算机科学和运筹学融合,促进了复杂优化问题的分析和解决。

模拟退火算法(Simulated Annealing, SA)是一种通用的随机搜索算法,是局部搜索算法的扩展。

最早于1953年由Metropolis提出,K irkpatric等在1983年将其成功用于组合优化问题的求解。

算法的目的:解决NP复杂性问题;克服优化过程陷入局部极小;克服初值依赖性。

一、算法原理启发:物质总是趋于最低的能态。

如:水往低处流;电子向最低能级的轨道排布。

结论:最低能态是最稳定的状态。

物质会“自动”地趋于最低能态。

猜想:物质趋于最低能态与优化问题求最小值之间有相似性,能否设计一种用于求函数最小值的算法,就像物质“自动”地趋于最低能态?退火,俗称固体降温。

先把固体加热至足够高的温度,使固体中所有的粒子处于无序的状态(随机排列,此时具有最高的熵值);然后将温度缓缓降低,固体冷却,粒子渐渐有序(熵值下降,以低能状态排列)。

原则上,只要温度上升得足够高,冷却过程足够慢,则所有粒子最终会处于最低能态(此时具有最低的熵值)。

模拟退火算法就是将退火过程中系统熵值类比为优化问题的目标函数值来达到优化问题寻优的一种算法。

模拟退火算法

模拟退火算法
i j
开始
产生 i S k 0,Tk T0
设定 nTk n 0
产生 j N i n n 1 计算 f f j f i
f 0 N
exp f Tk U 0,1
N
n nTk N
Y k k 1,降温 Tk
N
Tk T f Y
停止
内循环
19
四.计算举例 (1)
➢ 问题旳提出
Tk
Ei与 E j 旳小差别带来Pi Tk 和 Pj Tk 旳巨大差别
例如: Ei=90,E j =100,
11
二.退火过程和Bolzman方程(6)
➢ 当 Tk =100时
90
Pi Tk
Pj Tk
Ck
e
100
Ck
100
e 100
u
0.406 Ck
0.367 Ck
0.406 0.367
12
二.退火过程和Bolzman方程(7)
➢ 当 Tk =1时
Pi Tk Pj Tk 8.194 1040 Ck 3.72 1044 Ck 20000 此时 n
Pi Tk Pi Tk
i 1
结论: Tk 0 时,以概率1趋于最小能量状态
13
三.SA旳算法构造及环节(1)
➢ SA旳模拟要求 ➢ 初始温度足够高 ➢ 降温过程足够慢 ➢ 终止温度足够低
四.计算举例 (4)
⑴ ① j 1324 ② j 43 21 ③ j 4 231
f j 98 f j 119 f j 132
f 20
ef Tk 0.8106 0.7414 ef Tk 0.8781 0.3991
i j i j i j
注释:
➢ ①无条件转移;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟退火算法一、模拟退火算法概念模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。

根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e-ΔE/(kT),其中E 为温度T 时的内能,ΔE 为其改变量,k 为Boltzmann 常数。

用固体退火模拟组合优化问题,将内能E 模拟为目标函数值f,温度T 演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i 和控制参数初值t 开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。

退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t 及其衰减因子Δt、每个t 值时的迭代次数L 和停止条件S。

二、模拟退火算法的模型模拟退火算法可以分解为解空间、目标函数和初始解三部分。

模拟退火的基本思想:(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T 值的迭代次数L(2) 对k=1,……,L 做第(3)至第6 步:(3)产生新解S′(4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数(5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.(6)如果满足终止条件则输出当前解作为最优解,结束程序。

终止条件通常取为连续若干个新解都没有被接受时终止算法。

(7)T 逐渐减少,且T->0,然后转第2 步。

算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

第二步是计算与新解所对应的目标函数差。

因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。

事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is 准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。

第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。

此时,当前解实现了一次迭代。

可在此基础上开始下一轮试验。

而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

三、模拟退火算法的应用领域模拟退火算法是解NP 完全组合优化问题的有效近似算法,将该算法应用于路径优化问题,利用该算法对类似货郎担问题的路径问题进行求解;针对城市道路行走不同的目标条件(路径最短、时间最短)进行优化,选择最佳行走路径;并将用该算法优化得到的计算结果与树形算法进行比较,显示该算法能够克服传统优化算法易陷入局部极值的缺点,同时表明该算法在解类似货郎担交通路径方面的问题时有较高的精确性。

因而该算法在解决城市道路交通问题方面具有一定的实用价值。

在企业运营与管理中,管理者总是希望把人员最佳分派以发挥其优势,从而降低成本,提高效益.例如,某公司需完成m 项任务,恰好有n 名员工可承担这些任务(n≥m);每项任务只能由一名员工来做,每名员工也只能做一项任务;不同的员工完成各项任务的成本不同.这样就可采用模拟退火算法将企业的人员分配做到最佳的分配。

四、具体案例C#数值计算之模拟退火法简介摘要本文简介了模拟退火的基本思想,以于模拟时的主要参数的选择根据,然后给出一个求二维函数极值的具体问题和解法,并给出C#源代码。

l 概述在管理科学、计算机科学、分子物理学和生物学以及超大规模集成电路设计、代码设计、图像处理和电子工程等科技领域中,存在大量组合优化瓿。

其中许多问题如货郎担问题、图着色问题、设备布局问题以及布线问题等,至今没有找到有效的多项式时间算法。

这些问题已被证明是NP 完全问题。

1982 年,KirkPatrick 将退火思想引入组合优化领域,提出一种解大规模组合优化问题的算法,对NP 完全组合优化问题尤其有效。

这源于固体的退火过程,即先将温度加到很高,再缓慢降温(即退火),使达到能量最低点。

如果急速降温(即为淬火)则不能达到最低点.。

即:模拟退火算法是一种能应用到求最小值问题或基本先前的更新的学习过程(随机或决定性的)。

在此过程中,每一步更新过程的长度都与相应的参数成正比,这些参数扮演着温度的角色。

然后,与金属退火原理相类似,在开始阶段为了更快地最小化或学习,温度被升得很高,然后才(慢慢)降温以求稳定。

模拟退火算法的主要思想就函数最小值问题来说,模拟退火的主要思想是:在搜索区间(二维平面中)随机游走(即随机选择点),再以Metropolis 抽样准则,使随机游走逐渐收敛于局部最优解。

而温度即是Metropolis 算法中的一个重要控制参数,可以认为这个参数的大小控制了随时过程向局部或全局最优解移动的快慢。

冷却参数表、领域结构和新解产生器、接受准则和随机数产生器(即Metropolis 算法)一起构成算法的三大支柱。

重点抽样与Metroplis 算法:Metropolis 是一种有效的重点抽样法,其算法为:系统从能量一个状态变化到另一个状态时,相应的能量从E1 变化到E2,概率为p = exp[ - (E2- E1)/kT ]。

如果E2 < E1,系统接收此状态,否则,以一个随机的概率接收此或丢弃此状态。

这种经常一定次数的迭代,系统会逐渐趋于一引稳定的分布状态。

重点抽样时,新状态下如果向下则接受(局部最优),若向上(全局搜索),以一定机率接受。

模拟退火方法从某个初始解出发,经过大量解的变换后,可以求得给定控制参数值时组合优化问题的相对最优解。

然后减小控制参数T 的值,重复执行Metropolis 算法,就可以在控制参数T 趋于零时,最终求得组合优化问题的整体最优解。

控制参数的值必须缓慢衰减。

其中温度是一个Metropolis 的重要控制参数,模拟退火可视为递减控制参数什时Metroplis 算法的迭代。

开始T 值大,可能接受较差的恶化解,随着T 的减小,只能接受较好的恶化解,最后在T 趋于0 时,就不再接受任何恶化解了。

在无限高温时,系统立即均匀分布,接受所有提出的变换。

T 的衰减越小,T 到达终点的时间越长;但可使马可夫链越小,到达准平衡分布的时间越短,参数的选择:我们称调整模拟退火法的一系列重要参数为冷却进度表。

它控制参数T 的初值及其衰减函数,对应的MARKOV 链长度和停止条件,非常重要。

一个冷却进度表应当规定下述参数:1.控制参数t 的初值t0;2.控制参数t 的衰减函数;3.马尔可夫链的长度Lk。

(即每一次随机游走过程,要迭代多少次,才能趋于一个准平衡分布,即一个局部收敛解位置)4.结束条件的选择有效的冷却进度表判据:一.算法的收敛:主要取决于衰减函数和马可夫链的长度及停止准则的选择3二.算法的实验性能:最终解的质量和CPU 的时间参数的选择:一)控制参数初值T0 的选取一般要求初始值t0 的值要充分大,即一开始即处于高温状态,且Metropolis 的接收率约为1。

二)衰减函数的选取衰减函数用于控制温度的退火速度,一个常用的函数为:T(n + 1) = K*T(n),其中K 是一个非常接近于1 的常数。

三)马可夫链长度L 的选取原则是:在衰减参数T 的衰减函数已选定的前提下,L 应选得在控制参数的每一取值上都能恢复准平衡。

四)终止条件有很多种终止条件的选择,各种不同的条件对算法的性能和解的质量有很大影响,本文只介绍一个常用的终止条件。

即上一个最优解与最新的一个最优解的之差小于某个容差,即可停止此次马尔可夫链的迭代。

以上说明可能太过于抽象,下一节将以一个实际的例子来说明,其中所有的源码已贴出,可以从中了解到很多细节。

使用模拟退火法求函数f(x,y) = 5sin(xy) + x2 + y2 的最小值解:根据题意,我们设计冷却表进度表为:即初始温度为100衰减参数为0.95马可夫链长度为10000Metropolis 的步长为0.02结束条件为根据上一个最优解与最新的一个最优解的之差小于某个容差。

使用METROPOLIS 接受准则进行模拟, 程序如下/**模拟退火法求函数f(x,y) = 5sin(xy) + x^2 + y^2 的最小值*结束条件为两次最优解之差小于某小量*/using System;namespace SimulateAnnealing{class Class1{// 要求最优值的目标函数static double ObjectFunction( double x, double y ){double z = 0.0;z = 5.0 * Math.Sin(x*y) + x*x + y*y;return z;}[STAThread]static void Main(string[] args){// 搜索的最大区间const double XMAX = 4;const double YMAX = 4;5// 冷却表参数int MarkovLength = 10000; // 马可夫链长度double DecayScale = 0.95; // 衰减参数double StepFactor = 0.02; // 步长因子double Temperature = 100; // 初始温度double Tolerance = 1e-8; // 容差double PreX,NextX; // prior and next value of xdouble PreY,NextY; // prior and next value of ydouble PreBestX, PreBestY; // 上一个最优解double BestX,BestY; // 最终解double AcceptPoints = 0.0; // Metropolis 过程中总接受点Random rnd = new Random();// 随机选点PreX = -XMAX * rnd.NextDouble() ;PreY = -YMAX * rnd.NextDouble();PreBestX = BestX = PreX;PreBestY = BestY = PreY;// 每迭代一次退火一次(降温), 直到满足迭代条件为止do{Temperature *=DecayScale;AcceptPoints = 0.0;// 在当前温度T 下迭代loop(即MARKOV 链长度)次for (int i=0;i<MarkovLength;i++){// 1) 在此点附近随机选下一点do{NextX = PreX + StepFactor*XMAX*(rnd.NextDouble()-0.5);NextY = PreY + StepFactor*YMAX*(rnd.NextDouble()-0.5);}while ( !(NextX >= -XMAX && NextX <= XMAX && NextY >= -YMAX && NextY <= YMAX) );// 2) 是否全局最优解if (ObjectFunction(BestX,BestY) > ObjectFunction(NextX,NextY)){// 保留上一个最优解PreBestX =BestX;PreBestY = BestY;// 此为新的最优解BestX=NextX;BestY=NextY;}// 3) Metropolis 过程if( ObjectFunction(PreX,PreY) - ObjectFunction(NextX,NextY) > 0 )7{// 接受,此处lastPoint 即下一个迭代的点以新接受的点开始PreX=NextX;PreY=NextY;AcceptPoints++;}else{double change = -1 * ( ObjectFunction(NextX,NextY) - ObjectFunction(PreX,PreY) ) / Temperature ;if( Math.Exp(change) > rnd.NextDouble() ){PreX=NextX;PreY=NextY;AcceptPoints++;}// 不接受, 保存原解}}Console.WriteLine("{0},{1},{2},{3}",PreX, PreY, ObjectFunction ( PreX, PreY ), Temperature);}while( Math.Abs( ObjectFunction( BestX,BestY) – ObjectFunction (PreBestX, PreBestY)) > Tolerance );Console.WriteLine("最小值在点:{0},{1}",BestX, BestY);Console.WriteLine( "最小值为:{0}",ObjectFunction(BestX, BestY) );}}}结果:最小值在点:-1.956,1.618最小值为:-2.686后记:一开始在网上搜索模拟退火的资料并想作为C#数值计算的一个例子,找不到现成的源码。

相关文档
最新文档