八年级下学期压轴题精选
初二下学期压轴题练习- 勾股定理的应用(含答案)

专题04勾股定理的应用一.选择题1.(2021秋•朝阳区期末)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm2.(2020秋•碑林区校级期末)有长为5cm,13cm的两根木条,现想找一根木条和这两根木条首尾顺次相连组成直角三角形,则下列木条长度适合的是()A.10cm B.12cm C.18cm D.20cm3.(2021秋•兴平市期中)国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km4.(2021秋•赣榆区期中)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.555.(2020秋•长沙期末)如图,有一个绳索拉直的木马秋千,绳索AB的长度为5米,若将它往水平方向向前推进3米(即DE=3米),且绳索保持拉直的状态,则此时木马上升的高度为()A.1米B.米C.2米D.4米6.(2021秋•高新区校级月考)如图,一棵大树在离地面6m,10m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部12m处,则大树折断前的高度是()A.14m B.16m C.18m D.20m7.(2021秋•高州市校级月考)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(2021春•爱辉区期末)如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米9.(2020秋•新城区校级月考)如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB 竖直插到水底,此时竹竿AB离岸边点C处的距离CD=0.8米.竹竿高出水面的部分AD长0.2米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD为()A.1.5米B.1.7米C.1.8米D.0.6米二.填空题10.(2020春•鹿城区期中)图1是小红在“淘宝•双11”活动中所购买的一张多挡位可调节靠椅,挡位调节示意图如图2所示.已知两支脚AB=AC,O为AC上固定连接点,靠背OD=10分米.挡位为Ⅰ挡时,OD∥AB,挡位为Ⅱ挡时,OD′⊥AC,过点O作OG∥BC,则∠DOG+∠D′OG=°当靠椅由Ⅰ挡调节为Ⅱ挡时,靠背顶端D向后靠至D′,此时点D移动的水平距离是2分米,即ED′=2分米.DH⊥OG 于点H,则D到直线OG的距离为分米.11.(2020秋•仪征市期末)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC 长分别为13米、20米,主梁AD的高度为12米,则固定点B、C之间的距离为米.12.(2020秋•苏州期末)“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x轴,星海街所在的直线为y轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为A(6,﹣4),小明所在位置的坐标为B(﹣2,2),则小明与东方之门的实际距离为米.13.(2021春•越秀区校级期中)如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间为秒.14.(2014秋•招远市期中)小明家有一块如图所示的地,其中阴影部分是两个正方形,其他的是两个直角三角形和一个正方形,大直角三角形的斜边和一条直角边的长分别为34米,30米,小明家打算在阴影部分的土地上种花生,则种花生的面积为米2.15.(2021秋•茂名期中)如图所示,校园内有两棵树相距8m,一棵树高13m,另一棵树高7m,一只小鸟从一棵树顶端飞到另一棵树的顶端,小鸟至少要飞米.16.(2021•盂县一模)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是寸.17.(2020秋•石景山区期末)我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?”示意图如图所示,设绳索AC的长为x尺,木柱AB的长用含x的代数式表示为尺,根据题意,可列方程为.三.解答题18.(2021秋•紫金县期末)如图,一个直径为12cm(即BC=12cm)的圆柱形杯子,在杯子底面的正中间点E处竖直放一根筷子,筷子露出杯子外2cm(即FG=2cm),当筷子GE倒向杯壁时(筷子底端不动),筷子顶端正好触到杯D,求筷子GE的长度.19.(2021秋•济宁期末)一架云梯长25m,如图那样斜靠在一面墙上,云梯顶端离地面24m.(1)这架云梯的底端距墙角有多远?(2)如果云梯的顶端下滑了4m,那么它的底部在水平方向滑动了多少m?20.(2021秋•长春期末)如图,长方形ABCD为一个花园,其中AB=15米,BC=8米,在花园内修一条长13米的笔直小路EF,小路出口一端E选在AD边上距D点3米处,另一端出口F应选在AB边上距B点几米处?21.(2021秋•铁西区期中)甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6千米/小时的速度向正东行走.1小时后乙出发,他以5千米/小时的速度向正北行走.上午10:00,甲、乙二人相距多远?22.(2020秋•重庆期末)如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,在A处有一所中学,AP=120米,此时有一辆消防车在公路MN上沿PN方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?23.(2021秋•淮阴区期中)为整治城市街道的汽车超速现象,交警大队在某街道旁进行了流动测速.如图,一辆小汽车在某城市街道上直行,某一时刻刚好行驶到离车速检测仪A处60m的C处,过了4s后,小汽车到达离车速检测仪A处100m的B处.(1)求BC的长;(2)已知该段城市街道的限速为70km/h,这辆小汽车超速了吗?请通过计算说明.24.(2021春•饶平县校级期中)如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.25.(2021春•吉林期末)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16nmile,“海天”号每小时航行12nmile.它们离开港口一个半小时后分别位于点Q,R处,且相距30nmile.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?26.(2021秋•重庆期末)如图是俱乐部新打造的一款儿童游戏项目,工作人员告诉小敏,该项目AB段和BC段均由不锈钢管材打造,总长度为26米,长方形ADCG和长方形DEFC均为木质平台的横截面,点G在AB上,点C在GF上,点D在AE上,经过现场测量得知:CD=1米,AD=15米.(1)小敏猜想立柱AB段的长为10米,请判断小敏的猜想是否正确?如果正确,请写出理由,如果错误,请求出立柱AB段的正确长度;(2)为加强游戏安全性,俱乐部打算再焊接一段钢索BF,经测量DE=3米,请你求出要焊接的钢索BF的长.(结果不必化简成最简二次根式)专题04勾股定理的应用一.选择题1.(2021秋•朝阳区期末)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm【思路引导】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【完整解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),所以18﹣15=3(cm),18﹣12=6(cm).则这只铅笔在笔筒外面部分长度在3cm~6cm之间.观察选项,只有选项D符合题意.故选:D.【考察注意点】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.2.(2020秋•碑林区校级期末)有长为5cm,13cm的两根木条,现想找一根木条和这两根木条首尾顺次相连组成直角三角形,则下列木条长度适合的是()A.10cm B.12cm C.18cm D.20cm【思路引导】根据勾股定理即可得到结论.【完整解答】解:∵52+132=()2,132﹣52=122,∴木条长度适合的是12cm,故选:B.【考察注意点】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.3.(2021秋•兴平市期中)国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【思路引导】根据题意先求A、B两地的水平距离和竖直距离,运用勾股定理求AB的长.【完整解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.【考察注意点】本题考查了矩形的性质以及勾股定理的应用,解题的关键是结合图形,读懂题意,根据题意找到需要的数量关系,运用勾股定理求线段的长度.4.(2021秋•赣榆区期中)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引导】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【完整解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【考察注意点】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.5.(2020秋•长沙期末)如图,有一个绳索拉直的木马秋千,绳索AB的长度为5米,若将它往水平方向向前推进3米(即DE=3米),且绳索保持拉直的状态,则此时木马上升的高度为()A.1米B.米C.2米D.4米【思路引导】作CF⊥AB,根据勾股定理求得AF的长,可得BF的长度.【完整解答】解:过点C作CF⊥AB于点F,根据题意得:AB=AC=5,CF=DE=3,由勾股定理可得AF2+CF2=AC2,∴AF=,∴BF=AB﹣AF=5﹣4=1,∴此时木马上升的高度为1米,故选:A.【考察注意点】本题主要考查勾股定理的应用,添加辅助线构建直角三角形是解题的关键.6.(2021秋•高新区校级月考)如图,一棵大树在离地面6m,10m两处折成三段,中间一段AB恰好与地面平行,大树顶部落在离大树底部12m处,则大树折断前的高度是()A.14m B.16m C.18m D.20m【思路引导】作BO⊥DC于点O,首先由题意得:AD=BO=6m,AB=OD=4m,然后根据DC=6米,得到OC=8米,最后利用勾股定理得BC的长度即可.【完整解答】解:如图,作BO⊥DC于点O,由题意得:AD=BO=6m,AB=OD=4m,∵DC=12m,∴OC=8m,∴由勾股定理得:BC=(m),∴大树的高度为10+10=20(m),故选:D.【考察注意点】本题考查了勾股定理的应用,正确的构造直角三角形是解答本题的关键.7.(2021秋•高州市校级月考)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km【思路引导】根据题意先求A、B两地的水平距离和竖直距离,运用勾股定理求AB的长.【完整解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=AF﹣MF+MC=8﹣3+1=6(km),BC=2+5=7(km),在Rt△ACB中,AB===10(km).答:登陆点到宝藏埋藏点的直线距离是10km,故选:D.【考察注意点】本题考查了矩形的性质以及勾股定理的应用,解题的关键是结合图形,读懂题意,根据题意找到需要的数量关系,运用勾股定理求线段的长度.8.(2021春•爱辉区期末)如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米【思路引导】先求出AC的长,利用平移的知识可得出地毯的长度.【完整解答】解:在Rt△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,故选:D.【考察注意点】此题考查了勾股定理的应用及平移的知识,属于基础题,利用勾股定理求出AC的长度是解答本题的关键.9.(2020秋•新城区校级月考)如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB 竖直插到水底,此时竹竿AB离岸边点C处的距离CD=0.8米.竹竿高出水面的部分AD长0.2米,如果把竹竿的顶端A拉向岸边点C处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD为()A.1.5米B.1.7米C.1.8米D.0.6米【思路引导】设BD的长度为xm,则AB=BC=(x+0.2)m,根据勾股定理构建方程即可解决问题.【完整解答】解:设BD的长度为xm,则AB=BC=(x+0.2)m,在Rt△CDB中,0.82+x2=(x+0.2)2,解得x=1.5.故选:A.【考察注意点】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.二.填空题10.(2020春•鹿城区期中)图1是小红在“淘宝•双11”活动中所购买的一张多挡位可调节靠椅,挡位调节示意图如图2所示.已知两支脚AB=AC,O为AC上固定连接点,靠背OD=10分米.挡位为Ⅰ挡时,OD∥AB,挡位为Ⅱ挡时,OD′⊥AC,过点O作OG∥BC,则∠DOG+∠D′OG=°当靠椅由Ⅰ挡调节为Ⅱ挡时,靠背顶端D向后靠至D′,此时点D移动的水平距离是2分米,即ED′=2分米.DH⊥OG 于点H,则D到直线OG的距离为分米.【思路引导】先利用平行线的性质与等腰三角形的性质证明∠DOG=∠COG,再利用等量代换计算出∠DOG+∠D′OG=∠COD′=90°;先构造Rt△OMD′,再利用全等的性质以及勾股定理计算DH的长即可.【完整解答】解:设AB与OH交于点N,作D′M⊥OG于M,∵OD∥AB,OG∥BC,∴∠DOG=∠ANO,∠ANO=∠ABC,∠ACB=∠COG,∵AB=AC,∴∠ABC=∠ACB,∴∠DOG=∠ABC=∠ACB=∠COG,∵OD′⊥AC,∴∠COD′=90°,∴∠DOG+∠D′OG=∠COD′=∠COG+∠D′OG=∠COD′=90°;∵DH⊥OG,D′M⊥OG,∴∠OHD=∠OMD′=90°,在Rt△OHD中∠DOG+∠ODH=90°,又∠DOG+∠D′OG=90°,∴∠ODH=∠D′OG,∵当靠椅由Ⅰ挡调节为Ⅱ挡时,靠背顶端D向后靠至D′,即OD旋转到OD′,在△ODH和△D′OM中∴,∵△ODH≌△D′OM,∴DH=OM,又∵HM=ED′=2,∴DH=OM=OH+HM=OH+2,设OH=x,则DH=x+2,在Rt△OHD中,OD=10,由勾股定理得:OH2+DH2=OD2,即x2+(x+2)2=102,解得:x1=6,x2=﹣8(舍去),∴点D到直线OG的距离为DH=x+2=8.故答案为:90,8.【考察注意点】本题考查了全等三角形的性质和判定,勾股定理,等腰三角形的性质,解题的关键是构造全等三角形.11.(2020秋•仪征市期末)如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC 长分别为13米、20米,主梁AD的高度为12米,则固定点B、C之间的距离为21米.【思路引导】根据勾股定理即可得到结论.【完整解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB、AC长分别为13米、20米,AD的高度为12米,∴BD=(米),DC=(米)∴BC=BD+DC=5+16=21(米),故答案为:21.【考察注意点】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.12.(2020秋•苏州期末)“东方之门”座落于美丽的金鸡湖畔,高度约为301.8米,是苏州的地标建筑,被评为“中国最高的空中苏式园林”.现以现代大道所在的直线为x轴,星海街所在的直线为y轴,建立如图所示的平面直角坐标系(1个单位长度表示的实际距离为100米),东方之门的坐标为A(6,﹣4),小明所在位置的坐标为B(﹣2,2),则小明与东方之门的实际距离为1000米.【思路引导】根据两点之间的距离和勾股定理解答即可.【完整解答】解:小明与东方之门的实际距离=,10×100=1000(米),故答案为:1000.【考察注意点】此题考查勾股定理的应用,关键是根据两点之间的距离和勾股定理解答.13.(2021春•越秀区校级期中)如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间为24秒.【思路引导】设卡车开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由卡车的速度可得出所需时间.【完整解答】解:设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.【考察注意点】本题考查了勾股定理的应用,解答本题的关键是熟练掌握勾股定理的表达式,画出示意图,另外要求掌握时间=路程÷速度.14.(2014秋•招远市期中)小明家有一块如图所示的地,其中阴影部分是两个正方形,其他的是两个直角三角形和一个正方形,大直角三角形的斜边和一条直角边的长分别为34米,30米,小明家打算在阴影部分的土地上种花生,则种花生的面积为256米2.【思路引导】两个阴影正方形的面积和等于直角三角形另一未知边的平方.利用勾股定理即可求出.【完整解答】解:两个阴影正方形的面积和为342﹣302=256(米2).故种花生的面积为256米2.故答案为:256.【考察注意点】本题考查了直角三角形中勾股定理的运用,考查了正方形面积的计算,本题中根据勾股定理求阴影部分的边长是解题的关键.15.(2021秋•茂名期中)如图所示,校园内有两棵树相距8m,一棵树高13m,另一棵树高7m,一只小鸟从一棵树顶端飞到另一棵树的顶端,小鸟至少要飞10米.【思路引导】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【完整解答】解:两棵树高度相差为AE=13﹣7=6m,之间的距离为BD=CE=8m,即直角三角形的两直角边,故斜边长AC==10m,即小鸟至少要飞10m.故答案为:10.【考察注意点】本题考查勾股定理的应用,主要是将小鸟的飞行路线转化为求直角三角形的斜边,利用勾股定理解答即可.16.(2021•盂县一模)《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙CD的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10寸),则AB的长是101寸.【思路引导】取AB的中点O,过D作DE⊥AB于E,根据勾股定理解答即可得到结论.【完整解答】解:取AB的中点O,过D作DE⊥AB于E,如图2所示:由题意得:OA=OB=AD=BC,设OA=OB=AD=BC=r寸,则AB=2r(寸),DE=10寸,OE=CD=1寸,∴AE=(r﹣1)寸,在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101(寸),∴AB=101寸,故答案为:101.【考察注意点】本题考查了勾股定理的应用,弄懂题意,构建直角三角形是解题的关键.17.(2020秋•石景山区期末)我国古代的数学名著《九章算术》中有这样一道题目“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽.问绳索长是多少?”示意图如图所示,设绳索AC的长为x尺,木柱AB的长用含x的代数式表示为x﹣3尺,根据题意,可列方程为x2﹣(x﹣3)2=82.【思路引导】设绳索长为x尺,根据勾股定理列出方程解答即可.【完整解答】解:设绳索长为x尺,根据题意得:x2﹣(x﹣3)2=82,故答案为:x﹣3;x2﹣(x﹣3)2=82.【考察注意点】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.三.解答题18.(2021秋•紫金县期末)如图,一个直径为12cm(即BC=12cm)的圆柱形杯子,在杯子底面的正中间点E处竖直放一根筷子,筷子露出杯子外2cm(即FG=2cm),当筷子GE倒向杯壁时(筷子底端不动),筷子顶端正好触到杯D,求筷子GE的长度.【思路引导】根据题意可得DE=GE,EF=GE﹣2,在Rt△DFE中,根据勾股定理列出方程,解方程即可求解.【完整解答】解:设筷子GE的长度是xcm,那么杯子的高度是(x﹣2)cm,∵杯子的直径为12cm,∴杯子半径为6cm,∴(x﹣2)2+62=x2,即x2﹣4x+4+36=x2,解得:x=10,答:筷子GE的长度是10cm.【考察注意点】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.19.(2021秋•济宁期末)一架云梯长25m,如图那样斜靠在一面墙上,云梯顶端离地面24m.(1)这架云梯的底端距墙角有多远?(2)如果云梯的顶端下滑了4m,那么它的底部在水平方向滑动了多少m?【思路引导】(1)在RtADE中,利用勾股定理即可求出DE的长;(2)首先求出A′E的长,利用勾股定理可求出D′E的长,进而得到DD′=ED′﹣ED的值.【完整解答】解:(1)在Rt△ADE中,由勾股定理得AE2+DE2=AD2,即DE2+242=252,∴DE==7(m),答:这架云梯的底端距墙角有7m远;(2)∵云梯的顶端A下滑了4m至点A′,∴A′E=AE﹣AA′=24﹣4=20(m),在Rt△A′ED′中,由勾股定理得A′E2+D′E2=A′D′2,即202+D′E2=252,∴D′E==15(m),∴DD′=ED′﹣ED=15﹣7=8(m),答:梯子的底端在水平方向也滑动了8m.【考察注意点】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.20.(2021秋•长春期末)如图,长方形ABCD为一个花园,其中AB=15米,BC=8米,在花园内修一条长13米的笔直小路EF,小路出口一端E选在AD边上距D点3米处,另一端出口F应选在AB边上距B点几米处?【思路引导】根据勾股定理直接求出AF的长,即可得出FB即可得出答案.【完整解答】解:由题意知EF=13米,EA=5米.在Rt△EAF中,由勾股定理,得AF2=EF2﹣EA2,即AF2=132﹣52=144,则AF=12(取正值).所以FB=15﹣12=3(米),即另一端出口F应选在AB边上距B点3米处.【考察注意点】此题主要考查了勾股定理的应用,正确的记忆勾股定理确定好斜边与直角边是解决问题的关键.21.(2021秋•铁西区期中)甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6千米/小时的速度向正东行走.1小时后乙出发,他以5千米/小时的速度向正北行走.上午10:00,甲、乙二人相距多远?【思路引导】要求甲、乙两人的距离,就要确定甲、乙两人在平面的位置关系,由于甲往东、乙往北,所以甲所走的路线与乙所走的路线互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求得甲、乙两人的距离.【完整解答】解:如图,甲从上午8:00到上午10:00一共走了2小时,走了12千米,即OA=12.乙从上午9:00到上午10:00一共走了1小时,走了5千米,即OB=5.在Rt△OAB中,AB2=122十52=169,∴AB=13,因此,上午10:00时,甲、乙两人相距13千米.∵15>13,∴甲、乙两人还能保持联系.答:上午10:00甲、乙两人相距13千米,两人还能保持联系.【考察注意点】本题勾股定理的应用,方位角等知识,学会用转化的思想思考问题,属于中考常考题型.22.(2020秋•重庆期末)如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,在A处有一所中学,AP=120米,此时有一辆消防车在公路MN上沿PN方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?【思路引导】(1)作AB⊥MN于B,根据含30度的直角三角形三边的关系得到AB=PA=60m,由于这个距离小于100m,所以可判断拖拉机在公路MN上沿PN方向行驶时,学校受到噪音影响;(2)以点A为圆心,100m为半径作⊙A交MN于C、D,根据垂径定理得到BC=BD,再根据勾股定理计算出BC=80m,则CD=2BC=160m,根据速度公式计算出拖拉机在线段CD上行驶所需要的时间.【完整解答】解:(1)学校受到噪音影响.理由如下:作AB⊥MN于B,如图1,∵PA=120m,∠QPN=30°,∴AB=PA=60m,而60m<100m,∴消防车在公路MN上沿PN方向行驶时,学校受到噪音影响;(2)以点A为圆心,100m为半径作⊙A交MN于C、D,如图,∵AB⊥CD,∴CB=BD,在Rt△ABC中,AC=100m,AB=60m,CB==80m,∴CD=2BC=160m,∵消防车的速度5m/s,∴消防车在线段CD上行驶所需要的时间=160÷5=32(秒),∴学校受影响的时间为32秒.【考察注意点】本题考查了勾股定理的应用,直线与圆的位置关系:设⊙O的半径为r,圆心O到直线。
因式分解压轴题(20题)-【常考压轴题】2023-2024学年八年级数学下册压轴题攻略(原卷版)

原创精品资源学科网独家享有版权,侵权必究!1第四章因式分解压轴题1.若a =a 的说法正确的是().A .是正整数,而且是偶数B .是正整数,而且是奇数C .不是正整数,而是无理数D .无法确定2.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M 的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.3.如果一个三位正整数M 可以表示为()3m m +的形式,其中m 为正整数,则称M 为“幸运数”.例如:三位数270,()27015153=⨯+ ,∴270是“幸运数”;又如:三位数102,1021102251334617=⨯=⨯=⨯=⨯ ,∴102不是“幸运数”、根据题意,最大的“幸运数”为;若M 与N 都是“幸运数”,且350M N -=,则所有满足条件的N 的和为.4.一个四位正整数m ,如果m 满足各个数位上的数字均不为0,千位数字与个位数字相等,百位数字与十位数字相等,则称m 为“对称数”,将m 的千位数字与百位数字对调,十位数字与个位数字对调得到一个新数m ',记()81m m F m '-=.例如:对称数7337m =时,3373m '=,则()7337377373374481F -==.已知s 、t 都是“对称数”,记s 的千位数字与百位数字分别为a ,b ,t 的千位数字与百位数字分别为x ,y ,其中19b a ≤<≤,1x ≤,9y ≤,a ,b ,x ,y 均为整数.若()F s 能被8整除,则a b -=;同时,若()F s 、()F t 还满足()()64138F s F t a b x y xy +=++-+,则()F t 所有可能值的和为.5.“回文诗”即正念倒念都有意思,均成文章的诗,如:“秋江楚雁宿沙洲,雁宿沙洲浅水流.流水浅洲沙宿雁,洲沙宿雁楚江秋.”其意境与韵味读起来都是一种美的享受.在数学中也有这样一类数有这样的特征,即正读倒读都一样的自然数,我们称之为“回文数”,例如11,343等.下列几个命题中:(1)2222是“回文数”;(2)所有两位数中,有9个“回文数”;所有三位数中,有81个“回文数”;(3)任意四位数的“回文数”是11的倍数;(4)如果一个“回文数”m 是另外一个正整数n 的平方,则称m 为“平方回数”.若t 是一个千位数字为1的四位数的“回文数”,若11s t =,且s 是一个“平方回数”,则1331t =.其中,真命题有.(填序号)6.定义:任意两个数a ,b ,按规则()()11c a b =++运算得到一个新数c ,称所得的新数c 为a ,b 的“和积数”.(1)若4a =,2b =-,求a ,b 的“和积数”c ;(2)若12ab =,228a b +=,求a ,b 的“和积数”c ;(3)已知1a x =+,且a ,b 的“和积数”32452c x x x =+++,求b (用含x 的式子表示)并计算a b +的最小值.7.若一个四位数M 的百位数字与千位数字的差恰好是个位数字与十位数字的差的2倍,则将这个四位数M 称作“星耀重外数”.例如:2456M =,∵()42265-=⨯-,∴2456是“星耀重外数”;又如4325M =,∵()34252-≠⨯-,∴4325不是“星耀重外数”.(1)判断2023,5522是否是“星耀重外数”,并说明理由;(2)一个“星耀重外数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,且满足29a b c d ≤≤<≤≤,记()492223624ac a d b G M -++-=,当()G M 是整数时,求出所有满足条件的M .8.已知一个各个数位上的数字均不为0的四位正整数()M abcd a c =>,以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s ,若s 等于M 的千位数字与十位数字的平方差,则称这个数M 为“平方差数”,将它的百位数字和千位数字组成两位数ba ,个位数字和十位数字组成两位数dc ,并记()T M ba dc =+.例如:6237是“平方差数”,因为226327-=,所以6237是“平方差数”;此时()6237267399T =+=.又如:5135不是“平方差数”,因为22531615-=≠,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M abcd =是“平方差数”,且()T M 比M 的个位数字的9倍大30,求所有满足条件的“平方差数”M .9.一个两位数M ,若将十位数字2倍的平方与个位数字的平方的差记为数N ,当N >0时,我们把N 放在M 的右边将所构成的新数叫做M 的“叠加数”.例如:M =47,∵N =(2×4)2-72=15>0,∴47的“叠加数”为4715;M =26,∵N =(2×2)2-62=-20<0,∴26没有“叠加数”.(1)请判断3420和5846是否为某个两位数的“叠加数”,并说明理由;(2)两位数M =10a +b (1≤a ≤9,1≤b ≤4,且a 、b 均为整数)有“叠加数”,且12a -M -N 能被13整除,求所有满足条件的两位数M 的“叠加数”.原创精品资源学科网独家享有版权,侵权必究!310.材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.(1)分解因式:1ab a b +++(2)若a ,()b a b >都是正整数且满足40ab a b ---=,求a b +的值;(3)若a ,b 为实数且满足50ab a b ---=,22235S a ab b a b =+++-,求S 的最小值.11.八年级课外兴趣小组活动时,老师提出了如下问题:将2346a ab b --+因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式()()()()()()234623223232a ab b a b b b a =---=---=--;解法二:原式()()()()()()24362232223a ab b a b a a b =---=---=--.【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将22x a x a -++因式分解;【挑战】(2)请用分组分解法将222ax a ab bx b +--+因式分解;(3)若229a b +=,2a b -=,请用分组分解法先将432234222a a b a b ab b -+-+因式分解,再求值.12.如图①,在平面直角坐标系中,点A ,点B 分别在x 轴负半轴和y 轴正半轴上,点C 在第二象限,且90ACB ∠=︒,AC BC =,点B 的坐标为()0,m ,点C 的纵坐标为n ,满足222170m n m +-+=.(1)求点A 的坐标;(2)如图②,点D 是AB 的中点,点E ,F 分别是边AC ,BC 上的动点,且DE DF ⊥,在点E ,F 移动过程中,四边形的面积是否为定值?请说明理由;(3)在平面直角坐标系中,是否存在点P ,使得PAC △是以点A 为直角顶点的等腰直角三角形,请直接写出满足条件的点P 的坐标.13.在x 轴正半轴上有一定点A ,(),0A a .(1)若多项式24x x a ++恰好是某个整式的平方,那么点A 的坐标为__________;(2)如图1,点P 为第三象限角平分线上一动点,连接AP ,将射线AP 绕点A 逆时针旋转30︒交y 轴于点Q ,连接PQ ,在点P 运动的过程中,当45APQ ∠=︒时,求OQA ∠的度数;(3)如图2,已知点B 、点C 分别为y 轴正半轴,x 轴正半轴上的点,C 在A 右侧,在线段OB 上取点(0)E m ,,AC n =,且45BCE ∠=︒,过点A 做AD x ⊥轴,且AD OC =,求DF 的长.(结果用m ,n 表示)14.通过课堂的学习知道,我们把多项式222a ab b ++及222a ab b -+叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式()()()()()222()2321414121231x x x x x x x x x +-=++-=+-=+++-=+-;再例如求代数式2246x x +-的最小值,()2222462232(1)8x x x x x +-=+-=+-.可知当=1x -时,2246x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)代数式223a a -++的最大值为:;(2)若2211M a b =++与62N a b =-,判断M N 、的大小关系,并说明理由;(3)已知:2a b -=,2450ab c c -++=,求代数式a b c ++的值.15.阅读材料,解决问题【材料1】教材中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式223x x +-.原式()()()()()22223211314121231x x x x x x x x x =+-=++--=+-=+++-=+-.【材料2】因式分解:()()221x y x y ++++原创精品资源学科网独家享有版权,侵权必究!5解:把x y +看成一个整体,令x y A +=,则原式()22211A A A =++=+,再将A x y =+重新代入,得:原式()21x y =++上述解题用到的“整体思想”是数学解题中常见的思想方法.请你解答下列问题:(1)根据材料1,利用配方法进行因式分解:268x x -+;(2)根据材料2,利用“整体思想”进行因式分解:()()244x y x y ---+;(3)当a ,b ,c 分别为ABC 的三边时,且满足222464170a b c a b c ++---+=时,判断ABC 的形状并说明理由.16.我们定义:一个整数能表示成22a b +(a 、b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22521=+,所以5是“完美数”.[解决问题](1)已知29是“完美数”,请将它写成22a b +(a 、b 是整数)的形式______;(2)若265x x -+可配方成()2x m n -+(m 、n 为常数),则mn =______;[探究问题](3)已知222450x y x y +-++=,则x y +=______;(4)已知224412S x y x y k =++-+(x 、y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由.[拓展结论](5)已知实数x 、y 满足25502x x y -++-=,求2x y -的最值.17.阅读材料:我们把多项式222a ab b ++及222a ab b -+叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式的最大值,最小值等.例分解因式:()22223214(1)4(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-;又例如:求代数式2246x x +-的最小值:()2222462232(1)8x x x x x +-=+-=+- ;又2(1)0x + ;∴当=1x -时,2246x x +-有最小值,最小值是8-.根据阅读材料,利用“配方法”,解决下列问题:(1)分解因式:245a a --=___________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22412400a a b b -+-+=求边长c 的最小值;(3)当x 、y 为何值时,多项式222267x xy y y -+-++有最大值?并求出这个最大值.18.【实践探究】小青同学在学习“因式分解”时,用如图1所示编号为①②③④的四种长方体各若干块,进行实践探究:(1)现取其中两个拼成如图2所示的大长方体,请根据体积的不同表示方法,写出一个代数恒等式:;(2)【问题解决】若要用这四种长方体拼成一个棱长为2x y +的正方体,其中②号长方体和③号长方体各需要多少个?试通过计算说明理由;(3)【拓展延伸】如图3,在一个棱长为y 的正方体中挖出一个棱长为x 的正方体,请根据体积的不同表示方法,直接写出33y x -因式分解的结果,并利用此结果解决问题:已知a 与2n 分别是两个大小不同正方体的棱长,且()()338244a n a n an -=--,当2a n -为整数时,求an 的值.19.材料:对一个图形通过两种不同的方法计算它的面积或体积,可以得到一个数学等式.(1)如图1,将一个边长为a 的正方形纸片剪去-一个边长为b 的小正方形,根据剩下部分的面积,可得一个关于a ,b 的等式:__________.请类比上述探究过程,解答下列问题:(2)如图2,将一个棱长为a 的正方体木块挖去一个棱长为b 的小正方体,根据剩下部分的体积,可以得到等式:33a b -=__________,将等式右边因式分解,即33a b -=__________;原创精品资源学科网独家享有版权,侵权必究!7(3)根据以上探究的结果,①如图3所示,拼叠的正方形边长是从1开始的连续奇数...,按此规律拼叠到正方形ABCD ,其边长为19,求阴影部分的面积.②计算:()()33211211+--20.(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:①2257x x +-=__________;②22672x xy y -+=__________.(3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq npb +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题:①分解因式2235294x xy y x y +-++-=__________;②若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.。
填空题压轴题-2022-2023学年八年级数学下册期末解答压轴题必刷专题训练(华师大版)(解析版)

填空题压轴题【答案】145【详解】解:如图以DAB V 和FAQ △中:DA =∴()SAS DAB FAQ V V ≌,【答案】①②③④⑤⑥【详解】解:如图,过点∵四边形ABCD 是正方形,∴A C D ÐÐÐ==∴AEB EBC ÐÐ=∵FEB EBC ÐÐ=∴AEB BEF ÐÐ=5.如图,已知在△ABC中,AB 作平行四边形MCNB,连接MN【答案】24 5【详解】如图,设MN、BC交于点6.如图,在平面直角坐标系xoyAB AD为边作使2DP AP=,以,【答案】49【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB//CD∴∠E=∠DAE,又∵AE平分∠BAD,【答案】①④⑤【详解】解:∵四边形ABCD ∴AB CD =,AD BC =.设点P 到AB ,BC ,CD ,DA【答案】()453,【详解】解:从正方形的观点考虑,右下角对应的横坐标为1时,共有右下角对应的横坐标为2时,共有右下角对应的横坐标为3时,共有右下角对应的横坐标为4时,共有【答案】10 21【详解】解:设1A,2A,3A【答案】(10112-,10112)【详解】解:∵过点(1,0)作∴1A (1,2),把2y =代入y x =-得2x =-,即把2x =-代入2y x =得4y =-,即同理可得4A (4,4-),5A (32),…直线21y kx k =+-与直线(1)2y k x k =+++那么,COD ABDC S S =V 四边形【答案】22n+【详解】解:对于直线y=x+1∵A0B1∥x轴,∴B1的纵坐标为将y=1代入1122y x=+中得:∴A0B1=1=20,∵A1B1∥y轴,∴A1的横坐标为【答案】404432æöç÷èø【详解】解:∵直线1l :112y x =-+与直线2l :332y x =-+与y 轴交于点B ,∴AB 2\=,112BC AB ==,∵BC ⊥AB ,∴()1,3C -,∴四边形PECF 是矩形,∴PC=EF,∴PA=EF,故②正确;∵BD 是正方形ABCD 的对角线,∴∠ABD=∠BDC=∠DBC=45°,∵∠PFC=∠BCD=90°,∴PF∥BC,∴∠DPF=45°,∵∠DFP=90°,∴△FPD 是等腰直角三角形,故①正确;在△PAB 和△PCB 中,AB CB ABP CBP BP BP ìïÐÐíïî=== , ∴△PAB≌△PCB,∴∠BAP=∠BCP,在矩形PECF 中,∠PFE=∠FPC=∠BCP,∴∠PFE=∠BAP.故④正确;∵点P 是正方形对角线BD 上任意一点,∴AD 不一定等于PD ,只有∠BAP=22.5°时,AD=PD ,故③错误,故答案为①②④.38.如图,在矩形ABCD 中,5AB =,12BC =,P 是矩形ABCD 内一点,沿PA 、PB 、PC 、PD 把这个矩形剪开,然后把两个阴影三角形拼成一个四边形,则这个四边形的面积为_________;这个四边形周长的最小值为________.【答案】 30 26【详解】如解图①,过点P 作PE AB ^于点E ,延长EP 交CD 于点F ,∵四边形ABCD 是矩形,∴90ABC BCD Ð=Ð=°,5CD AB ==.∴四边形EBCF 是矩形.∴EF BC =.又∵12BC =,故答案为:30,26.39.如图,在△ABC 中,Ð,90BAC Ð=°,点A 为(3P 、A 、C 为顶点的三角形和△全等,则P 点坐标为___________【答案】(6)2-,或(81),或则90AOB AMP Ð=Ð=°,在AOB V 和V AMP 中,AOB OAB AB ÐìïÐíïî∴(AAS)AOB AMP V V ≌,∴3AM AO ==,2MP OB == ,∴此时点P 的坐标为(6)2-,;②如图,过点C 作CP AC ^,使CP AB =,则(HL)ABC CPA V V ≌.过P 作PF x ^轴于F ,过点C 作CE x ^轴于点E ,作CD y ^轴于点D .∵90OBA OAB Ð+Ð=°,90EAC OAB Ð+Ð=°,∴OBA EAC Ð=Ð.又∵90BOA AEC Ð=Ð=°,AB AC =,∴(AAS)BOA AEC V V ≌,∴3OD CE OA ===,2AE OB ==,∴5CD OE ==.∵CD x ∥轴,∴DCA FAC Ð=Ð.∵45BCA PAC Ð=Ð=°,∴DCA BCA FAC PAC Ð-Ð=Ð-Ð,即DCB FAP Ð=Ð.又∵90CDB AFP Ð=Ð=°,CB AP =,∴(AAS)CDB AFP V V ≌,∴321PF BD OD OB ==-=-=,5AF CD ==,∴358OF OA AF =+=+=,∴此时点P 的坐标为(81),;③如图,作CP AC ^,使CP AB =,连接BP ,则(SAS)ABC CPA V V ≌,∵90BAC PCA Ð=Ð=°,且CP AB = ,∴四边形ABPC 是矩形,∴90AB BP ABP =Ð=°, ,即90ABO PBM Ð+Ð=°,过点P 作PM y ^轴,则90BPM PBM Ð+Ð=°,∴ABO BPM Ð=Ð,在△AOB 和△BMP 中,AOB BMP ABO BPM AB BP Ð=ÐìïÐ=Ðíï=î,∴()AOB BMP AAS V V ≌,∴3BM OA ==,2PM OB == ,∴此时点P 的坐标为(25),;④当点P 与点B 重合时,点P 的坐标为(0)2,.综上可知,点P 的坐标为(6)2-,或(81),或(25),或(0)2,.。
初二下学期压轴题练习-二次根式的运算(含答案)

专题01二次根式的运算一.选择题1.(2021秋•福田区校级期末)下列计算正确的是()A.+=B.3﹣=3C.=﹣=3﹣1=1D.=2.(2021春•龙岩期末)下列计算结果正确的是()A.B.C.D.3.(2021春•荔湾区校级期中)下列计算中,正确的是()A.=5B.=C.÷=3D.=﹣3 4.(2021春•天河区校级月考)下列计算正确的是()A.B.C.D.5.(2019春•西湖区校级期中)计算(﹣3)2018(+3)2019的值为()A.1B.+3C.﹣3D.36.(2017秋•南昌期末)在化简时,甲、乙两位同学的解答如下,那么两人的解法()甲:===乙:===A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错7.(2017春•高唐县期末)下列各式中,正确的是个数有()①+2=2;②+=a+b;③=;④3=A.1个B.2个C.3个D.0个8.(2021春•龙口市期中)下列计算中,正确的是()A.+=B.()2020•()2021=+C.=﹣5D.2﹣2=二.填空题9.(2021春•綦江区期中)已知:,则ab3+a3b的值为.10.(2021春•九龙坡区期末)计算:(﹣)(+)=.11.(2020秋•德惠市校级月考)计算÷+×=.12.(2020春•武川县期中)化简:()2﹣=.13.(2021春•永嘉县校级期末)已知a为实数,且与都是整数,则a的值是.14.(2019•盘锦)计算:(2+3)(2﹣3)=.15.(2019春•交城县期中)计算:=.16.(2018秋•浦东新区校级月考)计算:6×=,÷(2﹣)=.17.(2018•湖北)计算:+|﹣2|﹣()﹣1=.三.解答题18.(2020秋•肃州区期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.19.(2021秋•崇川区校级月考)化简:①﹣a﹣1;②(﹣)÷;③;④3(2﹣4+3).20.(2021秋•温江区校级期中)(1)﹣2+3;(2)×÷;(3)﹣(+1)2+;(4)解方程组.21.(2021秋•南召县期中)我们知道:这一化简变形过程叫分母有理化,类似地:=,式子也可以这样化简:,这些化简变形也是分母有理化.利用以上信息解答以下问题:(1)直接写出化简结果:=;=;(2)用两种不同的方法化简:;(3)化简:.22.(2021春•青川县期末)计算:(1)(1﹣π)0+|﹣|﹣+()﹣1;(2)(+﹣)2﹣(﹣+)2.23.(2021春•饶平县校级期中)计算:(1)÷+2×﹣(2+)2(2)(﹣)﹣2﹣(﹣1)2012×﹣+24.(2020春•兴县期末)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a =,b=;(2)试着把7+4化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:.25.(2019秋•昌江区校级期末)(+)÷(+﹣)(a≠b).26.(2019秋•市中区校级期中)探究过程:观察下列各式及其验证过程.(1)2=(2)3=验证:2=×=====验证:3=×=====(1)按照上面两个等式及其验证过程的基本思路,猜想:4=;5=;(2)通过上述探究你能猜测出:n=(n>0),并验证你的结论.27.(2019春•邗江区校级月考)阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2=(1+)2,我们来进行以下的探索:设a+b=(m+n)2(其中a,b,m,n都是正整数),则有a+b=m2+2n2+2mn,∴a=m+2n2,b=2mn,这样就得出了把类似a+b的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1)当a,b,m,n都为正整数时,若a﹣b=(m﹣n)2,用含m,n的式子分别表示a,b,得a=,b=;(2)利用上述方法,找一组正整数a,b,m,n填空:﹣=(﹣)2(3)a﹣4=(m﹣n)2且a,m,n都为正整数,求a的值.28.(2018春•常州期末)阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.专题01二次根式的运算一.选择题1.(2021秋•福田区校级期末)下列计算正确的是()A.+=B.3﹣=3C.=﹣=3﹣1=1D.=【思路引导】根据同类二次根式的概念、合并同类二次根式的法则、二次根式的混合运算顺序和法则及分母有理化逐一判断即可.【完整解答】解:A.与不是同类二次根式,不能合并,此选项计算错误;B.3﹣=2,此选项计算错误;C.==,此选项计算错误;D.==,此选项计算正确;故选:D.【考察注意点】本题主要考查二次根式的混合运算,解题的关键是掌握同类二次根式的概念、合并同类二次根式的法则、二次根式的混合运算顺序和法则及分母有理化.2.(2021春•龙岩期末)下列计算结果正确的是()A.B.C.D.【思路引导】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则和二次根式的性质对D进行判断.【完整解答】解:A、原式不能合并,所以A选项错误;B、原式=4,所以B选项错误;C、原式=2,所以C选项错误;D、原式===3,所以D选项正确.故选:D.【考察注意点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.(2021春•荔湾区校级期中)下列计算中,正确的是()A.=5B.=C.÷=3D.=﹣3【思路引导】根据同类二次根式的概念、二次根式的乘法、除法及二次根式的性质逐一求解即可.【完整解答】解:A.2与3不是同类二次根式,不能合并,此选项不符合题意;B.3×2=18,此选项不符合题意;C.÷=3÷=3,此选项符合题意;D.=|﹣3|=3,此选项不符合题意;故选:C.【考察注意点】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.4.(2021春•天河区校级月考)下列计算正确的是()A.B.C.D.【思路引导】根据二次根式的混合运算法则逐一计算即可.【完整解答】解:A.2和不是同类二次根式,不能合并,此选项错误;B.÷==,此选项错误;C.﹣=2﹣=,此选项正确;D.(+)2=5+2,此选项错误;故选:C.【考察注意点】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.5.(2019春•西湖区校级期中)计算(﹣3)2018(+3)2019的值为()A.1B.+3C.﹣3D.3【思路引导】原式利用积的乘方的运算法则变形为[(﹣3)(+3)]2018×(+3),再根据二次根式的运算法则和平方差公式计算可得.【完整解答】解:原式=(﹣3)2018(+3)2018×(+3)=[(﹣3)(+3)]2018×(+3)=(10﹣9)2018×(+3)=1×(+3)=+3,故选:B.【考察注意点】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式和积的乘方的运算法则与平方差公式.6.(2017秋•南昌期末)在化简时,甲、乙两位同学的解答如下,那么两人的解法()甲:===乙:===A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错【思路引导】分别对甲和乙的过程进行判断,注意分母有理化时要判断≠.【完整解答】解:甲同学在计算时,将分子和分母都乘以(﹣),而﹣是有可能等于0,此时变形后分式没有意义,所以甲同学的解法错误;乙同学的解法正确;故选:B.【考察注意点】本题考查二次根式的化简,属于基础题,关键在于分母有理化时要确定﹣≠0.7.(2017春•高唐县期末)下列各式中,正确的是个数有()①+2=2;②+=a+b;③=;④3=A.1个B.2个C.3个D.0个【思路引导】根据各个小题中的式子可以计算是否正确,从而可以解答本题.【完整解答】解:∵+2不能合并,故①错误,∵若a=1,b=2,则≠a+b,故②错误,∵=,故③正确,∵3=,故④正确,故选:B.【考察注意点】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.8.(2021春•龙口市期中)下列计算中,正确的是()A.+=B.()2020•()2021=+C.=﹣5D.2﹣2=【思路引导】根据同类二次根式的概念、二次根式的运算法则和性质逐一判断即可.【完整解答】解:A.与不是同类二次根式,不能合并,此选项错误;B.()2020•()2021=[()()]2020•(+)=(﹣1)2020•(+)=+,此选项正确;C.=|﹣5|=5,此选项错误;D.2与2不是同类二次根式,此选项错误;故选:B.【考察注意点】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.二.填空题9.(2021春•綦江区期中)已知:,则ab3+a3b的值为.【思路引导】先根据a、b的值计算出a+b、ab的值,再将其代入到原式=ab(a2+b2)=ab[(a+b)2﹣2ab]计算即可.【完整解答】解:∵,∴a+b=+=,ab=×==,则原式=ab(a2+b2)=ab[(a+b)2﹣2ab]=×(3﹣2×)=×=,故答案为:.【考察注意点】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.10.(2021春•九龙坡区期末)计算:(﹣)(+)=2.【思路引导】根据平方差公式即可求出答案.【完整解答】解:原式=5﹣3=2,故答案为2.【考察注意点】本题考查二次根式的运算,解题的关键是熟练运用平方差公式,本题属于基础题型.11.(2020秋•德惠市校级月考)计算÷+×=7.【思路引导】先根据二次根式乘除法法则进行运算,然后化简进行加法运算.【完整解答】解:÷+×=+=+6=7.故答案为:7.【考察注意点】本题考查二次根式的运算,解题关键是熟练掌握二次根式混合运算的方法.12.(2020春•武川县期中)化简:()2﹣=0.【思路引导】先根据二次根式有意义的条件得到x≤3,然后利用二次根式的性质化简后合并即可.【完整解答】解:根据题意得3﹣x≥0,解得x≤3,所以原式=3﹣x﹣=3﹣x﹣(3﹣x)=0.故答案为0.【考察注意点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.13.(2021春•永嘉县校级期末)已知a为实数,且与都是整数,则a的值是或.【思路引导】由是正整数可得,a是含有﹣2的代数式;再由是整数,可得化简后为含有﹣2的代数式,据此确定a的值.【完整解答】解:∵是正整数,∴a是含有﹣2的代数式;∵是整数,∴化简后为含有2的代数式,∴a=或.故答案为:或.【考察注意点】此题主要考查二次根式的混合运算,要熟练掌握合并同类二次根式和分母有理化.14.(2019•盘锦)计算:(2+3)(2﹣3)=2.【思路引导】利用平方差公式计算.【完整解答】解:原式=(2)2﹣(3)2=20﹣18=2.故答案为2.【考察注意点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.(2019春•交城县期中)计算:=﹣﹣2.【思路引导】直接利用积的乘方运算法则将原式变形,进而求出答案.【完整解答】解:=[(﹣2)2015(+2)2015](+2)=[(﹣2)×(+2)]2015(+2)=﹣﹣2.故答案为:﹣﹣2.【考察注意点】此题主要考查了二次根式的混合运算,正确应用积的乘方运算法则是解题关键.16.(2018秋•浦东新区校级月考)计算:6×=4,÷(2﹣)=+1.【思路引导】根据二次根式的乘除运算法则及分母有理化方法计算可得.【完整解答】解:6×=2=4,÷(2﹣)====+1,故答案为:4,+1.【考察注意点】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序与运算法则.17.(2018•湖北)计算:+|﹣2|﹣()﹣1=0.【思路引导】根据二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则计算即可.【完整解答】解:原式=+2﹣﹣2=0故答案为:0.【考察注意点】本题考查的是二次根式的混合运算,掌握二次根式的除法法则、绝对值的化简、负整数指数幂的运算法则是解题的关键.三.解答题18.(2020秋•肃州区期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.【思路引导】(1)利用完全平方公式和平方差公式计算;(2)先利用二次根式的乘法法则运算,然后化简后合并即可.【完整解答】解:(1)原式=12﹣4+1+3﹣4=12﹣4(2)原式=﹣2﹣3=3﹣6﹣3=﹣6.【考察注意点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(2021秋•崇川区校级月考)化简:①﹣a﹣1;②(﹣)÷;③;④3(2﹣4+3).【思路引导】①把﹣a﹣1提负号看成一个整体,通分后相减可得结论;②先计算括号内分式的减法,再将除法转化为乘法,继而计算乘法即可;③先把二次根式化为最简二次根式,然后合并即可;④直接化简二次根式,利用二次根式的加减运算法则合并,再利用二次根式的乘法运算法则计算得出答案;【完整解答】解:①﹣a﹣1=﹣=﹣=;②(﹣)÷=•===;③=2+4+3﹣2=9﹣2;④3(2﹣4+3)=3(4﹣4×+3×)=3×(16﹣)=48﹣6.【考察注意点】本题考查了分式的混合运算和二次根式的混合运算,熟练掌握二次根式的性质、因式分解是解决问题的关键.20.(2021秋•温江区校级期中)(1)﹣2+3;(2)×÷;(3)﹣(+1)2+;(4)解方程组.【思路引导】(1)先化成最简二次根式,再根据二次根式的加减法则进行计算即可;(2)项根据二次根式的乘法法则进行计算,再根据二次根式的除法法则进行计算即可;(3)先根据二次根式的性质,完全平方公式和分母有理化进行计算,再根据二次根式的加减进行计算即可;(4)设x+y=a,x﹣y=b,原方程组化为,求出a、b的值,再求出x、y的值即可.【完整解答】解:(1)﹣2+3=4﹣6+6=﹣2+6;(2)×÷=÷=•=5×2=10;(3)﹣(+1)2+=2﹣(3+1+2)+=2﹣4﹣2﹣(1﹣)=﹣4﹣1+=﹣5+;(4),设x+y=a,x﹣y=b,则原方程组化为:,解得:,即,解得:.【考察注意点】本题考查了二次根式的混合运算,解二元一次方程组,实数的混合运算等知识点,能正确根据二次根式的性质和实数的运算法则进行计算是解此题的关键.21.(2021秋•南召县期中)我们知道:这一化简变形过程叫分母有理化,类似地:=,式子也可以这样化简:,这些化简变形也是分母有理化.利用以上信息解答以下问题:(1)直接写出化简结果:=;=+;(2)用两种不同的方法化简:;(3)化简:.【思路引导】(1)根据材料所给化简二次根式的方法求解.(2)方法一:分子分母同时乘以(﹣),方法二:将2分解为7﹣5,然后通过平方差公式求解.(3)将原式化为…求解.【完整解答】解(1)==,==+.故答案为:,+.(2)解法1:=,解法2:.(3)原式=…=…=.【考察注意点】本题考查二次根式的化简与计算,解题关键是掌握分母有理化的方法.22.(2021春•青川县期末)计算:(1)(1﹣π)0+|﹣|﹣+()﹣1;(2)(+﹣)2﹣(﹣+)2.【思路引导】(1)先计算(1﹣π)0、()﹣1,再化简绝对值和二次根式,最后加减;(2)利用平方差公式计算比较简便.【完整解答】解:(1)原式=1+﹣﹣2+=1﹣;(2)原式=(+﹣+﹣+)(+﹣﹣+﹣)=2×(2﹣2)=4﹣4=4﹣8.【考察注意点】本题考查了二次根式的混合运算,掌握“a0=1,a﹣1=(a≠0)”、二次根式的化简和绝对值的意义及二次根式的运算法则是解决本题的关键.23.(2021春•饶平县校级期中)计算:(1)÷+2×﹣(2+)2(2)(﹣)﹣2﹣(﹣1)2012×﹣+【思路引导】(1)先利用二次根式的乘除法则运算,再利用完全平方公式计算,然后合并即可;(2)根据负整数指数幂、零指数幂和二次根式的性质计算.【完整解答】解:(1)原式=+2﹣(8+4+3)=4+2﹣11﹣4=﹣7﹣2;(2)原式=4﹣1×1﹣4+5=4﹣1﹣4+5=4.【考察注意点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.(2020春•兴县期末)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得a =m2+3n2,b=2mn;(2)试着把7+4化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:.【思路引导】(1)根据完全平方公式展开,再得出即可;(2)根据完全平方公式得出即可;(3)先求出a、b的值,再代入求出即可.【完整解答】解:(1)a+b=(m+n)2,∵a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn,故答案为:m2+3n2;2mn;(2)7+4=(2+)2;(3)∵a是216的立方根,b是16的平方根,∴a=6,b=±4,∴===2±.【考察注意点】本题考查了平方根、立方根、完全平方公式、算术平方根等知识点,能灵活运用完全平方公式进行变形是解此题的关键.25.(2019秋•昌江区校级期末)(+)÷(+﹣)(a≠b).【思路引导】先将两个括号内的分式分别通分,然后分解因式并约分.【完整解答】解:原式=÷=÷==﹣.【考察注意点】本题考查了二次根式的混合运算,难度适中,注意细心运算,关键是先将两个括号内的分式分别通分,然后分解因式并约分.26.(2019秋•市中区校级期中)探究过程:观察下列各式及其验证过程.(1)2=(2)3=验证:2=×=====验证:3=×=====(1)按照上面两个等式及其验证过程的基本思路,猜想:4=;5=;(2)通过上述探究你能猜测出:n=(n>0),并验证你的结论.【思路引导】(1)利用所给等式的规律求解;(2)先利用题中规律得到n=(n>0),然后根据二次根式的性质和乘法法则进行验证.【完整解答】解:(1)4=;5=;(2)n=(n>0),验证:n=•====(n>0).故答案为;;.【考察注意点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.27.(2019春•邗江区校级月考)阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2=(1+)2,我们来进行以下的探索:设a+b=(m+n)2(其中a,b,m,n都是正整数),则有a+b=m2+2n2+2mn,∴a=m+2n2,b=2mn,这样就得出了把类似a+b的式子化为平方式的方法.请仿照上述方法探索并解决下列问题:(1)当a,b,m,n都为正整数时,若a﹣b=(m﹣n)2,用含m,n的式子分别表示a,b,得a=m2+5n2,b=2mn;(2)利用上述方法,找一组正整数a,b,m,n填空:9﹣4=(2﹣1)2(3)a﹣4=(m﹣n)2且a,m,n都为正整数,求a的值.【思路引导】(1)利用完全平方公式把(m﹣n)2展开即可得到用含m,n的式子分别表示出a,b;(2)利用(1)中的表达式,令m=2,n=1,则可计算出对应的a和b的值;(3)利用(1)的结果得到2mn=4,则mn=2,再利用m,n都为正整数得到m=2,n=1或m=1,n=2,然后计算对应的a的值即可.【完整解答】解:(1)∵a﹣b=(m﹣n)2,∴a﹣b=m2﹣2mn+5n2,∴a=m2+5n2,b=2mn;(2)取m=2,n=1,则a=4+5=9,b=4;(3)∵2mn=4,∴mn=2,而m,n都为正整数,∴m=2,n=1或m=1,n=2,当m=2,n=1时,a=9;当m=1,n=2时,a=21.即a的值为9或21.故答案为m2+5n2,2mn;9,4,2,1.【考察注意点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.28.(2018春•常州期末)阅读材料:像(+)(﹣)=3、•=a(a≥0)、(+1)(﹣1)=b﹣1(b≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如与,+1与﹣1,2+3与2﹣3等都是互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号.例如:;=.解答下列问题:(1)3﹣与3+互为有理化因式,将分母有理化得;(2)计算:;(3)已知有理数a、b满足,求a、b的值.【思路引导】(1)根据题意可以得到所求式子的分母有理化因式,并将题目中的二次根式化简;(2)根据分母有理化的方法可以化简题目中的式子;(3)根据题意,对所求式子变形即可求得a、b的值.【完整解答】解:(1)3﹣与3+互为有理化因式,=,故答案为:3,;(2)=﹣2=2﹣;(3)∵,∴(﹣1)a+b=﹣1+2,∴﹣a+(a+)=﹣1+2,∴﹣a=﹣1,a+=2,解得,a=1,b=2.【考察注意点】本题考查二次根式的混合运算,分母有理化,解答本题的关键是明确二次根式的混合运算的计算方法。
八年级下册数学期末检测压轴题汇总试卷

八年级下册数学期末检测压轴题汇总试卷一、填空题1、已知432z y x ==,那么xzyz xy z y x 3232222+++-=_________。
2、若y 与x 1成反比例,x 与z1成正比例,则y 是z 的_________函数。
3、已知△ABC 的三边c b a ,,满足条件25102272--=--+-+c c b a b a ,则S △ABC=______.4、△ABC 的a 、b 两边分别为9,40,另一边c 为奇数,且c b a ++是3的倍数,则c 应为_________。
5、如图5,菱形ABCD 的一条对角线BD 上一点O ,到菱形一边 AB 的距离为2,那么点O 到另外一边BC 的距离为_________。
6、如果32)3)(2(12+++=+++x B x A x x x ,则A =______,B =______。
7、设abc ≠0,且c b a =+,则abc b a ac b a c bc a c b 222222222222-++-++-+的值是_________。
8、已知4321,,,x x x x 的标准差为3,则数据14,14,14,144321++++x x x x 的方差是_________。
9、xky =和一次函数b ax y +=的图像的两个交点分别是A )4,1(--,B ),2(m ,则=+b a 2_________。
10、若样本x ,6,3,1,2,3--的中位数是1,则该样本的方差是_________。
二、选择题(每小题3分,共18分)11、一个纳米粒子的直径是0.000 000 035米,用科学记数法表示为 ( )A.8105.3-⨯米 B.7105.3-⨯米 C.71035-⨯米D.71035.0-⨯米12、一架长10米的梯子,斜立在以竖直的墙上,这时梯足距墙底端6米,如果梯子的顶端沿墙下滑2米,那么梯足将滑 ( )A.2米 B.1米 C.0.75米 D.0.5米 13、如图所示,已知A C ⊥BD 于点O ,△AOD 、△AOB 、△BOC 、△COD 的面积分别为S 1,S-2,S 3,S 4, 设AC=m ,BC=n ,则下列各式中正确的是 ( ) A.S 1+S 2+S 3+S 4=mn 21B. S 1+S 2+S 3+S 4=mnC图5 A BCDS 1S 2 S 3S 4OC.S 1·S 2·S 3·S 4=mn 21D. S 1·S 2·S 3·S 4=mn 14、若等腰梯形的三边长分别为3,4,11,则这个等腰梯形的周长是( )A. 21B. 29C. 21或29D. 21或22或2915、如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,O E ⊥AC 交AD 于E,则△DCE的周长为( ) A. 4cm B. 6cm C. 8cm D. 10cm16、甲、乙二人百米赛跑,当甲跑到终点时,乙才跑到95米处;如果 乙在原起跑点起跑,甲后退5米,二人同时起跑,甲、乙速度与 原来保持不变,那么下列结论正确的是( )A. 甲、乙同时到达终点B. 甲先到终点C. 乙先到终点D. 以上结论都有可能 三解答题 17、18王老汉为了与客户签订购销合同,对自己的鱼塘中的鱼的总量进行了估计。
初二下学期数学期末综合压轴题100题锦集

初二下学期数学期末综合压轴题100题锦集1.△ABC是等边三角形,D是射线BC上的一个动点(与点B、C 不重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点F,连接BE.(1)如图E 13.1,当点D在线段BC上运动时.① 求证:△AEB≌△ADC;② 探究四边形BCFE是怎样特殊的四边形?并说明理由;(2)如AFDFDCE图(备用图)图13.113.2,当点D在BC的延长线上运动时,请直接写出(1)中的两个结论是否仍图然成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCFE是菱形?并说明理由.,B60°,BC2.点O是AC的2.如图,在Rt△ABC中,ACB90°中点,过点O的直线l与AB边相交于点D.过点C作CE∥AB交直线l于点E,设AOD=.(1)当等于多少度时,四边形EDBC是等腰梯形?并求此时AD的长;EDBC90°(2)当时,判断四边形是否为菱形,并说明理由.-1)3.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,,且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;..(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?若存在,请求出点Q的坐标,若不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以 OP、OQ为邻边的平行四边形OPCQ,设点Q的横坐标为n,求平行四边形OPCQ周长(周长用n 的代数式表示),并写出其最小值...第3题图14.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF.(1)FG与DC的位置关系是 ,FG与DC的数量关系是;(2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论.AAF第3题图2D EG C BC B4.例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N.求证:AM=MN.思路点拨:取的AB中点P,连结PM易证△APM ≌△MCQ从而AM=MN.问题解决: (1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.①填空:当∠AMN = °时,AM=MN;②证明①的结论.(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)第5题图2 第5题图3 第5题图15.如图①,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE,②AF⊥DE(不须证明).(1)如图②,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图③,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图④,在(2)的基础上,连接AE和EF,若点M、N、P、Q分别为AE、EF、FD、AD的中点,请先判断四边形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一种,并写出证明过程.6.如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y的图象上,点P(m,n)是函数y k(k0,x0)xk(k0,x0)的图象上异于B的任意一点,过点Px分别作x轴、),轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为s1,求s2;(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为.s2写出.s2与m的函数关系式,并标明m的取值范围.7.在直角坐标系xoy中,将面积为3的直角三角形AGO沿直线y=x翻折,得到三角形CHO,连接AC,已知反比例函数y k x0的图象过A、C两点,如图①. x(1)k的值是 .(2)在直线y=x图象上任取一点D,作AB⊥AD,AC⊥CB,线段OD交AC于点F,交AB于点E, P为直线OD上一动点,连接PB、PC、CE.㈠如图②,已知点A的横坐标为1,当四边形AECD为正方形时,求三角形PBC的面积. ㈡如图③,若已知四边形PEBC为菱形,求证四边形PBCD是平行四边形.㈢若D、P两点均在直线y=x上运动,当ADC=60°,且三角形PBC的周长最小时,请直接写出三角形PBC与四边形ABCD的面积之比.8.(1)如图6,点E,F,M,N分别是菱形ABCD四条边上的点,若AE=BF=CM=DN,求证:四边形EFMN是平行四边形.(2)如图7,当E,F,M,N分别是菱形ABCD四条边的中点时,试判断四边形EFMN的形状,并说明理由.9、如图,在四边形ABFC中,∠ACB=90,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE。
期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。
八年级数学下册专题04勾股定理常考压轴题汇总(原卷版)

专题04 勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.182.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm26.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.57.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.611.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.14413.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.1019.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.3020.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.4121.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC =S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.1423.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为cm.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接P A,当△ABP为等腰三角形时,t的值为.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB 的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为.29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为寸.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A千米.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.37.如图,Rt△ABC中,.点P为△ABC内一点,P A2+PC2=AC2.当PB的长度最小时,△ACP的面积是.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.。
八年级下几何压轴题

初二几何压轴题汇编12(1)(2)1.已知正方形.若一个等边三角形的三个顶点均在正方形的内部或边上,则称这个等边三角形为正方形的内等边三角形.正方形的边长为,点在边上.当点为边的中点时,求作:正方形的内等边(尺规作图,不写作法,保留作图痕迹).若是正方形的内等边三角形,连接,,则线段长的最小值是 ,线段长的取值范围是 .和都是正方形的内等边三角形,当边的长最大时,画出和,点,,按逆时针方向排序,连接.找出图中与线段相等的所有线段,并给予证明.(1)(2)2.如图①,已知正方形的边长为,点是边上的一个动点,点关于直线的对称点是点,连接、、、,设.的最小值是 ,此时的值是 .如图②,若的延长线交边于点,并且.12(3)求证:点是的中点.求的值.若点是射线上的一个动点,请直接写出当为等腰三角形时的值.(1)(2)(3)3.如图,在正方形中,,是边上一动点(不与点重合),点与点关于所在的直线对称,连接,,延长到点,使得,连接,.当时,依题意补全图.在()的条件下,求线段的长.当点在边上运动时,能使为等腰三角形,请直接写出此时与的数量关系 .4.12(1)(2)在正方形中,点在对角线上(与点、不重合),连接,过点作与边(或延长线)交于点,作交射线于点.如图:依题意补全图.判断与的数量关系为 ,并证明你的结论.若正方形的边长为,当时,请直接写出的长为 .12(1)(2)5.如图,正方形中,是对角线,点在射线上运动(与点、不重合),连接,过点作线段的平行线交直线于点,过点作直线的垂线,垂足为点,连接.如图,当点在线段上时.依题意补全图.判断与的数量关系并加以证明.如图,若点在线段的延长线上时,且,正方形的边长为,求的长.(1)(2)(3)6.如图,正方形中,为上一动点,过点作交边于点.求证:.用等式表示、、之间的数量关系,并证明.点从点出发,沿方向移动,若移动的路径长为,则的中点移动的路径长为 (直接写出答案).(1)7.在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随着点的位置变化而变化.如图,当点在菱形内部或边上时,连接,与的数量关系是 ,与的位置关系是 .(2)(3)BDACPE当点在菱形外部时,()中的结论是否还成立?若成立,请予以证明.若不成立,请说明理由(选择图,图中的一种情况予以证明或说理).BDACP EBDAPEC如图,当点在线段的延长线上时,连接,若,,求四边形的面积.BDAPEC(1)(2)8.如图,在矩形中,,,是的中点,点是线段上一动点,连接并延长交直线于点,过作,交射线于点,连接,点是线段的中点.连接图中的,,求证:.如图,当点与重合时,求的长.(3)当点从点运动到点时,求点经过的路径长.(1)12(2)12(3)9.四边形是边长为的正方形,点是边上一动点(包含端点、不包含),点是正方形外角的平分线上一点,且满足.当点与点重合时,直接写出线段与线段的数量关系.如图,当点是边的中点时.补全图形.请证明①中的结论仍然成立.取线段的中点,连接、、.求证:.直接写出线段长度的取值范围.1(1)10.在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.提出问题:当点运动时,的度数,与的数量关系是否发生改变?探究问题:首先考察点的两个特殊位置.当点与点重合时,如图所示, ,用等式表示线段与之间的数量关系: .2(2)(3)当时,如图所示,①中的结论是否发生变化?直接写出你的结论: .(填“变化”或“不变化”)然后考察点的一般位置:依题意补全图,,通过观察、测量,发现:()中①的结论在一般情况 .(填“成立”或“不成立”)证明猜想:若()中①的结论在一般情况下成立,请从图和图中任选一个进行证明;若不成立,请说明理由.(1)(2)(3)11.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:如图,在正方形中,点为边上任意一点(点不与、重合),点在线段上,过点的直线,分别交、于点、.此时,有结论,请进行证明.如图,当点为中点时,其他条件不变,连接正方形的对角线,与交于点,连接,此时有结论:,请利用图做出证明.如图,当点为直线上的动点时,如果中的其他条件不变,直线分别交直线、于点、,请你直接写出线段与之间的数量关系、线段与之间的数量关系.(1)(2)12.把一个含角的直角三角板和一个正方形摆放在一起,使三角板的直角顶点和正方形的顶点重合,连接,点,分别为,的中点,连接,.如图,点,分别在正方形的边,上,请判断,的数量关系和位置关系,直接写出结论.如图,点,分别在正方形的边,的延长线上,其他条件不变,那么你在()中得到的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.(1)(2)(3)13.在矩形中,,,点是边上一点,过点作,交射线于点,交射线于点.如图,若,则 .当以、、为顶点的三角形是等边三角形时,依题意在图中补全图形,并求的长.过点作交射线于点,请探究:当为何值时,以、、、为顶点的四边形是平行四边形.(1)(2)(3)14.在正方形中,点是射线上一点,点是正方形外角平分线上一点,且,连接,.如图,当是线段的中点时,直接写出与的数量关系.当点不是线段的中点,其它条件不变时,请你在图中补全图形,判断中的结论是否成立,并证明你的结论.若正方形的边长为,当点,,在一条直线上时,求的面积.(直接写出结果即可)(1)(2)15.已知:如图,正方形中,是边上的一点,连结,作于,交正方形的外角的平分线于,易证:.当点在的延长线上时,其他条件不变,请在图中补全图形,猜想与的数量关系,并证明你的结论.当点在边上时,其他条件不变,连结,交边于点.12用等式表示线段、和之间的数量关系,并证明.若正方形的边长为,,求的长.123(1)(2)16.如图,在正方形中,点是边所在直线上一动点(不与点、重合),过点作,交射线于点,连接.如图,当点在线段上时,.按要求补全图形. (用含的式子表示).判断线段,,之间的数量关系,并证明.当点在直线上时,直接写出线段,,之间的数量关系,不需证明.(1)(2)17.如图,是正方形的对角线,点为线段上一个动点(点不与点,重合),连接,点在射线上,且.提出问题:当运动时,的度数,线段,之间的数量关系是否发生变化?探究问题:首先考察点的一个特殊位置:若,如图所示,,观察线段,之间的数量关系.然后考察点的一般位置:若,依题意补全图,通过观察、测量,发现:12在一般情况下 (用含的式子表示)此时,线段,之间的数量关系是 ,并证明.12(1)(2)18.如图,四边形是平行四边形,,是直线上的两点,点关于的对称点为,连接交于点.若,如图.依题意补全图形.判断与的数量关系是 .如图,当时,,的延长线相交于点,取的中点,连接.用等式表示线段与的数量关系,并证明.19.如图,在正方形中,是边上的一动点,点在边的延长线上,且,连接、、,平分交于点.(1)(2)(3)根据题意补全图形.求证:.过点作于点,用等式表示线段,与之间的数量关系,并证明.(1)12(2)(3)20.已知:在正方形中,点在对角线上运动(不与,重合)连接,过点作于交直线于点,作于交直线于点.当点在对角线上运动到图位置时,则与的数量关系是 .当点运动到图所示位置时.依据题意补全图形.上述结论还成立吗?若成立,请证明.若不成立,请说明理由.若正方形边长为,,直接写出长.(1)21.已知:如图,正方形,点是直线上一个动点,连接交直线于点,过点作于点,连接.如图,12(2)直接写出的度数.用等式表示线段、和之间的数量关系,并证明.当点运动到图和图所示的位置时,请选择其中一种情况补全图形,并直接写出线段、和之间的数量关系.(1)(2)22.已知,如图,正方形中,点是对角线上的一个动点.如图,连接,,直接写出与的数量关系.如图,点为边的中点,当点运动到线段上时,连接,,相交于点.123请你根据题意在图中补全图形.猜想与的位置关系,并证明.如果正方形的边长为,直接写出的长.12(1)(2)23.在正方形中,点是直线上一点,连接,将线段绕点顺时针旋转,得到线段,连接.如图,若点在线段的延长线上.过点作于,与对角线交于点.请根据题意补全图形.求证:.若点在射线上,直接写出,,三条线段的数量关系为 .12(1)(2)24.已知正方形中,点是边(或的延长线)上任意一点,平分,交射线于点.如图,若点在线段上.依题意补全图.用等式表示线段,,之间的数量关系,并证明.如图,若点在线段的延长线上,请直接写出线段,,之间的数量关系.(1)(2)(3)25.如图,在正方形中,为边上的一动点(不与点、重合),连接,点关于直线的对称点为,连接,.依题意补全图形.求的大小.过点作于,用等式表示线段、和的数量关系,并证明.12(1)12(2)26.正方形中,点是直线上的一个动点,连接,将线段绕点顺时针旋转得到线段,连接.如图,若点在线段上.直接写出的度数为 .求证:.如图,若点在的延长线上,,.依题意补全图.直接写出线段的长度为 .(1)12(2)27.已知:正方形的边长为,点在上,射线交直线于点,作于点.如图,当点在边上时,猜想与的数量关系并证明.若点在直线上.依题意,在备用图中补全图形.请直接写出与的数量关系 .12(1)(2)(3)28.如图,在正方形中,点在边上,点在正方形外部,且满足,.连接,,取的中点,连接,,交于点.回答下列问题:依题意补全图形.求证:.请探究线段,,所满足的等量关系,并证明你的结论.设,若点沿着线段从点运动到点,则在该运动过程中,线段所扫过的面积为 (直接写出答案).29.已知,点在正方形的边上(不与点,重合),是对角线,延长到点,使,过点作的垂线,垂足为,连接,.(1)12(2)根据题意补全图形,并证明.回答问题:用等式表示线段与的数量关系,并证明.用等式表示线段,,之间的数量关系(直接写出即可).12(1)(2)(3)30.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在中,,,点为直线上一动点(点不与,重合),以为边在右侧作正方形,连接.观察猜想.如图,当点在线段上时.与的位置关系为: .,,之间的数量关系为: .(将结论直接写在横线上)数学思考.如图,当点在线段的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.拓展延伸.如图,当点在线段的延长线上时,延长交于点,连接,若已知,,请求出的长.(1)212(2)31.已知:四边形是正方形,点在边上,点在边上,且.如图,判断与有怎样的位置关系?写出你的结果,并加以证明.1如图,对角线与交于点.,分别与,交于点,点.求证:.连接,若,,求的长.(1)(2)32.在正方形和正方形中,顶点、、在同一直线上,是的中点.如图,若,,求的长.如图,连接,.试判断与的关系,并证明.(1)12(2)33.正方形中,点是直线上的一个动点(不与点,重合),作射线,过点作于点,连接.如图,当点在上时,如果,那么的度数是 .如图,当点在延长线上时.依题意补全图.用等式表示线段,和之间的数量关系,并证明.(1)34.已知如图,正方形,为等腰直角三角形,其中,,连接,,,点是的中点,连接.用等式表示线段与的数量关系是 .12(2)若将绕顶点旋转,使得点恰好在线段上,并且点在线段的上方,点仍是的中点,连接,.在图中依据题意补全图形.求证:.(1)(2)35.在正方形中,对角线、交于点,动点在线段上(不含点),,交于点,过点作,垂足为,交于点.当点与点重合时(如图),求证:≌.试猜想线段,的数量关系,并证明你的猜想.(1)36.如图,正方形中,为上一动点,过点作交边于点.求证:.(2)(3)用等式表示、、之间的数量关系,并证明.点从点出发,沿方向移动,若移动的路径长为,则的中点移动的路径长为 (直接写出答案).12(1)(2)37.四边形是正方形,是对角线,是平面内一点,且.过点作,且.连接,.是的中点,作射线交于点.如图,若点,分别在,边上.求证:..如图,若点在四边形内,点在直线的上方.求与的和的度数.(1)(2)(3)38.已知,正方形,是延长线上一点,连接,,作中边上的高,连接.依题意补全图形.求证:.猜想,,之间的数量关系,并说明理由.(1)(2)39.如图,在正方形中,点为的中点,为线段上任意一点,将线段绕点逆时针旋转,得到线段.请按要求补全图形:连接,过点作,交对角线于点,连接.判断与的数量关系并加以证明.(1)12(2)40.在正方形中,是边上一动点(不与点,重合),点关于射线的对称点为点,连接,连接并延长交于点.求出的度数.过点作于点,点作交延长线于点,连接.补全图形.用等式表示线段与的数量关系,并证明.。
初二下数学压轴题

初二下数学压轴题在初二下学期的数学学习中,压轴题是学生们备考的关键。
下面就为大家整理出一些初二下数学的压轴题,希望对大家的复习有所帮助。
1. 解方程:已知方程$2x-5=3x+2$,求解$x$的值。
解析:首先将方程两边的变量合并,得到$2x-3x=2+5$,即$-x=7$,然后将$x$的系数移到右边,得到$x=-7$。
2. 计算:$(-3)^2+5\times(-2)-4\div(-2)$。
解析:先计算乘除法,得到$9+(-10)-(-2)$,然后计算加减法,最终得到$1$。
3. 计算:$\frac{3}{5}\times\frac{4}{3}\div\frac{2}{5}$。
解析:将分数相乘得到$\frac{3\times4}{5\times3}$,再将结果除以$\frac{2}{5}$,最终得到$\frac{12}{15}\div\frac{2}{5}=\frac{12}{15}\times\frac{5}{2}=\frac{60}{30}=2$。
4. 求平方根:$3\sqrt{27}-2\sqrt{75}$。
解析:首先将根号内的数化简,得到$3\sqrt{3\times3\times3}-2\sqrt{3\times5\times5}$,然后计算,得到$3\times3\sqrt{3}-2\times5\sqrt{3}=9\sqrt{3}-10\sqrt{3}=-\sqrt{3}$。
5. 计算:$2^{3\times2}-(3+2)^2$。
解析:先计算指数运算,得到$2^6=64$,然后计算括号内的加减法,得到$64-(3+2)^2=64-5^2=64-25=39$。
6. 解不等式:$2x-3\leq5$。
解析:首先将不等式中的变量合并,得到$2x-3\leq5$,然后将$3$移到右边,得到$2x\leq5+3$,即$2x\leq8$,最后得到$x\leq4$。
7. 解实际问题:某班级男生人数是女生人数的$2$倍,如果班级总共有$90$名学生,那么男生和女生的人数各是多少?解析:设班级女生人数为$x$,则男生人数为$2x$,根据题意,$x+2x=90$,即$3x=90$,解得$x=30$,所以女生人数为$30$,男生人数为$60$。
八年级下册数学期末压轴题(含答案)

八年级数学下册期末压轴题练习(含答案)一、填空题:1.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ 的最小值为 .2.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.3.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ 的面积是.4.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A.点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化; (3)∠PBH=450 ; (4)BP=BH.其中正确的命题是.5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.二、综合题:6. (1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.7.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.9.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.10.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.答案为:3.3.答案为:4.5.2.答案为:7;解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF 中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.4.答案为:(1)(2)(3).5.答案为:2;解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,6. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.∴S梯形ABCD=0.5(AD+BC)•AB=0.5×(6+12)×12=108.即梯形ABCD的面积为108.…7.解:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E 点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.8.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为0.25a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为0.5a,面积为0.25a2,周长为2a.(3)猜想:重叠部分的面积为0.25a2.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G 设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=0.5a又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=0.5a×0.5a =0.25a2,∴阴影部分的面积是0.25a2.9.(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。
八年级下册数学压轴题(含答案)

八年级下册数学压轴题(含答案)四边形AOBC的对角线互相平分,且相等,故为菱形;又因为OC经过翻折后落在AB上,且AC与x轴垂直,故OC垂直于AB,故AO=OC=OB=BC,故AOBC是一个菱形;3)设点P的坐标为(x,y),则BPC为直角三角形,且BP=PC,又因为BP在y轴下方,故y<0,且BP与BC垂直,故BP的斜率为-2;设BP的解析式为y=-2x+b,且B点坐标为(0,-5),则有b=-5;又因为BP=PC,故PC的解析式为y=2x+b,且C点坐标为(a,0),代入得a=5;又因为XXX在BC下方,故y<0,代入得y=-2x-5;代入BP的解析式得x=5/3,代入得y=-25/3;故存在点P(5/3,-25/3),使△BCP为等腰直角三角形。
题目:在平面直角坐标系中,已知点A(0,0),B(5,0),C(0,5√2),D从A出发沿AC方向以1m/s的速度向C匀速运动,同时点E从B出发沿BA方向以√2m/s的速度向A匀速运动。
当其中一个点到达终点时,另一个点也随之停止运动。
设点D,E运动的时间是t(0<t≤10)秒。
过点E作EF⊥BC于点F,连接DE,DF。
1)求BE和CD的长度。
2)试说明,无论t为何值,四边形ADEF都是平行四边形。
3)当t为何值时,△DEF为直角三角形?请说明理由。
解法:1)由题意可知,BE=√2t,CD=t,故BE=√2t,CD=t。
2)如图所示,由题意可得,∠C=90°,∠A=45°,故∠B=45°。
又因为EF⊥BC,所以∠EFB=90°,∠FEB=45°,所以BE=EF。
又因为AE=√2t,DE=CD,所以DE=√2t。
因此,四边形ADEF的对角线相等,且相互平分,所以ADEF是平行四边形。
3)如图所示,当EF⊥BC时,由勾股定理可知,DE²=DF²+EF²,即(√2t)²=(t+BE)²+(5√2-BF)²。
人教版八年级下册压轴题练习

12小题)一.解答题(共的延长线上,且在DPDP于E,点F1.如图,正方形ABCD中,P为AB边上任意一点,AE⊥ GC.DF于G,连接的平分线交EF=DE,连接AF、BF,∠BAF AEG是等腰直角三角形;(1)求证:△DG2)求证:.AG+CG=(OC为是x轴上一点,点D(,B0,2),点C2.已知:如图,平面直角坐标系中,A(0,4)的中点.;)求证:BD∥AC(1 的坐标;1,求点CACC在x轴正半轴上,且BD与的距离等于(2)若点的解析式.ABDE为平行四边形时,求直线AC)如果OE⊥AC于点E,当四边形(3秒的速度AB方向以1cm/出发,沿射线的边长为6cm,点F从点B3.如图1,正方形ABCD同时出发移E,F以1cm/秒的速度移动(不到点A).设点移动,点E从点D出发,向点A 动t秒.的形状是 EF,则△CEF,始终保持不变; CE(1)在点E,F移动过程中,连接,CF,(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=3的夹角为GH与EF,当EF,连接cm 的值.45°,求ty=kx+2kl:直线轴交于点:y=﹣x+3与xA,与y轴交于点B,l4.平面直角坐标系中,直线21.C与x轴交于点,与直线l交于点P1(1)当k=1时,求点P的坐标;,求,若DF=2DEF,交直线⊥的中点,过点,点(2)如图1D为PAD作DEx轴于El于点2的值;k的延长,NQPMNQPMMxPMP23()如图,点在第二象限内,⊥轴于,以为边向左作正方形线交直线l的坐标.P,求点PR=PC,若R于点1.O,点,F,BC分别交于点EBC>AB,∠BAD的平分线AF与BD5.如图,在矩形ABCD中, G.K,交BC于点BD的中点,直线OK∥AF,交AD于点是 BOG;1)求证:△DOK≌△( BG三者之间的关系,并证明你的结论;AB、AK、(2)探究线段KD的长度.﹣1(3)若KD=KG,,求BC=2﹣l:y=,B两点,点C6.如图,平面直角坐标系中,直线分别交x+x轴,y轴于A 轴负半轴上,且∠ACB=30°.在x 两点的坐标.A,C(1)求ABM,设△CB运动,连接AM从点C出发,以每秒1个单位长度的速度沿射线)若点(2M 并写出自变量的取值范围.t的函数关系式,t,求出S关于M 的面积为S,点的运动时间为为顶点的四边形是QP,A,B,y(3)点P是轴上的点,在坐标平面内是否存在点Q,使以点的坐标;若不存在,说明理由.菱形?若存在,请直接写出Q折叠得到沿AE是BC边上一个动点,将△ABE.已知:矩形ABCD中,AB=10,AD=8,点E7 △AB′E. DC上.和AB′的中点,若点B′在边1,点G和点H分别是AD(1)如图的长;①求GH ≌△B′CE;②求证:△AGH .于I的中点,连接B′F,B′F∥AD,交DC是(2)如图2,若点FAE 是菱形;①求证:四边形BEB′F B′F②求的长.yBD交OA)是线段上一点,AE⊥m)(2,),C0,2,点D(,02B),(.已知:8A20,(.BD于FE轴于,交;)正方形OABC的周长是 1(的坐标;F时,求点m=1)当2(.≤,直线y=kx+2﹣2k(k≠03)与直线)如果≤mEF始终有交点,求k的取值范围.(9.平面直角坐标系中,直线y=3x+6与x轴、y轴分别交于点B、C,不论k为何值,直线l:y=kx﹣2k都经过x轴上点A(1)如图1,若直线l过点C,求直线l的解析式和点A的坐标;(2)如图2,将线段BC沿某个方向平移,点B、C对应的点M、N恰好在直线l和直线y=2x﹣4上,当k=1时,请你判断四边形BMNC的形状,并说明理由;2)个单位得到,点Q是x轴上的动点,以﹣由点C向下平移(6P、Q(3)如图3,点P为顶点作菱形PRQT,且∠T=60°.直线l经过顶点R,当点Q在x轴上运动(点R不与点A重合)时,k的值是否会发生变化?若不变,求出k的值;若变化,请说明理由.10.已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB,OA为边作矩形OBCA,点E,H分别在边BC和边OA上,将△BOE沿着OE对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G点处.(1)求证:四边形OECH是平行四边形;(2)当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形OECH 是什么四边形?说明理由;(3)当点B运动到使得点F,G将对角线OC三等分时,求点B的坐标.y=x+6和x轴,y轴分别交于点E,F,点11.直线A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作矩形ABCD,AB:BC=3:4.(1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;(2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.12.A城有某种农机30台,B城有该农机50台,现将这些农机全部运往C,D两乡,调运两D,C城往A台,从44乡需要农机D台,36乡需要农机C 任务承包给某运输公司,已知.乡运送农机的费用分别为220元/台和200元/台,从B城往C,D两乡运送农机的费用分别为180元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W 关于x的函数解析式,并写出自变量x的取值范围.(2)现该运输公司要求运送全部农机的总费用不低于18160元,则有多少种不同的调运方案?将这些方案设计出来.(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a 元(a≤200)作为优惠,其它费用不变,如何调运,才能使总费用最少?。
八年级下期期中考试数学压轴题训练

八年级下期期中考试数学压轴题专题一、最短路径问题(化折为直)1.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上 移动,则PE +PC 的最小值是__________2.如图,菱形ABCD 中,对角线AC =6,BD =8,M 、N 分别是BC 、CD 上的动点,P 是线段BD 上的一个动点,则PM +PN 的最小值是________3. 如图,在菱形ABCD 中,AB =6,∠ABC =60°,点E 在AD 上,且AE =2, 点P 是对角线BD 上的一个动点,则PE +P A 的最小值是 .4.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为 .5.如图,等边△ABC 中,AB =10,点E 为AC 中点,D 是线段BE 上的一个动点,则CD +BD 的最小值是 .6.如图,已知菱形ABCD 的边长为,点M 是对角线AC 上的一动点,且∠ABC =120°,则∠DAC = °,MA +MB +MD 的最小值是 .7. 如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .(1).当M 点在何处时,AM +CM 的值最小;(2).如图②,当M 点在何处时,AM +BM +CM 的值最小,请你画出图形,并说明理由.第1题图 第2题图 第3题图 第4题图第5题图 第6题图二、求线段的最值(垂线段最短)1.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,P 为AB 边上(不与A 、B 重合的一动点,过点P 分别作PE ⊥AC 于点E ,PF ⊥BC 于点F ,则线段EF 的最小值是 .2.如图,点A 的坐标为(﹣2,0),点B 在直线y =x 上运动,当线段AB 最短时点B 的坐标为 .3.如图,在Rt △ABC 中,∠A =90°,M 为BC 的中点,H 为AB 上一点,过点C 作CG ∥AB ,交HM 的延长线于点G ,若AC =8,AB =6,则四边形ACGH 周长的最小值是4.(代数新定义)在平面直角坐标系中,我们不妨把横坐标和纵坐标都是整数的点称为“中国结”.直线y =x ﹣3与y =kx +k (k 为整数)交于一点.(1)求直线y =kx +k 与x 轴的交点坐标;(2)如图,定点A (﹣5,0),动点B 在直线y =x ﹣3上运动.当线段AB 最短时,求出点B 的坐标,并判断点B 是否为“中国结”;(3)当直线y =x ﹣3与y =kx +k 的交点为“中国结”时,求满足条件的k 值.第1题图第2题图 第3题图三、正方形中的纯几何问题1.(正方形中的旋转)已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交DE 于点P .若,PB =10,下列结论: ①△APD ≌△AEB ;②∠AEB =135°;③;④S △APD +S △APB =33;⑤CD =11.其中正确结论的序号是( )A .①②③④B .①④⑤C .①②④D .③④⑤2.如图,点P 是正方形ABCD 内一点,且点P 到点A 、B 、C 的距离分别为2、1、,则正方形ABCD 的面积为 .3.(正方形中的半角模型)如图,平面直角坐标系中,正方形OBAC的顶点A 的坐标为(8,8),点D ,E 分别为边AB ,AC 上的动点,且不与端点重合,连接OD ,OE ,分别交对角线BC 于点M ,N ,连接DE ,若∠DOE =45°,以下说法正确的是 (填序号).①点O 到线段DE 的距离为8;②△ADE 的周长为16;③当DE∥BC 时,直线OE 的解析式为y =x ; ④以三条线段BM ,MN ,NC 为边组成的三角形是直角三角形.4.如图,正方形ABCD 中,AB =12,点E 在边CD 上,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,且BG =CG ,连接AG 、CF .下列结论:①△ABG ≌△AFG ;②∠EAG =45°;③CE =2DE ;④AG ∥CF ;⑤S △FGC =.其中正确结论的个数是( )A .2个B .3个C .4个D .5个5.(正方形中的十字架)如图1所示,在边长为4的正方形ABCD中,点E,F 分别为CD、BC的中点,AE和DF相交于点G;如图2所示,将图1中边长为4的正方形ABCD折叠,使得点D落在边BC的中点D'处,点A落在点A'处,折痕为MN.现有四个结论:图1中:①AE=DF;②AE⊥DF;③DG=;图2中:④MN=2.其中正确的结论有:.(填序号)6.如图,在边长为4的正方形ABCD中,点E,F分别是边BC,CD上的点,且BE=DF=t,连接EF,AC,相交于点O,G为对角线AC延长线上一点.(1)求证:△AEF是等腰三角形.(2)当t为何值时,△AEF的周长比△EFC的周长大8.(3)当四边形AEGF为菱形时,设△AEF的面积为S1,△GFC的面积为S2,求S1﹣S2关于t的函数解析式,并写出当∠EAF=60°时,S1﹣S2的值.7.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=4,CE=2,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是40°时,直接写出∠EFC 的度数.8.(正方形中的外角角平分线)已知如图,M为正方形ABCD边AB上一点,P为边AB延长线上一点,连接DM,以点M为直角顶点作MN⊥DM交∠CBP的角平分线于N,过点C作CE∥MN交AD于E,连接EM,CN,DN.(1)求证:DM=MN;(2)求证:EM∥CN.四、函数图像问题(数形结合)1.如图①,在平面直角坐标系中,矩形ABCD在第一象限,且AB∥y轴.直线M:y=﹣x沿x轴正方向平移,被矩形ABCD截得的线段EF的长度l与平移的距离a之间的函数图象如图②,那么矩形ABCD的面积为()A.10B.12C.15D.182.如图所示,在平面直角坐标系中,函数y=|x﹣1|的图象由一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成.根据前面所讲内容,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5五、分类讨论1.函数的值域.函数y=2x定义域为[1,2]时,其值域为[2,4].(1)若一次函数y=﹣x+3,定义域为[﹣6,2]时,求这个函数的值域.(2)若一次函数y=kx+b(k≠0),定义域为[2,3]时,它的值域为[3,5],求这个一次函数解析式.2.一次函数y=2x+b的图象与坐标轴围成的三角形面积为1,则b的值为()A.2B.﹣2或C.D.2或﹣23.数学中,定义符号max{m,n}表示两个数中的最大值,如max{1,2}=2,max{3,3}=3,现有函数y=max{﹣x+1,2x﹣2},请回答如下问题:(1)①当x=﹣1时,函数y=max{﹣x+1,2x﹣2}的函数值y=;②当x=1时,函数y=max{﹣x+1,2x﹣2}的函数值y=;③当x=3时,函数y=max{﹣x+1,2x﹣2}的函数值y=;(2)求函数y=max{﹣x+1,2x﹣2}的解析式.(3)在平面直角坐标系中,已知点O为坐标原点,点A的坐标为(1,0),函数y=kx+1(k为常数,且0<k<2)与函数y=max{﹣x+1,2x﹣2}相交于不同两点B(0,1)、C,分别记△OAC,△OBC的面积为S1、S2,且有S1﹣S2=2,求k的值.4.对于平面直角坐标系xOy中的点P(x,y),若x,y满足|x﹣y|=1,则点P(x,y)就称为“绝好点”.例如:(5,6),因为|5﹣6|=1,所以(5,6)是“绝好点”.(1)点M(3,2)“绝好点”;点N(﹣2,3)“绝好点”(填“是”或“不是);(2)已知一次函数y=2x+m(m为常数)图象上有一个“绝好点”的坐标是(2,3),一次函数y=2x+m(m为常数)图象上是否存在其他“绝好点”?若存在,请求出来;若不存在,请说明理由;(3)点A和点B为一次函数y=2x+a(a为常数且a<﹣2)图象上的两个“绝好点”,点Q在x轴上运动,当QA+QB最小时,求点Q的坐标.(用含字母a 的式子表示)六、存在性问题(分类讨论)1.如图,直线y=﹣x+与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为2.如图,矩形ABCD中,AD=18,AB=24.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE对称,当△CD'E为直角三角形时,DE的长为.3.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx﹣4k(k≠0).(1)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(2)在(1)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G 为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.七、代数几何综合题1.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A、C,点B是y轴正半轴上的一点,且位于C点下方,当∠CAB=∠BAO时,则点B的纵坐标是()A.B.C.D.2.如图1所示,在平面直角坐标系中,动点A(0,a),B(b,0)分别在y轴、x轴的正半轴上,射线AC、BC是△OAB的两条外角平分线,且它们相交于定点C(3,3).(1)若点A的坐标为(0,2),求直线AC的解析式;(2)求证:a2+b2=(6﹣a﹣b)2;(3)在图1中,延长CA、CB分别交x轴、y轴于点D,E,得到的图形如图2所示.试探究△ODE的面积是否为定值?若是定值,求出该定值;若不是定值,请说明理由.3.在平面直角坐标系中,A(0,8),点B是直线y=x﹣8与x轴的交点.(1)写出点B的坐标(,);(2)点C是x轴正半轴上一动点,且不与点B重合,∠ACD=90°,且CD 交直线y=x﹣8于D点,求证:AC=CD;(3)在第(2)问的条件下,连接AD,点E是AD的中点,当点C在x轴正半轴上运动时,点E随之而运动,点E到BD的距离是否为定值?若为定值,求出这个值,若不是定值,请说明理由.4.如图1,在平面直角坐标系xOy中,直线l:y=mx+m(m>1)与x轴、y轴分别交于A、B两点,点Q为x轴上一动点.(1)若OB=2OA,求直线l的解析式;(2)在(1)的条件下,若∠QBA=45°,求满足条件的点Q的坐标;(3)如图2,在x轴的负半轴上是否存在点Q,使得以BQ为边作正方形BQMN 时,点M恰好落在直线l上,且正方形BQMN的面积被x轴分成了1:2的两部分?若存在,请求出点Q的坐标,若不存在,请说明理由.5.如图1,在平面直角坐标系中,A(a,0),B(0,b),且a、b(其中a<b)是方程x2﹣6x+8=0的两个根.(1)求直线AB的解析式;(2)若点M为直线y=mx在第一象限上一点,当以AB为直角边△ABM是等腰直角三角形时,求m的值;(3)如图3,过点A的直线y=kx﹣2k交y轴负半轴于点P,N点的横坐标为﹣1,过N点的直线交AP于点M,给出两个结论:①的值是不变;②的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值.6.已知一次函数y=kx+3k(常数k≠0)的图象与x轴交于点A,与y轴交于点B.(1)求A点坐标:(2)若该函数当x在﹣1≤x≤2范围内任意取值时,总有y≥﹣2成立,求k 的取值范围;(3)如图,点B在y轴正半轴,且OA=3OB,C是射线AB上一点,以AC 为对角线作正方形APCQ,点P恰好在y轴上,求出所有符合要求的C点坐标.7如图1,已知平行四边形ABCD,点A的坐标为(1,﹣4),点B的坐标为(7,﹣4),点D的坐标为(﹣3,4),点P是平行四边形ABCD边上的一个动点.(1)点C的坐标为,AD的长为.(2)若点P在边AB,AD上,点P关于x坐标轴对称的点Q落在直线y=x ﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).七、其他数学思想方法1(特殊到一般).设直线(n为自然数)与两坐标轴围成的三角形面积为S n(n=1,2,…2008),则S1+S2+…+S2008的值为.2(特殊到一般).直线y=kx+k(k为正整数)与坐标轴围成的三角形面积为S k,则S1+S2+…+S100=.3.(特殊值法)如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A.B.C.D.4.如图,平行四边形ABCD中,BC=BD.点F是线段AB的中点.过点C作CG⊥DB交BD于点G,CG延长线交DF于点H.且CH=DB.(1)如图1,若DH=1.①求证:△DFB≌△CDH②求FH的值;(2)如图2,连接FG.求证:DB=FG+HG.。
八年级下册数学期末压轴题专辑(含解析-Word版)

--八年级下册数学期末压轴题专辑(含解析)1.如图,ON为∠AOB 中的一条射线,点 P 在边 OA 上,PH⊥OB 于 H,交 ON 于点 Q,PM∥OB 交 ON 于点 M, MD⊥OB 于点 D,QR∥OB 交 MD于点R,连结 PR 交 QM 于点 S。
(1)求证:四边形 PQRM 为矩形;(2)若 OP= 1 PR,试探究∠AOB 与∠BON 的数量关系,并说明理由。
2(1)证明:∵PH⊥OB,MD⊥OB,∴PH∥MD, ∵PM∥OB,QR∥OB,∴PM∥QR,∴四边形 PQRM 是平行四边形,∵ﻫPH⊥OB,∴∠PHO=90°, ∵PM∥OB,∴∠MPQ=∠PHO=90°,∴四边形 PQRM为矩形; (2)∠AOB=3∠BON.理由如下:∵四边形PQRM 为矩形,∴PS=SR=SQ= 1 PR,∴∠SQR=∠SRQ, 2又∵OP= 1 PR,∴OP=PS,∴∠POS=∠PSO,∵ﻫQR∥OB,∴∠SQR=∠BON, 2在△SQR中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,∴∠POS=2∠BON, ∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,即∠AOB=3∠BON.2.如图,矩形 OABC在平面直角坐标系内(O为坐标原点),点 A 在 x 轴上,点 C 在 y 轴上,点 B 的坐标分别为(-2,2 3 ) ,点 E 是 BC 的中点,点 H 在 OA 上,且 AH= 1 ,过点 H 且平行于 y 轴的 HG 与 EB 交 2于点 G,现将矩形折叠,使顶点 C 落在HG上,并与 HG 上的点D重合,折痕为 EF,点 F 为折痕与 y 轴的 交点。
(1)求∠CEF 的度数和点 D 的坐标; (2)求折痕EF 所在直线的函数表达式; (3)若点 P 在直线 EF 上,当△PFD 为等腰三角形时,试问满足条件的点 P 有几个?请求出点P的坐标,并 写出解答过程。
八年级下压轴 50题(含答案及解析)

29.如图1,在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
10.(1)如图①,两个正方形的边长均为3,求三角形DBF的面积.
①当t=秒时,以A、P、E、D、为顶点可以构成平行四边形.
②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
23.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣ x+b过点C.
13.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF= ∠B.
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;
(2)求证:BF=EF﹣EM.
14.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期压轴题精选
1.(松江区八下期中)已知一次函数333+-=x y 的图象与x 轴、y 轴分别相交于A 、B 两点.
(1)求点A 、B 的坐标及∠BAO 的度数;
(2)点C 、D 分别是线段OA 、AB 上一动点(不与端点重合),且CD =DA ,设线段OC 的长度为x ,S △OCD =y ,请求出y 与x 的函数关系式,并写出自变量x 的取值范围;
(3)点C 、D 分别是射线OA 、射线BA 上一动点,且CD =DA ,当△ODB 是等腰三角形时,求点C 的坐标.
2.(黄浦区八下期中)如图,在平面直角坐标系中,直线y=x+4交y轴于点A,与直线BC相交
于点B(-2,m),直线BC与y轴相交于点C(0,-2),与x轴相交于点D.
(1)求△ABC的面积;
(2)过点A作BC的平行线交x轴于点E,求点E的坐标;
(3)在(2)的条件下,点P是直线AB上一动点且在x轴上方,Q为直角坐标平面内一点,
如果以点D、E、P、Q为顶点的平行四边形的面积等于△ABC的面积,请求出点P的坐标,并直接写出点Q的坐标.
3.(金山区八下期中)如图,平面直角坐标系中,直线y=kx+b经过点A(2,0)、D(0,1),点B
是第一象限内的点,且AB=5,过点B作BC⊥y轴,垂足为C,CB=1.
(1)求直线y=kx+b的解析式及点B的坐标;
(2)试说明:AD⊥BO;
(3)若点M是直线AD上的一个动点,在x轴上存在另一个点N,且以O、B、M、N为顶
点的四边形是平行四边形,请直接写出点N的坐标.
4.(普陀区八下期中)如图,在平面直角坐标系xOy 中,直线l 1经过点A (-5,-6),且与直线l 2:62
3+-=x y 平行,直线l 2与x 轴、y 轴分别相交于点B 、C . (1)求直l 1的解析式及其与x 轴的交点D 的坐标;
(2)判断四边形ABCD 是什么四边形?并证明你的结论;
(3)若点E 是直线AB 上一点,平面内存在一点F ,使得四边形CBEF 是正方形,求点E 的坐标.
5.(崇明区八下期中)已知:如图,在平面直角坐标系中,点A 在x 轴的负半轴上,直线
3+=kx y 经过点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC ⊥x 轴,交直线3+=kx y 于点C ,如果∠MAO =60°.
(1)求直线AC 的解析式;
(2)如果点D 在直线AC 上,且△ABD 是等腰三角形,请求出点D 的坐标.
6.(松江区八下期中)如图,直线343+-=x y 与x 轴相交于点A ,与直线x y 3=相交
于点P .
(1)求点P 的坐标;
(2)请判断△OP A 的形状并说明理由; (3)动点E 从原点O 出发,以每秒1个单位的速度沿着O →P →A 的路线向点A 匀速运动(点E 不与点O 、A 重合),过点E 分别作EF ⊥x 轴于F ,EB ⊥y 轴于B ,设运动 t 秒时,矩形EBOF 与△OP A 重叠部分的面积为S ,求S 与t 之间的函数关系式.。