应用数理统计-4回归分析(楚)
概率论与数理统计-回归分析
第11章 回归分析设x 为普通变量,Y 为随机变量。
如果当x 变化时,Y 随着x 的变化大体上按某种趋势变化,则称x 与Y 之间存在相关关系,即),0(~,)(2σεεN x f Y +=例如,某地人均收入x 与某种商品的消费量Y 之间的关系;森林中树木的断面直径x 与高度Y 之间的关系;某种商品的价格x 与销售量Y 之间的关系;施用氮肥、磷肥、钾肥数量1x ,2x ,3x 与某种农作物产量Y 之间的关系。
在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的近似函数关系或得到样点之外的数据。
我们确定的函数要求在某种距离意义下的误差达到最小(通常用最小二乘法,即考虑使各数据点误差平方和最小)。
由一个(或几个)普通变量来估计或预测某个随机变量的取值时,所建立的数学模型及所进行的统计分析称为回归分析。
§11.1 一元线性回归假设有一批关于x 与Y 的离散样点),(,),,(),,(2211n n y x y x y x集中在一条直线附近,说明x 与Y 之间呈线性相关关系,即),0(~,2σεεN bx a Y ++=称为一元线性回归模型。
一、模型中的参数估计 1、b a ,的估计 首先引进记号∑∑∑∑∑=====-=-=-===ni i i xy ni i yy ni i xx ni ini iyx n y x S y n y S x n x S y n y x n x 11221221111按最小二乘法可得到xxxyS S b =ˆ x b y a ˆˆ-= 称x b a yˆˆˆ+=为Y 关于x 的一元线性回归方程。
2、2σ的估计)ˆ(21ˆ22xx yy S b S n --=σ求出关于的一元线性回归方程。
解:先画出散点图如下计算出 3985193282503.6714510======xy yy xx S S S y x n483.0ˆ==xxxyS S b 735.2ˆˆ-=-=x b y a所求的回归方程是x y483.0735.2ˆ+-=。
应用回归分析第四版答案
应用回归分析第四版答案【篇一:应用回归分析人大版前四章课后习题答案详解】应用回归分析(1-4章习题详解)(21世纪统计学系列教材,第二(三)版,何晓群,刘文卿编著中国人民大学出版社)目录1 回归分析概述 ....................................................................................................... (6)1.1 变量间统计关系和函数关系的区别是什么? (6)1.2 回归分析与相关分析的区别与联系是什么? (7)1.3回归模型中随机误差项?的意义是什么? (7)1.4线性回归模型的基本假设是什么? (7)1.5 回归模型的设置理论根据是什么?在回归变量设置中应该注意哪些问题? (8)1.6收集,整理数据包括哪些内容? (8)1.7构造回归理论模型的基本根据是什么? (9)1.8为什么要对回归模型进行检验? (9)1.9回归模型有哪几个方面的应用? (10)1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合? (10)2 一元线性回归 ....................................................................................................... . (10)2.1一元线性回归模型有哪些基本假定? (10)2.2考虑过原点的线性回归模型足基本假定,求ny??*x??i1ii,i?1,2,...n 误差?1,?2,...?n仍满?1的最小二乘估计。
.............................................................................. 11 n2.3证明?e?o,?xe?0. .................................................................................. . (11)i?1ii?1ii2.4回归方程e(y)????x的参数?,?o101的最小二乘估计与最大似然估计在什么条件下等价?给出理由? (12)2.5证明??0是??0的无偏估计。
概率论与数理统计(回归分析)
y 0 1 x , ~ N(0, 2)
由(9.1)式,不难算得y的数学期望:
(9.1)
E( y) 0 1x
(9.2)
该式表示当x已知时,可以精确地算出E(y).称方程
(9.2)为y关于x的回归方程.
现对变量x, y进行了n次独立观察,得样本(xi,yi) (i = 1,2,…,n).据(9.1)式,此样本可由方程
由 ~N(0,2)的假定,容易推出y ~N(0 + 1x, 2)
9.2 回归分析
本章主要讨论一元线性回归分析和可化为线性回 归的一元非线性回归分析.
它们是反映两个变量之间关系的简单模型,但从 中可以了解到回归分析的基本思想、方法和应用.
9.2 回归分析
9.2.1 一元线性回归分析
我们用一个例子来说明如何进行一元线性回归分 析
称(9.6)或(9.7)为正则方程.
(9.6) (9.7)
9.2.1 一元线性回归分析
1.参数0和1的最小二乘估计
解正则方程得
ˆ0
y
n
ˆ1 x
ˆ1
( xi x)( yi
i 1
n
( xi x)2
i 1
y)
l xy l xx
其中
1n x n i1 xi ,
为了研究合金钢的强度和合金中含碳量的关系, 序号专业1人员2收集3 了142组5数据6如表7 9.1所8 示9. 10 11 12
含 碳 量 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.20 0.21 0.23 x(%) 合 金 钢 42.0 43.0 45.0 45.0 45.0 47.5 49.0 53.0 50.0 55.0 55.0 60.0 的强度 y(107Pa)
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考标准答案
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案————————————————————————————————作者:————————————————————————————————日期:第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图9080706050xi360340320300280y i由散点图不能够确定y 与x 之间是否存在线性关系,先建立线性回归方程然后看其是否能通过检验线性回归分析的系数模型 非标准化系数标准化系数T 值 P 值95% 系数的置信区间β值 学生残差 β值下限上限 1 常数项 193.951 46.796 4.145 0.003 86.039 301.862x1.8010.6850.6812.629 0.030 0.2213.381由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
应用统计学 第六章 回归分析.ppt
weighti bˆ0 bˆ1heighti ei
样本回归线
回归分析的任务:从样本 回归线估计总体回归线
身高
总体回归函数:E(weight / height) b0 b1height
其随机形式:weight b0 b1height
总体回归函数说明在给定的身高下,体重平均 水平。
weightˆ 134 4.09heighbtˆ0 134,bˆ1 4.09
一个身高60的妇女体重平均111.5,最大偏差12
猜体重平均值,最大偏差:26
160
155
150 总变异 (wi w)2 4606.8
140
130
体重均值123.6
120
110
Ìå ÖØ POUN
150
140 能不能猜得更准?
130
134.0
120
113.2
110
Ìå ÖØ POUN
100
90
56
58
60
62
64
66
68
70
Éí ¸ß INCH
平均身高62.85
160
weightˆ 134 4.09height
150
观140测值weighti
130
这条直线的含 义是什么?
weighti weig1h2t0ˆi ei残差
ˆk
e1
e
e2
en
Yi 0 1X1i k X ki i
多元回归模型的经典假设
假设1: x1,x3, … xk是非随机的。
假设2:E(i)=0 i=1,2, …n 假设3:同方差Var(i)=2 (E(ii)= 2 ) 假设4:无序列相关, cov (ij)=E(ij)=0 假设5:x诸变量间无准确的线性关系,即:无多重共
应用统计方法第四章-回归分析PPT课件
• 回归分析概述 • 线性回归分析 • 非线性回归分析 • 多元回归分析 • 回归分析的注意事项
01
回归分析概述
回归分析的定义
回归分析是一种统计学方法,用于研 究自变量和因变量之间的相关关系, 并建立数学模型来描述这种关系。
它通过分析因变量对自变量的依赖程 度,来预测因变量的未来值或解释因 变量的变异。
影响
共线性会导致回归系数不 稳定,降低模型的预测精 度和可靠性。
解决方法
通过剔除不必要的自变量、 使用主成分分析等方法来 降低共线性的影响。
05
回归分析的注意事项
数据质量与预处理数据完整性源自确保数据集中的所有必要 信息都已收集,没有遗漏 或缺失值。
数据准确性
核实数据的准确性,并处 理任何错误或异常值。
回归分析的分类
线性回归分析
研究自变量和因变量之间线性关系的回归分析。
多元回归分析
研究多个自变量与一个因变量之间关系的回归分析。
ABCD
非线性回归分析
研究自变量和因变量之间非线性关系的回归分析,如多 项式回归、指数回归、对数回归等。
一元回归分析
研究一个自变量与一个因变量之间关系的回归分析。
回归分析的应用场景
02
线性回归分析
线性回归模型
线性回归模型
描述因变量与自变量之间线性关系的 数学模型。
模型形式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)
最小二乘法估计
最小二乘法
01
通过最小化预测值与实际值之间的残差平方和来估计回归参数
应用回归分析第四版PPT(PDF) 第10章 含定性变量的回归模型
10.1
一、简单情况
粮食产量的回归模型为:
的影响,在一个中等收入的样本框中,随机调查了13
建立
这个结果表明,中等收入的家庭每增加1万元收入,平
二、复杂情况
某些场合定性自变量可能取多类值,例如某商厦策划营销
x
+x 1
一、分段回归
例
化,即批量大于500时成本明显下降。
我们考虑由两段构成
引入两个新的自变量
图10.2
§
线回归拟合,这一点还需要做统计的显著性检验,这只需
二、回归系数相等的检验例10.3
回归模型(
庭的两个线性回归模型,分别为:
(10.8)
输出结果
另外,表
没有通过显著性检验,并且比β
个可能结果,这样的因变量也可用虚拟变量来表示,虚拟变量的取值可取
由于y
二、定性因变量回归的特殊问题
1.
2.
3.
布,所以因变量均值受到如下限制:
一、分组数据的
针对
限制在
所有连续型随机变量的分布函数都符合要求,我们
=
p P
(
接作为回归模型中的因变量。
例
序号
Logistic
计算出经验回归方程为
性变量的回归模型,但是仍然存在一个不足之处,就是
用加权最小二乘法得到的
二、未分组数据的
设y是0-1型变量,x
于是y
0-1型分布,概率函数为:
对数似然
函数
例10.5 查项目是
序号1 2
以下是
Variable B S.E. Wald df Sig R Exp(B)。
应用回归分析-第4章课后习题参考答案
第4章违背基本假设的情况思考与练习参考答案4.1 试举例说明产生异方差的原因。
答:例4.1:截面资料下研究居民家庭的储蓄行为Y i=β0+β1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例4.2:以某一行业的企业为样本建立企业生产函数模型Y i=A iβ1K iβ2L iβ3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
4.2 异方差带来的后果有哪些?答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。
《应用数理统计》吴翊李永乐第四章-回归分析课后作业参考答案
第四章 回归分析课后作业参考答案4.1 炼铝厂测得铝的硬度x 与抗张强度y 的数据如下:i x68 53 70 84 60 72 51 83 70 64 i y288 298 349 343 290 354 283 324 340 286(1)求y 对x 的回归方程(2)检验回归方程的显著性(05.0=α) (3)求y 在x =65处的预测区间(置信度为0.95) 解:(1) 1、计算结果一元线性回归模型εββ++=x y 10只有一个解释变量其中:x 为解释变量,y 为被解释变量,10,ββ为待估参数,ε位随机干扰项。
()()()()685.222,959.4116,541.35555.76725.19745.109610,5.3151,5.671221212112121211=-==-====-=-==-=--==-=-======∑∑∑∑∑∑∑∑========n Q U L Q L L U y n yyy L y x n y x y y x x L x n xxx L n y n y x n x ee yy e xxxyni ini i yy ni i i n i i i xy ni ini i xx ni i n i i σ使用普通最小二乘法估计参数10,ββ上述参数估计可写为95.193ˆˆ,80.1ˆ101=-===x y L L xxxy βββ 所求得的回归方程为:x y80.195.193ˆ+= 实际意义为:当铝的硬度每增加一个单位,抗张强度增加1.80个单位。
2、软件运行结果 根据所给数据画散点图过检验由线性回归分析系数表得回归方程为:x y801.1951.193ˆ+=,说明x 每增加一个单位,y 相应提高1.801。
(2) 1、计算结果①回归方程的显著性检验(F 检验):0H 线性回归效果不显著 :1H 线性回归效果显著()91.62/=-=n Q UF e在给定显著性水平05.0=α时,()()F F n F <==--32.58,12,195.01α,所以拒绝0H ,认为方程的线性回归效果显著 ②回归系数的显著性检验(t 检验)0:10=βH 0:11≠βH()628.22/ˆ1=-=n Q L t e xx β在给定显著性水平05.0=α时,()()t t n t<==--306.282975.021α,所以拒绝0H ,认为回归系数显著,说明铝的硬度对抗张强度有显著的影响。
高中数学选修《回归分析的基本思想及其初步应用》共张PPT课件
学.科.网
a. 比《数学3》中“回归”增加的内
数学3——统计
容选修1-2——统计案例
5. 引入线性回归模型
1. 画散点图
2. 了解最小二乘法 的思想
y=bx+a+e
6. 了解模型中随机误差项e产 生的原因
3. 求回归直线方程
y=bx+a
4. 用回归直线方程 解决应用问题
7. 了解相关指数 R2 和模型拟 合的效果之间的关系
编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170
体重/kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
根据最小二乘法估计a 和b 就是未知参数a和b的最好估计,
n i 1
yi
例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。
编号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170
体重/kg 48 57 50 54 64 61 43 59
求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。
增加一个单位,体重y就增加0.849个单位,这表
2、由散点图知道身高和体重有比较好的
线性相关关系,因此思可考以用P线3性回归方程
刻 3直、画 线从它 的散们 附点之 近图间 ,还的 而产看的关 不生到原系是,随因。在样机一是本条误什点直差散么线项布?上在e,某所一以条
不能用一次函数y=bx+a描述它们关系。
我们可以用下面的线性回归模型来表示: y=bx+a+e,其中a和b为模型的未知参数, e称为随机误差。
应用统计学:回归分析PPT课件
03
使用方法
通过菜单和对话框选择分析方法,导入数据,设置参数,运行分析并查
看结果。
Stata软件介绍
适用范围
Stata(Statistical Data Analysis) 是一款适用于各种统计分析和数 据管理的软件,尤其适用于回归 分析。
特点
功能强大、命令语言简洁,支持多 种数据管理操作,提供多种统计分 析方法,结果输出详细且可视化效 果好。
使用方法
通过命令行输入分析命令,导入数 据,设置参数,运行分析并查看结 果。
R软件介绍
适用范围
R(Software for Statistical Computing)是一款开源的统 计软件,适用于各种统计分析,
包括回归分析。
特点
功能强大、社区活跃、可扩展性 强,支持多种编程语言和数据可 视化工具,提供丰富的统计函数
分层回归分析的基本思想是将多个自变量分为若干个层次,每个层次内 部的自变量之间存在较强的相关性,而不同层次的自变量之间相关性较
弱。
分层回归分析在生态学、社会学、医学等领域有广泛应用,例如研究不 同层次的人口特征对健康状况的影响、研究不同层次的社会经济因素对 犯罪率的影响等。
主成分回归分析
主成分回归分析的基本思想是将多个自变量进行主成 分分析,得到少数几个主成分,这些主成分能够反映 原始数据的大部分变异,然后利用这些主成分进行回 归分析。
线性回归模型
线性回归模型是回归分析中最常用的一种模型,其形式为 (Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + epsilon)。
其中 (Y) 是因变量,(X_1, X_2, ldots, X_p) 是自变量,(beta_0, beta_1, ldots, beta_p) 是回归系数,(epsilon) 是误差项。
回归分析的基本思想及其初步应用ppt
线性回归模型的评估是检验模型预测效果的重 要步骤。评估的指标包括模型的拟合优度、显 著性检验和预测精度等。
显著性检验可以通过F检验和t检验来实现,用于 检验模型的参数是否显著不为零。
03
非线性回归分析
多项式回归
04
回归分析的初步应用
经济预测
总结词
通过分析历史数据和相关经济指标,回归分 析可以预测未来的经济趋势和变化。
详细描述
回归分析在经济预测中应用广泛,例如,通 过分析历史GDP、消费、投资等数据,可以 预测未来经济增长速度、通货膨胀率等经济 指标。这种预测有助于企业和政府制定经济 政策,进行资源分配和投资决策。
结果解读
查看回归分析结果,包括系数、标 准误、显著性等。
03
02
线性回归分析
选择回归分析模块,设置自变量和 因变量。
模型评估
根据回归分析结果评估模型的性能 。
04
THANKS
感谢观看
05
回归分析的注意事项
数据质量
01
02
03
完整性
确保数据集中的所有观测 值都完整无缺,没有遗漏 或缺失的数据。
准确性
数据应准确无误,避免误 差或错误的测量和记录。
一致性
不同来源或不同时间点的 数据应具有一致的格式和 标准,以便进行比较和分 析。
过拟合与欠拟合
过拟合
模型在训练数据上表现良好,但 在测试数据上表现较差。原因是 模型过于复杂,导致对训练数据 的过度拟合。
它通过找出影响因变量的因素,并确 定这些因素对因变量的影响程度,来 预测因变量的取值。
回归分析的分类
应用数理统计回归分析课件
n
xi yi ? nx y
i?1
i?1
n
n
? ? Sxx ? (xi ? x)2 ? xi2 ? nx 2
i?1
i?1
则
? ?
b?
?
?
S xy S xx
? ?
a?
?
y?
xb?
12
最小二乘估计
所求线性回归方程为 y? ? a? ? b?x 由 a? ? y ? xb? 知 y ? a? ? b?x 所以 y? ? y ? b?(x ? x)
(n? 2)??2 ?2
(n
?
2)
?
b?? b
??
Sxx ~t(n? 2)
18
线性假设的显著性检验
在H0成立时,取统计量为
T
?
b?
??2
S xx ~ t(n ? 2)
给定显著性水平? ,H0的拒绝域为
b?
t ? ??2
S xx ? t? (n ? 2) 2
计算出|t|的值,查出 t? (n ? 2) 2
19
线性假设的显著性检验
若
t
?
t?
2
(,n ?则2)拒绝H0;否则就接受
H0 。拒绝H0,意味着回归效果是显
著的。在回归效果显著的情况下,
对回归系数作区间估计,可得出b的
置信度为1-? 的置信区间为
? ? (b,
b
)
?
???b??
t? 2
(n
?
2)
?
? , b?? t? (n ? 2)
S xx
2
? ??
称为一元正态线性回归模型。
应用数理统计课件
SPSS在统计中的应用
数据输入与管理
SPSS提供了数据编辑器,方便用户输入和 管理数据。
描述性统计
SPSS可以进行描述性统计,包括频数、均 值、标准差等计算。
高级统计分析
SPSS支持多种高级统计分析方法,如回归 分析、因子分析、聚类分析等。
报告生成
SPSS可以将分析结果导出为各种格式的报 告,方便用户进行汇报和交流。
季节性指数
计算时间序列的季节性指数,通过比较不同时间段的数据,了解季 节性变化对整个序列的影响程度。
季节性图
绘制时间序列的季节性图,直观地展示时间序列的季节性规律和变 化趋势。
08 统计软件应用
Excel在统计中的应用
描述性统计
Excel提供了丰富的函数和工具,可以 进行平均数、中位数、众数、方差、标
应用数理统计课件
目录
CONTENTS
• 引言 • 概率论基础 • 统计推断 • 回归分析 • 方差分析 • 多元统计分析 • 时间序列分析 • 统计软件应用
01 引言
什么是应用数理统计
定义
应用数理统计是一门将数学原理和统 计方法应用于实际问题求解的学科。 它利用概率论和数理统计的理论,通 过对数据的收集、整理、分析和推断 ,为决策提供依据。
03 统计推断
点估计
总结词
点估计是一种用确定的数值对未知参数进行估计的方法。
详细描述
点估计的基本思想是用一个数值来近似表示未知参数的值。常见的点估计方法包括最大似然估计和最小二乘估计 等。这些方法通过构造适当的统计量,使得估计的参数值尽可能地接近真实值。
区间估计
总结词
区间估计是一种给出未知参数可能取值范围的方法。
核心概念
工程水文学-第4章习题_水文统计附答案
第四章水文统计本章学习的内容和意义:本章应用数理统计的方法寻求水文现象的统计规律,在水文学中常被称为水文统计,包括频率计算和相关分析。
频率计算是研究和分析水文随机现象的统计变化特性,并以此为基础对水文现象未来可能的长期变化作出在概率意义下的定量预估,以满足水利水电工程规划、设计、施工和运行管理的需要。
相关分析又叫回归分析,在水利水电工程规划设计中常用于展延样本系列以提高样本的代表性,同时,也广泛应用于水文预报。
本章习题内容主要涉及:概率、频率计算,概率加法,概率乘法;随机变量及其统计参数的计算;理论频率曲线(正态分布,皮尔逊III型分布等)、经验频率曲线的确定;频率曲线参数的初估方法(矩法,权函数法,三点法等);水文频率计算的适线法;相关系数、回归系数、复相关系数、均方误的计算;两变量直线相关(直线回归)、曲线相关的分析方法;复相关(多元回归)分析法。
一、概念题(一)填空题1、必然现象是指____________________________________________。
2、偶然现象是指。
3、概率是指。
4、频率是指。
5、两个互斥事件A、B出现的概率P(A+B)等于。
6、两个独立事件A、B共同出现的概率P(AB)等于。
7、对于一个统计系列,当C s= 0时称为;当C s﹥0时称为;当C s﹤0时称为。
8、分布函数F(X)代表随机变量X 某一取值x的概率。
9、x、y两个系列,它们的变差系数分别为C V x、C V y,已知C V x>C V y ,说明x系列较y系列的离散程度。
10、正态频率曲线中包含的两个统计参数分别是,。
11、离均系数Φ的均值为,标准差为。
12、皮尔逊III型频率曲线中包含的三个统计参数分别是,,。
13、计算经验频率的数学期望公式为。
14、供水保证率为90%,其重现期为年。
15、发电年设计保证率为95%,相应重现期则为年。
16、重现期是指。
17、百年一遇的洪水是指。
18、十年一遇的枯水年是指。
应用数理统计方法
应用数理统计方法一、前言数理统计是一门基础性的学科,它在各个领域中都有着广泛的应用。
本文将介绍数理统计的基本概念和方法,以及如何应用这些方法解决实际问题。
二、基本概念1.总体和样本总体是指研究对象的全体,样本是从总体中抽取出来的一部分。
在实际应用中,由于总体往往非常庞大,因此我们只能对样本进行研究,通过对样本的研究来推断总体的特征。
2.参数和统计量参数是描述总体特征的数字指标,如平均数、方差等;统计量则是描述样本特征的数字指标,如样本均值、样本方差等。
通过对统计量进行分析,我们可以推断出总体参数的值。
3.抽样方法抽样方法包括随机抽样、系统抽样、整群抽样等。
其中随机抽样是最常用的一种方法,在实际应用中也被广泛采用。
三、数据处理1.数据收集在进行数据处理之前,首先需要收集数据。
数据可以通过问卷调查、实验观测等方式获取。
2.数据清洗在收集到数据之后,需要对数据进行清洗。
数据清洗包括删除重复数据、填补缺失数据等,以保证数据的准确性和完整性。
3.描述统计描述统计是对收集到的数据进行总结和分析的过程。
常用的描述统计方法包括频数分布、直方图、箱线图等。
四、概率分布1.离散型随机变量离散型随机变量是指取有限或无限个值的随机变量,如二项分布、泊松分布等。
2.连续型随机变量连续型随机变量是指取任意实数值的随机变量,如正态分布、指数分布等。
五、参数估计在实际应用中,我们往往只能通过样本来推断总体参数的值。
参数估计是根据样本统计量来推断总体参数值的过程。
常用的参数估计方法包括点估计和区间估计。
六、假设检验假设检验是一种通过样本推断总体特征是否符合某种假设的方法。
假设检验包括单样本检验、双样本检验等多种类型。
七、回归分析回归分析是一种通过建立数学模型来研究变量之间关系的方法。
回归分析包括简单线性回归、多元线性回归等多种类型。
八、实例应用1.医学领域在医学领域中,数理统计被广泛应用于临床试验、流行病学研究等方面。
例如,可以利用假设检验来判断某种药物是否有效,或者利用回归分析来研究某些因素对疾病发生的影响。
应用回归分析第4章课后习题参考答案
应用回归分析第4章课后习题参考答案第4章违背基本假设的情况思考与练习参考答案试举例说明产生异方差的原因。
答:例:截面资料下研究居民家庭的储蓄行为Y i=0+1X i+εi其中:Y i表示第i个家庭的储蓄额,X i表示第i个家庭的可支配收入。
由于高收入家庭储蓄额的差异较大,低收入家庭的储蓄额则更有规律性,差异较小,所以εi的方差呈现单调递增型变化。
例:以某一行业的企业为样本建立企业生产函数模型Y i=A i1K i2L i3eεi被解释变量:产出量Y,解释变量:资本K、劳动L、技术A,那么每个企业所处的外部环境对产出量的影响被包含在随机误差项中。
由于每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。
这时,随机误差项ε的方差并不随某一个解释变量观测值的变化而呈规律性变化,呈现复杂型。
异方差带来的后果有哪些答:回归模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效2、变量的显著性检验失去意义3、回归方程的应用效果极不理想总的来说,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。
简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。
其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。
在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。
然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。
由OLS 求出的仍然是的无偏估计,但不再是最小方差线性无偏估计。
所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。