有线电视的网络结构_New
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有线电视的网络结构
1. 概述
光技术的快速发展给有线网络带来了革命性的变化,有线网络需要考虑所有业务(E-mail、语音、视频等)的基带传输(模拟的和数字的)以及IP数据传输的特性。问题的关键是能提供一个灵活的、可升级的而且在未来若干年内能够使用的网络。有线电缆正通过提供新的和强制性的业务来解决这“最后一英里”的问题。
本文的焦点是放在物理层或者实际的网络。与任何其它的网络相比,宽带有线电视使光纤应用于网络之中。其目标是建成特定宽带业务网。有线网络开创性地把光纤和传统的同轴电缆结合在一起成为一个混合网络。这个混合光纤同轴(HFC)网络对于有线网络来说具有战略上的重要性。光纤把模拟和数字电视从前端向终端发送。该技术目前可把光纤信号往用户家庭的几英里范围内发送。同轴电缆再把宽带业务传送至家庭。最后一英里的同轴电缆被用于支持譬如电话之类的可选业务的传输媒体。
有线运营商已经把同轴电缆网络进行升级以支持双向通信,从而使用户可以享受他们的多项服务,这当然要追加投资。当新的HFC网络完全实现后,将具有许多好处,它们包括:
·有线电话的能力
·高速Internet接入
·有线电视频道数目的增加(超过200个模拟的和压缩的数字频道) ·利用机顶盒的视频点播(VOD)能力
·交互式电视
·为满足新的数字电视标准而建立的基础结构,所有标准都是基于HFC 骨干网。
本文将阐述两种HFC网络结构:“供电范围节点”(PD N)和“小型光纤节点”(MFN)。PDN结构或类似的变种是北美配置的HFC网络的主要代表,它能支持许多新的业务。PDN与其它HFC结构的不同之处在于,节点的大小并不是由固定用户数决定的,而是由光纤节点接收机的数量决定的。RF放大器和网络用户终端可以由单个网络供电(AC)。MFN是网络发展的下一步,它表现了一个深层次光纤结构。MFN是非常重要的,因为它可去除同轴有线电缆段上所有的放大器(除了必不可不的以外)。这不仅仅增加了可靠性,而且还保证了宽带业务所需要的带宽。首先,本文将定义一些术语和有线电视产业和正在建造的HFC网络的相关信息。
2. 传统的同轴有线电视网络
一个简单的有线电视系统从前端到终端,包括接收卫星等电视信号
号流。信号分离是利用双工器电路进行的。在经过双工之后,每个信号被放大,然后利用同样的双工器连接到同轴电缆上。
总而言之,这些早期的有线电视网络向用户发送模拟视频信号是非常好的。但由于放大器的级联,这些网络并不适合于实时的双向高带宽业务,最主要的是网络中单收集点聚集所有回传信号的漏斗效应。使之从80年代中期陆续开始实施光纤同轴电缆混合(HFC)传输结构。
3. 混合光纤同轴(HFC)有线电视系统
因为有线电视和通信公司不断努力引入新的业务,必须找到一个合理的成本提高网络容量的方法。这个困难问题的一个极其出色的解决方案,就是HFC系统中的光电子学的实现。光电子学技术在高容量交互式多媒体传输所需的HFC网络的发展上具有极其巨大的影响。这种技术的引入使得最初为视频业务而设计的网络能够为各种交互式视频、数据和语音业务提供可靠的带宽。
HFC结构使以一种成本高效的方式提高带宽、信号质量和可靠性成为可能,这种方式能够减少维护成本和保持操作人员界面友好性。它使两种业务成为现实。在干线部分覆盖低损耗的光纤能够去除干线上的
放大器。这也就使同轴电缆大大缩短,典型的是四到六个放大器。这样带来的好处包括大大减少放大器中断的脆弱性、减少带宽限制和由于放大器串联而导致的噪声积累,以及大大简化输入部分。采用双向传输有两个原因。第一,光纤本身不再是干扰信号的入口了。第二,有线电视系统被分割成大量的小型有线电视系统,而且这些小型系统彼此隔离。如果在某个小型有线电视系统入口形成干扰的话,该干扰将不会削弱整个有线电视系统其它部分的性能。
有线电视信号的光传输用单模光纤来完成,该光纤在1310nm的波长处大约有0.35dB/km的衰减,在1550nm的波长处大约有0.25dB/km的衰减。激光波长的选择是基于网络设计标准,包括成本、模拟性能要求以及传输距离要求等。光纤的衰减在合理的温度范围内是固定的,而且与RF频率无关。
引入HFC网络的光节点或者光纤节点(FN),经常被安放在户外,譬如一个基座上或者悬挂在架空绞线上。光纤节点接收光信号,把它转化为电信号,并放大,然后向本地用户发送。在返回方向上,节点收集5-42MHz带宽范围内的信号,并把它们以光的方式传送回前端进行处理。在“传统”的HFC网络中,每个光节点名义上服务500-2000个家庭。核心网络驱动器是低成本的,而且在噪声和失真方面对模拟视频信号有良好的性能。终端用户可以接收到经模拟视频残留边带(VSB)调制的78个RF信道。收费频道的可选择控制和收看前预付费通过用
户机顶盒终端实现。
HFC结构的主要优势之一,是用户数可增加,并以多种格式携带多种类型信息的能力。
HFC有线电视网络和电话网之间的区别是可用宽带宽传送模拟电视。在美国,大约有3亿模拟电视机在使用,基本上都接入了有线电视。实际上,在这个国家有电视的家庭比有电话的家庭多。HFC为利用低成本电视发送设备提供了充足的带宽。
要达到这些目标,需要四种关键技术:
·高能量的1550nm光纤可用于携带交互式数字电视并经“多电平正交调幅”(M-QAM) 的载频信号,以及为简化光纤结构而降低网络成本的接入技术。
·利用同步光纤网络(SONET)多路复用器来进行综合数字业务传输,对于建造高速多媒体接入网络是非常关键的。
·波分复用(WDM)和密集波分复用(DWDM)不仅仅增加带宽,而且还用于光路由和降低接入成本。
·当网络光纤数量不断增长时,无源光技术对成本和性能有着极其关键
的作用。
决定最佳接入结构的是足够的带宽宽度, 这对于广播和交互式小范围广播而言是必须的。HFC网络有四个与传送交互式带宽有关的因素:频率、空间多路复用、光谱效率以及光波长。
频率决定通道大小(750MHz、862MHz或1GHz),以及决定副载波提供什么类型信号的能力。每个频率都可以当业务设置改变时,随时使用,这与其它结构相比提供了一种独特的灵活性。空分复用决定了骨干网中的光纤是如何运行和如何达到每个节点的,以及如何装载它们。频谱效率允许随256-QAM或64-QAM调制技术改变,这些技术能够有效地提高频谱利用率。最后,多种光波长,不管是DWDM或者1310/1550的结合,都可以用于一个特定的光纤中以用来提高容量。
处理好HFC反向信道是极其重要的。为了解决潜在的光纤性能的问题,Fabry Perot(FP)和无冷却分布式反馈(DFB)激光现今均被用于网络中,靠的是业务数量的增加和性能的提高。从前端到用户端距离一定时,光纤配置得越长,网络对电入口的影响就会越小。由于光纤被配置得很长以进行前向传输,使RF的级联长度缩短,提高了可靠性和降低了成本。