大学物理下答案习题11
大学物理第四版下册课后题答案
大学物理第四版下册课后题答案习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。
解:1q 在C 点产生的场强:11204ACq E irπε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:22412 3.2410VE E E m =+=⨯,方向如图: 1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d m π=-=, ∴电荷线密度:911.010q C m l λ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。
解法1:利用微元积分:21cos 4O x Rd dE Rλθθπε=⋅,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯, 则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆αi2cm O R x αα心O 点的场强。
大学物理习题答案第十一章
[习题解答]11-7 在磁感应强度大小为B = 0.50 T 的匀强磁场中,有一长度为l = 1.5 m 的导体棒垂直于磁场方向放置,如图11-11所示。
如果让此导体棒以既垂直于自身的长度又垂直于磁场的速度v 向右运动,则在导体棒中将产生动生电动势。
若棒的运动速率v = 4.0 m ⋅s -1 ,试求:(1)导体棒内的非静电性电场K ;(2)导体棒内的静电场E ;(3)导体棒内的动生电动势ε的大小和方向;(4)导体棒两端的电势差。
解(1)根据动生电动势的表达式,由于()的方向沿棒向上,所以上式的积分可取沿棒向上的方向,也就是d l 的方向取沿棒向上的方向。
于是可得.另外,动生电动势可以用非静电性电场表示为.以上两式联立可解得导体棒内的非静电性电场,为,方向沿棒由下向上。
图11-11(2)在不形成电流的情况下,导体棒内的静电场与非静电性电场相平衡,即,所以,E 的方向沿棒由上向下,大小为.(3)上面已经得到,方向沿棒由下向上。
(4)上述导体棒就相当一个外电路不通的电源,所以导体棒两端的电势差就等于棒的动生电动势,即,棒的上端为正,下端为负。
11-8 如图11-12所表示,处于匀强磁场中的导体回路ABCD ,其边AB 可以滑动。
若磁感应强度的大小为B = 0.5 T ,电阻为R = 0.2 Ω,AB 边长为 l = 0.5 m ,AB 边向右平移的速率为v = 4 m ⋅s -1 ,求:(1)作用于AB 边上的外力;(2)外力所消耗的功率;(3)感应电流消耗在电阻R 上的功率。
解(1)当将AB 向右拉动时,AB 中会有电流通过,流向为从B 到A 。
AB 中一旦出现电流,就将受到安培力F 的作用,安培力的方向为由右向左。
所以,要使AB 向右移动,必须对AB施加由左向右图11-12的力的作用,这就是外力F外。
在被拉动时,AB中产生的动生电动势为,电流为.AB所受安培力的大小为,安培力的方向为由右向左。
外力的大小为,外力的方向为由左向右。
大学物理第十一章气体动理论习题详细答案
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
大学物理学_(第3版.修订版)_北京邮电大学出版社_下册__第十一章_习题11_答案
习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j 夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)(2)解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r I ab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s-1d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=ADIvbvBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtBR B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示(1)ab(2)cd解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直 ∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N(1)(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ==∴ abhN IL ln π220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ。
《大学物理》(下2010.12.9)习题课
第11章光的量子效应及光子理论一、 选择题1. 金属的光电效应的红限依赖于: 【 C 】(A)入射光的频率; (B)入射光的强度;(C)金属的逸出功; (D)入射光的频率和金属的逸出功。
2. 已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0(使电子从金属逸出需做功eU 0),则此单色光的波长λ必须满足: 【 A 】hceU )D (;hceU )C (;eU hc )B (;eU hc)A (0≥≤≥≤λλλλ 3. 关于光电效应有下列说法:(1) 任何波长的可见光照射到任何金属表面都能产生光电效应;(2) 对同一金属如有光电子产生,则入射光的频率不同,光电子的初动能不同; (3) 对同一金属由于入射光的波长不同,单位时间内产生的光电子的数目不同; (4) 对同一金属,若入射光频率不变而强度增加一倍,则饱和光电流也增加一倍。
其中正确的是: 【 D 】(A) (1),(2),(3); (B) (2),(3),(4); (C) (2),(3); (D)(2),(4)二、填空题1. 当波长为300 nm 光照射在某金属表面时,光电子的能量范围从0到.J 100.419-⨯在作上述光电效应实验时遏止电压为V 5.2U a =;此金属的红限频率Hz 104140⨯=ν。
2. 频率为100MHz 的一个光子的能量是J 1063.626-⨯,动量的大小是s N 1021.234⋅⨯-。
3. 如果入射光的波长从400nm 变到300nm ,则从表面发射的光电子的遏止电势增大(增大、减小)V 03.1U =∆。
4. 某一波长的X 光经物质散射后,其散射光中包含波长大于X 光和波长等于X 光的两种成分,其中大于X 光波长的散射成分称为康普顿散射。
三、计算题1. 已知钾的红限波长为558 nm ,求它的逸出功。
如果用波长为400 nm 的入射光照射,试求光电子的最大动能和遏止电压。
由光电方程2m mv 21A h +=ν,逸出功0h A ν=,0chA λ=,eV 23.2A =用波长为400nm 的入射光照射,光电子的最大动能:A h mv 212m -=ν A chE km -=λ,将nm 400=λ和eV 23.2A =代入得到:eV 88.0E km =遏止电压:a 2m eU mv 21=,2m a mv e21U =,V 88.0U a = 2. 从铝中移出一个电子需要4.2 eV 的能量,今有波长为200 nm 的光投射至铝表面。
昆明理工大学物理习题集(下)第十一章元答案
第十一章 热力学基础一.选择题1.以下是关于可逆过程和不可逆过程的判断,其中正确的是: [ D ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
(A )(1)、(2)、(3) (B )(1)、(3)、(4)(C )(2)、(4) (D )(1)、(4)2.如图,一定量的理想气体,由平衡状态A 变到平衡状态)(B A p p B =,则无论经过的是什么过程,系统必然:[ B ](A )对外作正功 (B )内能增加(C )从外界吸热 (D )向外界放热3.一定量某理想气体所经历的循环过程是:从初态) ,(00T V 开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度0T ,最后经等温过程使其体积回复为0V ,则气体在此循环过程中: [ B ](A )对外作的净功为正值 (B )对外作的净功为负值(C )内能增加了 (D )从外界净吸的热量为正值4.1mol 理想气体从p –V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b 。
已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是: [ A ]0 (A)21>>Q Q 0 (B)12>>Q Q0 (C)12<<Q Q 0 (D)21<<Q Q5. 1mol 理想气体从同一状态出发,分别经绝热、等压、等温三种膨胀过程,则内能增加的过程是: [ B ](A )绝热过程 (B )等压过程 (C )等温过程 (D )不能确定6. 一定量的理想气体的初态温度为T ,体积为V ,先绝热膨胀使体积变为2V ,再等容吸热使温度恢复为T ,最后等温压缩为初态,则在整个过程中气体将: [ A ](A )放热 (B )对外界作功 (C )吸热 (D )内能增加 (E )内能减少7. 一定量的理想气体经等容升压过程,设在此过程中气体内能增量为ΔU ,气体作功为W ,外界对气体传递的热量为Q ,则: [ D ](A )∆U < 0,W < 0 (B )∆U > 0,W > 0(C )∆U < 0,W = 0 (D )∆U > 0,W = 08. 图中直线ab 表示一定量理想气体内能U 与体积V 的关系,其延长线通过原点O ,则ab 所代表的热力学过程是:[ B ](A )等温过程 (B )等压过程(C )绝热过程 (D )等容过程9.一定量的理想气体经历acb 过程时吸热200 J ,则经历acbda 过程时,吸热为:[ B ](A )-1200 J (B )-1000 J(C )-700 J (D )1000 J10.一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),两过程气体吸、热情况是: [ B ](A )(1)过程吸热,(2)过程放热(B )(1)过程放热,(2)过程吸热(C )两过程都吸热(D )两过程都放热11.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
大学物理课答案11章
习题1111-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。
已知太阳、北极星和天狼星的m λ分别为60.5010m -⨯,60.4310m -⨯和60.2910m -⨯,试计算它们的表面温度。
解:由维恩定律:m T b λ=,其中:310898.2-⨯=b ,那么:太阳:362.8981057960.510m bT K λ--⨯===⨯; 北极星:362.8981067400.4310m bT K λ--⨯===⨯;天狼星:362.8981099930.2910m bT K λ--⨯===⨯。
11-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。
解:(1)由m T b λ=,有342.898109.66103m b m T λ--⨯===⨯; (2)由4M T σ=,有:424P T R σπ=⨯地,那么:328494(637010) 5.67103 2.3410P W π-=⨯⨯⨯⨯⨯=⨯。
11-3.在加热黑体过程中,其单色辐出度对应的峰值波长由0.69μm 变化到0.50μm ,求总辐出度改变为原来的多少倍?解:由 b T m =λ 和 4T M σ=可得,63.3)5.069.0()()(440400====m m T T M M λλ11-4.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。
设灯泡的钨丝面积为2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。
解:∵4P T S σ=⋅黑体,消耗的功率等于钨丝的幅出度,所以,44840.2591010 5.67102000235P S T W ησ--==⨯⨯⨯⨯⨯=。
11-5.天文学中常用热辐射定律估算恒星的半径。
现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。
大学物理学第三版修订版下册第11章答案
习题1111.1选择题(1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]11.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场Bϖ中,B ϖ的方向与回路的法线成60°角(如题11.9图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向. 解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差;(2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m =∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ(资料素材和资料部分来自网络,供参考。
大学物理课后习题答案(上下册全)武汉大学出版社 第11章 习题解答
第11章 习题与答案11-1 一凸透镜在空气中的焦距为40cm, 在水中时焦距为136.8cm, 问此透镜的折射率为多少(水的折射率为1.33)? 若将此透镜置于CS 2中(CS 2的折射率为1.62), 其焦距又为多少? 解:由题意知凸透镜的焦距为11212n f n n n n r r =---+又∵在同一介质中12n n =,'f f =-设12'n n n ==21111''n f n n r ⎛⎫⎛⎫∴=--- ⎪ ⎪⎝⎭⎝⎭因为对同一凸透镜而言,211n r -是一常数, 设11''n t f n ⎛⎫∴=-- ⎪⎝⎭当在空气中时1'1n =,140f =,在水中时2' 1.33n =,2136.8f =11401n t ⎛⎫∴=- ⎪⎝⎭,11136.8 1.33n t ⎛⎫=-- ⎪⎝⎭,两式相比,可得 1.54n =,将其代入上 得0.0463t =∴在CS 2中,即1' 1.62n =时,1 1.5410.0463' 1.62f ⎛⎫=-⨯ ⎪⎝⎭得'437.4cm f =-. 即透镜的折射率为1.54,在CS 2中的焦距为437.4cm -。
11-2 会聚透镜和发散透镜的焦距都是10cm, 求(1)与主轴成30︒度的一束平行光入射到每个透镜上, 像点在何处? (2)在每个透镜左方的焦平面上离主轴1cm 处各置一发光点, 成像在何处?作出光路图。
解:(1)由'1'f f s s+=,s =∞,对于会聚透镜''10cm x s f ==,''tan30 5.8cm y x s s =︒=或者()''tan 30 5.8cm y x s s =-︒=-,像点的坐标为()10,5.8,同理,对于发散透镜:像点的坐标为()10,5.8-。
大学物理作业11答案ppt
(D) 0Ir 2
2aR
答案:[ D ]
线圈内磁场 B 0I BS 0I r2 0Ir2
2 a
2 a 2a
d Q i dq 1 d
dt
dt R R dt
dq d q 0 0Ir2
3. 半径为R的金属圆板在均匀磁场中以角速度绕中心轴旋转,均
匀磁场的方向平行于转轴,如图11所示.这时板中由中心至同一边
缘点的不同曲线上总感应电动势的大小为 BR2 / 2,
方向 沿曲线中心向外 .
BO
O 图11
4. 如图12所示. 匀强磁场局限于半径为R的圆柱形空间区域, B垂直
于纸面向里,磁感应强度B以dB/dt=常量的速率增加. D点在柱形空
0
2
9. 在一通有电流I的无限长直导线所在平面内, 有一半径为r、电
阻为R的导线环,环中心距直导线为a,如图8所示,且a>>r.当直
导线的电流被切断后,沿导线环流过的电量约为
(A) 0Ir2 ( 1 1 )
2R a a r
(B) 0Ia2
2rR
(C) 0Ir ln a r
2R a
成轴对称分布,图为此磁场的截面,磁场按dB/dt随时间变化,
圆柱体外一点P的感应电场Ei应 (A) 等于零. (B) 无法判定. (C) 不为零,方向向左或向右.
(D) 不为零,方向向内或向外. (E) 不为零,方向向上或向
下. 答案:[ E ]
××× B
× × × × ·P
×××
图5
d
dt
答案:[ D ]
d
dt
磁通量变化率同,感应电动势同,但材料不同, 电阻不同,所以感应电流不同
大学物理练习题答案 11
11-1一物体作简谐运动的曲线如图11-1所示,试求其运动方程。
解:设振动方程为)cos(ϕω+=t A x ,m 1042-⨯=A由旋转矢量法知πϕ43-=,25.04/ππω==, )432cos(1042ππ-⨯=∴-t x11-2一质量为0.02kg 的弹簧振子沿x 轴作谐振动,振幅为0.12m ,周期为2s 。
当t =0时,振子位于0.06m 处,并向x 轴正方向运动,试求:(1)试用旋转矢量法确定初位相并写出运动方程;(2)t =0.5s 时的位置,速度和加速度;(3)从x =-0.06m 处向x 轴负方向运动再回到平衡位置所需时间。
解:(1)由旋转矢量法知3πϕ-=,πππω===222T , )3cos(12.0ππ-=∴t x(2))3sin(12.0dt d πππ--==t x v ,)3cos(12.0dt d 2πππ--==t v as 5.0=t ,m 1039.0=x ,m/s 1885.0-=v ,2m/s 03.1=a (3)s 656/52/3/==+=ππωππt11-3如图11-3所示,水平轻质弹簧一端固定,另一端所系轻绳绕过一滑轮垂挂一质量为m 的物体。
若弹簧劲度系数为k ,滑轮半径为R ,转动量为J 。
(1)证明物体作简谐振动;(2)求振动周期;(3)设t =0时弹簧无伸缩,物体由静止下落,写出物体的运动方程。
解:(1)取系统的静平衡位置为坐标原点,向下为正。
弹簧的初始变形量 kmgx =0。
分别取重物、滑轮和弹簧为研究对象,则有221d d t x m T mg =-,R t x J R T T 2221d /d ,)(==-ββ,(02x x k T -= 由上述方程可解得:0/d d 222=++x RJ m kt x 所以物体作简谐振动。
(2)2/R J m k +=ω,kR J m T 2/22+==πωπ (3)0=t ,00=v ,kmgx A ==0,πϕ=。
大学物理课后答案第十一章
第十一章 机械振动一、基本要求1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。
2. 掌握描述简谐运动的运动方程,理解振动位移,振)cos(0ϕω+=t A x 幅,初位相,位相,圆频率,频率,周期的物理意义。
能根据给出的初始条件求振幅和初位相。
3. 掌握旋转矢量法。
4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。
二、基本内容1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。
如果物体振动的位置满足,则该物体的运动称为周期性运动。
否则称为非周)()(T t x t x +=期运动。
但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。
振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。
一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。
2. 简谐振动 简谐振动是一种周期性的振动过程。
它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。
简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。
(1)简谐振动表达式反映了作简谐振动的物体位移随时间)cos(0ϕω+=t A x 的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。
但是简谐振动表达式更多地用来揭示描述一个简谐运动必须涉及到的物理量、、(或称描述简谐运动的三个参量),显然三个参量A ω0ϕ确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由对应地t 得到。
2cos()sin(00πϕωωϕωω++=+-=t A t A v )cos()cos(0202πϕωωϕωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即,它是判定一个系统的运动过程kx F -=是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。
大学物理下册11-15章答案(修改过,红色为修正地方还有以下解释)
简谐运动1 简谐运动中,0=t 的时刻是 ( B )(A )质点开始运动的时刻 (B )开始观察计时的时刻(C )离开平衡位置的时刻 (D )速度等于零的时刻2 简谐运动的x -t 曲线如图所示,则简谐运动周期为(B )(A )2.62s (B )2.40s (C )0.42s (D )0.382s3 有一个用余弦函数表示的简谐运动,若其速度v 与时间t 的关系曲线如图所示,则该简谐运动的初相位为 (A )(A )π/6(B )π/3(C )π/2(D )/32π4 作简谐运动的某物体的位移—时间图线如图所示,下面哪个图线是简谐运动的加速度图线( B )5 一弹簧振子系统竖直挂在电梯内,当电梯静止时,振子的频率为,现使电梯以加速度a 向上作匀加速运动,则弹簧振子的频率将 ( A )(A )不变 (B )变大 (C )变小 (D )变大变小都有可能6 将一个弹簧振子分别拉离平衡位置1cm 和2cm 后,由静止释放(弹性形变在弹性限度内),则它们作简谐运动时的 ( A )(A )周期相同 (B )振幅相同(C )最大速度相同 (D )最大加速度相同7 一弹簧振子的固有频率为υ,若将弹簧剪去一半,振子质量也减半,组成新的弹簧振子,则新的弹簧振子的固有频率等于 (D )(A )υ (B )2/2υ (C )υ2 (D )υ28 两个完全相同的弹簧下挂着两个质量不同的振子,若它们以相同的振幅作简 谐运动,则它们的 (C ) (A )周期相同 (B )频率相同 (C )振动总能量相同 (D )初相位必相同9 如图所示,一下端被夹住的长带形钢弹簧的顶端固定着一个2千克的小球。
把球移到一边的0.1米处需要4牛顿的力。
当球被拉开一点然后释放时,小球就作简谐运动,其周期是多少秒 (C )(A )0.3(B )0.7(C )1.4(D )2.210 有两个沿x 轴作简谐运动的质点,其频率、振幅相同,当第一个质点自平衡位置向负方向运动时,第二个质点在2A x -=处(A 为振幅)也向负方向运动,则两者的相位差12ϕϕ-为 (C ) (A )2π (B )3π2 (C )6π (D )6π5 11 将单摆从平衡位置拉开,使摆线与竖直方向成α度角)5(o <,然后放手,让其作简谐运动,并开始计时,选拉开方向为x 的方向,且以)cos(ϕω+=t A x 来表示它的振动方程,则 (B )(A )αϕ= (B )0=ϕ (C )2π=ϕ (D )πϕ= 12 以单摆计时的时钟在地球上走时是准确的,即它在地球上走24小时,时间确实过了一天。
大学普通物理学习题答案-第十一章-恒定电流与恒定磁场
第十一章恒定电流与恒定磁场一、选择题1.如图11-1所示,有两根载有相同电流的无限长直导线,分别通过x1=1m、x2=3m的点,且平行于y轴,则磁感应强度B等于零的地方是()。
A.x=2m的直线上B.在x>2m的区域C.在x<1m的区域D.不在x、y平面上图11-11.【答案】A。
解析:根据对称性可得,两条载流导线在x=2m的直线上产生的磁感应强度大小相等;用右手螺旋定则可判断两磁感应强度的方向相反,相互抵消,合磁感应强度为零,故选A。
2.图11-2中6根无限长导线互相绝缘,通过电流均为I,区域Ⅰ、Ⅰ、Ⅰ、Ⅰ均为全等的正方形,哪一个区域指向纸内的磁通量最大()。
A. Ⅰ区域B. Ⅰ区域C. Ⅰ区域D. Ⅰ区域2.【答案】B。
解析:通过Ⅰ区域的磁通量为0,通过Ⅰ区城的磁通量最大且指向纸内,通过Ⅰ区域的磁通量最大但指向纸外,通过IV区域的磁通量为0。
故选B。
3.如图11-3所示,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知()。
A.d 0LB l ⋅=⎰,且环路上任意一点B =0 B.d 0LB l ⋅=⎰,且环路上任意一点B ≠0 C.d 0LB l ⋅≠⎰,且环路上任意一点B ≠0 D.d 0LB l ⋅≠⎰,且环路上任意一点B =常量3.【答案】B 。
解析:根据安培环路定理,闭合回路内没有电流穿过,所以环路积分等于0.但是由于圆形电流的存在,环路上任意一点的磁感应强度都不等于0。
故选B 。
4.无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r>R )的磁感应强度为B e ,则有:()。
A.B i 、B e 均与r 成正比B.B i 、B e 均与r 成反比C.B i 与r 成反比,B e 与r 成正比D.B i 与r 成正比,B e 与r 成反比4.【答案】B 。
解析:导体横截面上的电流密度2πR I J =,以圆柱体轴线为圆心,半径为r 的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2R IrB i μ=;当r <R ,I r B e ⋅=⋅0π2μ,rIB e π20μ=;所以选D 。
《大学物理学》第十一、十二、十三章练习题(解答)
《大学物理学》第十一、十二、十三章练习题解答可能用到的物理量:122208.8510/C m N ε-=⨯⋅,922019.010/4m N C πε=⨯⋅一、选择题:1. 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( D )(A) (B) (C) (D)2. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D )(A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
3.如图所示,在点电荷q +的电场中,若选取图中P 为电势零点,则M 点的电势为:( D ) (A)04q aπε;(B)08q aπε ;(C) 04q aπε-;(D) 08q aπε-。
4.在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电通量为 ( D ) (A)qε; (B)02q ε ; (C) 04q ε; (D) 06q ε。
5. 如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( C ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。
6. 关于高斯定理的理解有下面几种说法,其中正确的是 ( C )(A) 如果高斯面内没有自由电荷,则高斯面上E ϖ处处为零; (B) 如果高斯面上电位移矢量D v为零,则该面内必无电荷;(C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上电通量为零,则该面内必无电荷。
大学物理学_(第3版.修订版)下----第11章--完全答案
大学物理学_(第3版.修订版)_下册_第十一章 电磁感应习题_答案习题1111.3一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ 感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V11.4 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题11.4图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题11.4图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j 夹角相等,∴ ︒=45α 则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题11.5图 11.5 如题11.5图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv vB 0ln 2dr cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba b a Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题11.6图11.6如题11.6所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε11.7 如题11.7图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题11.7图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBfr R I m22π==ε11.8 如题11.8图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题11.8图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.11.9 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题11.9图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题11.9图11.10 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题11.10图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题11.10图(a)题11.10图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题11.11图11.11 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图11.11所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高?解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U∴b 点电势高.题11.12图11.12 如题11.12图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB -+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题11.13图11.13 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题11.13图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t abd d 2ΦεtBR B R t d d 12π]12π[d d 22=--∴ tBR R acd d ]12π43[22+=ε ∵0d d >tB∴ 0>ac ε即ε从c a →11.14 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题11.14图题11.15图11.15 如题11.15图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题11.15图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E与ab 垂直 ∴ ⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题11.16图11.16 一无限长的直导线和一正方形的线圈如题11.16图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==11.17两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题11.18图11.18 一矩形截面的螺绕环如题11.18图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题11.18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIln π2d π200μμΦ 磁链 ab IhN N ln π220μΦψ== ∴ abhN IL ln π220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=11.19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2R IrB μ=∴ 4222002π82R r I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I R rr I r r w W 0204320π16π4d d 2μμπ。
大学物理下(毛峰版)课后习题答案ch11 热力学基础 习题及答案
第11章 热力学基础 习题及答案1、 内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。
答:内能是组成物体的所有分子的动能与势能的总和。
热量是热传递过程中所传递的能量的量度。
内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。
(1) 错。
热量是过程量,单一状态的热量无意义。
(2) 对。
物体的内能与温度有关。
2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E 经绝热b a →过程 012=+∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvR p = 故bc 过程为等压过程ca 是等温过程(2)V p -图如图 (3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形. (5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。
大学物理(肖剑荣主编)-习题答案-第11章
个劈尖空气膜,用波长为 564 纳米的单色光垂直照射板面,板上显示出完整的
明暗条纹各 74 条。求金属丝的直径。
解 金属丝与两板之间形成一个劈尖空气膜,其上下表面的反射光相遇而发生干 涉。光程差为 Δ = 2e + λ / 2
由于板上显示出完整的明暗条纹各 74 条,所以该处应为第 74 条明条纹。 由明条纹的条件 2d + λ / 2 = kλ k=74,则 N = d / Δe
能看到第几级明条纹?
解: a + b = 1 mm = 2.0 ´10-3 mm = 2.0 ´10-4 Å 500
由 (a
+
b) sinj
=
kl
知,最多见到的条纹级数 kmax 对应的 j
=
p 2
,
所以有 kmax
=
a+b l
=
2.0 ´104 5900
» 3.39 ,即实际见到的最高级次为 kmax
解得
a = a + b k′ = 1.5 × 10−6 k′ 4
取 k′ = 1 得光栅上狭缝的的最小宽度为1.5 × 10−6 m
(3)由
(a + b)sinϕ = kλ
得
k
=
(
a
+
b) sinϕ λ
当 ϕ=π 2
时,对应 k = k max
k max
=
a+b λ
=
6.0 × 10−6 6000 × 10−10
解 在杨氏双缝干涉实验中,条纹间距 Δx = D λ d
屏幕上 20 条明条纹之间的距离 ΔX = 19Δx = D λ d
ΔX
= 19
《大学物理教程》下册 第三版 (贾瑞皋 著)课后习题答案 科学出版社11
两层均匀电介质,它们的相对电容率 ε r1 = 6 和 ε r2 = 3。两层电介质的分界面半径 R=0.04m。 设内球壳带电量 Q= − 6 × 10 −8 C ,求: (1)D 和 E 的分布,并画出 D-r、E-r 曲线; (2)两球壳之间的电势差; (3)贴近内金属壳的电介质表面上的束缚面电荷密度。 [解] 以与球壳同心的球面为高斯面
在上板内任意点场强均为零,它是 6 个无限大均匀带电平面在该点产生的场强叠加的 结果。故有
11-2
1 (σ 1 − σ 2 − σ 3 − σ 4 − σ 5 − σ 6 ) = 0 2ε 0
考虑到(1)、(2)两式,则得到
σ1 =σ 6
(5)
上下两块导体板原来是不带电的,根据电荷守恒定律,二导体板表面出现感应电荷后, 总量仍为零。因此有
C1 = 4πε 0
R1 R2 R2 − R1
C1 C2
C3
C 2 = 4πε 0 R2
11-5
C 3 = 4πε 0 r
设小球 C 3 上电量为 q, 则 C1 上电量 Q1 -q, C 2 上电量为 Q2 + (Q1 − q ) 设三个电容上的电 压各为 U 1 、 U 2 、 U 3
U 3 = q C3
qB ⎞ ⎛ QA q B ⎜ ⎜ R + R + R ⎟ ⎟ 2 3 ⎠ ⎝ 1
⎞ ⎟V = 5.63 × 10 3 V ⎟ ⎠
⎛ 3 × 10 −8 5 × 10 −8 − 3 × 10 −8 = 9 × 10 9 × ⎜ + + ⎜ 6.0 × 10 − 2 8.0 × 10 − 2 10.0 × 10 − 2 ⎝
ε 0ε r S d
得
U=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题11选择题(1)一圆形线圈在均匀磁场中作下列运动时,哪些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。
[答案:B](2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。
[答案:A](3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式221LI W m=()( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。
[答案:D](4)对于涡旋电场,下列说法不正确的是():(A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。
[答案:C]11.2 填空题(1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。
[答案:磁力](2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。
[答案:洛伦兹力,涡旋电场力,变化的磁场](3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。
[答案:端点,221l B ω;中点,0]一半径r =10cm 的圆形回路放在B =的均匀磁场中.回路平面与B ϖ垂直.当回路半径以恒定速率trd d =80cm/s 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i ϖ, 题图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j ϖ,则αΦcos 2π22B R m=∵ B ϖ与i ϖ夹角和B ϖ与j ϖ夹角相等,∴︒=45α则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题图如题图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v ϖ方向运动时0d =m Φ∴ 0=MeNM ε 即 MN MeN εε= 又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2dcos 0πμπε 所以MeN ε沿NeM 方向,大小为ba ba Iv -+ln 20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题图如题所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则 (1)]ln [lnπ2d π2d π2000dad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε如题图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ϖϖ ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ RBfr R I m22π==ε如题图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v = m/s 垂直于直线平移远离.求:d =0.05m 时线圈中感应电动势的大小和方向.题图解: AB 、CD 运动速度v ϖ方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεϖϖϖBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰μεϖϖϖ∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角(如题图所示),B ϖ的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m ϖϖΦ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.题图一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B ϖ的方向如题图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题图(a)题图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题图导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图所示.试求:(1)ab 两端的电势差;(2)b a ,两端哪一点电势高 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.题图如题图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v ϖ平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 ba b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμεϖϖϖ ∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln 0πμ题图磁感应强度为B ϖ的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=-- ∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅=ϖϖΦ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.题图题图如题图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题图示方向.试求:(1)ab 两端的电势差;(2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l E ϖϖϖϖd d d d 旋知,此时旋E ϖ以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E ϖ与ab 垂直∴ ⎰=⋅ll 0d ϖ旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc ϖϖ旋ε∴ 0<-c d U U 即d c U U >题图一无限长的直导线和一正方形的线圈如题图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==两线圈顺串联后总自感为,在它们的形状和位置都不变的情况下,反串联后总自感为.试求:它们之间的互感.解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H题图一矩形截面的螺绕环如题图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少 解:如题图示(1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m =∴ ab hI N W m ln π4220μ=一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2RI B rμ=∴ 4222002π82Rr I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I Rrr I r r w W 0204320π16π4d d 2μμπ。