冷水系统水力计算

合集下载

冷水流量计算

冷水流量计算

冷水流量計算1kWh=3.6*100000J;J=4.2焦耳/卡標準冷凍水流量=製冷量(KW)*0.86/5(度溫差)冷卻水流量=(製冷量+機組輸入功率)(KW)*0.86/5(度溫差)比如傳熱溫差5度,製冷量1.5KW流量為(1.5KW×860Kcal/h)/5度=258L/h= 4.3L /min是否為這樣計算呢?如果傳熱溫差小,則需增加流量?第一步、水流量m3/h=製冷量KW/溫差℃第二步、進出水系統管徑的平方=水流量m3/h /(0.785×3600×V流速)水管管徑在DN100-250時,推薦流1.5m/s 水管管徑小於DN100時,流速小於1m/s第三步、水泵進出口管徑一般比所在水系統管徑小一號1.設備的製冷量每瓦電能變成熱能的換算係數是0.86,計算設備發熱量時採用下式:Q1=0.86×V×A(千卡/小時)其中:Q1:交換機的發熱量V:直流電源電壓(取53.5V)A:忙時平均耗電電流(安)在IGW中,中心機架忙時電流約6安培,週邊模組約3安培。

2.空間的製冷量Q2=S×150(千卡/小時)空調機的製冷量是指空氣通過蒸發器、表面冷卻器、噴水室後被降溫所需的冷量。

空調冷負荷是指空調房間為維持一定溫、濕度參數,排除室內餘熱、餘濕所需的冷量。

在穩定的工況下,空調機的製冷量等於空調冷負荷,送風管道冷量損失和排風的冷量損失之和。

也可以用空調匹數表示,原指輸入功率,包括壓機、風扇電機及電控部分,因不同的品牌其具體的系統及電控設計差異,其輸出的製冷量不同,故其製冷量以輸出功率計算。

一般來說,1匹的製冷量大致為2000大卡,換算成國際單位應乘以1.162,故1匹的製冷量應為2000大卡×1.162=2324W,這裏的W(瓦)即表示製冷量。

如1.5匹應為2000大卡×1.5×1.162=3486W。

以此類推,根據此情況,則大致能判定空調的匹數和製冷量。

冷水机组屋顶水力计算

冷水机组屋顶水力计算

冷水机组屋顶水力计算
无论是冷(热)媒水管道还是冷却水管道,水力计算的任务均在于,根据管段的流量和给定的管内水流速度,确定管道直径,然后计算管路的沿程阻力和局部阻力,以此作为选择循环泵扬程的主要依据之一。

冷(热)媒水在管道中的流速,宜按照以下数值采用;
水泵吸水管取:1.2~2.1m/s;
水泵出水管取:2.4~3.6m/s;
供水干管取:1.5~3.0m/s;
室内供水立管取:0.9~3.0m/s;
分水器和集水器取:1.2~4.5m/s;
冷却水管道取:1.0~2.5m/s。

关于钢制水管摩擦主义计算表和配件的局部阻力系数值,参见《空调调节设计手册》P811到p815,过《简明空调设计手册》p345到p350。

值得注意的是,查《钢制水管摩擦阻力计算表》时,R1、R2分别表示管内必当量绝对粗糙度为0.0002米和0.0005米条件下计算得到,对于闭式系统用R1值,对于开式系统用r2值。

给水系统水力计算的方法步骤 ppt课件

给水系统水力计算的方法步骤 ppt课件
1.根据轴测图选择最不利配水点,确定计算管路,若在轴 测图中难判定最不利配水点,则应同时选择几条计算管路,分 别计算各管路所需压力,其最大值方为建筑内给水系统所需的 压力;
2.以流量变化处为节点,从最不利配水点开始,进行节点 编号,将计算管路划分成计算管段,并标出两节点间计算管段 的长度;
3.根据建筑的性质选用设计秒流量公式,计算各管段的设 计秒流量;
4.绘制水力计算表,进行给水管网的水力计算; (1)外网压力直接供水,计算目的是验证压力能否满足系 统需要。 1)依次计算H1、H2 、 H3 、 H4 ,并计算系统所需压力H; 2)当室外给水管网压力H0≥H 时,原方案可行; 3)当室外给水管网压力H0略大于或略小于H 时,适当放大 管径,降低水头损失,确保方案可行; 4)当室外给水管网压力H0小于H 很多时,修正方案,增设 增压设备。
给水系统水力计算的方法步骤 一. 水力计算流程图
初定方案 确定立管位置 绘制平面图
确定最不利点管线 确定最不利点 绘制系统图
节点编号
秒流量
确定管径
计算特殊管 所需压力 件水头损失
果分析
计算非计算
选加压、
给水系统水力计算的方法步骤
首先根据建筑平面图和初定的给水方式,绘给水管道平面布 置图及轴测图,列水力计算表,以便将每步计算结果填入表内, 使计算有条不

制冷计算说明书

制冷计算说明书

一、课程设计任务已知所需总耗冷量为1350kW,要求冷冻出水温为5℃,二、原始资料1、水源:蚌埠市是我国南方大城市,水源较充足,所以冷却水考虑选用冷却塔使用循环水。

2、室外气象资料:室外空调干球温度35.6℃,湿球温度28.1℃。

3、蚌埠市海拔21米。

三、设计内容(一)冷负荷的计算和冷水机组的选型1、冷负荷的计算对于间接供冷系统一般附加7%—15%,这里选取10%。

Q= Qz(1+12%)=1350×(1+10%)=1485kW2、冷水机组的选型(1)确定制冷方式从能耗、单机容量和调节等方面考虑,对于相对较大负荷(如2000kw 左右)的情况,宜采用溴化锂吸收式冷水机组;选择空调用蒸气压缩式冷水机组时,单机名义工况制冷量大于1758kw时宜选用离心式;制冷量在1054-1758 kw时宜选用螺杆式或离心式;制冷量在700-1054 kw时宜选用螺杆式;制冷量在116-700 kw时宜选用螺杆式或往复式;制冷量小于116活塞式或涡旋式。

本设计单台容量为500KW,选择螺杆式(2)冷水机组台数和容量的选择制冷机组3台,而且3台机组的容量相同。

所以每台制冷机组制冷量Q’=1485÷3=495 kW 根据制冷量选取制冷机组具体型号如下:名称:开利水冷式半封闭式双螺杆式冷水机组型号:30 XW 0552冷冻水进口温度:10℃冷冻水出口温度:5℃冷却水进口温度:26℃℃冷却水出口温度:31℃(二).水力计算1、冷冻水循环系统水力计算利用假定流速法计算冷冻水水泵出水管的直径:冷冻水流量Q=106×3=318m3/h=0.088m3/s假定流速V=1.8m/s横截面积A=Q/V=0.088/1.8=0.049㎡=πD2/4∴直径D=0.249m,D’取250mm,V’=1.8m/s(满足要求)用同样的方法计算冷冻水水泵吸水管的直径:根据上表可选流速V=1.4m/s横截面积A=Q/V=0.088/1.4=0.063=πD2/4∴直径D=0.282m,D’=300mm,V’=Q/A=1.25m/s(满足要求)单台水泵时:冷冻水流量Q=106m3/h=0.029 m3/s假定流速V=1.8m/s横截面积A=Q/V=0.029/1.8=0.016㎡=πD2/4∴直径D=0.143m,D’取150mm,V’=1.64m/s(满足要求)用同样的方法计算冷冻水水泵吸水管的直径:根据上表可选流速V=1.1m/s横截面积A=Q/V=0.029/1.1=0.026=πD2/4∴直径D=0.183m,D’=200mm,V’=Q/A=1.0m/s(满足要求)补水量是冷冻水流量的1%,即Q补=318×1%=3.18m3/h=0.O088m3/s,选择管径为25mm。

空调冷热水和冷却水管道水力计算

空调冷热水和冷却水管道水力计算
5.2.0 空调冷热水和冷却水管道水力计算表说明
1 电算表编制说明
1.1 空调冷水和冷却水系统管道沿程阻力采用海澄-威廉公式:
Pm 105 Ch
1.85
dj
4.87
qg
1.85
L (1.1.1)
式中 △Pm——计算管段的沿程水头损失(kPa) ; dj——钢管计算内径(m) ,按本院技术措施表 A.1.1-2 编制取值; 3 qg——流量(m /s),根据冷热量和供回水温差计算确定; L——计算管段的长度(m) ; Ch——海澄-威廉系数,闭式系统取 Ch=120,开式系统取 Ch=100。 1.2 四管制空调热水的沿程损失采用以下计算公式:
Pm L
v2
dj 2
(1.2.1)
式中 △Pm ——计算管段的沿程水头损失(Pa) ; L ——计算管段长度(m) ; λ ——管段的摩擦阻力系数; dj ——水管计算内径(m) ,按本院技术措施表 A.1.1-2~A.1.1-9 编制取值; 3 ρ ——流体的密度(kg/m ),水的密度按本院技术措施表 A.2.3 编制取值; 。 v ——流体在管内的流速,根据水量、管径计算确定(m/s) 1.3 管道摩擦阻力系数λ 采用钢管的空调热水管道摩擦阻力系数λ 采用以下计算公式: 1) 层流区(Re≤2000)
3
表1
冷却塔类型 H2(MPa)
冷却塔布水管处所需自由水头 H2
喷射式冷却塔 0.1~0.2 横流式冷却塔 ≤0.05 0.1
配置旋转布水器的逆流式冷却塔
2 各工作表适用范围 2.1 表 1 适用于采用钢管的闭式或开式空调冷冻水系统(闭式、开式系统对应的海澄-威廉系数 Ch 值分别为 120,100) ,下列系统也可参考采用: 1) 冷热水合用的空调双管系统,按表 1 进行夏季冷水水力计算并确定管径,冬季热水总 阻力可按表 4-4 进行估算。 2) 水环热泵水系统按夏季冷水工况采用表 1 计算。 2.2 表 2 适用于采用钢管的开式或闭式冷却水系统, (闭式、开式系统对应的海澄-威廉系数 Ch 值 分别为 120,100) ,租户冷却水系统的二次水等,也可采用表 2 计算,由设计人对计算表格式进行 必要的增删。 2.3 表 3 适用于四管制的闭式空调热水系统。 2.4 表 4 适用于空调冷冻水系统、空调热水系统、空调冷却水系统水泵扬程的计算,计算方法及公 式详“0.1 设备专业常用计算内容和方法汇总”6.5 节。 2.5 表 5 适用于冷凝水管径计算。 3 电算表使用说明 3.1 表中蓝底填充单元格内为必须输入的已知数据; 字体为蓝色的格表示其中数据使用者可以根据实际情况修改,其中管道局部阻力系数或当量 长度根据院技术措施填写,计算人可自行增加局部阻力种类,需修改“阻力系数和”或“当量长 度和”项计算公式。 字体为粉色的单元格为中间计算结果,一般情况下使用者不必改动; 红色斜体字为最终计算结果。 3.2 计算、参数宏表为计算使用的参数或编制的计算函数,如无特殊需要一般不要改动。 3.3 表中空调末端和自控阀等阻力应根据生产厂提供的数据输入。 3.4 表 1~3 管道阻力计算仅计算到分集水器,水泵扬程计算在表 4,冷水机组蒸发器、冷凝器、热 交换器、冷却塔等设备的阻力应根据生产厂提供的数据输入,估算时可参考“参数”工作表中的 设备压力损失参考值。 3.5 实际工程中管道分支情况与示例计算表不同时,计算人应修改各并联环路“不平衡率”项计 算公式。

课件2-空调冷(热)水系统水力计算

课件2-空调冷(热)水系统水力计算

空调冷(热)水系统的水力计算1 空调冷(热)水水力计算的基本公式设备阻力++=∆+∆=∆2.2ρνζRl P P P j m (1-1)Rl P m =∆(1-2)2.2ρνζ=∆j P (1-3)22v d l R ⋅⋅=ρ (1-4))Re 5.271.3lg(0.21λλ+-=d k (1-5) 式中 ΔP--管网总阻力,(Pa ) ΔP m --管网沿程阻力,(Pa ) ΔP j --管网局部阻力,(Pa )设备阻力--如制冷机组蒸发器及冷凝器、热交换器、锅炉、冷却塔、风机盘管、 新风机组、空调机组等R ——单位长度直管段的摩擦阻力(又称比摩阻),Pa/m ;)—最不利管网总长(—m l λ——摩擦阻力系数,m ; ζ——管道配件的局部阻力系数 ρ——水的密度,kg/m 3;v ——水的流速,m/s ;k ——管内表面的当量绝对粗糙度,m ;闭式循环水系统:k=0.2mm ;开式循环水系 统:k=0.5mm ;冷却水系统:k=0.5mm 。

d ——管道直径,m 。

Re ——雷诺数:附:一个大气压下水的密度2 空调计算管段冷(热)水流量计算tqG ni i∆=∑=163.11(2-1)式中∑=ni iq1——计算管段的空调冷(热)负荷,W ;t ∆——供回水温差,oC 。

(空调冷水供回水温差不应小于5 oC ;空调热水供回水温差,严寒和寒冷地区不宜小于15 o C ,夏热冬冷地区不宜小于10oC )确定计算管段的冷水量∑=ni iq1时,可以根据管路所连接末端设备(如AHU 、FCU 等)的额定流量进行计算(叠加)。

但必须注意,当总水量达到与系统总流量(水泵流量)相等时,干管的水量不应再增加。

3 管径的选择及沿程阻力计算3.1 空调水系统单位长度摩擦压力损失(比摩阻)宜控制在100~300Pa/m ;最大不应超过400Pa/m (热水管道建议取低值)。

空调房间内管道流速不宜超过表3-1的限值。

水力计算公式范文

水力计算公式范文

水力计算公式范文水力计算是指在水力学中计算水流的速度、压力和流量的过程。

水力计算公式是根据流体力学原理和一定的假设,通过推导和实验确定的数学表达式,用于计算水流的各种参数。

一、基本概念水力学研究的基本参数有:速度、压力和流量。

速度:水流的速度是指单位时间内通过一些截面积的水流量。

在水力计算中,常用的速度单位有米/秒(m/s)和升/秒(L/s)。

压力:水流的压力是指水流对任意一个平面的作用力。

压力的单位有帕斯卡(Pa)和巴(bar)。

流量:水流的流量是指单位时间内通过一些截面的水的体积。

常用的流量单位有立方米/秒(m³/s)和升/秒(L/s)。

二、水力计算公式1.流量计算公式在水力学中,计算流量使用的公式为Q=Av,其中Q为流量,A为流过截面的面积,v为流速。

当流过的截面为直线形状时,该公式可以简化为Q=Bhv,其中Q为流量,B为截面的底宽,h为水位,v为速度。

2.速度计算公式速度的计算是通过测量流量和截面面积来得到的。

可以使用流量计算公式来计算速度。

3.压力计算公式压力是指流体对于垂直平面的压力,压力的计算可以使用托利奇利公式(Torrictelli’s theorem),即P=ρgh,其中P为压力,ρ为流体的密度,g为重力加速度,h为液面高度。

4.泵的扬程计算公式泵是将液体从低水平向高水平运输的设备。

泵的扬程是指液体从入口到出口所需的能量。

扬程的计算公式为H=P/ρg+V²/2g+z,其中H为扬程,P为压力,ρ为流体密度,g为重力加速度,V为速度,z为高度。

5.管道流量计算公式当水流通过管道时,由于管道内的阻力,流量会出现一定的损失。

管道流量的计算可以使用瑟雷斯公式(Darcy-Weisbach equation)来计算,公式为Q=CdA(2ghL)¹/²,其中Q为流量,Cd为管道的流量系数,A为管道的横截面积,g为重力加速度,h为管道高度差,L为管道的长度。

给水系统水力计算的方法步骤

给水系统水力计算的方法步骤

优化建议
根据实际经验和理论知识,分析计算 结果的合理性,判断是否符合实际情 况。
根据分析结果,提出优化建议,如调 整管道长度、管径、流速等参数,以实际运行数据进行对比 分析,找出差异原因,为改进提供依 据。
提出改进建议
01
根据分析结果和优化建议,提出具体的改进方案,包括改进措 施、实施时间、预期效果等。
编写结果报告
将计算结果整理成表格或图表,清晰地展示给水系统的水 力性能参数,如流量、水头损失、管道阻力等。
绘制相关图表和曲线
绘制流量-扬程曲线
根据计算结果绘制流量与扬程之间的关系曲 线,用于评估水泵的运行性能和效率。
绘制管道阻力曲线
根据管道长度、管径、流速等参数计算管道 阻力,绘制管道阻力与流速之间的关系曲线 ,用于评估管道的水力性能。
提出改进方案和优化建议
分析问题
根据计算结果,分析给水 系统中存在的问题,如水 头损失过大、水泵效率低 下等。
提出改进方案
针对问题提出具体的改进 方案,如更换高效水泵、 优化管道布局等。
优化建议
根据改进方案提出具体的 实施步骤和注意事项,确 保优化建议的可操作性和 实用性。
THANKS
感谢观看
确定管网参数
确定管道参数
根据管网的实际情况,确定管道的材质 、管径、长度、粗糙度等参数,以便进 行水力计算。
VS
确定节点参数
根据实际情况,确定节点的流量、压力、 水位等参数,以便进行节点水力平衡的计 算。
04
CATALOGUE
进行计算和分析
进行水力计算
确定计算范围
根据给水系统的规模和要求,确定需 要进行水力计算的范围,包括管道长 度、管径、泵站位置等。

给排水系统的水力计算方法

给排水系统的水力计算方法

给排水系统的水力计算方法在建筑物的给排水系统设计中,水力计算是非常重要的一环。

通过合理的水力计算,可以确保给排水设备运行正常,提供稳定的水流和充足的水压,从而满足建筑物的日常用水需要。

本文将介绍给排水系统水力计算的基本原理和方法。

一、水力计算的基本原理水力计算是根据流体力学的基本原理,通过考虑系统中各个元件之间的水流阻力和水流动力等因素,计算出给排水管道系统中的水流速度、水压、流量等参数。

水力计算的目标是确保在设计工作条件下,给排水系统中的水流能够保持正常、平稳的运行。

二、水力计算的步骤1. 收集设计参数:首先需要收集建筑物的相关设计参数,包括供水设备的流量、水压要求,排水设备的流量要求等。

这些参数将作为水力计算的基础。

2. 选择管道材料和管径:根据设计需求和已有条件,选择适当的管道材料和管径。

常用的给水管道材料有PVC、钢管等,排水管道材料有PVC、铸铁管等。

管道的管径选择应考虑流量和水压要求。

3. 确定水流速度和管道截面积:根据设计需求和管道材料,确定水流速度和管道截面积。

流速的选择应使水流保持在合理范围内,并避免过高或过低。

管道截面积的计算应符合流量和流速的要求。

4. 计算水流阻力:根据管道长度、管道材料和截面积等参数,计算出给排水管道中水流的阻力。

常用的方法有Darcy-Weisbach公式和Hazen-Williams公式等。

5. 求解水流参数:根据系统中各个元件的水流阻力和其他因素,求解出水流的速度、水压、流量等参数。

可以使用数值计算方法,如有限元法、CFD模拟等,也可以使用经验公式进行近似计算。

6. 评估设计方案:根据水力计算结果,评估设计方案的合理性。

如果计算结果符合设计要求,即可认为设计方案是可行的;如果计算结果不符合要求,则需要调整设计参数或采用其他方案。

三、常用的水力计算方法1. Darcy-Weisbach公式:该公式是一种经验公式,用于计算管道中的水流阻力。

计算公式如下:f = (2 * L * V^2 * R) / (g * D^5)其中,f为摩擦系数,L为管道长度,V为水流速度,R为管道摩擦阻力系数,g为重力加速度,D为管道直径。

给水系统水力计算的方法步骤

给水系统水力计算的方法步骤

(2)水泵直接供水 水力计算的目的:根据计算系统所需压力和设计秒流量选泵。 (3)水泵水箱联合 2)根据管网水力计算的结果校核水箱的安装高度; 2)不能满足时,可采用放大管径、设增压设备、增加水 箱的安装高度或改变供水方式等措施; 3)根据水泵~水箱进水管的水力计算结果选泵。 5.确定非计算管路各管段的管径; 6.若设置升压、贮水设备的给水系统,还应对其设备进行 选择计算。
3.根据建筑的性质选用设计秒流量公式,计算各管段的设 计秒流量; 4.绘制水力计算表,进行给水管网的水力计算; (1)外网压力直接供水,计算目的是验证压力能否满足系 统需要。 1)依次计算H1、H2 、 H3 、 H4 ,并计算系统所需压力H; 2)当室外给水管网压力H0≥H 时,原方案可行; 3)当室外给水管网压力H0略大于或略小于H 时,适当放大 管径,降低水头损失,确保方案可行; 4)当室外给水管网压力H0小于H 很多时,修正方案,增设 增压设备。
2.4.5 水力计算的方法步骤 一. 水力计算流程图 平面图 初定方案 确定立管位置 确定最不利点 绘制平面图 绘制系统图
确定最不利点管线
节点编号
计算系统 所需压力 计算结 果分析
计算设计 秒流量
计算特殊管 件水头损失 计算非计算 管路管径
确定管径
计算水表 水头损失
计算沿程 水头损失
计算局部 水头损失
水力计算流程图245水力计算的方法步骤平面图初定方案确定立管位置绘制系统图绘制平面图确定最不利点确定最不利点管线节点编号计算设计秒流量确定管径计算沿程水头损失计算局部水头损失计算水表水头损失计算特殊管件水头损失计算系统所需压力计算结果分析计算非计算管路管径选加压储水设备二水力计算的方法步骤首先根据建筑平面图和初定的给水方式绘给水管道平面布置图及轴测图列水力计算表以便将每步计算结果填入表内使计算有条不紊的进行

空调冷冻水和冷却水循环系统水力计算简便方法

空调冷冻水和冷却水循环系统水力计算简便方法

空调冷冻水和冷却水循环系统水力计算简便方法Ξλρv 2放入大气.水系统管路水力计算是系统正确设计和优化的基础.糙度有关 ,即λ = f ( Re , K/ d)式中 : Re —雷诺数, Re = vd/ν =ρvd/μ;ν—水的运动粘滞系数 , m 2/ s ; 1 空调水循环管路水力计算的原理水管路将流量和管径不变的一段管路称为一个l ρv p y =λ = R (1可采用柯列勃洛克公式3和阿里特苏里公式中 :p y —计算管段沿程阻力损失 , Pa ;λ—沿程阻力系数 ,无因次量 ; 1 2 51 l —直管段长度 , m ;供吸压冷第 20卷第 3期 2004年 9月北京建筑工程学院学报Journal of B eijing Institu te of Civil Eng. and ArchitectureVol. 20 No. 3 Sep . 2004文章编号 :1004 - 6011 (2004) 03 - 0001 - 07空调冷冻水和冷却水循环系统水力计算简便方法许淑惠 , 罗文斌(城市建设工程系 ,北京 100044)摘要:根据空调水系统的计算原理,在不同管径下按不同流量把空调冷冻水和冷却水管路水力计算中的比摩阻绘制成计算表 ,应用该计算表能快速、准确、方便进行空调水系统管路水力计算;采用具体实例,说明空调水系统管路水力计算简便方法. 关键词:冷冻水;冷却水;水力计算中图分类号 : TU83 文献标识码 :A一个完整的中央空调系统有三大部分组成 , 即ρ—水密度 , kg/ m 3 ;冷热源、热与供冷管网、空调用户系统.空调水系 v —水速度 , m/ s ;统包括冷冻水系统和冷却水系统.冷冻水系统是把 R —单位长度沿程阻力损失,又称比摩阻, 冷热源产生的冷或热量通过管网输送到空调用户的 Pa/ m .冷水管采用钢管或镀锌管时 ,比摩阻一系统 ;冷却水系统是整个空调系统的重要组成部分 , 般为 100 Pa/ m ~ 400 Pa/ m ,最常用的为他以水作为冷却剂将冷凝器、收器、压缩机放出的 250 Pa/ m . 热量转移到冷却设备 (冷却塔、却水池等)中 ,最后 R = (2)d 2沿程阻力系数λ与流体的流态和管壁的相对粗空调水系统的管路水力计算是在已知水流量和推荐流速下,确定水管管径,计算水在管路中流动的沿程阻力损失和局部阻力损失 ,确定水泵的扬程和流量.μ—水的动力粘滞系数 , Pa ?s ; K —管壁的当量糙粒高度 , m ;空调冷冻水闭式系统管路 K = 0. 2 mm ,开式系统管路 K = 0. 5 mm ;空调冷却水系统管路 K = 0. 5 mm.空调水循环管路 ,管道设计中采用较低水流速 , 计算管段 ,计算管段沿程阻力损失 ,即流动状态一般处于紊流过渡区内 ,沿程阻力系数λ 2d 2进行计算 ,即= - 2 lg ( + ) (3) λ 3. 7 d Re λd —管道直径, m ;λ = 0. 11 ( K + 68 ) 0. 25 (4)d Re收稿日期 :2004 - 09 - 22基金项目 :建设部计划科技项目 (032111)作者简介 :许淑惠 (1966年—) ,女 ,工学硕士 ,副教授 ,热工流体教研室.112 沿程阻力损失计算表3 600ρπd 900ρπd 2式中 : q m —管段中的水质量流量 , kg/ h ;详见表 1和表 2.λ q m R = 6. 25×10(6)流不不 2北京建筑工程学院学报第 20卷在给定水状态参数及其流动状态的条件下,λ管道内的流速、量和管径的关系表达式为和ρ值均为已知 ,则式 (6)就表示为 R = f ( d , q m )的 4 q m q m 函数式.v = 2 = (5)利用公式 (4) , (5) , (6) ,计算出冷却水和冷冻水在不同水流量、不同管径、不同速度的沿程比摩阻 , 将式 (5)的流速 v 代入式 (2) ,整理成更方便的计算公式2- 8ρ d 5表 1 冷却水管不同流量、同管径、同流速的沿程比摩阻管径DN50/ mm 管径DN70/ mm 管径DN80/ mm 管径DN100/ mm 管径 DN125/ mm内径 53. 0/ mm 内径 68. 0/ mm 内径 80. 5/ mm 内径 106. 0/ mm 内径 131. 0/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 62 70. 2 0. 46 8. 05 92. 5 0. 62 16. 09 151. 0 0. 88 35. 20 169. 5 1. 11 56. 32 142. 6 1. 16 3. 82 78. 0 0. 48 8. 55 104. 3 0. 65 17. 10 170. 2 0. 93 36. 21 179. 2 1. 14 59. 34 158. 1 1. 22 4. 02 86. 2 0. 51 9. 05 116. 7 0. 69 18. 10 190. 6 0. 99 37. 21 189. 2 1. 17 62. 36 174. 5 1. 29 4. 53 108. 6 0. 57 9. 55 129. 8 0. 73 19. 11 212. 1 1. 04 38. 22 199. 5 1. 20 65. 37 191. 6 1. 35 5. 03 133. 6 0. 63 10. 06 143. 6 0. 77 20. 11 234. 7 1. 10 39. 22 210. 0 1. 24 68. 39 209. 5 1. 41 5. 53 161. 2 0.70 11. 06 173. 3 0. 85 21. 12 258. 5 1. 15 40. 23 220. 8 1. 27 71. 41 228. 3 1. 476. 03 191. 3 0. 76 12. 07 205. 8 0. 92 22. 13 283. 5 1. 21 42. 24 243. 2 1. 33 74. 42 247. 8 1. 53 6. 54 224. 0 0. 82 13. 07 241. 0 1. 00 23. 13 309. 6 1.26 44. 25 266. 7 1. 39 77. 44 268. 2 1. 60 7. 04 259. 3 0. 89 14. 08 279. 1 1. 08 24. 14 336. 8 1. 32 46. 26 291. 3 1. 46 80. 46 289. 3 1. 66 7. 54 297. 2 0. 95 15. 09 319. 9 1. 15 25.14 365. 2 1. 37 48. 28 317. 0 1. 52 83. 48 311. 2 1. 72 8. 05 337. 6 1. 01 16. 09 363. 5 1. 23 26. 15 394. 8 1. 43 50. 29 343. 7 1. 58 86.49 334. 0 1. 78 8. 55 380. 6 1. 08 17. 10 409. 9 1. 31 27. 15 425. 5 1. 48 53. 30 385. 9 1. 68 89. 51 357. 5 1. 85 9. 05 426. 2 1. 14 18.10 459. 1 1. 39 28. 16 457. 3 1. 54 56. 32 430. 5 1. 77 92. 53 381.9 1. 91 9. 55 474. 4 1. 20 19. 11 511. 1 1. 46 29. 17 490. 3 1. 59 59.34 477. 5 1. 87 96. 55 415. 6 1. 99 10. 06 525. 2 1. 27 20. 11 565.9 1. 54 30. 17 524. 5 1. 65 62. 36 433. 6 1. 96 100. 57 450. 7 2. 07管径DN150/ mm 管径DN200/ mm 管径DN250/ mm 管径DN300/ mm 管径 DN400/ mm 内径 156/ mm 内径 207/ mm 内径259/ mm 内径 309/ mm 内径 408/ mm流量 R v 流量 R v 流量 R v 流量 R v 流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 51 143. 7 1. 28 135. 77 75. 1 1. 12 241. 38 73. 0 1. 27 502.87 124. 7 1. 86 834. 76 79. 9 1. 77 92. 53 153. 5 1. 33 140. 80 80.7 1. 16 261. 49 85. 5 1. 38 522. 98 134. 8 1. 94 864. 93 85. 8 1. 84 96. 55 167. 0 1. 39 150. 86 92. 5 1. 25 281. 61 99. 1 1. 49 543. 10145. 3 2. 01 895. 10 91. 8 1. 90 100. 57 181. 1 1. 44 160. 92 105. 1 1. 33 301. 72 113. 6 1. 59 563. 21 156. 2 2. 09 925. 27 98. 1 1. 97 105. 60 199. 5 1. 52 170. 97 118. 6 1. 41 321. 83 129. 2 1. 70 583.32 167. 5 2. 16 955. 45 104. 5 2. 03 110. 63 218. 8 1. 59 181. 03 132. 8 1. 50 341. 95 145. 7 1. 80 603. 44 179. 2 2. 24 985. 62 111.2 2. 10 115. 66 239. 0 1. 66 191. 09 147. 9 1. 58 362. 06 163. 2 1.91 623. 55 191. 2 2. 31 1 015. 79 118. 1 2. 16 120. 69 260. 0 1. 73 201. 15 163. 7 1. 66 382. 18 181. 8 2. 02 643. 67 203. 7 2. 39 1 045.96 125. 1 2. 22 125. 72 282. 0 1. 80 221. 26 197. 8 1. 83 402. 29 201. 3 2. 12 663. 78 216. 6 2. 46 1 076. 13 132. 4 2. 29 130. 75 304.9 1. 88 241. 38 235. 2 1. 99 422. 41 221. 8 2. 23 683. 90 229. 8 2.53 1 106. 31 139. 9 2. 35 135. 77 328. 6 1. 95 261. 49 275. 7 2. 16 442. 52 243. 3 2. 33 704. 01 243. 5 2. 61 1 136. 48 147. 6 2. 42 140.80 353. 3 2. 02 281. 61 319. 6 2. 33 462. 64 265. 8 2. 44 724. 13 257. 5 2. 68 1 166. 65 155. 5 2. 48 150. 86 405. 2 2. 17 301. 72 366.6 2. 49 482. 75 289. 3 2. 55 744. 24 272. 0 2. 76 1 196. 82 163. 6 2. 54 160. 92 460.7 2. 31 321. 83 416.8 2. 66 502. 87 313. 8 2. 65 764. 36 286. 8 2. 83 1 226. 99 171. 9 2. 61 170. 97 519. 8 2. 45 341.95 470. 3 2. 82 522. 98 339. 3 2. 76 784. 47 302. 0 2. 91 1 257. 17 180. 4 2. 67注 :表中冷却水温度为34. 5℃( (32℃+ 37℃) / 2) ,密度 994. 3 kg/ m 3 ,运动粘滞系数0. 735×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 5 mm.不不第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法表 2 冷冻水管不同流量、同管径、同流速的沿程比摩阻3管径 DN15/ mm 内径 15. 8/ mm 管径 DN20/ mm内径 20. 3/ mm 管径 DN27/ mm内径 27. 0/ mm 管径 DN32/ mm内径 35. 8/ mm 管径 DN40/ mm内径 41. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)0. 13 0. 14 0. 15 0. 16 0. 17 0. 18 0. 19 0. 20 0. 22 0. 24 0. 26 0. 28 0. 30 0. 35 0. 4054. 8 62. 7 71. 2 80. 1 89. 5 99. 5 109. 9 120. 8 144. 1 169. 3 196. 5 225. 6 256. 7 342. 8 440. 90. 19 0. 20 0. 21 0. 23 0. 24 0. 26 0. 27 0. 29 0. 31 0. 34 0. 37 0. 40 0. 43 0. 50 0. 570. 26 0. 28 0. 30 0. 35 0. 40 0. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 9044. 8 51. 3 58. 2 77. 2 98. 9 123. 0 149. 7 178. 9 210. 6 244. 8 281. 5 320. 7 362. 3 406. 5 453. 10. 20 0. 22 0. 24 0. 27 0. 31 0. 35 0. 39 0. 43 0. 47 0. 51 0. 55 0. 59 0. 63 0. 67 0. 710. 45 0. 50 0. 55 0. 60 0. 65 0. 70 0. 75 0. 80 0. 85 0. 90 1. 001. 20 1. 40 1. 60 1. 8037. 7 45. 7 54. 5 64. 0 74. 2 85. 1 96. 8 109. 1 122. 2 136. 0 165. 7 233. 7 313. 0 403. 6 505. 60. 22 0. 24 0. 27 0. 29 0. 32 0. 34 0. 36 0. 39 0. 41 0. 44 0. 490. 58 0. 68 0. 78 0. 871. 00 1. 20 1. 40 1. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 8041. 0 57. 5 76. 6 98. 3 122. 6 49. 5 179. 1 211. 2 245. 9 283. 2 323. 1 365. 6 410. 6 458. 3 508. 50. 28 0. 33 0. 39 0. 44 0. 50 0. 55 0. 61 0. 66 0. 72 0. 78 0. 830. 89 0. 94 1. 00 1. 051. 60 1. 802. 00 2. 20 2. 40 2. 60 2. 803. 00 3. 20 3. 40 3. 60 3. 804. 00 4. 505. 0049. 7 61. 8 75. 3 90. 0 106. 0 123. 3 141. 8 161. 6 182. 6 204.9 228. 5 253. 3 279. 4 350. 2 428. 80. 34 0. 38 0. 42 0. 46 0. 51 0. 55 0. 59 0. 63 0. 67 0. 72 0. 76 0. 80 0. 84 0. 95 1. 05管径 DN50/ mm内径 53. 0/ mm 管径 DN70/ mm内径 68. 0/ mm 管径 DN80/ mm内径 80. 5/ mm 管径 DN100/ mm内径 106. 0/ mm 管径 DN125/ mm内径 131. 0/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)3. 60 3. 804. 00 4. 505. 00 5. 506. 00 6. 507. 00 7. 508. 00 8. 509. 00 9. 50 10. 0062. 8 69. 5 76. 5 95. 6 116. 6 139. 8 165. 0 192. 2 221. 5 252.8 286. 1 321. 5 359. 0 398. 5 440. 00. 45 0. 48 0. 50 0. 57 0. 63 0. 69 0. 76 0. 82 0. 88 0. 95 1. 011. 07 1. 13 1. 20 1. 268. 00 8. 50 9. 00 9. 50 10. 00 11. 00 12. 00 13. 00 14. 00 15. 00 16. 00 17. 00 18. 00 19. 00 20. 0180. 9 90. 8 101. 2 112. 2 123. 7 148. 4 175. 3 204. 4 235. 7 269.3 305. 0 342. 9 383. 1 425. 5 470. 00. 61 0. 65 0. 69 0. 73 0. 77 0. 84 0. 92 1. 00 1. 07 1. 15 1. 221. 30 1. 38 1. 45 1. 5316. 00 17. 00 18. 00 19. 00 20. 01 21. 01 22. 01 23. 01 24. 01 25. 01 26. 01 27. 01 28. 01 29. 01 16. 00129. 0 144. 9 161. 7 179. 5 198. 1 217. 6 238. 1 259. 4 281. 7 304. 9 329. 0 354. 0 379. 9 406. 7 434. 40. 87 0. 93 0. 98 1. 04 1. 09 1. 15 1. 20 1. 26 1. 31 1. 37 1. 421. 47 1. 53 1. 58 1. 6435. 01 36. 01 37. 01 38. 01 39. 01 40. 01 42. 01 44. 01 46. 01 48. 01 50. 01 53. 01 56. 01 59. 01 62. 02143. 0 150. 9 159. 1 167. 5 176. 2 185. 0 203. 3 222. 5 242. 5 263. 4 285. 2 319. 4 355. 6 393. 7 433. 71. 10 1. 13 1. 17 1. 20 1. 23 1. 26 1. 32 1. 39 1. 45 1. 51 1. 58 1. 67 1. 76 1. 86 1. 9556. 01 59. 01 62. 02 65. 02 68. 02 71. 02 74. 02 77. 02 80. 02 83. 02 86. 02 89. 02 92. 02 96. 02 100. 03120. 0 132. 7 146. 1 160. 1 174. 7 190. 0 205. 9 222. 4 239. 6 257. 4 275. 8 294. 9 314. 6 341. 8 370. 21. 15 1. 22 1. 28 1. 34 1. 40 1. 46 1. 53 1. 59 1. 65 1. 71 1. 771. 84 1. 90 1. 982. 06管径 DN150/ mm内径 156/ mm 管径 DN200/ mm内径 207/ mm 管径 DN250/ mm内径 259/ mm 管径 DN300/ mm内径 309/ mm 管径 DN350/ mm内径 359/ mm 流量 R v流量 R v流量 R v流量 R v流量 R v/ (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s) / (m 3/ h) / ( Pa/ m) / (m/ s)89. 02 92. 02 96. 02 100. 03 105. 03 110. 03 115. 03 120. 03 125. 03 130. 03 135. 03 140. 04 150. 04 160. 04 170. 04 120. 3 128. 3 139. 3 150. 8 165. 8 181. 5 197. 9 215. 0 232. 8 251. 3 270. 5 290. 4 332. 3 377. 1 424. 71. 28 1. 32 1. 38 1. 44 1. 51 1. 58 1. 65 1. 72 1. 79 1. 87 1. 942. 01 2. 15 2. 30 2. 44135. 03 140. 04 150. 04 160. 04 170. 04 180. 05 190. 05 200.05 220. 06 240. 06 260. 07 280. 07 300. 08 320. 08 340. 0963. 3 67. 9 77. 6 87. 9 98. 9 110. 4 122. 7 135. 6 163. 2 193. 4 226. 2 261. 5 299. 4 339. 8 382. 81. 12 1. 16 1. 24 1. 32 1. 40 1. 49 1. 57 1. 65 1. 82 1. 982. 15 2. 31 2. 48 2. 64 2. 81240. 06 260. 07 280. 07 300. 08 320. 08 340. 09 360. 09 380.10 400. 10 420. 11 440. 11 460. 12 480. 12 500. 13 520. 1361. 1 71. 4 82. 4 94. 3 106. 9 120. 3 134. 5 149. 4 165. 2 181.7 199. 1 217. 2 236. 1 255. 8 276. 31. 27 1. 37 1. 48 1. 58 1. 69 1. 79 1. 902. 01 2. 11 2. 22 2. 32 2. 43 2. 53 2. 64 2. 74500. 13 520. 13 540. 14 560. 14 580. 15 600. 15 620. 16 640.16 660. 17 680. 17 700. 18 720. 18 740. 19 760. 19 780. 20102. 8 111. 0 119. 5 128. 3 137. 4 146. 8 156. 5 166. 6 176. 9 187. 6 198. 6 209. 9 221. 5 233. 4 245. 61. 85 1. 932. 00 2. 08 2. 15 2. 22 2. 30 2. 37 2. 45 2. 52 2. 59 2. 67 2. 74 2. 82 2. 89600. 15 620. 16 640. 16 660. 17 680. 17 700. 18 720. 18 740.19 760. 19 780. 20 800. 20 830. 21 860. 22 890. 22 920. 2367. 8 72. 2 76. 8 81. 6 86. 5 91. 5 96. 7 102. 0 107. 5 113. 1 118. 8 127. 7 136. 9 146. 4 156. 31. 65 1. 70 1. 76 1. 81 1. 87 1. 92 1. 982. 03 2. 09 2. 14 2. 20 2. 28 2. 36 2. 44 2. 53注 :表中冷冻水温度9. 5℃( (7℃+ 12℃) / 2) ,密度 999. 75 kg/ m 3 ,运动粘滞系数1. 329×10 - 6 m 2/ s ,管壁绝对粗糙度 0. 2 mm.113 局部阻力损失ρv∑ζ 2 c t212 空调冷却水系统水力计算方法c t ′盘产管阀 ( ( 局产管阀 ( ( 4北京建筑工程学院学报第 20卷当流体通过管道的一些附件如阀门、弯头、三通、管等时 ,产生局部阻力损失 ,管段的局部阻力损失表示为2p j = (7) 式中 :p j —计算管段的总局部阻力损失 , Pa ;∑ζ—计算管段局部阻力系数之和 ,无因次.2 空调水系统水力计算方法空调冷冻水循环系统一般采用闭式系统,系统的供水温度通常为7℃,回水温度为12℃,温差为5℃,泵的流量按空调系统夏季最大计算冷负荷确定 ,即Φq m = (8)式中 : q m —系统环路总流量 , kg/ s ;Φ—系统环路的计算冷负荷 ,W ; t —冷冻水供回水温差,℃;c —冷冻水比热容 ,通常取c = 4. 187×103J / ( kg ?K) .若空调冷冻水循环系统采用一次泵循环管路 , 则水泵的扬程应能克服冷冻水系统最不利环路的用冷设备、冷设备、道、门附件等总阻力要求.即 p =∑py +p j +p m ) (9) 式中 : p —水泵扬程 , Pa ;∑py+p j+p m )—最不利环路各计算管段沿程、部和设备阻力损失之和 , Pa ; p y —各计算管段沿程阻力损失 , Pa ; p j —各计算管段总局部阻力损失 , Pa ;p m —各计算管段总设备阻力损失 , Pa.若空调冷冻水循环系统采用二次泵循环管路 , 则1)一次泵的选择a)泵的流量应等于冷水机组蒸发器的额定流量 ;b)泵的扬程为克服一次环路的阻力损失 ,其中包括一次环路的管道阻力和设备阻力 ;c)一次泵的数量与冷水机组台数相同.2)二次泵的选择a)泵的流量按分区夏季最大计算冷负荷确定 ; b)二次泵的扬程应能克服所管分区的二次最不利环路中用冷设备、管道、阀门附件等总阻力要求.无论采用一次泵冷冻水系统,还是采用二次泵冷冻水系统,选择水泵时 ,流量附加 10 %的余量 ,扬程也附加 10 %的余量 [2 ] .空调冷却水循环系统一般采用开式系统 ,水力计算是确定冷却水流量后 ,确定冷却水泵的扬程.冷却塔冷却水量可按下式计算 [3 ]Φq m = (10)式中 : q m —冷却塔冷却水量 , kg/ s ;Φ—冷却塔排走热量 , W ,压缩式制冷机 ,取制冷机负荷的 1. 3倍左右 ,吸收式制冷机 ,取制冷机负荷的 2. 5倍左右 ;t ′—冷却塔的进出水温差,℃;压缩式制冷机 ,取4℃~5℃;吸收式制冷机 ,取6℃~9 ℃;c —水的比热容 ,J / ( kg ?K) .冷却水泵所需扬程应能克服冷却水系统环路的用冷设备、冷设备、道、门附件等总阻力要求 , 即p =∑py +p j +p m ) +p 0 +ph (11)式中 : p —冷却水泵的扬程 , Pa ;∑p y+p j+pm )—冷却水循环管路总阻力损失之和 , Pa ;p y —冷却水各计算管段的沿程阻力损失 ; Pa ;p j —冷却水各计算管段的总局部阻力损失 , Pa ;p m —冷却水各计算管段中总设备阻力损失 ,Pa ;p 0—冷却塔喷嘴喷雾压力 , Pa ,约等于 49 kPa ;p h —冷却塔中水提升高度 (从冷却塔盛水213 管径的确定3 工程应用c t 4. 187×103×(12 - 7) 0 01 0 02 4 2 6 4 89 8 8 8 8 8 7 1 8 7 1 8 1 7第 3期许淑惠罗文斌 :空调冷冻水和冷却水循环系统水力计算简便方法5池到喷嘴的高差)所需的压力 , Pa .空调水系统中管内水流速按表3中的推荐值选用,或按表4根据流量确定管径 [1 ] .表 3 管内水流速推荐值/ m/ s管径/ mm 15 20 25 32 40 50 65 80 闭式系统 0. 4~0. 5 0. 5~0. 6 0. 6~0. 7 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 1. 2~1. 6 开式系统 0. 3~0. 4 0. 4~0. 5 0. 5~0. 6 0. 6~0. 8 0. 7~0. 9 0. 8~1. 0 0. 9~1. 2 1. 1~1. 4 管径/ mm 100 125 150 200 250 300 350 400 闭式系统 1. 3~1. 8 1. 5~2. 0 1. 6~2. 2 1. 8~2. 5 1. 8~2. 6 1. 9~2. 9 1. 6~2. 5 1. 8~2. 6 开式系统 1. 2~1. 6 1. 4~1. 8 1. 5~2.0 1. 6~2. 3 1. 7~2. 4 1. 7~2. 4 1. 6~2. 1 1. 8~2. 3表 4 水系统的管径和单位长度阻力损失闭式水系统开式水系统钢管直径/ mm流量/ (m 3/ h) kPa/ 100m 流量/ (m 3/ h) kPa/ 100m15 ~0. 5 ~60 —— 20 0. 5~1. 0 10~60 ——25 ~2 10~60 ~1. 3 ~43 32 ~4 10~60 1. 3~2. 0 10~4040 ~6 10~60 ~4 10~40 50 ~11 10~60 ~8 —65 11~18 10~60 ~14 — 80 18~32 10~60 14~22 — 100 32~65 10~60 22~45 — 125 65~115 10~60 45~82 10~40 150 115~185 10~47 82~130 10~43 200 185~380 10~37 130~200 10~24 250 380~560 ~26 200~340 10~18300 560~820 ~23 340~470 ~15 350 820~950 ~18 470~610 ~13 400 950~1 250 ~17 610~750 ~12 450 250~1 590 ~15 750~1 000 ~12 500 590~2 000 ~13 000~1 230 ~11的环路.根据各管段的流量 ,由表 5确定各管段直径.由表 2可查出比摩阻 R ,查各管件的局部阻力系数表 ,确定各管段的总阻力损失见表5.如图 1所示的空调冷冻水二次泵循环系统 (一级循环略去) ,此系统计算冷负荷为 48. 8 kW ,冷冻水供水温度为7℃,回水温度为1 2℃,空调机组表冷器水侧阻力为 50 kPa ,各管段的长度见表 5 ,求各管段的管径及二次水泵的流量和扬程.计算系统所需的冷冻水流量 ,为Φ 48. 8×103q m = = ( ) kg/ s = 2. 33 kg/ s = 8. 39 m 3/ h此系统最不利环路为 1 - 2 - 3 - 4 - 5 - 6组成图 1 冷冻水系统图q V / (m / h) (ρv / 2 ) / Pa c t ′ 4. 187×103×(37 - 32)ρπd 2 994. 1×3. 14×0. 152 p j =∑ζ994. 1×1. 612出止闸 6北京建筑工程学院学报第 20卷此水系统为闭式水系统,水泵的扬程为最不利环路的总阻力损失,加上表冷器的阻力损失 ,即p =∑(py +p j +p m ) = 74. 48 kPa选用水泵,流量和扬程皆考虑10 %的余量,则选用水泵的参数为流量1. 1×8. 39 m 3/ h = 9. 23 m 3/ h ,扬程1. 1×7. 59 m = 8. 35 mH 2O.= 7. 59 mH 2O表 5 冷冻水管段水力计算表管段1- 22- 3 3- 4 4- 5 5- 6 管长l /m 10 5 10 5 10 流量38. 39 4. 196 4. 196 4. 196 8. 39 管径d / mm DN50 DN40 DN40 DN40 DN50 流速v / (m/ s) 1. 06 0. 88 0. 88 0. 88 1. 06 比摩阻R / ( Pa/ m) 313. 7 307. 2 307. 2 307. 2 313. 7 局部阻力系数∑ζ14 0. 4 5. 3 0. 1 3. 5 动压2 561. 66 387. 10 387. 10 387. 10 561. 66 设备阻力 p m / kPa0 0 0 50 0 管段总损失 p / kPa11. 00 1. 69 5. 12 51. 57 5. 10 最不利环路的总阻力损失为 74. 48/ kPa 2- 5104. 196DN400. 88307. 28. 4387. 105056. 32管段 2 - 5与管段 2 - 3 - 4 - 5并联 ,不平衡率为 x = p 2 - 3 - 4 - 5 -p 2 - 5p 2 - 3 - 4 - 5=58 . 38 - 56. 3258 . 38= 3. 53 % < 15 % ,满足要求.某建筑建筑面积为 4 000 m 2 ,选用冷水机组一台 ,制冷量为 455 KW.冷凝器侧水阻力为4. 9×104 Pa ,进、冷凝器的水温分别为32℃和37℃,水处理器的阻力为2. 0×104 Pa ,冷却水管总长 48 m ,冷却塔盛水池到喷嘴的高差为 2. 5 m ,确定各管段的管径和水泵的选择参数.冷却水循环管路 ,由于管径没有沿程变化 ,认为是一个计算管段 ,则计算管段的冷却水流量为Φ 1. 3×455×103q m = = ( ) kg/ s= 28. 25 k g/ s = 1. 02×105 kg/ h = 102. 3 m 3/ h 根据冷却水流量 102. 3 m 3/ h ,查表 4 ,选用管道公称直径 DN150 mm ,管道水流速为4 q m 4×28. 25v = = ( ) m/ s= 1. 61 m/ s查表 1得比摩阻 R = 187. 43 Pa/ m ,管道长度为 48 m ,沿程压力损失为p y = Rl = (187. 43×48) Pa = 9. 0×103 Pa 弯头、回阀、阀等管件等的局部阻力系数总和∑ζ = 12. 46 ,总局部阻力为ρv 2 2= (12. 46× ) Pa2= 1. 61×104 Pa设备总阻力损失包括冷凝器阻力损失和水处理器阻力损失 ,为p m = (4. 9×104 + 2×104) Pa= 6. 9×104 Pa冷却塔喷雾所需压力p 0 = 4. 9×104 Pa 冷却水提升高度为 2. 5m ,所需的提升压力为p h = 2. 5 m ×9 807 N/ m 3 = 2. 45×104 Pa 故冷却水泵的扬程为p =∑(py +p j +p m ) +p 0 +ph = (9. 0×103 + 1. 61×104 + 6. 9×104) Pa+ 4. 9×104 Pa + 2. 45×104 Pa = 16. 76×104 Pa = 17. 1 mH 2O选用水泵,流量和扬程皆考虑10 %的余量;则选用水泵的参数为流量1. 1×102. 3 m 3/ h = 112. 5 m 3/ h ,扬程1. 1×17. 1 m = 18.81 mH 2O.参考文献 :社 ,2003出版社 ,1993第3期许淑惠罗文斌:空调冷冻水和冷却水循环系统水力计算简便方法7Simple Hydraulic Calculation of the Air Conditioning Chilled Waterand Cooling Water SystemsXu Shuhui Luo Wenbin(Dept . of Urban Construction Engineering , Beijing100044) Abstract : :Base on the theory of hydrodynamic calculation of air conditioning water systems , the ratio frictional resistance locity. The table makes the calculation quick , accurate and convenient . The application of the table is illustrated by practical examples.Key words :chilled water ; cooling water ; hydrauliccalculation。

空调水系统水力计算方法与步骤只是分享

空调水系统水力计算方法与步骤只是分享

A
B
旁通管(平衡管)
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】解题步骤
✓ 1 计算冷冻水流量
✓ 2 选定最不利环路,结合表8-5、 8-6、 8-7、 8-8依据各管段的流
量,确定各管段的流速与管径,用线性插值法确定比摩阻。
✓ 3 查表8-9,8-10确定管段的局部阻力系数,计算各管段的局部阻

✓ 4 计算个管段的总阻力 ✓ 5 并联管路阻力平衡计算 ✓ 6 系统总阻力计算 ✓ 7 水泵的流量与扬程计算
注意:计 算结果要 用表格的 形式!!
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
✓ 泵的扬程为克服一次环路的总阻力损失。
✓ 一次泵台数与冷水机组相同
选泵时,
(2)二次泵
✓ 泵的流量按分区夏季最大计算冷负荷确定。
水泵的流 量与扬程 均要乘以
✓ 泵的扬程应能克服所管分区的二次最不利环路的总安阻全力系。数
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计 算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组 表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次 水泵的流量和扬程。
空调水系统水力计算方法与步骤
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即

水系统管道阻力计算

水系统管道阻力计算

空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即(1-1)若直管段长度l=1m时,则式中λ——摩擦阻力系数,m;——管道直径,m;R——单位长度直管段的摩擦阻力(比摩阻),Pa/m;——水的密度,kg/m3;——水的流速,m/s。

对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

当水温为20℃时,冷水管道的摩擦阻力计算表可以从《实用供热空调设计手册》中查询。

根据管径、流速,查出管道动压、流量、比摩阻等参数。

计算管道沿程阻力时,室内冷、热负荷是计算管道管径大小的基本依据,对于PAU机组管道管径进行计算时,应考虑其提供的仅为新风负荷,室内负荷是由风机盘管承担。

所以这种空调末端承担负荷应计算精确,以避免负荷叠加。

同时应清楚了解水管系统的方式,如同程式,异程式。

不同的接管方式对沿程阻力具有一定的影响。

在计算工程中,比摩阻宜控制在100-300Pa/m,通常不应超过400Pa/m。

二、局部阻力(一)局部阻力及其系数在管内水的流动过程中,当遇到各种配件如阀门、弯头等时,由于涡流而导致能量损失,这部分损失习惯上称为局部阻力()。

(2-1)式中——管道配件的局部阻力系数;——水流速度,m/s。

常用管道的配件可以通过相应的表格进行查询。

根据管道管径的不同以及管道上的阀门、弯头、过滤器、除污器、水泵入口等能出现局部阻力的类别进行查询,得到不同的局部阻力系数,再利用公式计算出局部阻力。

对于三通而言,不同的混合方向及方式,会出现不同的阻力系数,且数值相差比较大。

因此,查询三通阻力系数时,应根据已有的混合方式进行查询,进而得到更准确的局部阻力系数。

在实际计算水管局部阻力时,应先确定管道上的管件种类、数目,尤其是水管接进机组、水泵、末端。

给水系统水力计算的方法步骤

给水系统水力计算的方法步骤
2.4.5 水力计算的方法步骤 一. 水力计算流程图 平面图 初定方案 确定立管位置 确定最不利点 绘制平面图 绘制系统图
确定最不利点管线
节点编号
计算系统 所需压力 计算结 果分析
计算设计 秒流量
计算特殊管 件水头损失 计算非计算 管路管径
确定管径
计算水表 水头损失
计算沿程 水头损失
计局部 水头损失
(2)水泵直接供水 水力计算的目的:根据计算系统所需压力和设计秒流量选泵。 (3)水泵水箱联合 2)根据管网水力计算的结果校核水箱的安装高度; 2)不能满足时,可采用放大管径、设增压设备、增加水 箱的安装高度或改变供水方式等措施; 3)根据水泵~水箱进水管的水力计算结果选泵。 5.确定非计算管路各管段的管径; 6.若设置升压、贮水设备的给水系统,还应对其设备进行 选择计算。
3.根据建筑的性质选用设计秒流量公式,计算各管段的设 计秒流量; 4.绘制水力计算表,进行给水管网的水力计算; (1)外网压力直接供水,计算目的是验证压力能否满足系 统需要。 1)依次计算H1、H2 、 H3 、 H4 ,并计算系统所需压力H; 2)当室外给水管网压力H0≥H 时,原方案可行; 3)当室外给水管网压力H0略大于或略小于H 时,适当放大 管径,降低水头损失,确保方案可行; 4)当室外给水管网压力H0小于H 很多时,修正方案,增设 增压设备。
选加压、 储水设备
二、水力计算的方法步骤
首先根据建筑平面图和初定的给水方式,绘给水管道平面布
置图及轴测图,列水力计算表,以便将每步计算结果填入表内, 使计算有条不紊的进行。 1.根据轴测图选择最不利配水点,确定计算管路,若在轴 测图中难判定最不利配水点,则应同时选择几条计算管路,分 别计算各管路所需压力,其最大值方为建筑内给水系统所需的 压力; 2.以流量变化处为节点,从最不利配水点开始,进行节点 编号,将计算管路划分成计算管段,并标出两节点间计算管段 的长度;

水系统管道阻力计算

水系统管道阻力计算

Summary of work performed during the quarter considered important and convering what was learned from these experiences, including as necessary examples of detailed analysis or the presentation of a particular aspect of the training undertaken during the period. Engineering Supervisor Comments:空调水系统的水力计算根据舒适性空调冷热媒参数,应对冷热源装置、末端设备、循环水泵功率等进行考虑,因此,空调冷水供回水温差应大于等于5℃。

一、沿程阻力(摩擦阻力)流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力,即(1-1)若直管段长度l=1m 时,则式中 λ——摩擦阻力系数,m ;——管道直径,m ;R ——单位长度直管段的摩擦阻力(比摩阻),Pa/m ;——水的密度,kg/m 3; ——水的流速,m/s 。

Summary of work performed during the quarter considered important and convering what was learned from these experiences, including as necessary examples of detailed analysis or the presentation of a particular aspect of the training undertaken during the period. Engineering Supervisor Comments:对于紊流过渡区域的摩擦阻力系数λ,可由经验公式计算得到。

空调水管水力计算

空调水管水力计算

一、空调水系统的设计原则:1、力求水力平衡;2、防止大流量小温差;3、水输送符合规范要求;4、变流量系统宜采用变频调节;5、要处理好水系统的膨胀与排气;6、解决好水处理与水过滤;7、切勿忽视管网的保冷与保温效果。

二、冷冻水、冷却水管的计算1、压力式水管道管径计算D=103πνL4(mm )公式中 L------水流量(m 3/s )v-------计算流速(m/s )一般水管系统的管内水流速可参考表13-12的推荐值取用表13-13选择。

2、直线管段的阻力计算Δh=d l λ×22v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa )λ---水与管内壁间的摩擦阻力系数;l----直管段的长度(m );d----管内径(m );ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3R-----长度为1m 直管段的摩擦阻力(Pa/m )三、空调设备流量计算由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S )Q-----空调制冷或制热量(Kw )C-----水的比热容,4.2KJ/Kg*℃ΔT---进出空调设备的供回水温差,ΔT =T G -T H四、风机盘管选择1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。

2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a仅冷却使用 a=1.10作为加热、冷却两用 a=1.20仅作为加热用 a=1.153、依据空调冷负荷选择风机盘,一般按中档运行能力选择。

4、校核风量:L=)(3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )Q-----室内空调冷负荷(KW)h n-----室内空气计算温度下空气焓值(KJ/Kg)h s------室内空气送风温度下空气焓值(KJ/Kg)ρ-----空气密度,取标态下1.2Kg/m3五、送风温差1、一般舒适性空调送风温差:送风高度≤5m 送风温差Δt s≤10℃送风高度>5m 送风温差Δt s≤15℃2、工艺性空调的送风温差:六、集水器的选择:1、通常用到集水器及分水器时水系统至少要分为三个子系统以上才会考虑用之!集水器与分水器的管径,接其中水的流速大致控制在通常情况下0.5~0.8m/s,并应大于最大接管开口直径的二倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号管段说明相对粗糙度公称
直径
内径流量
K DN(m)(l/s)1总回水管10.00033500.359281.400
2水泵进水立管0.00022500.25793.800
3水泵出水立管0.00022500.25793.800
4总回水管20.00033500.359281.400
5蒸发器进水立管0.00023000.309117.800
6蒸发器出水立管0.00023000.309117.800
7总供水管0.00033500.359281.400蒸发器压降94200
冷水循环管路压降53990.866
冷水机房外压降120000
冷水总压降268190.8664
冷水泵杨程29.50099531
离心蒸发器出口0.00023000.309117.8蒸发器入口0.00023000.309117.8
冷凝器出口0.00053000.309138.5
冷凝器入口0.00052500.257138.5螺杆蒸发器出口0.00022000.20745.8蒸发器入口0.00022000.20745.8
冷凝器出口0.00052000.20755
冷凝器入口0.00052000.20755
冷冻水供水0.00023500.359281.4
冷冻水回水0.00023500.359281.4
冷却水供水0.00054000.408332
冷却水回水0.00054000.408332
集水器8000.800281.4集水器小管0.00022000.20740.24冷水系统水力计算
流量流速沿程阻力系

雷诺数Re动压比摩阻密度
(m3/h)(m/s)λReρv²/2(Pa)(Pa/m)(kg/m3)1013.040 2.7810.019708778.67883866.18203.56999.497 337.680 1.8090.019330027.94511635.63124.00999.497 337.680 1.8090.019330027.94511635.63124.00999.497 1013.040 2.7810.019708778.67883866.18203.56999.497 424.080 1.5720.019344721.05591234.4474.91999.497 424.080 1.5720.019338521.55551234.9475.02999.901 1013.040 2.7810.019696031.92723867.75203.74999.901 424.080 1.5720.018625989.97621234.9472.89999.901 424.080 1.5720.018625989.97621234.4472.86999.497 498.600 1.8480.022735989.91261695.85122.77993.325 498.600 2.6710.023884906.15953550.02322.22995.024 164.880 1.3600.020363133.1919925.1290.55999.901 164.880 1.3600.020363133.1919924.7590.51999.497 198.000 1.6340.025436076.97721325.34158.50993.325 198.000 1.6340.025436076.97721327.61158.77995.024 1013.040 2.7810.0171287093.8423867.75186.24999.901 1013.040 2.7810.0171287093.8423866.18186.17999.497 1195.200 2.5410.021*******.0683205.96163.37993.325 1195.200 2.5410.021*******.0683211.44163.65995.024 1013.0400.5600.011577583.3617156.85 2.25999.901 144.864 1.1960.020319203.9042715.5270.46999.901
粘滞系数管长沿程阻力局部阻力系数局部阻力总阻力
L(m)Pa Pa Pa 0.00000140889700.0001974.526182 1.66185.8952338160.421 0.00000140883100.000384.3999672 5.69159.5343619543.934 0.00000140882300.000285.1999757 5.58995.9712479281.171 0.000001408819300.0003928.6964250.83092.9476167021.644 0.000001408847400.0003550.852********.8735376019.726 0.000001434641400.0003105.94363922469.8714645575.815 0.00000143467000.0001426.209393 1.86961.9450418388.154
39335.038553990.866 0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758
0.0000007758。

相关文档
最新文档