最新初中数学分式易错题汇编及答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.0000005=5×10-7
故答案为:B.
【点睛】
本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.
点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.
17.00519=5.19×10-3.
故选B.
【点睛】
此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中 ,n由原数左边起第一个不为零的数字前面的0的个数所决定.
18.华为 手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).
6.要使分式 有意义, 应满足的条件是()
A. B. C. D.
【答案】C
【解析】
【分析】
直接利用分式有意义的条件得出答案.
【详解】
要使分式 有意义,
则x-1≠0,
解得:x≠1.
故选:C.
【点睛】
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
7.数字 ,用科学记数法表示为 .
A. B. C. D.
【详解】
5.若式子 有意义,则x的取值范围为().
A.x≥2B.x≠2C.x≤2D.x<2
【答案】D
【解析】
【分析】
根据被开方式大于且等于零,分母不等于零列式求解即可.
【详解】
解:∵式子 有意义
∴
∴x<2
故选:D
【点睛】
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
故选:B.
【点睛】
此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.
12.若代数式 有意义,则实数x的取值范围是()
A.x=0B.x=2C.x≠0D.x≠2
【答案】D
【解析】
【分析】
根据分式的分母不等于0即可解题.
【详解】
解:∵代数式 有意义,
∴x-2≠0,即x≠2,
解:① ,故①正确;
② ,故②错误;
③ ,故③错误;
④ ,故④错误;
⑤ ,故⑤正确;
∴运算正确的个数有2个,
故选:B.
【点睛】
本题主要考查了负整数指数幂、零指数幂、积的乘方和同底数幂的除法,熟练掌握相关的运算法则是解题的关键.
15.下列运算,错误的是().
A. B. C. D.61200 = 6.12×104
【点睛】
本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.
14.下列各式:① ;② ;③ ;④ ;⑤ ;其中运算正确的个数有()个.
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
分别利用负整数指数幂、零指数幂、积的乘方、同底数幂的除法等对各式进行运算,即可做出判断.
【详解】
【解析】
分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.
详解:①-22=-4,故本小题错误;
②a3+a3=2a3,故本小题错误;
③4m-4= ,故本小题错误;
④(xy2)3=x3y6,故本小题正确;
综上所述,做对的个数是1.
故选A.
11.下列运算中,正确的是()
A. B. C. D.
【答案】B
【解析】
【分析】
分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.
【详解】
x2•x3=x5,故选项A不合题意;
(ab)3=a3b3,故选项B符合题意;
(2a)3=8a6,故选项C不合题意;
3−2= ,故选项D不合题意.
A. B. C. D.
【答案】D
【解析】
【分析】
由科学记数法知 ;
【详解】
解: ;
故选:D.
【点睛】
本题考查科学记数法;熟练掌握科学记数法 中 与 的意义是解题的关键.
19.已知 ,那么下列式子中一定成立的是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据比例的性质对各个选项进行判断即可.
解:根据题意得, ,
解得 或 .
又
解得 ,
所以, .
故选:B.
【点睛】
本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
10.0000036=3.6×10-6;
故选:A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
故选D.
【点睛】
本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.
13.下列各数中最小的是()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.
【详解】
解: , , ,
,
最小的数是 ,
故选: .
4.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为()
A.2.5×106B.2.5×10﹣6C.0.25×10﹣6D.0.25×107
【答案】B
【解析】
【分析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
3.如果分式 的值为0,那么 的值为()
A.-1B.1C.-1或1D.1或0
【答案】B
【解析】
【分析】
根据分式的值为零的条件可以求出x的值.
【详解】
根据题意,得
|x|-1=0且x+1≠0,
解得,x=1.
故选B.
【点睛】
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
2.已知 =1,则代数式 的值为( )
A.3B.1C.﹣1D.﹣3
【答案】D
【解析】
【分析】
由 =1利用分式的加减运算法则得出m-n=-mn,代入原式= 计算可得.
【详解】
∵ =1,
∴ =1,
则 =1,
∴mn=n-m,即m-n=-mn,
则原式= = = =-3,
故选D.
【点睛】
本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.
【答案】B
【解析】
【分析】
【详解】
A. 正确,故此选项不合题意;
B. ,故此选项符合题意;
C. 正确,故此选项不合题意;
D. 61200 = 6.12×104正确,故此选项不合题意;
故选B.
16.下面是一名学生所做的4道练习题:① ;② ;③ ;④ 。他做对的个数是()
A.1B.2C.3D.4
【答案】A
【答案】D
【解析】
【分析】
科学记数法的表示形式为 的形式,其中 ,n为整数 确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同 当原数绝对值 时,n是正数;当原数的绝对值 时,n是负数.
【详解】
将 用科学记数法表示为 .
故选D.
【点睛】
此题考查科学记数法的表示方法 科学记数法的表示形式为 的形式,其中 ,n为整数,表示时关键要正确确定a的值以及n的值.
最新初中数学分式易错题汇编及答案
一、选择题
1.化简(a﹣1)÷( ﹣1)•a的结果是( )
A.﹣a2B.1C.a2D.﹣1
【答案】A
【解析】
分析:根据分式的混合运算顺序和运算法则计算可得.
详解:原式=(a﹣1)÷ •a
=(a﹣1)• •a
=﹣a2,
故选:A.
点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.
8.若 = ,则 的值为( )
A.5B. C.3D.
【答案】A
【解析】
因为 = ,
所以4b=a-b.,解得a=5b,
所以 = .
故选A.
9.当式子 的值为零时, 等于()
A.4B.﹣3C.﹣1或3D.3或﹣3
【答案】B
【解析】
【分析】
根据分式为零,分子等于0Fra Baidu bibliotek分母不等于0列式进行计算即可得解.
【详解】
【详解】
A.∵ ,∴3x=2y,∴ 不成立,故A不正确;
B.∵ ,∴3x=2y,∴ 不成立,故B不正确;
C.∵ ,∴ y,∴ 不成立,故C不正确;
D.∵ ,∴ ,∴ 成立,故D正确;
故选D.
【点睛】
本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键.更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果 ,则有 .
故答案为:B.
【点睛】
本题考查的知识点是科学计数法,解题的关键是熟练的掌握科学计数法.
点睛:本题考查了有理数的乘方,合并同类项法则,负整数指数次幂的运算,积的乘方的性质,是基础题,熟记各性质是解题的关键.
17.00519=5.19×10-3.
故选B.
【点睛】
此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中 ,n由原数左边起第一个不为零的数字前面的0的个数所决定.
18.华为 手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).
6.要使分式 有意义, 应满足的条件是()
A. B. C. D.
【答案】C
【解析】
【分析】
直接利用分式有意义的条件得出答案.
【详解】
要使分式 有意义,
则x-1≠0,
解得:x≠1.
故选:C.
【点睛】
此题考查分式有意义的条件,正确把握分式的定义是解题关键.
7.数字 ,用科学记数法表示为 .
A. B. C. D.
【详解】
5.若式子 有意义,则x的取值范围为().
A.x≥2B.x≠2C.x≤2D.x<2
【答案】D
【解析】
【分析】
根据被开方式大于且等于零,分母不等于零列式求解即可.
【详解】
解:∵式子 有意义
∴
∴x<2
故选:D
【点睛】
本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
故选:B.
【点睛】
此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.
12.若代数式 有意义,则实数x的取值范围是()
A.x=0B.x=2C.x≠0D.x≠2
【答案】D
【解析】
【分析】
根据分式的分母不等于0即可解题.
【详解】
解:∵代数式 有意义,
∴x-2≠0,即x≠2,
解:① ,故①正确;
② ,故②错误;
③ ,故③错误;
④ ,故④错误;
⑤ ,故⑤正确;
∴运算正确的个数有2个,
故选:B.
【点睛】
本题主要考查了负整数指数幂、零指数幂、积的乘方和同底数幂的除法,熟练掌握相关的运算法则是解题的关键.
15.下列运算,错误的是().
A. B. C. D.61200 = 6.12×104
【点睛】
本题考查了实数的大小比较法则,能熟记实数的大小比较法则的内容是解此题的关键.
14.下列各式:① ;② ;③ ;④ ;⑤ ;其中运算正确的个数有()个.
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
分别利用负整数指数幂、零指数幂、积的乘方、同底数幂的除法等对各式进行运算,即可做出判断.
【详解】
【解析】
分析:根据有理数的乘方,合并同类项法则,负整数指数次幂等于正整数指数幂的倒数,积的乘方的性质对各小题分析判断即可得解.
详解:①-22=-4,故本小题错误;
②a3+a3=2a3,故本小题错误;
③4m-4= ,故本小题错误;
④(xy2)3=x3y6,故本小题正确;
综上所述,做对的个数是1.
故选A.
11.下列运算中,正确的是()
A. B. C. D.
【答案】B
【解析】
【分析】
分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.
【详解】
x2•x3=x5,故选项A不合题意;
(ab)3=a3b3,故选项B符合题意;
(2a)3=8a6,故选项C不合题意;
3−2= ,故选项D不合题意.
A. B. C. D.
【答案】D
【解析】
【分析】
由科学记数法知 ;
【详解】
解: ;
故选:D.
【点睛】
本题考查科学记数法;熟练掌握科学记数法 中 与 的意义是解题的关键.
19.已知 ,那么下列式子中一定成立的是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据比例的性质对各个选项进行判断即可.
解:根据题意得, ,
解得 或 .
又
解得 ,
所以, .
故选:B.
【点睛】
本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
10.0000036=3.6×10-6;
故选:A.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
故选D.
【点睛】
本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.
13.下列各数中最小的是()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据有理数的乘方、算术平方根、立方根、负整数指数幂进行计算,再比较数的大小,即可得出选项.
【详解】
解: , , ,
,
最小的数是 ,
故选: .
4.雾霾天气是一种大气污染状态,造成这种天气的“元凶”是PM2.5,PM2.5是指直径小于或等于0.0000025米的可吸入肺的微小颗粒,将数据0.0000025科学记数法表示为()
A.2.5×106B.2.5×10﹣6C.0.25×10﹣6D.0.25×107
【答案】B
【解析】
【分析】
绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
3.如果分式 的值为0,那么 的值为()
A.-1B.1C.-1或1D.1或0
【答案】B
【解析】
【分析】
根据分式的值为零的条件可以求出x的值.
【详解】
根据题意,得
|x|-1=0且x+1≠0,
解得,x=1.
故选B.
【点睛】
本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
2.已知 =1,则代数式 的值为( )
A.3B.1C.﹣1D.﹣3
【答案】D
【解析】
【分析】
由 =1利用分式的加减运算法则得出m-n=-mn,代入原式= 计算可得.
【详解】
∵ =1,
∴ =1,
则 =1,
∴mn=n-m,即m-n=-mn,
则原式= = = =-3,
故选D.
【点睛】
本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.
【答案】B
【解析】
【分析】
【详解】
A. 正确,故此选项不合题意;
B. ,故此选项符合题意;
C. 正确,故此选项不合题意;
D. 61200 = 6.12×104正确,故此选项不合题意;
故选B.
16.下面是一名学生所做的4道练习题:① ;② ;③ ;④ 。他做对的个数是()
A.1B.2C.3D.4
【答案】A
【答案】D
【解析】
【分析】
科学记数法的表示形式为 的形式,其中 ,n为整数 确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同 当原数绝对值 时,n是正数;当原数的绝对值 时,n是负数.
【详解】
将 用科学记数法表示为 .
故选D.
【点睛】
此题考查科学记数法的表示方法 科学记数法的表示形式为 的形式,其中 ,n为整数,表示时关键要正确确定a的值以及n的值.
最新初中数学分式易错题汇编及答案
一、选择题
1.化简(a﹣1)÷( ﹣1)•a的结果是( )
A.﹣a2B.1C.a2D.﹣1
【答案】A
【解析】
分析:根据分式的混合运算顺序和运算法则计算可得.
详解:原式=(a﹣1)÷ •a
=(a﹣1)• •a
=﹣a2,
故选:A.
点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.
8.若 = ,则 的值为( )
A.5B. C.3D.
【答案】A
【解析】
因为 = ,
所以4b=a-b.,解得a=5b,
所以 = .
故选A.
9.当式子 的值为零时, 等于()
A.4B.﹣3C.﹣1或3D.3或﹣3
【答案】B
【解析】
【分析】
根据分式为零,分子等于0Fra Baidu bibliotek分母不等于0列式进行计算即可得解.
【详解】
【详解】
A.∵ ,∴3x=2y,∴ 不成立,故A不正确;
B.∵ ,∴3x=2y,∴ 不成立,故B不正确;
C.∵ ,∴ y,∴ 不成立,故C不正确;
D.∵ ,∴ ,∴ 成立,故D正确;
故选D.
【点睛】
本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键.更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果 ,则有 .