51单片机和计算机之间实现串口通信的电路图

合集下载

51单片机的串口通信程序(C语言)

51单片机的串口通信程序(C语言)

51单片机的串口通信程序(C语言) 51单片机的串口通信程序(C语言)在嵌入式系统中,串口通信是一种常见的数据传输方式,也是单片机与外部设备进行通信的重要手段之一。

本文将介绍使用C语言编写51单片机的串口通信程序。

1. 硬件准备在开始编写串口通信程序之前,需要准备好相应的硬件设备。

首先,我们需要一块51单片机开发板,内置了串口通信功能。

另外,我们还需要连接一个与单片机通信的外部设备,例如计算机或其他单片机。

2. 引入头文件在C语言中,我们需要引入相应的头文件来使用串口通信相关的函数。

在51单片机中,我们需要引入reg51.h头文件,以便使用单片机的寄存器操作相关函数。

同时,我们还需要引入头文件来定义串口通信的相关寄存器。

3. 配置串口参数在使用串口通信之前,我们需要配置串口的参数,例如波特率、数据位、停止位等。

这些参数的配置需要根据实际需要进行调整。

在51单片机中,我们可以通过写入相应的寄存器来配置串口参数。

4. 初始化串口在配置完串口参数之后,我们需要初始化串口,以便开始进行数据的发送和接收。

初始化串口的过程包括打开串口、设置中断等。

5. 数据发送在串口通信中,数据的发送通常分为两种方式:阻塞发送和非阻塞发送。

阻塞发送是指程序在发送完数据之后才会继续执行下面的代码,而非阻塞发送是指程序在发送数据的同时可以继续执行其他代码。

6. 数据接收数据的接收与数据的发送类似,同样有阻塞接收和非阻塞接收两种方式。

在接收数据时,需要不断地检测是否有数据到达,并及时进行处理。

7. 中断处理在串口通信中,中断是一种常见的处理方式。

通过使用中断,可以及时地响应串口数据的到达或者发送完成等事件,提高程序的处理效率。

8. 串口通信实例下面是一个简单的串口通信实例,用于在51单片机与计算机之间进行数据的传输。

```c#include <reg51.h>#include <stdio.h>#define BAUDRATE 9600#define FOSC 11059200void UART_init(){TMOD = 0x20; // 设置定时器1为模式2SCON = 0x50; // 设置串口为模式1,允许接收TH1 = 256 - FOSC / 12 / 32 / BAUDRATE; // 计算波特率定时器重载值TR1 = 1; // 启动定时器1EA = 1; // 允许中断ES = 1; // 允许串口中断}void UART_send_byte(unsigned char byte){SBUF = byte;while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志位}unsigned char UART_receive_byte(){while (!RI); // 等待接收完成RI = 0; // 清除接收完成标志位return SBUF;}void UART_send_string(char *s){while (*s){UART_send_byte(*s);s++;}}void main(){UART_init();UART_send_string("Hello, World!"); while (1){unsigned char data = UART_receive_byte();// 对接收到的数据进行处理}}```总结:通过以上步骤,我们可以编写出简单的51单片机串口通信程序。

51单片机串行通信接口

51单片机串行通信接口

工 作 方 式 选 择 位
多允 机许 通接 信收 控控 制制 位位
发 接发接 送 收送收 数 数中中 据 据断断 第 第标标 九 九志志 位位
北京交通大学
18
各位功能说明如下: SM0 SM1:串口工作方式选择位
00 方式0: 同步移位寄存器 波特率=主振频率/12
01 方式1: 8位异步,波特率可变
⑵在双机通信中,该位作为奇偶校验位; ⑶在多机通信中用来表示D7-D0是地址帧或数据帧
即:
D8=0:表示数据帧; D8=1:表示地址帧
北京交通大学
20位是接收到的第9位数据。 方式1,SM2=0,停止位。方式0,不用。
⑵在多机通信中是地址帧(RB8=1)和数据帧 (RB8=0)的标识位。
北京交通大学
34
方式2、3的区别是:波特率设置不同 方式2的波特率是固定的。即:
波特率=fosc/32或fosc/64 方式3的波特率是可变的。即:
波特率 2smod
fosc
32 12 (256 X )
X
256
fosc (2s mod ) 384 波特率
北京交通大学
35
表1 波特率与时间常数
第6章 串行通信接口
本章主要内容 • 串行数据通信基本原理 • MCS-51单片机串行口 • 串行口应用举例
北京交通大学
1
一、串行数据通信基本原理
计算机的两种方式数据传送:并行和串行
并行传送的特点:
各数据位同时传送,传送速度快、效率高。
但需要的数据线多,因此传送成本高。并行数据
传送的距离通常小于30米。
3.直到停止位到来之后把它送入到RB8中,并 置位RI,通知CPU从SBUF取走接收到的一个字符。

单片机实现双机通信自己的

单片机实现双机通信自己的

单片机实现双机通信自己的单片机是一种集成电路芯片,可以实现各种功能。

双机通信是指两台或多台计算机通过网络或其他方式进行数据传输和通信的过程。

在很多应用中,需要使用单片机实现双机通信,以实现数据传输和信息交换等功能。

单片机实现双机通信的基本原理是通过通信端口(例如串口或网络接口等)进行数据的发送和接收。

在这个过程中,需要使用一些通信协议来规定数据的格式和传输的方式。

下面是一种基于串口通信的单片机双机通信的实现方法。

首先,我们需要确定通信的硬件配置。

通常情况下,可以通过串口连接两台单片机,其中一台设置为发送方,另外一台设置为接收方。

发送方将待发送的数据通过串口发送出去,接收方则接收这些数据。

在单片机程序代码的编写方面,我们需要首先配置串口的通信参数,例如波特率、数据位、停止位、奇偶校验等。

这些参数需要在发送方和接收方进行一致配置,以保证数据的正确传输。

接下来,我们需要实现发送和接收的程序。

首先,发送方需要将待发送的数据存储在发送缓冲区中,然后通过串口将数据发送出去。

接收方则需要实时监听串口接收缓冲区中是否有数据到达,并将接收到的数据存储在接收缓冲区中。

另外,为了保证数据的正确传输,通常还要实现一些数据校验机制,例如奇偶校验、循环冗余校验(CRC)等。

这些校验机制可以用于检测和纠正数据传输中的错误。

在程序编写的过程中,还需要考虑到程序的稳定性和容错性。

例如,在发送方发送数据时,可能会遇到发送缓冲区已满的情况,此时需要实现相应的处理机制,例如等待一段时间后再次发送。

同样,在接收方接收数据时,也可能会遇到接收缓冲区溢出的情况,此时需要及时处理,以避免数据的丢失。

最后,在实际应用中,还需要考虑一些高级的功能,例如数据压缩、加密、数据传输速度的控制等。

这些功能可以根据具体的需求进行实现。

总之,单片机实现双机通信是一项复杂的任务,需要考虑到硬件和软件两个方面的因素。

在程序编写的过程中,需要考虑到通信参数的配置、发送和接收的程序编写、数据校验、稳定性和容错性等方面的问题。

实验6 单片机与PC机间的串行通信

实验6  单片机与PC机间的串行通信

实验6 单片机与PC机间的串行通信一、实验目的1、掌握电平转换器件RS-232的使用方法;2、掌握Proteus VSM虚拟终端(VITUAL TERMINAL)的使用;3、掌握单片机与PC机间的串行通信软硬件设计方法。

二、实验内容实现利用虚拟终端仿真单片机与PC机间的串行通信。

PC机先发送从键盘输入的数据,单片机接收后回发给PC机。

单片机同时将收到的30~39H间的数据转换成0~9的数字显示,其他字符的数据直接显示为其ASCII码。

单片机和PC机进行通信时,要求使用的波特率、传送的位数等相同。

要能够进行数据传送也必须首先测试双方是否可以可靠通信。

可在PC机和单片机上各编制非常短小的程序,具体可分成PC机串行口发送接收程序、单片机串行口发送程序和单片机串行口发送接收程序。

这三个程序能运行通过,即可证明串行口工作正常。

PC机串行口发送接收程序设置串行口为波特率9600、8位数据、1位停止位、无奇偶校验的简单设置。

从键盘接收的字符可从串行口发送出去,从串行口接收的字符在屏幕上显示。

通过让串行口发送线和接收线短接可测试微机串行口,通过让串行口和单片机系统相接,使用此程序可进一步测试单片机的串行通信状况。

具体程序用BASIC编制,简单易懂。

直接输入即可运行。

程序RS232.三、实验电路原理图图7-1 单片机与PC机间电路原理图四、实验步骤1、在PROTEUS中画好电路原理图。

2、串口模型属性设置串口模型属性设置为:波特率―4800;数据位―8;奇偶校验―无;停止位-1,如图7-2所示。

图7-2 串口模型属性设置3、虚拟终端属性设置PCT代表计算机发送数据,PCR用来监视PC接收到的数据,它们的属性设置完全一样,如图7-3所示。

SCMT和SCMR分别是单片机的数据发送和接收终端,用来监视单片机发送和接收的数据,它们的属性设置也完全一样,如图7-4所示。

单片机和PC机双方的波特率、数据位、停止位和检验位等要确保和串口模型的设置一样,并且同单片机程序中串口的设置一致。

51单片机与PC机串口通信的仿真与实现

51单片机与PC机串口通信的仿真与实现

51单片机与PC机串口通信的仿真与实现作者:李健来源:《电脑知识与技术》2018年第32期摘要:介绍了利用几种常见软件实现的51单片机与PC机串口通信的仿真过程,可以在单片机课程的理论教学中加以应用,具有效率高、成本低等优点,有助于教师的教学和学生对知识的掌握和应用。

关键词:51单片机;PC机;串口通信;仿真中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2018)32-0038-02在实际应用中,单片机与PC机间的通信非常普遍[1]。

这时单片机主要完成现场数据采集和设备监控[2],PC机接收单片机发来的数据进行分析、处理,并对结果再次发送单片机进行现场控制等。

笔者在单片机课程的理论教学中,由于课堂上受到条件的约束,采用了纯软件的方法对单片机串口通信进行仿真和演示,便于实现和让学生理解。

下面通过一个实例来介绍51单片机与PC机之间串口通信的仿真与实现过程。

1 所需软件使用到的软件有:VSPD、Proteus、Keil和串口助手[3]。

VSPD是一个虚拟串口小软件,可以虚拟出一对串行接口用于仿真;Proteus是一款流行的单片机仿真软件,用于建立串口通信仿真电路;Keil是用于编写单片机程序的软件;串口助手是用于上位机即PC机的软件,用来向单片机发送数据,或者接收单片机发送来的数据并进行显示。

2 设计与仿真过程预期实现的功能为:PC机通过串口助手向单片机发送一个字节数据,单片机接收到后将数据的二进制形式通过八个数码管的亮灭显示出来,接收的“1”对应的灯亮,接收的“0”对应的灯灭。

同时单片机将接收的数据发回给PC机,PC机将数据在串口助手中再显示出来。

2.1 利用Proteus设计仿真电路如图1所示,在Proteus软件中选用AT89C51单片机、COMPIM、电阻和发光二极管组成仿真电路。

COMPIM在仿真中相当于PC机上配置的RS232标准串行接口,为D型九针插座[4]。

在实际中,单片机和PC机之间需要通过MAX232芯片进行电平转换才能连接,但在仿真图中可以直接将两者的RXD(接收数据)和TXD(发送数据)连接起来进行串行通信。

51单片机-串行口ppt课件

51单片机-串行口ppt课件

为发送时CPU是主动的,不会产生重叠错误。
最新课件
21
8.2.2 80C51串行口的控制寄存器
SCON 是一个特殊功能寄存器,用以设定串行口的工 作方式、接收/发送控制以及设置状态标志:
SM0和SM1为工作方式选择位,可选择四种工作方式:
最新课件
22
●SM2,多机通信控制位,主要用于方式2和方式3。 当接收机的SM2=1时可以利用收到的RB8来控制是否 激活RI(RB8=0时不激活RI,收到的信息丢弃; RB8=1时收到的数据进入SBUF,并激活RI,进而在 中断服务中将数据从SBUF读走)。当SM2=0时,不 论收到的RB8为0和1,均可以使收到的数据进入 SBUF,并激活RI(即此时RB8不具有控制RI激活的 功能)。通过控制SM2,可以实现多机通信。
起 空始 闲位
一个字符帧 数据位
校停 验止 位位
空 下一字符 闲 起始位
LSB
MSB
异步通信的特点:不要求收发双方时钟的
严格一致,实现容易,设备开销较小,但 每个字符要附加2~3位用于起止位,各帧 之间还有间隔,因此传输效率不高。
最新课件
9
2、同步通信
同步通信时要建立发送方时钟对接收方时钟的直接控制, 使双方达到完全同步。此时,传输数据的位之间的距离均 为“位间隔”的整数倍,同时传送的字符间不留间隙,即 保持位同步关系,也保持字符同步关系。发送方对接收方 的同步可以通过两种方法实现。
波特率=2SMOD/32×T1的溢出率 = 2SMOD × fosc/[ 32 × 12×(2K-初值)]
最新课件
19
回目录 上页 下页
3、传输距离与传输速率的关系
串行接口或终端直接传送串行信息位流的

基于51单片机的多机通信系统设计

基于51单片机的多机通信系统设计

基于51单片机的多机通信系统设计多机通信系统是指通过一台主机与多台从机之间进行数据交互和通信的系统。

在本设计中,我们将使用51单片机实现一个基于串行通信的多机通信系统。

系统硬件设计如下:1.主机:使用一个51单片机作为主机,负责发送数据和接收数据。

2.从机:使用多个51单片机作为从机,每个从机负责接收数据和发送数据给主机。

3.串口:主机和从机之间通过串口进行通信。

我们可以使用RS232标准通信协议。

系统软件设计如下:1.主机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。

b.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。

c.接收数据:接收从机发送的数据,并存储在接收缓冲区中。

2.从机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。

b.接收数据:接收主机发送的数据,并存储在接收缓冲区中。

c.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。

系统工作流程如下:1.主机启动,执行初始化操作,包括初始化串口。

2.从机启动,执行初始化操作,包括初始化串口。

3.主机发送数据给从机:主机将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。

4.从机接收并处理数据:从机接收主机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。

5.从机发送数据给主机:从机将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。

6.主机接收并处理数据:主机接收从机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。

7.主机和从机循环执行步骤3-6,实现多机之间的数据交互和通信。

多机通信系统的设计考虑到以下几个方面:1.硬件设计:需要合理选择单片机和串口的类型和参数,确保系统的稳定性和可靠性。

2.软件设计:需要设计适应系统需求的通信协议和数据处理提取方法,保证数据的准确性和完整性。

3.通信协议:需要定义主机和从机之间的通信协议,包括数据的格式、传输方式等,以便实现正确的数据交互。

单片机第7章89C51串行口和串行通信PPT课件

单片机第7章89C51串行口和串行通信PPT课件

4
7.1 串行通信的概念
• 在实际工作中,计算机的CPU与外部设备之间常常要进 行信息交换,一台计算机与其他计算机之间也往往要交 换信息,所有这些信息交换均可称为通信。
• 通信方式有两种,即并行通信和串行通信。
• 通常根据信息传送的距离决定采用哪种通信方式。
• 例如,在IBM-PC机与外部设备(如打印机等)通信时, 如果距离小于30m,可采用并行通信方式;当距离大于 30m时,则要采用串行通信方式。89C51单片机具有并 行和串行二种基本通信方式。
字 同 符 步 1 字 同 符 步 2 数 据 块 ( 若 干 字 节 )校 符 验 1 校 符 验 2
起 始
结 束
➢ 在这种通信方式中,数据块内的各位数据之间没有间 隔,传输效率高;
➢ 发送、接收双方必须保持同步(使用同一时钟信号), 且数据块长度越大,对同步要求就越高。
➢ 同步通信设备复杂,成本高,一般只用在高速数字通 信系统中。
• 在同步传送时,要求用时钟来实现发送端与接收端之间的同步。为了保 证接收正确无误,发送方除了传送数据外,还要同时传送时钟信号。
• 同步传送可以提高传输速率(达56kb/s或更高),但硬件比较复杂。
返回
28.09.2020
14
2、异步通信
• 起始位(0)信号只占用一位,用来通知接收设备一个待接收的字符开始到达。线路上在不 传送字符时应保持为1。接收端不断检测线路的状态,若连续为1以后又测到一个0,就知道 发来一个新字符, 应马上准备接收。字符的起始位还被用作同步接收端的时钟,以保证以 后的接收能正确进行。
28.09.2020
1
第七章 89C51串行口及串行通信技术
• 串行通信只用一位数据线传送数据的位信号,即使加上几 条通信联络控制线,也用不了很多电缆线。因此,串行通 信适合远距离数据传送,如大型主机与其远程终端之间、 处于两地的计算机之间采用串行通信就非常经济。当然, 串行通信要求有转换数据格式、时间控制等逻辑电路,这 些电路目前已被集成在大规模集成电路中(称为可编程串 行通信控制器),使用很方便。

51单片机与PC机通信

51单片机与PC机通信

《专业综合实习报告》专业:电子信息工程年级:2013级指导教师:学生:目录一:实验项目名称二:前言三:项目内容及要求四:串口通信原理五:设计思路5.1虚拟串口的设置5.2下位机电路和程序设计5.3串口通信仿真六:电路原理框图七:相关硬件及配套软件7.1 AT89C51器件简介7.2 COMPIN简介7.3 MAX232器件简介7.4友善串口调试助手7.5 虚拟串口软件Virtual Serial Port Driver 6.9八:程序设计九:proteus仿真调试十:总结十一:参考文献一:实验项目名称:基于51单片机的单片机与PC机通信二:前言在国内外,以PC机作为上位机,单片机作为下位机的控制系统中,PC机通常以软件界面进行人机交互,以串行通信方式与单片机进行积极交互,而单片机系统根据被控对象配置相应的前向,后向信息通道,工作时作为主控机测对象,作为被控机接受PC机监督,指挥,定期或受命向上位机提供对象及本身的工作状态信息。

目前,随着集成电路集成度的增加,电子计算机向微型化和超微型化方向发展,微型计算机已成为导弹,智能机器人,人类宇宙和太空和太空奥妙复杂系统不可缺少的智能部件。

在一些工业控制中,经常需要以多台单片机作为下位机执行对被控对象的直接控制,以一台PC机为上位机完成复杂的数据处理,组成一种以集中管理、分散控制为特点的集散控制系统。

为了提高系统管理的先进性和安全性,计算机工业自动控制和监测系统越来越多地采用集总分算系统。

较为常见的形式是由一台做管理用的上位主计算机(主机)和一台直接参与控制检测的下位机(单片机)构成的主从式系统,主机和从机之间以通讯的方式来协调工作。

主机的作用一是要向从机发送各种命令及参数:二是要及时收集、整理和分析从机发回的数据,供进一步的决策和报表。

从机被动地接受、执行主机发来的命令,并且根据主机的要求向主机回传相应烦人实时数据,报告其运行状态。

用串行总线技术可以使系统的硬件设计大大简化、系统的体积减小、可靠性提高。

单片机与PC机串行通信系统硬件及上位机程序设计【精选】

单片机与PC机串行通信系统硬件及上位机程序设计【精选】

目录1 引言 (1)1.1 单片机与PC机串行通信研究背景 (1)1.2 单片机与PC机串行通信研究目的和意义 (1)2 串口通信基础 (1)2.1 两种常用接口方式 (2)2.1.1 并行接口 (2)2.1.2 串行接口 (2)2.2 RS-232串行接口标准 (2)3 系统总体设计 (3)3.1 系统指标设计 (3)3.1.1 通信协议设定 (3)3.1.2 系统实现描述 (3)3.2 总体方案设计 (3)4 硬件接口电路设计 (4)4.1 主要芯片 (4)4.1.1 AT89C51 (4)4.1.2 单电源转换芯片MAX232 (6)4.1.3 74LS245LED驱动芯片 (7)4.2 LED显示器 (7)4.2.1 LED显示器工作原理 (8)4.2.2 LED显示器接口 (8)4.3 系统设计 (8)5 PC机程序设计 (9)5.1 MSComm控件 (9)5.1.1 MSComm控件处理通信的方式 (9)5.1.2 MSComm控件的主要属性 (10)5.2 应用界面设计流程 (10)5.2.1 创建项目文件 (10)5.2.2 加入串口通信控件 (11)5.2.3 设计窗体界面 (12)5.3 代码实现 (12)6 仿真调试及结果分析 (15)7 结语 (17)参考文献 (18)致谢 (19)2.1 两种常用接口方式2.1.1 并行接口并行接口是指8位数据同时通过并行线进行传送,这样数据的传输率能得到极大的提高。

但在并行传输中,干扰会随线路长度的增加而增加,产生传输错误。

因此,并行传输主要应用在近距离数据传输中,如连接打印机端口。

并行接口主要使用36针接头和25针D形接头,目前以25针D形接头为主[4]。

2.1.2 串行接口串行口也是计算机的一种标准接口,PC机一般至少有两个串行口Com1和Com2。

串行口不同于并行口,它的数据和控制信息是一位接一位在一根传输线上传送的,这样串行口较并行口能够进行远距离传送信息。

MCS-51单片机串行通信

MCS-51单片机串行通信

9.1 串行通信概述
• ④停止位 表示发送一个数据的结束,用高电平表示,占1 位、1.5 位或2 位。 • 线路空闲时,线路处于逻辑“1”等待状态,即空闲位为1。 空闲位是异步通信特征之一。异步通信中数据传送格式如 图9.1 所示。 • 图9.1 异步通信数据帧格式
图9.1 异步通信数据帧格式
9.1 串行通信概述
9.1 串行通信概述
• 3.波特率 • 波特率是数据传递的速率,指每秒传送二进制数据的位数, 单位为位/秒(bit/s)。 • 例9.1 假设微型打印机最快的传送速率为30 字符/秒,每 个字符为10 位,计算波特率。 • 解: • 波特率=10 b/字符×30字符/s=300 b/s • 每一位代码的传送时间Td 为波特率的倒数: • Td=1/300=3.3 ms • 异步通信的波特率一般在50~19 200 b/s 之间,常用于 计算机到终端机和打印机之间的通信、直通电报以及无线 电通信的数据发送等。
异步10位收发 异步11位收发 异步11位收发
9.2 串行口结构与工作原理
• SM2:多机通信控制位。 • a.用于方式2和方式3。若SM2=1,则允许多机通信。 多机通信协议规定,若第9位数据(RB8)为1,则表明本帧 数据为地址帧。否则,若第9位数据(RB8)为0,则表明本 帧数据为数据帧。 • 当一个8051(主机)与多个8051(从机)进行通信时,令所有 从机的SM2都置1。主机要与某个从机通信,首先发送一 个与该从机相一致的地址帧(每个从机的地址必须惟一), 且第9位为1,所有从机接收到数据后,将第9位送入RB8 中。 • 若RB8=1,说明是地址帧,将数据装入SBUF,且置RI =1,即中断所有从机,若从机判断出该地址帧数据与本 机号(地址)一致,则置SM2=0,准备接收主机发来的数 据。其他从机仍然保持SM2=1。

51单片机串口原理

51单片机串口原理

51单片机串口原理
51单片机串口原理是指通过串行通信协议实现数据的发送与
接收的一种通信方式。

串口通信可以用于串联外部设备与单片机进行数据传输,如与计算机、传感器、模块等进行数据交互。

串口通信由发送端与接收端组成。

发送端将要发送的数据转换成串行数据流,通过串行引脚将数据发送到接收端。

接收端接收到串行数据流后,将其转换为并行数据并进行相应的处理。

51单片机的串口通信主要依靠两个寄存器:TBUF(发送缓冲器)和RBUF(接收缓冲器)。

发送端通过向TBUF写入数据
实现数据发送,接收端通过读取RBUF来获取接收到的数据。

串口通信的波特率是指每秒钟传送的位数,它是串口通信中十分重要的参数。

串口通信的波特率由波特发明,并以其名字命名。

常见的波特率有9600、38400、115200等。

串口通信使用的是异步串行通信,即数据以比特为单位依次传送。

在每个数据字节的前后,都有一个起始位和一个或多个停止位。

起始位用于通知接收端数据的到来,停止位用于标记数据的结束。

在51单片机中,通过设置相应的寄存器来配置串口的波特率、数据位数、停止位数和校验位。

通过配置串口通信的参数,可以实现不同设备之间的数据传输。

以上就是51单片机串口通信的基本原理,通过串口通信可以
实现单片机与外部设备之间的数据交互,为嵌入式系统的开发提供了方便和灵活性。

51单片机和PC机串行通信系统设计

51单片机和PC机串行通信系统设计
图 1 RS2232C接口引脚定义
3 通信软件的设计 PC机和单片机在进行通信时 ,首先分别对各自
的串行口进行初始化 、确定串行口工作方式 、设定波 特率 、传输数据长度等 ,然后才开始数据传输 ,这些 工作是由软件来完成的 ,因此对 PC 机和单片机均 需设计相应的通信软件 。
收稿日期 : 2005202221
图 2 MC1488引脚示意图
图 3 MC1489引脚示意图
图 4 单片机与 RS2232标准接口电路
开始通信前 ,首先要初始化串口 ,包括选串口 、 设置串口掩码 、设置缓冲区 、设置波特率 、创建同步 事件 、创建线程并让辅助线程处于发信号状态等 。 用户通过调用 AP I提供的函数来完成 。W in 32 对 I/O 口 ,如串口 、并口等进行操作需通过“文件 ”方式 实现 ,串口的打开 、关闭 、读取和写入所用的函数和 操作文件的方式相似 。常用的函数调用有 :
·41·
( 3)设置缓冲区大小 。如果程序需要重新分配 发送和接收缓冲区 ,则使用 SetupComm ( )函数 。
( 4)清除缓冲区 。可使用 PurgeComm ( )函数 。 ( 5)从串口接收数据 。可使用 Read2File ( ) 函 数。 ( 6)从串口发送数据 。可使用 W rite2File ( ) 函 数。 ( 7)关闭串口 。可使用 CloseHandle ( )函数 。 有了 W in32 AP I串行通信函数 ,就可以实现串 口的打开和关闭 ,设置串口状态 ,并进行串行数据的 发送和接收 ,完成串行通信任务 。编写 W in32 串行 通信程序的基本步骤是 : ①使用 CreateFile ( )函数获得串口句柄 ; ②使用 BuildCommDCB ( )和 SetCommState ( )函 数设置串口工作状态 ; ③可根据需要选择相应的结构和函数进行其它 设置 。如重新设置发送接收缓冲区可使用 Setup2 Comm ( )函数 ;设置超时则可修改 COMMTIMEOUTS 结构并使用 SetCommTimeouts( )函数等 ; ④使用 ReadFile ( ) 和 W riteFile ( ) 函数读写串 口; ⑤串行通信结束时 ,使用 CloseHandle ( )函数关 闭串口以释放控制权 ,使串口可以被其它的程序使 用。 3. 2 单片机收发软件设计 设计单片机的通信软件 ,实际上是对单片机的 串行口的设计 ,通常采用汇编语言来设计 。首先必 须设置串行通 信 方式 ( SCON ) 和 波特 率 ( PCON ) 。 汇编程序如下所示 : ( 1)发送程序的设计 。 TRT: MOV SCON , #50H; 初始化方式 1,波特率

Proteus仿真--51单片机串口转RS232

Proteus仿真--51单片机串口转RS232

Proteus仿真——51单片机串口转RS232口单片机串口是单片机通信的基本途径,可以进行多单片机间的通信,也可以通过接口转换实现与计算机间的通信。

其中与计算机通信可以通过计算机的串口(232口)或USB口实现。

本文是本人做的一个小实验,内容是在Proteus ISIS中仿真51单片机串口转RS232口,实现单片机通过串行口与计算机通信。

单片机串行口有四种不同的工作方式:方式0:移位寄存器输入/出方式,波特率固定为:fosc/12。

方式1:10位UART(通用异步接口电路),一帧数据包括1位起始位(0),8位数据位和1位停止位(1)。

波特率可变,公式为:其中X为定时器T1的初值,当然我们一般都是先确定波特率然后算初值的,所以我们更想知道X等于多少。

把上面的式子变一下就可以得到初值X了:方式2/3:这两种方式都是11位的UART,它们比方式1多了一个第9位数据。

他们不同的是:方式2波特率固定为fosc/32或fosc/64,由SMOD位决定。

方式3:波特率同方式1;本例中采用方式1,波特率为9600(计算机默认值),根据波特率算出初值X=253(定时器T1工作方式2)。

我们以9600的波特率向计算机循环发送00H;proteus中的接口转换电路如下:计算机端用串口调试软件接收;不过我们要说明一下,为了实现串口的连接,我们要用计算机串口模拟软件模拟出两个232口,模拟出的这两个232口是设计为连接着的。

我们用Virtual Serial Port Driver这个软件(到网上去搜,很容易找到)。

安装好后打开,界面如下:在上图里可以看出我的机器有一个物理口COM1,现在已经模拟出了两个口COM2和COM3,而且他们是一组是连接着的。

我们在proteus中的compim默认是连到com1的,在我们这边改成com2,然后在串口调试软件中测试com3,如下两个图现在硬件连接已经到位,下面就是软件了:通过串口以波特率为9600的速度发送00H,程序如下:ORG 0000HLJMP STARTORG 0030HSTART: SETB EASETB ESSETB ET1CLR SM0;串行口工作于方式1:sm0=0,sm1=1SETB SM1MOV PCON,#00H;波特率不加倍MOV TMOD,#20H;T1定时器方式2MOV TL1,#253MOV TH1,#253SETB TR1MOV A,#00HLOOP: MOV SBUF,AJNB TI,$;等待发送完CLR TI;清除中断标志LJMP LOOP;循环END结果如下:说明一下:发送00H,收到FFH是因为电平转换电路MAX232对数据进行了取反。

51单片机串口通信

51单片机串口通信

51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。

而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。

本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。

一、串口通信的原理串口通信是以字节为单位进行数据传输的。

在串口通信中,数据传输分为两个方向:发送方向和接收方向。

发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。

接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。

在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。

其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。

二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。

具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。

b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。

2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。

b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。

c. 清除TI标志位。

3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。

b. 将接收到的数据从SBUF寄存器中读取出来。

c. 清除RI标志位。

三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。

解决方法是在初始化时确保两端的波特率设置一致。

2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。

单片机与PC串口通信课程设计

单片机与PC串口通信课程设计

单片机与PC串口通信课程设计单片机与PC机的串口通信摘要单片机由于性价比高、使用灵活等优点而广泛应用于各种电子系统、自动控制系统,但是其存储容量小,处理的数据量不大。

为了克服这一缺点,我们可以将单片机连接到PC机上,由单片机采集数据,然后将数据汇总到PC机,再进行各种数据处理。

单片机与PC机一般采用串行通信,由于51系列单片机中一般集成了全双工的串行端口,只要配以电平转换的驱动电路、隔离电路就可组成一个简单可行的通信接口。

PC机具有强大的监控和管理功能,而单片机则具有快速及灵活的控制特点,本设计将通过电平转换电路实现单片机与PC机中的RS-232标准总线之间的串行通信。

这也是许多测控系统中常用的一种通信解决方案。

关键词:单片机,PC机,串行通信,电平转换,总线目录课程设计(论文)用纸第一章:绪论1.1课题研究的目标和意义单片机与PC机串行通信端口在系统控制的范畴中一直占据着及其重要的地位,它不仅没有因为时代的进步而遭淘汰,反而在规格上越来越完善,应用也越来越广泛。

作为一种基本而又灵活方便的通信方式,串口通信被广泛应用于PC与PC 或者PC与单片机之间的数据交换以及其他工业控制与自动控制中。

如今,在很多场合中,要求单片机不仅能独立完成单机的控制任务,还要能与其他数据控制设备(单片机、PC机等)进行数据交换。

因此如何实现PC机与单片机之间的通信具有非常重要的现实意义。

1.2所属领域的现状及发展状况单片机,亦称单片微电脑或单片微型计算机。

它是把中心处理器(CPU)、随机存取存储器(RAM)、只读存储器(ROM)、输入/输出端口(I/0)等主要计算机功用部件都集成在一块集成电路芯片上的微型计算机。

现在可以说单片机是百花齐放的期间,天下上各大芯片制造公司都推出了自己的单片机,从8位、16位到32位,不成胜数,应有尽有,它们各具特色,互成互补,为单片机的应用供应广漠的六合。

通用型单片机通过三总线结构扩展外围器件成为单片机应用的主流结构。

MCS-51单片机的串行口及串行通信技术

MCS-51单片机的串行口及串行通信技术

MCS-51单⽚机的串⾏⼝及串⾏通信技术数据通信的基本概念串⾏通信有单⼯通信、半双⼯通信和全双⼯通信3种⽅式。

单⼯通信:数据只能单⽅向地从⼀端向另⼀端传送。

例如,⽬前的有线电视节⽬,只能单⽅向传送。

半双⼯通信:数据可以双向传送,但任⼀时刻只能向⼀个⽅向传送。

也就是说,半双⼯通信可以分时双向传送数据。

例如,⽬前的某些对讲机,任⼀时刻只能⼀⽅讲,另⼀⽅听。

全双⼯通信:数据可同时向两个⽅向传送。

全双⼯通信效率最⾼,适⽤于计算机之间的通信。

此外,通信双⽅要正确地进⾏数据传输,需要解决何时开始传输,何时结束传输,以及数据传输速率等问题,即解决数据同步问题。

实现数据同步,通常有两种⽅式,⼀种是异步通信,另⼀种是同步通信。

异步通信在异步通信中,数据⼀帧⼀帧地传送。

每⼀帧由⼀个字符代码组成,⼀个字符代码由起始位、数据位、奇偶校验位和停⽌位4部分组成。

每⼀帧的数据格式如图7-1所⽰。

⼀个串⾏帧的开始是⼀个起始位“0”,然后是5〜8位数据(规定低位数据在前,⾼位数据在后),接着是奇偶校验位(此位可省略),最后是停⽌位“1”。

起始位起始位"0”占⽤⼀位,⽤来通知接收设备,开始接收字符。

通信线在不传送字符时,⼀直保持为“1”。

接收端不断检测线路状态,当测到⼀个“0”电平时,就知道发来⼀个新字符,马上进⾏接收。

起始位还被⽤作同步接收端的时钟,以保证以后的接收能正确进⾏。

数据位数据位是要传送的数据,可以是5位、6位或更多。

当数据位是5位时,数据位为D0〜D4;当数据位是6位时,数据位为D0〜D5;当数据位是8位时,数据位为D0〜D7。

奇偶校验位奇偶校验位只占⼀位,其数据位为D8。

当传送数据不进⾏奇偶校验时,可以省略此位。

此位也可⽤于确定该帧字符所代表的信息类型,“1"表明传送的是地址帧,“0”表明传送的是数据帧。

停⽌位停⽌位⽤来表⽰字符的结束,停⽌位可以是1位、1.5位或2位。

停⽌位必须是⾼电平。

接收端接收到停⽌位后,就知道此字符传送完毕。

51单片机串口通信实现16 16点阵显示

51单片机串口通信实现16 16点阵显示

51单片机开发的点阵实验附录2中讲到Proteus调试单片机串口的方法附录1中讲到8*8点阵的显示原理以下程序有本人编写,请参考:用串口调试助手发送个16进制01是个笑脸;02是个哭脸。

可以用上图,基于proteus做仿真。

C51程序:#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit le1=P1^0;sbit le2=P1^1;sbit le3=P1^2;sbit le4=P1^3;uchar code tab[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};uchar code tac[8][8]={{0x00,0x00,0xf8,0x04,0x32,0x4a,0x02,0x02},{0x02,0x12,0x22,0xc2,0x04,0xf8,0x00,0x00},{0x00,0x00,0x1f,0x20,0x4c,0x52,0x40,0x40},{0x40,0x48,0x44,0x43,0x20,0x1f,0x00,0x00},//笑脸{0x00,0x00,0xf8,0x04,0x02,0x4a,0x32,0x02},{0x02,0x02,0xc2,0x22,0x04,0xf8,0x00,0x00},{0x00,0x00,0x1f,0x20,0x40,0x52,0x4c,0x40},{0x40,0x40,0x43,0x44,0x20,0x1f,0x00,0x00},//哭脸uchar a=0;int b=0,c=0,flag=0,i; void init()//初始化{TMOD=0x20;TH1=0xfd;TL1=0xfd;TR1=1;SM0=0;SM1=1;REN=1;EA=1;ES=1;}void delay(uint n) {uint i,j;for(i=n;i>0;i--)for(j=80;j>0;j--); }void display()//显示if(b==1)c=0;if(b==2)c=4;P1=0xff;P0=0x00;P2=0xff;le2=0;le4=0;for(i=0;i<8;i++) {P2=tab[i];P0=tac[0+c][i];delay(1);}P1=0xff;P0=0x00;P2=0xff;le1=0;le4=0;for(i=0;i<8;i++) {P2=tab[i];delay(1);}P1=0xff;P0=0x00;P2=0xff;le1=0;le3=0;for(i=0;i<8;i++) {P2=tab[i];P0=tac[2+c][i];delay(1);}P1=0xff;P0=0x00;P2=0xff;le2=0;le3=0;for(i=0;i<8;i++) {P2=tab[i];delay(1);}}void main(){init();while(1){if(flag==1){if(b==1||b==2)display();}}}void ser()interrupt 4//串口中断{RI=0;a=SBUF;if(a==0x01)b=1;if(a==0x02)b=2;flag=1;}附1:目前我会的有3种1.单片机+虚拟终端(作为串口输入设备)+串口2.单片机+虚拟终端(作为串口输入设备)+MAX232+串口3.单片机+串口+虚拟串口程序(virtual serial port)+串口调试助手4.单片机+MAX232+串口+虚拟串口程序(virtual serial port)+串口调试助手(这个不会,主要是不知道该怎么在Proteus中连线,理论上方法4和3的连线方法是没有太大差别的,我也不知道哪里设置不对,一直没弄成功,问题出在加入了MAX232后)方法1和2的区别不大,只是在串口和单片机中间多接个MAX232,因为是仿真软件,所以串口有和没有MAX232的仿真结果是一样的,就是细节上的设置不同方法1连线如下:方法2连线图如下:方法1和方法2的区别在PCT(虚拟终端输入串口的PCT计算机发送端)的一个设置参数不同,(当波特率改变的时候虚拟终端里面的波特率设置也要改变)方法1设置如下方法2设置如下不同的地方在PCT,串口这边的虚拟终端的RX/TX Polarity的设置不同,当在单片机和串口间没接入MAX232,该项设置为normal,当在其间接入了MAX232该项设置为inverted。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51单片机和计算机之间实现串口通信的电路图
串口通讯参考程序如下:
来源:深入浅出AVR单片机
#include<reg51.h>
unsigned char UART_RX; //定义串口接收数据变量
unsigned char RX_flag; //定义穿行接收标记
/**************************************************************************************** *****
函数名:UART串口初始化函数
调用:UART_init();
参数:无
返回值:无
结果:启动UART串口接收中断,允许串口接收,启动T/C1产生波特率(占用)
备注:振荡晶体为12MHz,PC串口端设置[ 4800,8,无,1,无]
/**************************************************************************************** ******/
void UART_init (void){
EA = 1; //允许总中断(如不使用中断,可用//屏蔽)
ES = 1; //允许UART串口的中断
TMOD = 0x20; //定时器T/C1工作方式2
SCON = 0x50; //串口工作方式1,允许串口接收(SCON = 0x40 时禁止串口接收)
TH1 = 0xF3; //定时器初值高8位设置
TL1 = 0xF3; //定时器初值低8位设置
PCON = 0x80; //波特率倍频(屏蔽本句波特率为2400)
TR1 = 1; //定时器启动
}
/**************************************************************************************** ******/
/**************************************************************************************** *****
函数名:UART串口接收中断处理函数
调用:[SBUF收到数据后中断处理]
参数:无
返回值:无
结果:UART串口接收到数据时产生中断,用户对数据进行处理(并发送回去)备注:过长的处理程序会影响后面数据的接收
/**************************************************************************************** ******/
void UART_R (void) interrupt 4 using 1{ //切换寄存器组到1
RI = 0; //令接收中断标志位为0(软件清零)
UART_RX = SBUF; //将接收到的数据送入变量UART_data
RX_flag=1; //标记接收
//用户函数内容(用户可使用UART_data做数据处理)
//SBUF = UART_data; //将接收的数据发送回去(删除//即生效)
//while(TI == 0); //检查发送中断标志位
//TI = 0; //令发送中断标志位为0(软件清零)
}
/**************************************************************************************** ******/
/**************************************************************************************** *****
函数名:UART串口发送函数
调用:UART_T (?);
参数:需要UART串口发送的数据(8位/1字节)
返回值:无
结果:将参数中的数据发送给UART串口,确认发送完成后退出,采用非中断方式
备注:
/**************************************************************************************** ******/
void UART_T (unsigned char UART_data){ //定义串口发送数据变量
ES=0; //禁止穿行中断
SBUF = UART_data; //将接收的数据发送回去
while(TI == 0); //检查发送中断标志位
TI = 0; //令发送中断标志位为0(软件清零)
ES=1; //打开穿行中断
}
/**************************************************************************************** *****
函数名:UART串口发送字符串函数
调用:UART_S (?);
参数:需要UART串口发送的数据(8位/1字节)
返回值:无
结果:将参数中的数据发送给UART串口,确认发送完成后退出,采用非中断方式
备注:
/**************************************************************************************** ******/
void UART_S(unsigned char *str)
{
while(1)
{
if(*str=='\0') break;
UART_T(*str++);
}
}
/**************************************************************************************** *****
函数名:主函数
调用:main();
参数:
返回值:无
结果:
备注:
/**************************************************************************************** ******/
void main()
{
unsigned char Buf_data[]={" welcome to MCU world. \n\r"}; UART_init();
UART_S(Buf_data);
while(1){
if(RX_flag==1)
{
UART_T(UART_RX);
RX_flag=0;
}
}
}。

相关文档
最新文档