(整理)低合金钢中合金元素作的作用.
常见合金元素在钢中的作用
常见合金元素在钢中的作用合金是由两种或两种以上的金属或非金属元素混合而成的材料,其中一个元素是主要成分,而其他元素被称为合金元素。
在钢中,常见的合金元素有碳、铬、镍、钼、锰、磷、硅等。
每种合金元素在钢中都有不同的作用,下面将详细介绍常见合金元素在钢中的作用。
1.碳(C):碳是钢中最重要的合金元素之一、通过调节碳含量,可以改变钢的硬度、强度和韧性。
低碳钢具有良好的可塑性和焊接性能,但硬度和强度较低;高碳钢硬度和强度较高,但可塑性较差。
合适的碳含量可以平衡钢的各种性能。
2.铬(Cr):铬可以增加钢的硬度、抗磨性和耐腐蚀性。
添加铬的合金钢被称为不锈钢,能够抵抗腐蚀和氧化。
铬还能够提高钢的淬透性,使得钢在淬火时的硬化效果更好。
3.镍(Ni):镍能够提高钢的强度和塑性,并且能够改善钢的耐磨性和耐腐蚀性。
镍还能够提高钢的抗软化和抗氢脆性能,使钢在高温和低温环境下保持其性能。
4.钼(Mo):钼可以提高钢的硬度、强度和韧性,特别对高温下的钢材有很好的效果。
钼还能够改善钢的热强度和抗氧化性,提高钢在高温环境下的稳定性。
5.锰(Mn):锰可以提高钢的硬度、强度和韧性,并且能够改善钢的可塑性和冷加工性能。
锰还能够抑制钢中的晶界腐蚀和热处理硬化,提高钢的耐磨性和耐腐蚀性。
6.磷(P):磷是一种常见的杂质元素,过高的磷含量会降低钢的韧性和塑性,同时还会降低钢的冷加工性能和焊接性能。
因此,在制造高强度低合金钢时,需要控制磷含量。
7.硅(Si):硅可以改善钢的抗氧化性能和耐腐蚀性,提高钢的热稳定性。
硅还能够提高钢的硬化效果和淬透性,使钢具有更好的耐磨性。
除了上述常见的合金元素外,钢中还可能含有其他合金元素如铜、铝、锡等。
这些合金元素的添加都是为了满足特定的使用要求,如提高钢的特殊性能,调整钢的组织和结构等。
总之,各种合金元素的添加可以通过改变钢的组织和性能来满足不同的使用要求。
钢的使用广泛,涵盖了建筑、机械、航空、汽车等多个领域,因此对合金元素的研究和应用具有重要的意义。
合金元素在钢中的主要作用
合金元素在钢中的主要作用合金元素是指将两种或多种金属或非金属加入到基本金属中,以改变其物理、化学和机械性能的材料。
钢是一种合金,其中含有一定比例的碳和其他合金元素。
合金元素在钢中起到了重要的作用,使钢具有不同的特性和适用性。
首先,合金元素可以改变钢的力学性能。
例如,添加镍和铬可以增强钢的抗拉强度和硬度,使其具有更好的耐磨性和耐腐蚀性。
钴和钨的添加可以增强钢的抗磨性和高温强度,使其适用于高温工作环境。
钛和铌的加入可以改善钢的焊接性能,使其具有更好的可塑性和可加工性。
其次,合金元素可以改变钢的化学性质。
例如,锰的添加可以提高钢的硬化性能,促进碳的溶解和扩散。
磷和硫的加入可以改善钢的冷加工性能,使其具有更好的可塑性和可加工性。
硅的加入可以提高钢的热导率和抗腐蚀性能。
通过调整合金元素的含量和比例,可以满足不同要求的钢的化学性质。
此外,合金元素还可以改变钢的热性能。
例如,添加铝和钛可以提高钢的氧化稳定性,使其在高温环境下具有更好的耐热性。
镍和铜的加入可以改善钢的导热性能,在高温下具有更好的热传导性能。
铍和银的添加可以提高钢的导电性能,使其适用于电气工程。
同时,合金元素还可以改变钢的结构和相变性。
例如,钼和钒的加入可以改善钢的定向结构,提高其强度和塑性。
锑和铅的添加可以促进钢的相变行为,改善其物理性能。
通过对合金元素的选择和控制,可以调节钢的晶粒尺寸、晶界强度和晶界活性,从而改善钢的内部结构和力学性能。
综上所述,合金元素在钢中起着重要的作用,通过调节它们的含量和比例,可以改变钢的力学性能、化学性质、热性能和结构性能,使钢具有更好的性能和适用性。
合理的合金设计和控制是制造高品质钢材的关键。
合金元素在钢中的作用
合金元素在钢中的作用合金元素是指在钢中加入的其他金属或非金属元素,它们与铁元素和碳元素相互作用,从而改变钢的性能和性质。
合金元素的添加可以提高钢的强度、硬度、耐磨性、耐腐蚀性等,使钢具有更优异的性能,满足不同的使用要求。
以下是合金元素在钢中的一些常见作用:1.碳(C):是钢中最主要的合金元素之一,加入合适的碳量可以提高钢的硬度和强度。
碳元素可以通过固溶强化的方式使钢的晶粒细化,从而提高钢的强度和硬度。
但是过高的碳含量会降低钢的塑性和耐热性。
2.硅(Si):是一种强化和脱氧元素,常用于高碳钢和合金钢中。
硅可以增加钢的强度、硬度和耐磨性,促使钢的晶粒细化。
同时,硅还可以与氧结合,形成氧化物,从而脱除钢中的氧气。
3.锰(Mn):是一种强化元素,常用于普通碳钢和低合金钢中。
与铁和碳相结合,形成硬化相,提高钢的硬度和强度。
锰还可以提高钢的韧性和抗冲击性,减少钢的冷脆性。
4.磷(P):是一种脆化元素,过量磷会降低钢的塑性和韧性。
但适量的磷可以起到强化钢的作用,提高钢的硬度和强度。
5.硫(S):是一种脆化元素,过量的硫会降低钢的韧性。
然而,适量的硫可以改善钢的切削加工性能,提高切削刃的寿命。
6.铬(Cr):是一种耐腐蚀元素,主要用于不锈钢和耐热钢中。
铬与钢中的铁形成铬化铁,并形成致密的氧化铬膜,从而防止氧气和水的侵蚀,提高钢的耐腐蚀性。
7.镍(Ni):是一种耐腐蚀和耐热元素,常用于不锈钢和耐热钢中。
镍可以改善钢的塑性、韧性和韧齿性,提高钢的耐腐蚀性和耐热性。
8.钼(Mo):是一种强化元素,用于合金钢和高速钢中。
钼可以提高钢的强度、硬度和耐磨性,同时还能提高钢的耐热性和抗腐蚀性。
9.钒(V):是一种强化元素,广泛应用于合金钢和高速钢中。
钒可以提高钢的强度、硬度和耐磨性,同时还能提高钢的耐高温性能。
10.铌(Nb):是一种强化和固溶强化元素,常用于低合金钢和高强度钢中。
铌可以提高钢的强度和硬度,还能改善钢的焊接性能和耐腐蚀性。
合金元素在钢中的作用
合金元素在钢中的作用一般是防腐蚀,防锈,使之外表更美观等作用。
如下:合金钢合金元素在钢中的作用1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。
使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。
硫对焊接性能也不利,降低耐腐蚀性。
所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。
在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。
合金元素在钢中的作用
碍晶粒长大 • 非碳化物形成元素:Cu、Si、Ni……阻
止晶粒长大;P、Cu促进晶粒长大。
课题一 概述
♥对过冷奥氏体的转变的影响 实质上是对C曲线的影响
• 除Co以外,大多数合金元素都增加奥氏 体的稳定性,使C曲线右移。且非碳化物 形成元素Al、Ni、Si、Cu等不改变C曲 线的形状,只使其右移,碳化物形成元 素Mn、Cr、Mo、W等除使C曲线右移 外,还改变其形状。
当钢中加入少量合金元素时,有一部分溶于铁 素体内形成合金铁素体.
课题一 概述
♥合金元素在钢中的存在方式
(2)形成碳化物 碳化物形成元素可形成合金渗碳体和特殊碳化物. A 合金渗碳体 合金元素与碳的亲合力较弱,它的大部分是固溶 于铁素体、奥氏体、马氏体中,而少部分固溶于 渗碳体中形成合金渗碳体,如(Fe,Mn)3C。
♥对钢加热时奥氏体形成的影响
钢加热时对奥氏体形成速度的影响 奥氏体化过程包括奥氏体的形成,剩余碳化物 的溶解和奥氏体成分均匀化,均是由合金元素 和碳的扩散所控制。
• 非碳化物形成元素: • Co和Ni提高碳在奥氏体中扩散速度,加速奥
氏体的形成。Si、Al、Mn等元素,对C的扩散 速度影响不大。因而对奥氏体的形成速度影响 不大。
课题二 结构钢
• 典型合金调质钢分类
• ♥低淬透性调质钢 • 钢。含合金元素总量<3 %, 40Cr、40MnB等 • ♥中淬透性调质钢 • 38 CrSi、35 CrMo 等,常用于制造较小的齿
轮、 • 轴、螺栓等零件。钢含合金元素总量在4 %左
右.
课题二 结构钢
• ♥高淬透性调质钢 • 钢含合金元素总量在4 %~ 10 %; • 38 Cr Mo Al A、40 Cr Mn Mo、25
各种元素在钢铁中的作用
各种元素在钢铁中的作用钢是一种合金,主要由铁、碳和其他合金元素组成。
这些合金元素在钢中起着不同的作用,以下是一些常见的合金元素及其作用:1.碳(C):碳是钢中最重要的合金元素之一,它能够提高钢的硬度和强度。
高碳钢含碳量超过0.6%,通常用于制造刀具和机械零件。
中碳钢常用于制造车轴、齿轮等。
低碳钢含碳量少于0.3%,其韧性较好,常用于制造汽车结构部件等。
2.硅(Si):硅用于降低钢的液相温度和粘度,促进钢的液相区域扩大。
它还能提高钢的强度和耐磨性。
硅常用于制造电力设备、变压器等。
3.锰(Mn):锰能够提高钢的韧性和延展性,并抑制高温下的晶界腐蚀。
锰常用于制造桥梁、建筑结构等。
4.磷(P):磷用于提高低碳钢的强度和硬度,但过高的磷含量会降低钢的可焊性。
因此,磷含量应控制在一定范围内。
5.硫(S):硫能够提高钢的切削性能和机械加工性能。
但高硫含量的钢会降低钢的可焊性和韧性,同时还容易形成疏松铸态组织。
6.铬(Cr):铬是不锈钢的主要合金元素之一,它能够提高钢的耐蚀性和耐磨性。
铬还能提高钢的强度和硬度,常用于制造压力容器、船舶等。
7.镍(Ni):镍能够提高钢的韧性和抗冲击性能。
它还能提高钢的耐高温性能,因此常用于制造汽车发动机、航空发动机等。
8.钼(Mo):钼能够提高钢的硬度和强度,同时还能提高钢的耐腐蚀性能。
它常用于制造汽车结构部件、涡轮发动机等。
9.钒(V):钒能够提高钢的强度和硬度,同时还能提高钢的耐热性能。
钒主要用于制造高速切削工具、齿轮等。
总而言之,钢中各种合金元素的添加能够改善钢的机械性能、耐磨性、耐腐蚀性和热处理性能等。
通过适当调整合金元素的含量,可以生产出满足不同工程要求的各类钢材。
普通低合金钢
普通低合金钢简介普通低合金钢是一种常用的结构钢,它是通过在碳钢中添加少量的合金元素来提高其力学性能和耐腐蚀性能的钢材。
合金元素的添加可以提高钢材的强度、硬度和耐磨性,同时还可以改善其可焊性和可加工性。
成分普通低合金钢的主要成分是铁和碳,通常含有约0.05%到0.25%的碳。
此外,还含有少量的合金元素,如锰、硅、磷、硫等。
这些合金元素的添加量通常在1%以下。
通过控制合金元素的含量,可以改变普通低合金钢的力学和物理性能。
特性强度和硬度普通低合金钢通过添加合金元素来提高其强度和硬度。
合金元素可以在钢材中形成固溶体、沉淀相或弥散的晶体结构,从而增强钢材的晶格,提高其抗拉强度和硬度。
这使得普通低合金钢在结构工程中得到广泛应用,比如用于建筑、桥梁、船舶等领域。
耐腐蚀性由于合金元素的添加,普通低合金钢具有良好的耐腐蚀性能。
合金元素可以与钢中的氧气、水和其他化学物质发生反应,形成一层致密的氧化物或化合物膜,从而防止钢材被进一步腐蚀。
这使得普通低合金钢在化工、海洋等腐蚀环境中有较好的耐久性。
可焊性和可加工性普通低合金钢具有较好的可焊性和可加工性。
合金元素的添加可以改变钢的晶格结构,提高其焊接和加工性能。
这使得普通低合金钢能够方便地进行焊接、锻造、冷加工等加工工艺,满足不同应用领域的要求。
应用领域普通低合金钢的力学性能、耐腐蚀性和加工性能使其在各个领域得到广泛应用。
以下是几个常见的应用领域:1.结构工程:普通低合金钢在建筑、桥梁、船舶等结构工程中被广泛应用。
其高强度和硬度可以保证结构的稳定性和安全性。
2.汽车制造:普通低合金钢用于汽车制造,提供了车体的强度和刚性。
同时,其良好的可焊性也使得汽车在生产和维修过程中更加方便。
3.机械制造:普通低合金钢在机械制造中被广泛应用,用于制造机床、工具和零部件。
其高强度和硬度可以提高机械的使用寿命和性能。
4.管道工程:普通低合金钢具有良好的耐腐蚀性能,因此被广泛用于石油、天然气、化工等领域的管道工程。
钢中各合金元素的作用
钢中各合金元素的作用钢是一种重要的材料,它由铁和其他合金元素组成。
这些合金元素在钢中的含量和性质都会对钢的性能产生重要影响。
以下是一些常见的合金元素及其在钢中的作用:1.碳(C):碳是钢中最重要的合金元素之一,它可以改变钢的硬度和强度。
高碳钢具有更高的硬度和强度,适用于制造切削工具和机械零件。
低碳钢则具有较高的可塑性和韧性,适用于焊接和冷加工。
2.硅(Si):硅是一种强氧化剂,可以提高钢的冷脆性。
在不锈钢中,硅的加入可提高耐酸性和耐蚀性。
3.锰(Mn):锰是一种去氧剂,可以减少钢中的气泡和夹杂物,提高钢的韧性。
同时,锰还可以提高钢的硬度和强度。
4.磷(P):磷是一种强氧化剂,可以降低钢的塑性和韧性。
因此,在制造高强度钢时,应控制磷含量。
5.硫(S):硫是一种容易挥发的元素,过多的硫会导致钢的冷脆性和碳化物相的形成,降低钢的强度和韧性。
因此,硫的含量需要控制在低水平。
6.铬(Cr):铬是一种重要的合金元素,可以增加钢的耐腐蚀性和耐磨性。
在不锈钢中,一般含有10-20%的铬。
7.镍(Ni):镍可以提高钢的韧性和冷脆性。
镍还可以提高钢的耐高温性能,适用于制造高温合金钢。
8.钼(Mo):钼可以提高钢的强度和韧性,同时提高钢的耐腐蚀性和耐高温性能。
因此,钼常用于制造高强度合金钢和耐蚀合金钢。
9.钛(Ti):钛可以提高钢的强度、硬度和耐磨性。
钛还可以阻碍钢中晶界的形成,提高钢的耐高温性能。
10.铌(Nb):铌具有强固溶强化效应,可以提高钢的强度和耐热性能。
铌还可以细化钢的晶粒,提高钢的韧性。
11.钒(V):钒可以提高钢的强度和硬度,同时提高钢的耐磨性和耐腐蚀性。
12.铝(Al):铝可以精细化钢的晶粒,提高钢的强度、韧性和耐冲击性。
铝还可以防止钢的氧化。
合金元素的作用在于改变钢的组织结构和性能,使钢具有不同的特性。
根据不同的应用需求,合适的合金元素可以被选择和添加到钢中,以满足具体的功能要求。
从改善钢的硬度、强度、韧性、耐腐蚀性、耐热性、耐磨性等方面考虑,钢中的合金元素起到了关键的作用。
合金元素在钢中的作用
合金元素在钢中的作用钢中的元素分常存和添加两种。
在实际生产和使用的钢中总是有少量非有意加入的各种元素,如硅、锤、磷、硫、氧、氮、氢等,这些元素称为常存或残余元素。
其中,硅、锺是脱氧后残留下来的;磷、硫主要是原材料带来的;而氧、氮、氢部分是原材料带来,其余部分是在冶炼过程中从空气中吸收的。
为了改善和提高钢的某些性能,或获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。
常用的合金元素有铭(Cr)、镇(Ni )、铝(Mo )、鸽(W)、饥(V)、铁(Ti)、银(Nb )、错(Zr)、钻(Co)、硅(Si)、锤(Mn)、铝(Al)、铜(Cu)、棚(B)、稀土(Re)等。
磷(P)、硫(S)、氮(N)等在某些情况下也起到合金元素的作用。
合金元素在钢中与铁和碳这两个基本组元的相互作用,以及它们彼此之间的相互作用,影响钢中各组成相、组织和结构,促使其发生有利的变化,可提高和改善钢的综合力学性能;能显著提高和改善钢的工艺性能,如洋透性、回火稳定性、切削加工性等;还可使钢获得一些特殊的物理化学性能,如耐热、不锈、耐腐蚀等。
这些性能的改善和获得,一部分是加入合金元素的直接影响,而大部分则是通过合金元素对钢的相变过程影响所引起的。
合金元素所起的作用,与其本身的原子结构、原子大小和晶体结构特征等有关。
人们对合金元素在钢中所起作用的认识是经过长期实践、不断探索而发展起来的,因此,还需不断地研究、探索、发展。
总的说来,合金元素在退火状态下起着强化铁素体的作用,从而提高退火状态下钢的强度。
它们对铁素体强化的程度由强到弱排列为P、Si、Ti、Mn,Al、Cu,Ni、W、Mo、V、Co、Cro除镇外,它们都使伸长率和冲击值下降,而镇一方面显著提高强度,另一方面却始终使塑性和韧性保持高水平。
除C o、Al外的大多数合金元素在洋火回火状态下均能提高钢的洋透性。
添加了合金元素的合金钢在硬度、强度(σb,a.),塑性指标(σ%,ψ%)等性能方面均高于碳钢,冲击韧性αk也较高。
合金元素在钢中的作用
合金元素在钢中的作用随着现代工业和科学技术的不断发展,在机械制造中,对工件的强度、硬度、韧性、塑性、耐磨性以及其他各种物理化学性能的要求愈来愈高,碳钢已不能完全满足这些要求了。
原因:(1)由碳钢制成的零件尺寸不能太大。
否则,因淬透性不够而不能满足对强度与塑性、韧性的要求。
加入合金元素可增大淬透性。
(2)用碳钢制成的切削刀具不能满足切削红硬性的要求。
用合金工具钢、高速钢和硬质合金。
(3)碳钢不能满足特殊性能的要求,如要求耐热、耐低温、抗腐蚀、有强烈磁性或无磁性等等,只有特种的合金钢才能具有这些性能。
11.1合金元素在钢中的存在方式11.1.1合金元素与钢中的碳相互作用,形成碳化物存在于钢中按合金元素在钢中与碳相互作用的情况,它们可以分为两大类:(1)不形成碳化物的元素(称为非碳化物形成元素),包括镍、硅、铝、钴、铜等。
由于这些元素与碳的结合力比铁小,因此在钢中它们不能与碳化合,它们对钢中碳化物的结构也无明显的影响。
(2)形成碳化物的元素(称为碳化物形成元素),根据其与碳结合力的强弱,可把碳化物形成元素分成三类。
1)弱碳化物形成元素:锰锰对碳的结合力仅略强于铁。
锰加入钢中,一般不形成特殊碳化物(结构与Fe3C不同的碳化物称为特殊碳化物),而是溶入渗碳体中。
2)中强碳化物形成元素;铬、钼、钨3)强碳化物形成元素:钒、铌、钛有极高的稳定性,例如TiC在淬火加热时要到l 000C以上才开始缓慢的溶解,这些碳化物有极高的硬度,例如在高速钢中加人钒,形成V4C,使之有更高的耐磨性。
11.1.2合金元素溶解于铁素体(或奥氏体)中,以固溶体形式存在于钢中11.1.3合金元素与钢中的氮、氧、硫等化合,以氮化物、氧化物、硫化物和硅酸盐等非金属夹杂物的形式存在于钢中11.1.4游离态,即不溶于铁,也不溶于化合物:铅,铜11.2合金元素对钢的平衡组织的影响表现在改变铁碳合金状态图11.2.1合金元素对钢临界温度的影响锰、镍、铜使A3线降低,钼、钨、硅、钒使A3线升高。
钢中合金元素的作用
合金元素在钢中的作用C元素:与钢中的其他合金元素结合形成碳化物硬质相,能与Cr,Fe等形成M7C3,M23C6,M3C等化合物,提高钢的硬度和和耐磨性;碳是碳化物形成的主要因素,碳的含量影响碳化物数量,但是不影响种类。
缺点:碳含量增加时使钢的耐蚀性降低,同时使碳钢焊接性能和冷加工性能变差Cr元素:Cr是一个有效提高耐蚀性的元素及较强的碳化物形成元素,同时C、Cr也是固溶强化元素1)提高钢的强度和硬度,同时降低塑性和韧性;2)使钢具有良好的抗腐蚀和抗氧化性能;3)提高钢的高温机械性能;4)阻止石墨化;5)提高钢的淬透性缺点:促进钢的回火脆性Si元素:非碳化物形成元素;Si钢中还原剂和脱氧剂,能显著提高钢的弹性极限,屈服点,和抗拉强度;与铬、钨、钼等元素结合提高钢的抗腐蚀性能和抗氧化作用;能固溶于铁素体和奥氏体,提高钢的强度和硬度;提高钢的淬透性和抗回火性;缩小γ区;缺点:含量较高时,焊接时造成飞溅,降低钢的焊接性能,会降低焊缝的抗热裂纹能力。
Mn 元素:在炼钢时,提高钢的强度,消除硫的影响,是良好的脱氧剂和脱硫剂;提高钢的淬透性,改善钢的加工性能;含锰量在11%到14%时,钢具有较高的耐磨性;扩大γ区,形成无限固溶体,对铁素体和奥氏体固溶强化,弱碳化物形成元素,进入固溶体代替铁原子形成合金渗碳体;缺点:Mn元素促进晶粒长大,可加入钼、钒、钛来细化晶粒,当锰的质量分数超过1%时,使钢的焊接性能变差;降低钢的耐锈蚀能力。
B元素:有利于脱氧造渣和自熔,提高润湿性;加入微量B,可显著提高钢的淬透性;在 Fe-C-B 系耐磨喷焊材料中,当 B 含量低于 2.37%时,B的含量增加喷焊层的耐磨性上升缓慢,因为形成了硬度不超过 HV1000的含硼渗碳体Fe3(C,B),Fe23(C,B)6,故耐磨性提高较少。
当B的含量高于2.37%时,合金中出现 Fe2B,而Fe2B 硬度较高,随着Fe2B 的不断增加,涂层中形成均匀的耐磨骨架,能有效地降低高硬度磨粒的进入,故耐磨损性能急剧升高,但硼的含量大于4.0%,由于涂层脆性和形成的喷焊缺陷的增加反而导致涂层耐磨性出现降低的趋势Ni 元素:提高钢的淬透性;改善加工性能和可焊接性能,提高钢的耐腐蚀性能,不仅耐酸而且耐碱及大气腐蚀;细化晶粒;提高钢的强度而不降低其韧性。
合金钢中各元素作用及牌号
合金钢各元素的作用及牌号碳钢是经热处理后又良好的力学性能,且冶金工艺简单,压力加工和机加工性能好,价格低廉,是工业生产中应用最广的金属材料。
但存在淬透性低、不能用于大型结构件、不能在高温、低温、腐蚀性等特殊环境使用的缺点。
为此,人们在碳钢的基础上特意加入某些合金元素,以弥补碳钢的不足。
这些钢称为合金钢。
1合金钢按照合金元素总含量(质量分数)分类(1) 低合金钢<5%;(2) 中合金钢5%~10%;(3) 高合金钢>10%。
1. 合金元素在钢中的存在形式常用合金元素Cr, Mn, Ni, Co, Cu, Si, Al, B, W, Mo, V, Ti, Nb,Zr, RE合金元素在钢中的存在形式:(1) 固溶体固溶于奥氏体,铁素体,渗碳体;(2) 碳化物与碳形成特殊碳化物;(3) 金属间化合物与铁或其它合金元素形成金属间。
首先我来看合金元素在钢中的作用。
常用合金元素包括Cr, Mn, Ni, Co, 稀土等。
它们在钢中存在如下形式,一是固溶于奥氏体、铁素体以及渗碳体,二是与钢中的碳形成特殊碳化物,三是与铁或其它合金元素形成金属间混合物。
不同的形式将对合金性能起不同作用。
2. 合金元素在钢中的作用1) 合金元素改善钢的热处理工艺性能:大多数合金元素都会减缓钢在加热、冷却及回火时的组织转变。
(1) 细化奥氏体晶粒加热时阻碍奥氏体晶粒长大(除了Mn);(2) 提高淬透性冷却时阻碍过冷奥氏体转变(除了Co、Al);(3) 提高回火抗力,产生二次硬化,防止高温回火脆性。
回火抗力是指淬硬钢在回火过程中抵抗硬度下降的能力首先,合金元素的加入,往往能够能够改善钢的热处理工艺性能,这是因为大多数合金元素,在钢中不论以固溶态还是以化合物存在,一般都会减缓钢在加热、冷却及回火时的组织转变,因而会在热处理加热时,细化奥氏体晶粒,冷却时提高淬透性,回火时提高回火抗力或回火稳定性,并防止高温回火脆性。
2. 合金元素在钢中的作用2) 合金元素提高钢的强度:(1) 固溶强化固溶于基体中,产生晶格畸变,阻碍位错运动;(2) 第二相强化固溶于渗碳体,提高其稳定性。
合金元素在钢中的作用
四、合金元素对Fe-Fe3C状态图的影响
在铁碳合金中加入某种合金元素后,相当于二元合金变成了 三元和金。因此,必然会引起Fe-Fe3C状态图中临界点、相 区等发生相应变化。
3.1对奥氏体形成的影响
合金元素的加入提高了钢奥氏体化温度和延长了奥氏体化的 时间。Al、Ti、Nb、V元素强烈阻止了奥氏体晶粒长大,W 、Mo中等阻止奥氏体晶粒长大,C、P、Mn(高碳时)促进 奥氏体晶粒长大。
3.2 对Fe-Fe3C状态图中γ区的影响 根据对Fe-Fe3C状态图中γ区的影响,可以将合金元素分为 扩大γ区的元素和缩小γ区的元素两大类。
二、合金元素与碳氮的作用
碳是提高钢的强度和硬度的最有效元素合金元素 根据其与钢中碳的相互作用,可分为碳化物形成元 素和非碳化物形成元素两大类。 1、非碳化物形成元素 这类元素在钢中不能与碳化合,主要以原子态存在 于奥氏体中,Si、Al、Cu、Ni和Mo等即属于这一类 元素。
2、碳化物形成元素
这类元素能与钢中的碳化合,形成各种类型的碳化物。按其与碳结合 的能力由强到弱,这类元素依次是Ti、Zr、V、Nb、W、Mo、Cr、Mn 。只要有碳化物形成元素存在,Fe3C就不是钢中唯一的碳化物。 Ti、Zr、V、Nb等是强碳化物形成元素,能与碳单独结合,形成TiC、 ZrC、VC、NbC等特殊化合物。 Mn是弱碳化物形成元素,多溶于渗碳体中,形成渗碳体类型的碳化物 ,如(Fe、Mn)3C,这类碳化物常称为合金渗碳体。 W、Mo、Cr等是中强合金元素,当其含量低时,多溶于渗碳体,形成( Fe、W)3C、(Fe、Mo)3C、(Fe、Cr)3C等合金渗碳体;而当其含量 足够高时,则单独形成(W、Fe)6C、(Cr、Fe)7C3和Cr23C6等特殊化 合物。
钢中各合金元素的作用
一、基础知识
2、合金元素改性原理
(1)形成固溶体。 原子直径较小的常形成间隙固溶体,如C、N、B等;原子直径 较 大 的 形 成 置 换 固 溶 体 , 如 Cr 、 Ni 、 Mn 、 Co 、 V 等 。 一 般 有 如 下 规 律 : Radd/RFe>0.59形成置换固溶体,Radd/RFe<0.59形成间隙固溶体。如Fe-C相图中奥氏 体便是C原子在面心立方相γ-Fe中的间隙固溶体。固溶体的强化是以形成晶格畸 变来实现的。 (2)细晶强化。一些合金元素如V、Ti、Mo等有细化晶粒的作用,在液相结晶过程 中形成的化合物/中间相,起到类似于形核剂的作用;这些化合物、中间相又在 热处理和锻压中起固溶析出、钉扎,从而细化晶粒。多晶材料的屈服强度σs和晶 粒尺寸d之间存在经验公式Hall-Petch公式:式中σ0和k都是材料属性。
二、各元素的作用
碳C
Q235、45#
(1)碳是钢铁材料的主要合金元素,因此钢铁材料也可以称为铁碳合金。
(2)C在钢中主要以三种状态存在:固溶于δ/γ/α-Fe中形成高温铁素体、奥 氏体和铁素体,提高钢的强度;形成金属碳化物,如如Fe3C、Vc等,提 高钢的硬度和耐磨性;游离态石墨(过共析钢中),这种状态于钢材的性 能有害,应当避免,但是却是铸铁中的常见形态。
各元素的作用硅si二各元素的作用1si是钢中常见的还原剂和脱氧剂能显著提高钢的弹性极限屈服点和抗拉强度用于低碳钢中具有极高的导磁率常用来做硅钢片60si2mn35aw3002在钢中si主要以三种状态存在固溶态固溶于铁素体和奥氏体中氧化态si与o的结合能力比fe强这也导致其有氧焊接性能大大降低和游离态
钢中各合金元素的作用
2012年7月
一、基础知识
钢 铁
常见合金元素在钢中的作用
8、钒在钢中的作用
⑴、细化钢的组织和晶粒;提高晶粒粗化温度,从而降低钢的过热敏感性。
⑵、在高温溶入奥氏体时,增加钢的淬透性;如以碳化物形式存在时,却将降低钢的淬透性。
⑵、铬加入钢中能显著改善钢的高温抗氧化性(不起皮)。
⑶、显著提高钢的淬透性,改善钢的抗回火稳定性。
⑷、阻止石墨化
缺点:①、铬能促进钢的回火脆性倾向。
5、镍在钢中的作用
⑴、可提高钢的强度而不显著降低其塑性。
⑵、镍可降低钢的脆性转变温度,即可提高钢的低温韧性。
⑶、改善钢的加工性和可焊性。
⑸、提高钢的淬透性,回火稳定性,防止回火脆性。
缺点:钼的主要不良作用是它能使低合金钼钢发生石墨化的倾向。
7、钨在钢中的作用
⑴、提高钢的硬度、强度和耐磨性
⑵、增加淬火钢的回火稳定性,并产生二次硬化效应(约560℃回火时析出弥散分布的W2C)
⑶、提高钢的抗氢性能。
⑷、是使钢具有热硬性。因此钨是高速工具钢中的主要合金元素。
⑴、钛能改善钢的热强性,提高钢的抗蠕变性能及高温持久强度;
⑵、并能提高钢在高温高压氢气中的稳定性。使钢在高压下对氢的稳定性高达600℃以上,在珠光体低合金钢中,钛可阻止钼钢在高温下的石墨化现象。因此,钛是锅炉高温元件所用的热强钢中的重要合金元素之一。
10、铌在钢中的作用
⑴、铌和碳、氮、氧都有极强的结合力,并与之形成相应的极为稳定的化合物,因而能细化晶粒,降低钢的过热敏感性和回火脆性。
⑷、镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。
合金元素及伴生元素在钢中所起的一些作用
合金元素及伴生元素在钢中所起的一些作用对于合金元素,需要区分是渗碳体、奥氏体或铁素体,以及加入钢中所起的作用。
每一种合金元素按一定百分比单独加入到钢中都会产生一种特性,如同时加入几种则会加强对钢特性的影响,但并不是对一种特性产生相同的影响,也许是作用与反作用,相互抵消。
钢中加入合金元素,只是为所需性能提供前提条件,真正的性能要通过金属加工或热处理才能形成。
原则上钢中加入各种合金元素和伴生元素影响如下:Al 铝熔点:658℃铝是最有效,也是最常用的脱氧、定氮剂。
因而有很好的抗时效性。
少量加入还有助于细化晶粒。
由于铝能与氮形成很硬的氮化物,通常用作氮化钢的一种合金元素。
铝还能提高抗铁锈能力,所以经常被加入到合金铁素体耐热钢中。
对于非合金碳钢,通过渗铝(在钢表面渗铝)可增加防止生成氧化铁皮的能力。
铝会显著缩小γ相区,由于能大大增加矫顽力,因而用于铁-镍-钴-铝永磁合金。
As 砷熔点:817℃砷也能显著缩小γ相区,是一种伴生元素。
在钢中的作用与磷相似,也形成严重偏析。
但这种局部退火时由于含砷造成的偏析比含磷造成的偏析更难消除。
另外,砷还会增加回火脆性,明显减弱韧性并降低焊接性。
B 硼熔点:2300℃由于硼具有很高的中子吸收交叉断面,它被用于原子能设备控制器和屏蔽屏材料中。
在奥氏体18/8 Cr-Ni钢中加硼,通过沉淀硬化可提高屈服点和强度,但在该过程中抗腐蚀性又会降低。
硼造成的沉淀可提高高温奥氏体钢在高温段的强度性能。
对于结构钢,硼也可通过硬化提高表面硬化钢的芯部强度。
但含硼合金钢的焊接性会降低。
Be 铍熔点:1280℃铜铍合金用于制造钟表弹簧,因为它几乎不可磁化,且能耐受比钢弹簧数量更高的负荷循环。
镍铍合金很硬,耐腐蚀,用于外科仪器。
严格限制γ相区。
加铍可以沉淀硬化,但处理过程中降低了韧性。
脱氧效果显著,与硫有强大的亲合力。
C 碳熔点:3540℃碳是钢中最重要和最有影响力的合金元素。
除了碳以外,任何非合金钢在制造过程中都会无意含有其它元素,如硅、锰、磷、硫,再加入合金元素,以获得某些特性,有意增加镁和硅的含量,就形成了合金钢。
各种元素在金属材料中的作用
1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。
碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。
2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。
如果钢中含硅量超过0.50-0.60%,硅就算合金元素。
硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。
在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。
硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。
含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。
硅量增加,会降低钢的焊接性能。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。
在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。
含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。
锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。
因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。
使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。
硫对焊接性能也不利,降低耐腐蚀性。
所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。
在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。
铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
合金元素在钢中的作用
元素在钢中的作用一、常存杂质元素对钢材性能的影响钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。
这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。
这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。
1)硫硫来源于炼钢的矿石与燃料焦炭。
它是钢中的一种有害元素。
硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe形成低熔点(985℃)化合物。
而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。
含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。
高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。
2)磷磷是由矿石带入钢中的,一般说磷也是有害元素。
磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。
特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。
冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。
高级优质钢:P<0.025%;优质钢:P<0.04%;普通钢:P<0.085%。
3)锰锰是炼钢时作为脱氧剂加入钢中的。
由于锰可以与硫形成高熔点(1600℃)的 MnS,一定程度上消除了硫的有害作用。
锰具有很好的脱氧能力,能够与钢中的FeO成为MnO进入炉渣,从而改善钢的品质,特别是降低钢的脆性,提高钢的强度和硬度。
因此,锰在钢中是一种有益元素。
一般认为,钢中含锰量在0.5%~0.8%以下时,把锰看成是常存杂质。
技术条件中规定,优质碳素结构钢中,正常含锰量是0.5%~0.8%;而较高含锰量的结构钢中,其量可达0.7%~1.2%。
4)硅硅也是炼钢时作为脱氧剂而加入钢中的元素。
合金元素的作用
合金元素的作用不同的化学元素在钢中的作用是不一样的,同时,合金元素在钢中的组合不同,其产生的作用也不同。
钢的力学性能、加工性能及工艺性能均与钢中合金元素的含量及不同的组合有很大的关系,因此,在钢的成份设计时,即要考虑钢的化学元素的种类及含量,又要考虑钢中合金元素的相互搭配。
使设计出的钢种既能满足产品的各项性能要求,同时也要满足钢的冶金生产工艺的可行与优化。
具体各元素的作用描述如下:[18]1)碳的作用碳在合金钢中可强化固溶体,获得马氏体,提高淬透性。
更主要的是能与多种合金元素生成不同类型的碳化物,提高钢的热稳定性和耐磨性。
当含碳量太低时,不能保证形成足够数量的复合碳化物,淬火加热时固溶体中的碳和合金元素含量减少,使钢的硬度、热硬性和耐磨性降低。
当含碳量偏高时,碳化物数量增加,加热时奥氏体中的碳和合金元素的浓度增高,使硬度和红硬性有所提高,但同时碳化物的偏析程度也增加,使钢的塑性降低,工艺性能变坏。
2)钒的作用钒的熔点1890℃,是提高耐磨性的重要元素,同时对造成红硬性也起作用。
钒是强碳化物形成元素,能形成稳定的VC。
钢加热至淬火温度时,大部分钒溶于固溶体,而在回火过程中溶入的钒又以弥散分布的VC细小质点析出,造成二次硬化。
由于VC质点硬度高,弥散度大,因而能显著提高钢的耐磨性。
随钒含量增加,钢的耐磨性和热硬性均提高,在增加钒含量的同时必须相应提高含碳量,以保证形成各种碳化物。
但过高的钒会使钢的磨削性能变差。
3)钼的作用钼的熔点为2625℃,也是属于难熔耐高温金属,硬度约为金刚石的0.6倍,稍低于钨。
钼也是碳化物形成元素,在合金钢中能形成与钨相似的多种碳化物,在提高钢的硬度、造成二次硬化、提高热硬性和淬透性方面的作用与钨相似。
钼系和钨-钼系合金钢的突出优点是碳化物偏析度小,热塑性好,便于热加工,尤其适用于刀具的热成形。
其缺点是,钼的主要碳化物(Fe·Mo)6C熔解于奥氏体的温度低,淬火加热时易发生晶粒长大,过热敏感性高,故淬火加热温度范围窄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合金元素在钢中的作用随着现代工业和科学技术的不断发展,在机械制造中,对工件的强度、硬度、韧性、塑性、耐磨性以及其他各种物理化学性能的要求愈来愈高,碳钢已不能完全满足这些要求了。
原因:①由碳钢制成的零件尺寸不能太大。
否则,因淬透性不够而不能满足对强度与塑性、韧性的要求。
加入合金元素可增大淬透性。
②用碳钢制成的切削刀具不能满足切削红硬性的要求。
用合金工具钢、高速钢和硬质合金。
③碳钢不能满足特殊性能的要求,如要求耐热、耐低温、抗腐蚀、有强烈磁性或无磁性等等,只有特种的合金钢才能具有这些性能。
合金钢是以碳钢为基础,金相组织和相应的碳钢大体上是相似的。
在钢中加入合金元素,钢的机械性能显著提高。
弄清楚各种合金元素对钢材的影响对控制产品质量有非常大的作用。
1 合金元素在钢中的存在方式1.1 合金元素与钢中的碳相互作用,形成碳化物存在于钢中按合金元素在钢中与碳相互作用的情况,它们可以分为两大类:(1) 不形成碳化物的元素(称为非碳化物形成元素),包括镍、硅、铝、钴、铜等。
由于这些元素与碳的结合力比铁小,因此在钢中它们不能与碳化合,它们对钢中碳化物的结构也无明显的影响。
(2) 形成碳化物的元素(称为碳化物形成元素),根据其与碳结合力的强弱,可把碳化物形成元素分成三类。
1)弱碳化物形成元素:锰锰对碳的结合力仅略强于铁。
锰加入钢中,一般不形成特殊碳化物(结构与Fe3C不同的碳化物称为特殊碳化物),而是溶入渗碳体中。
2)中强碳化物形成元素;铬、钼、钨3)强碳化物形成元素:钒、铌、钛有极高的稳定性,例如TiC在淬火加热时要到1000℃以上才开始缓慢的溶解,这些碳化物有极高的硬度,例如在高速钢中加人钒,形成V4C,使之有更高的耐磨性。
1.2 合金元素溶解于铁素体(或奥氏体)中,以固溶体形式存在于钢中。
1.3 合金元素与钢中的氮、氧、硫等化合,以氮化物、氧化物、硫化物和硅酸盐等非金属夹杂物的形式存在于钢中。
1.4 游离态,即不溶于铁,也不溶于化合物:铅,铜2 合金元素对钢的平衡组织的影响表现在改变铁碳合金状态图。
2.1 合金元素对钢临界温度的影响锰、镍、铜使A3线降低,钼、钨、硅、钒使A3线升高。
同样影响A1,影响程度更大。
2.2 合金元素对钢共析点(S点)位置的影响大多数合金使共析点左移,钼钨在质量分数大时使共析点右移。
2.3 合金元素对奥氏体相区大小的影响2.3.1 扩大γ区合金元素与γ-Fe、α-Fe形成固溶体,常温下为奥氏体组织。
Ni,Mn2.3.2 减小γ区抑制F向A转变,Cr3 合金元素对热处理的影响3.1 合金元素对奥氏体化的影响奥氏体晶粒在铁素体与碳化物边界处生核并长大;剩余碳化物的溶解;奥氏体成分的均匀化,在高温停留时奥氏体晶粒的长大粗化等过程。
在钢中加入合金元素对后三个过程有较大的影响。
(1)含有碳化物形成元素的合金钢,其组织中的碳化物,是比渗碳体更稳定的合金渗碳体或特殊碳化物,因此,在奥氏体化加热时碳化物较难溶解,即需要较高的温度和较长的时间。
一般来说,合金元素形成碳化物的倾向愈强,其碳化物也愈难溶解。
(2)合金元素在奥氏体中的均匀化,也需要较长时间,因为合金元素的扩散速度,均远低于碳的扩散速度。
(3)某些合金元素强烈地阻碍着奥氏体晶粒的粗化过程,这主要与合金碳化物很难溶解有关,未溶解的碳化物阻碍了奥氏体晶界的迁移,因此,含有较强的碳化物形成元素(如钼、钨,钒,铌、钛等)的钢,在奥氏体化加热时,易于获得细晶粒的组织。
各合金元素对奥氏体晶粒粗化过程的影响,一般可归纳如下:1)强烈阻止晶粒粗化的元素:钛、铌、钒、铝等,其中以钛的作用最强。
2)钨、钼、铬等中强碳化物形成元素,也显著地阻碍奥氏体晶粒粗化过程。
3)一般认为硅和镍也能阻碍奥氏体晶粒的粗化,但作用不明显。
4)锰和磷是促使奥氏体晶粒粗化的元素。
3.2 合金元素对奥氏体分解转变的影响多数合金元素使奥氏体分解转变的速度减慢,即C曲线向右移,也就是提高了钢的淬透性。
3.3 合金元素对马氏体转变的影响增加冷却时间,降低冷却速度。
另外,合金元素对马氏体开始转变温度(Ms点)也有明显的影响。
多数合金元素均使马氏体开始转变温度(Ms点)降低,其中锰、铬、镍的作用最为强烈,只有铝、钴是提高Ms点。
3.3 合金元素对回火转变的影响合金元素对淬火钢回火转变的影响主要有下列三个方面:(1)提高钢的回火稳定性这主要表现为合金元素在回火过程中推迟了马氏体的分解和残余奥氏体的转变,提高了铁素体的再结晶温度,使碳化物难以聚集长大而保持较大的弥散度,从而提高了钢对回火软化的抗力,即提高了钢的回火稳定性。
(2)产生二次硬化一些合金元素加入钢中,在回火时,钢的硬度并不是随回火温度的升高一直降低的,而是在达到某一温度后,硬度开始增加,并随着回火温度的进一步提高,硬度也进一步增大,直至达到峰值。
这种现象称为回火过程的二次硬化。
回火二次硬化现象与合金钢回火时析出物的性质有关。
当回火温度低于约450℃时,钢中析出渗碳体,在450℃以上渗碳体溶解,钢中开始沉淀析出弥散稳定的难熔碳化物Mo2C、VC等,使钢的硬度开始升高,而在550~600℃左右沉淀析出过程完成,钢的硬度达到峰值。
(3)增大回火脆性钢在回火过程中出现的第一类回火脆性(250~400℃回火),即回火马氏体脆性和第二类回火脆性(450~600℃回火),即高温回火脆性均与钢中存在的合金元素有关。
4 合金元素对氧化与腐蚀的影响一些合金元素加入钢中能在钢的表面形成一层完整的、致密而稳定的氧化保护膜,从而提高了钢的抗氧化能力。
最有效的合金元素是铬、硅和铝。
但钢中硅、铝的质量分数较多时钢材变脆,因而它们只能作为辅加元素,一般都以铬为主加元素,以提高钢的抗氧化性。
钢中加入少量的铜、磷等元素,可提高低合金高强度钢的耐大气腐蚀。
5 合金元素对机械性能的影响5.1 金属材料的强化方法金属材料的强化途径,主要有以下几个方面;(1)结晶强化。
结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。
它包括:1)细化晶粒。
细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属材料得到强化。
同时也改善了韧性,这是其它强化机制不可能做到的。
2)提纯强化。
在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。
夹杂物对金属材料的性能有很大的影响。
在损坏的构件中,常可发现有大量的夹杂物。
采用真空冶炼等方法,可以获得高纯度的金属材料。
(2)形变强化。
金属材料经冷加工塑性变形可以提高其强度。
这是由于材料在塑性变形后位错运动的阻力增加所致。
(3)固溶强化。
通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。
(4)相变强化。
合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,称为相变强化.相变强化可以分为两类:1) 沉淀强化(或称弥散强化)。
在金属材料中能形成稳定化合物的合金元素,在一定条件下,使之生成的第二相化合物从固溶体中沉淀析出,弥散地分布在组织中,从而有效地提高材料的强度,通常析出的合金化合物是碳化物相。
在低合金钢(低合金结构钢和低合金热强钢)中,沉淀相主要是各种碳化物,大致可分为三类。
一是立方晶系,如TiC、V4C3,NbC等,二是六方晶系,如MO2、W2C、WC等,三是正菱形,如Fe3C。
对低合金热强钢高温强化最有效的是体心立方晶系的碳化物。
2) 马氏体强化。
金属材料经过淬火和随后回火的热处理工艺后,可获得马氏体组织,使材料强化。
但是,马氏体强化只能适用于在不太高的温度下工作的元件,工作于高温条件下的元件不能采用这种强化方法。
(5)晶界强化。
晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身;但在高温时,沿晶界的扩散速度比晶内扩散速度大得多,晶界强度显著降低。
因此强化晶界对提高钢的热强性是很有效的。
硼对晶界的强化作用,是由于硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低;硼还减缓了合金元素沿晶界的扩散过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。
(6)综合强化。
在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。
例如:1)固溶强化十形变强化,常用于固溶体系合金的强化。
2)结晶强化+沉淀强化,用于铸件强化。
3)马氏体强化+表面形变强化。
对一些承受疲劳载荷的构件,常在调质处理后再进行喷丸或滚压处理。
4)固溶强化+沉淀强化。
对于高温承压元件常采用这种方法,以提高材料的高温性能。
有时还采用硼的强化晶界作用,进一步提高材料的高温强度。
5.2 合金元素对正火(或退火)状态钢机械性能的影响正火状态下钢有铁素体和珠光体组织。
固溶强化,结晶强化,沉淀强化。
合金元素不仅影响钢材的强度,同时也影响其韧性。
5.3 合金元素对调质钢机械性能的影响合金元素对调质钢机械性能的影响,主要是通过它们对淬透性和回火性的影响而起作用的。
主要表现于下列几方面:(1) 由于合金元素增加了钢的淬透性,使截面较大的零件也可淬透,在调质状态下可获得综合机械性能优良的回火索氏体。
(2) 许多合金元素可使回火转变过程缓慢,因而在高温回火后,碳化物保持较细小的颗粒,使调质处理的合金钢能够得到较好的强度与韧性的配合。
(3)高温回火后,钢的组织是由铁素体和碳化物组成,合金元素对铁素体的固溶强化作用可提高调质钢的强度。
6 合金元素对钢的工艺性能的影响6.1 合金元素对焊接性能的影响:钢的焊接性能,主要取决于它的淬透性、回火性和碳的质量分数。
合金元素对钢材焊接性能的影响,可用焊接碳当量来估算。
我国目前所广泛应用的普通低合金钢,其焊接碳当量可按下述经验公式计算。
公式Cd=C+1/6Mn+1/5Cr+1/15Ni+1/4Mo+1/5V+1/24Si+1/2P+1/13Cu 近年来,对厚度为15~50mm的200个钢种(从碳钢到强度等级为1000MPa级的高强度合金钢),以低氢焊条进行常温下的Y型坡口拘束焊接裂纹试验。
在试验基础上,提出了一个用以估计钢材出现焊接裂纹可能性的指标,称为钢材焊接裂纹敏感性指数户,其计算公式为Pc=C+1/30Si+1/20Mn+1/20Cu+1/60Ni+1/20Cr+1/15Mo+1/10V+5B+1/ 600t+1/60H%,与碳当量公式相比增加了板厚和含氢量。
6.2 合金元素对切削加工的影响金属的切削性能是指金属被切削的难易程度和加工表面的质量。
为了提高钢的切削性能,可在钢中加入一些能改善切削性能的合金元素,最常用的元素是硫,其次是铅和磷。