1.5.2乘方(第二课时)

合集下载

151有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

151有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(2)》一. 教材分析《乘方(2)》这一节内容位于人教版七年级数学第一章第五节,本节课主要让学生掌握有理数的乘方及其运算法则。

通过本节课的学习,学生能够理解乘方的概念,熟练运用乘方运算法则进行计算,为后续学习幂的运算、指数函数等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但部分学生在理解和运用乘方概念及运算法则方面可能会遇到困难。

因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和辅导。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握有理数的乘方运算法则,能熟练运用乘方进行计算。

2.过程与方法:通过观察、讨论、探究等方法,培养学生发现问题、分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:乘方的概念,有理数的乘方运算法则。

2.难点:乘方运算法则在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例引入乘方概念,激发学生学习兴趣。

2.合作学习法:学生进行小组讨论,共同探究乘方运算法则。

3.引导发现法:教师引导学生发现乘方运算法则,培养学生独立思考的能力。

六. 教学准备1.教学课件:制作乘方概念、运算法则的相关课件。

2.教学素材:准备一些有关乘方的例子和练习题。

3.教学工具:黑板、粉笔、多媒体设备等。

七. 教学过程1.导入(5分钟)利用生活实例,如计算墙壁上挂钟的指针相遇次数,引导学生思考如何用数学方法表示这个问题。

进而引入乘方概念。

2.呈现(10分钟)呈现乘方的定义和运算法则,引导学生观察和思考乘方的特点。

3.操练(10分钟)让学生进行一些有关乘方的计算练习,教师及时给予指导和反馈。

4.巩固(10分钟)学生分组讨论,共同探究乘方运算法则在实际问题中的应用。

教师参与讨论,给予解答和指导。

人教版数学七年级上册1.5.1乘方(第2课时)优秀教学案例

人教版数学七年级上册1.5.1乘方(第2课时)优秀教学案例
2.问题导向,培养学生探究能力
本案例通过设计具有启发性和挑战性的问题,引导学生进行自主探究和合作交流。这种问题导向的教学方式有助于培养学生的逻辑思维和探究能力,使他们在解决问题的过程中发现乘方的性质和规律,加深对乘方知识的理解。
3.小组合作,提升学生团队协作能力
案例中注重小组合作学习,让学生在小组内共同探讨乘方的性质和应用。这种学习方式有助于培养学生的团队协作能力和沟通能力,使他们在互相启发、互相学习中共同提高。
人教版数学七年级上册1.5.1乘方(第2课时)优秀教学案例
一、案例背景
在我国初中数学教育中,乘方概念的引入是学生认知发展的一次重要跨越,它不仅要求学生掌握数的乘法运算,还要理解数的高次幂表示方法。本教学案例以人教版数学七年级上册1.5.1乘方(第2课时)为背景,针对乘方的概念、性质及应用进行深入探讨。通过生动的实例,激发学生对乘方的兴趣,引导他们掌握乘方的计算方法,培养学生解决实际问题的能力。在教学过程中,注重数学思想的渗透,让学生在探索中发现规律,体验数学学习的乐趣,从而提高他们的数学素养。在此基础上,本案例将结合学生的生活实际,设计富有启发性和挑战性的教学活动,使学生在轻松愉快的氛围中掌握乘方知识,为后续数学学习打下坚实基础。
2.学生分享学习心得,教师适时给予鼓励和指导,强化学生对乘方知识的掌握。
3.教师强调乘方在数学学习中的重要性,激发学生继续学习的兴Байду номын сангаас和动力。
(五)作业小结
1.布置适量的作业,包括乘方的计算题、应用题和拓展题,巩固学生对乘方知识的掌握。
2.要求学生在作业中体现自己的思考过程,鼓励他们尝试不同的解题方法,培养创新思维。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,创设有趣、富有挑战性的教学情境。通过引导学生自主探究、合作交流,使他们在掌握乘方知识的同时,培养良好的学习习惯和情感态度,为学生的全面发展奠定基础。

2022年人教版七年级数学上册第一章有理数教案 乘方(第2课时)

2022年人教版七年级数学上册第一章有理数教案  乘方(第2课时)

第一章有理数1.5 有理数的乘方1.5.1 乘方第2课时一、教学目标【知识与技能】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算.【过程与方法】通过例题学习,发展学生观察、归纳、猜想、推理等能力.【情感态度与价值观】体验获得成功的感受、增加学习自信心.二、课型新授课三、课时第2课时,共2课时。

四、教学重难点【教学重点】运算顺序的确定和性质符号的处理【教学难点】有理数的混合运算五、课前准备教师:课件、直尺、计算器等。

学生:三角尺、练习本、铅笔、圆珠笔或钢笔。

六、教学过程(一)导入新课我们学过哪些运算?(出示课件2)学生答:有理数的加、减、乘、除、乘方五种运算。

教师:我们一起来思考下面的问题:教师问1:在2+×(-6)这个式子中,存在着哪几种运算?学生回答:乘方、加法、乘法.教师问2:这道题应按什么顺序运算?学生回答:先算乘方,再算乘法,最后算加法.(二)探索新知1.有理数的混合运算出示课件4-5,学生观察图片,思考问题,列出算式。

圆形花坛的半径为3m,中间雕塑的底面是边长为1m 的正方形。

请同学们估计一下若每平方米种9株花,我要买几株花呀?学生列出算式:(π×32-12)×9教师问3:上式含有哪几种运算?先算什么?后算什么?(出示课件6) 学生回答:下式含有乘方、乘法、减法三种运算,先算乘方,再算括号内的乘法,然后算减法,最后算括号外的乘法.23教师问4:前面我们已经学习加减乘除四则运算,知道要先算乘除,再算加减,现在又多一种乘方运算,你们认为在做有理数混合运算时,应注意哪些运算顺序?师生共同解答如下:(出示课件7)(1)先算乘方,再算乘除,最后算加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.例1:计算:(出示课件8)(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2).师生共同解答如下:解:(1)原式=2×(-27)-(-12)+15=-54+12+15=-27(2)原式=-8+(-3)×(16+2)-9÷(-2)=-8+(-3)×18-(-4.5)=-8-54+4.5=-57.5总结点拨:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减.计算时,特别注意符号问题.例2:计算:(出示课件10)师生共同解答如下:解法一、原式= 解法二、原式= =-6+(-5)=-11总结点拨:在运算过程中,巧用运算律,可简化计算.2.探究数字规律例:观察下面三行数:(出示课件12-14)–2, 4, –8, 16, –32, 64,…; ①0, 6, –6, 18, –30, 66,…; ②–1, 2, –4, 8, –16, 32,…. ③(1)第①行数按什么规律排列?师生共同解答如下:分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,(-2)5,(-2)6,…(2)对比①②两行中位置对应的数,你有什么发现?()2253[]39⎛⎫-⨯-+- ⎪⎝⎭119119⎛⎫⨯-=- ⎪⎝⎭259939⎛⎫⎛⎫⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭222220,46,86,1618,..++++-−−→−−→-−−→-−−→第②行数是第①行相应的数加2.即 -2+2,(-2)2+2,(-2)3+2,(-2)4+2,…对比①③两行中位置对应的数,你有什么发现?第③行数是第①行相应的数的一半,即-2×0.5,(-2)2×0.5,(-2)3×0.5,(-2)4×0.5,…(3)根据第①行数的规律,得第10个数为(-2)10,那么第②行的第10个数为(-2)10+2,第③行中的第10个数是(-2)10×0.5.所以每行数中的第10个数的和是:(-2)10+[(-2)10+2]+[(-2)10×0.5]=1024+(1024+2)+1024×0.5=1024+1026+512=2562(三)课堂练习(出示课件16-20)1.计算4+(–2)2×5=( )A .–16B .16C .20D .242.计算式子(–1)3 +(–1)6的结果是( )A.1B.–1C.0D.1或–13.设a=–2×32, b=(–2×3)2, c=–(2×3)2,那么a 、b 、c 的大小关系是( )A.a<c<bB.c<a<bC.c<b<aD.a<b<c4.计算:(-12)2×(91-41) 5.计算:(-2)2022+(-2)20236.计算:(1)2×(-3)2-4×(-3)+15 ;(2)16122472;⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭(3)()27274;⎛⎫-+-÷- ⎪⎝⎭ (4)-8-3×(-1)3-(-1)4 7.一个长方体的长、宽都是a,高是b,它的体积和表面积怎样计算?当a=2 cm,b=5 cm 时,它的体积和表面积是多少?参考答案:1.D 解析:4+(–2)2×5=4+4×5=4+20=24.2.C3.B4.解:(-12)2×(91-41) =144×41-144×91 =36-16=205.解:原式=22022 – 22023= 22022 – 22022×2= 22022 –22022 –22022= –220226.(1)45;(2)79;(3)0;(4)-6 7.解:体积V=a 2b=22×5=20 cm 3.表面积S=2a 2+4ab=2×22+4×2×5=48 cm 2.(四)课堂小结今天我们学了哪些内容:有理数混合运算的顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左往右进行;3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(五)课前预习预习下节课(1.5.2)的相关内容。

乘方第二课时教案

乘方第二课时教案

乘方第二课时教案教案标题:乘方第二课时教案教学目标:1. 理解乘方的概念和运算规则。

2. 能够应用乘方运算解决实际问题。

3. 培养学生的逻辑思维和问题解决能力。

教学准备:1. 教学课件和投影设备。

2. 学生练习册和习题集。

3. 小组活动所需的白板和笔。

4. 教学素材:实际问题的乘方表达式。

教学过程:引入活动:1. 引导学生回顾上节课学习的内容,复习乘方的定义和基本运算规则。

2. 提出一个实际问题:“小明每天跑步锻炼,第一天跑了2公里,第二天跑了4公里,第三天跑了8公里,以此类推。

请问第10天小明跑了多少公里?”让学生思考并尝试用乘方表达式来解决这个问题。

知识讲解:1. 通过投影课件展示乘方的定义和运算规则,包括乘方的读法、乘方的计算方法和乘方的性质等。

2. 结合实际问题和例子,详细讲解乘方的应用,如计算长方体的体积、求解等比数列等。

示范演练:1. 选择几个习题,向学生展示如何用乘方解决实际问题。

例如,求解一个正方形的面积,计算一个球的体积等。

2. 让学生跟随教师一起完成这些习题,引导他们思考和运用乘方的方法。

小组活动:1. 将学生分成小组,每个小组由3-4名学生组成。

2. 给每个小组分发一份习题集,要求他们在小组内合作完成习题。

3. 每个小组完成后,让他们互相交换习题集进行批改和讨论,确保每个学生都理解乘方的应用。

巩固练习:1. 在学生练习册中布置一些乘方的练习题,让学生独立完成。

2. 教师巡回指导学生解题过程,及时纠正他们的错误并解答疑惑。

总结反思:1. 回顾本节课的重点内容,强调乘方的应用和解决实际问题的能力。

2. 鼓励学生提出问题和疑惑,并进行解答和讨论。

3. 课堂结束前,布置下节课的预习任务,让学生提前准备相关知识。

教学延伸:1. 鼓励学生自主学习乘方的更多应用,如指数函数、科学计数法等。

2. 提供更多的实际问题,让学生运用乘方解决复杂的数学和科学问题。

这个教案旨在帮助学生理解乘方的概念和运算规则,并能够应用乘方解决实际问题。

§1.5.1乘方(2)

§1.5.1乘方(2)
乘方( 课时) §1.5.1 乘方(第 2 课时) 1.5
教学任务分析

教 学 目 标
乘方 学 乘方 学 学 学 学
教学
1 2 3 4 5 学 时
教学
[ 1] 学 (1) 2×32 方 18 2 3
2
(1) 2×32 (2) 3
2
(2×3)2
3
2
3 (2×3) 方 乘
36 2 方 (3)-3
4

(-3)
4
-1-
问题与情境 [活动 2] 活动 1.计算下列各题,请总结在 有理数混合运算时运算顺序应是 怎样的? (1)3+2 ×(2 2
师生行为
设计意图
教师活动: 教师活动: (1)鼓励学生独立完成;
1 ) 5
2
(2)指定三名学生到黑板 演示; (3)待黑板上学生完 成后,教师评析 教师评析:1)强调运 教师评析 算顺序;2)注意-7 =-(7
师生行为 学生活动: 学生活动: 活动 探索: 探索:根据问题容易得到 当对折两次后厚度为 4×0.1= 22×0.1 毫米. 当考虑对折 20 次时的厚 度时,给学生充分思考的时间 和空间,同时必要时可以让学 生进行讨论,经过讨论可以发 现(关键时老师提醒、启发) 对折 3 次时厚度变为 8×0.1= 2 ×0.1 毫米,对折 4 次是 16 ×0.1=24×0.1 毫米,对折 5 次 是 32 × 0.1 = 25 × 0.1 毫 米…… 归纳: 归纳:对折 20 次应是 220 ×0.1 毫米. 教师活动: 教师活动: 在上述问题的解 决过程中教师要作好参与者、 引导者的角色,当学生没有思 路时应适时的引导和启发,开 拓学生的思路,帮助学生更好 的解决问题.
2

1.5.2有理数的乘方(教案)-人教版七年级数学上册

1.5.2有理数的乘方(教案)-人教版七年级数学上册
(3)运用乘方解决实际问题:通过实例分析,让学生学会运用乘方知识解决生活中的问题,如面积、体积等。
举例:计算一个正方体的体积,V = a^3(a为正方体的边长)。
2.教学难点
(1)负整数乘方的计算:学生容易混淆负整数乘方的计算方法,需要重点讲解和练习。
难点举例:(-2)^2 = 4,而(-2)^3 = -8。
我尝试用生活中的实例来引导学生理解乘方的实际意义,比如通过折叠纸张来体验指数增长的速度。这个方法似乎很有效,学生们对这些直观的例子表现出浓厚的兴趣,这有助于他们更好地理解乘方的概念。
在小组讨论环节,我注意到学生们积极参与,相互交流想法。他们能够在讨论中提出一些很有见地的问题和观点,这说明学生们已经开始了主动探索和思考的过程。然而,我也观察到有些小组在讨论时可能会偏题,这时我及时介入,引导他们回到主题上来。
(2)乘方性质的掌握:学生难以理解负数乘方的性质,如负数的偶数次方为正数,奇数次方为负数。
难点举例:解释为什么(-2)^2 = 4,而(-2)^3 = -8。
(3)乘方在实际问题中的应用:学生可能不知道如何在实际问题中运用乘方知识,需要通过实例讲解。
难点举例:计算一个边长为2米的正方体的体积,V = 2^3 = 8立方米。
1.5.2有理数的乘方(教案)-人教版七年级数学上册
一、教学内容
本节课选自人教版七年级数学上册第1章《有理数》的1.5.2节,主要内容包括有理数的乘方概念、乘方运算的法则以及乘方在实际问题中的应用。具体教学内容如下:
1.理解有理数的乘方,掌握正整数、零、负整数的乘方运算;
2.掌握乘方的性质,如:负数的偶数次方为正数,负数的奇数次方为负数;
实践活动是课堂中的一个亮点,通过动手操作和实际计算,学生们对乘方的应用有了更深刻的体会。但是,我也发现一些学生在操作过程中遇到了困难,这提示我在未来的课堂中应该提供更多的一对一帮助,确保每个学生都能跟上进度。

1.5.1 乘方 第2课时 有理数的混合运算

1.5.1 乘方  第2课时 有理数的混合运算

【归纳总结】探索数的变化规律的方法: (1)从简单、特殊情形着手,然后猜想一般情形; (2)观察符号的变化规律; (3)观察数的绝对值的变化规律,当数的绝对值变大时,可考虑加 法、乘法或乘方(底数大于1)等运算,反之,可考虑减法、除法或 乘方(底数是小于1的正数)等运算.
总结反思
知识点 有理数的混合运算 有理数的混合运算顺序: 1.先___乘_方____,再__乘_除_____,最后_加_减______; 2.同级运算,从____左____到___右_____进行; 3.如有括号,先做__括_号__内___的运算,按小括号、中括号、大括 号
[点拨] 运算时优先确定每步结果的符号;除遵守以上原则外, 还需注意灵活运用运算律,使运算简便.
计算:232+(-32+5)+(-32)×(23)2. 解:232+(-32+5)+(-32)×(23)2 =49+(9+5)+9×49① =49+14+4②=1849.③
以上解答从第____①____步开始出现错.1 乘方
第一章 有理数
第2课时 有理数的混合运算
目标突破 总结反思
目标突破
目标一 会进行含乘方的有理数的混合运算
例 1 教材例 3 针对训练 计算: (1)2×(-3)2-5÷(-21)×(-2); (2)-12019-[2-(-1)2018]÷(-52)×52.
[解析] (1)先算乘方,再算乘除,最后算加减即可得到结果. (2)先算乘方,再算括号内的,然后将除法转化为乘法,计算乘法,最后 计算加减即可得到结果.
目标二 探索有理数的变化规律
例2 教材例4针对训练 观察下面三行数: 2,-4,8,-16,…;① -1,2,-4,8,…;② 3,-3,9,-15,….③ (1)第①行数有什么规律? (2)第②③行数与第①行数分别有什么关系? (3)取每行数的第9个数,计算这三个数的和.

人教版七年级数学上第一章1.5《有理数的乘方》第二课时探索乘方的规律教学课件 (共30张PPT)

人教版七年级数学上第一章1.5《有理数的乘方》第二课时探索乘方的规律教学课件 (共30张PPT)

你认为国王的国库 里有这么多米吗?
第1格: 1粒米 第2格: 2粒米 第3格: 4=2×2=22粒米 第4格: 8=2 ×2 ×2=23粒米 第5格: 16= 2 ×2 ×2 ×2=24粒米 …… 第64格:2×2×· · · · · · ×2=263 粒米。
事实上,按照这个 大臣的要求——
放满一个棋盘上的64个格子需要

(1)本节课你有什么收获?
(2)你有哪些困惑?
A层
一、选择题
1.下列每对数中,不相等的一对(
A.(-2)3和-23
3
)
B.22和(-2)2
C.(-2)4和-24
3 2 D. 2 和
二、计算 B层 三、解答题 一个面积为1米2的长方形纸片,第1次截去一半,第 2次截去剩下的一半,如此下去,第8次后剩下的纸 片面积是多少?
220=1048576 220× 0.1(毫米)=104857.6(毫米) =104.8576(米) 30层楼
≈105 (米) 105÷3=35 (层)
对折20次后的纸的 厚度比30层楼还要 高!!!
拉面中的乘方
你见过拉面师傅 拉面条吗? 手工拉面是我国的传统面 食。制作时,拉面师傅将一 团和好的面,揉搓成1根长 条后,手握两端用力拉长, 然后将长条对折,再拉长, 再对折,每次对折称为一扣, 如此反复操作,连续扣六七 次后便成了许多细细的面 条。
16 =2×2×2×2=24 … 2×2×2· · · ×2=220
到底要拉多少次 面条才能拉出209 万根面条? 210=1024 220=1024 ×1024=1048576 ,约为105万, 所以221约为210万。
因此拉面师傅可以拉21次能够拉出209万根面条。

【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)

【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)

有理数的乘方乘方( 2)知识与技术 能确立有理数加、 减、乘、除、乘方混淆运算的次序;能够娴熟地进行有理数的加、减、乘、除、乘方的运 过程与方法教课目的算,并在运算过程中合理使用运算律;培育学生对数的感觉, 提升学生正确运算的能力,培感情态度价养 学生思想的逻辑性和灵巧性,进一步发展学生的值观思想能力.教课要点有理数的混淆运算法例教课难点运算次序确实定和性质符号的办理教课过程(师生活动)设计理念教师提出问题:在 2+ 32×(- 6)这个式子中,存在着哪几种运算?给学生充足议论学生回答后,教师可持续发问:这道题应按什么顺的时间,鼓舞他提出问题序运算?前方我们已经学习加减乘除四则运算,知道们多发布自己的小组议论以为在做有理数混淆运算时,应注意哪些运算次序?请看法。

分 4 人小组议论。

小组议论后,请小组代表报告、沟通议论结果,其他同学增补,教师在学生回答的基础上做适合的总结与增补:( 1) 先算乘方,再算乘除,最后算加减;( 2) 同级运算,从左到右进行;( 3) 若有括号, 先做括号内的运算, 按小括号、 中括号、大括号挨次进行。

培育学生擅长归例 1 计算:纳、总结的能力,( 1)(- 2)3+(- 3)× [ (- 4) 2+2] -(- 3)2÷(-五种代数运算可分为三级;加减 沟通反应是一级,乘除是2);( 2) 1- 1× [3 ×(- 2)2-(- 1)41÷(- 1二级,乘方与开 ]+)方(此后会学)2 342是二级。

值.3、师生共同探请教科书44页的例 4.3.重申:按有理数混淆运算的次序进行运算,在每一步运 算中,仍旧是要先确立结果的符号,再确立符号的绝对要先算乘除,再算加减,此刻又多一种乘方运算,你们例 2 察下边三行数:-2, 4,- 8, 16,- 32, 64,⋯;① 0, 6,- 6, 18,- 30, 66,⋯;②-1, 2,- 4, 8 ,- 16, 32,⋯.③( 1)第①行数按什么律摆列?( 2)第②③行数与第①行数分有什么关系?( 3)取每行数的第 10 个数,算三个数的和.225 ] ,1.算3[39建学生采纳多种方法行算。

乘方(2)教案

乘方(2)教案

授课时间年____月____日第____周主备人课题名称乘方(第二课时)教学目标一、知识与技能了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.二、过程与方法能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.三、情感、态度与价值观培养学生对数的感觉,提高学生正确运算的能力,培养学生思维的逻辑性和灵活性,进一步发展学生的思维能力.教学重点有理数的混合运算顺序是确定的.教学难点根据有理数的混合运算顺序,正确地进行有理数的混合运算.教学方法讲练结合教学资源多媒体教学过程批注修改一、情境导入,初步认识计算:3-(-2)3×6.这个式子先算什么,后算什么?【教学说明】教师引导学生做这道题,让学生说一说运算顺序,接着师生共同归纳出下面的结论.【归纳结论】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.二、典例精析,掌握新知例1计算下列各题:【分析】按照有理数混合运算的顺序——先算括号,再乘方,然后算乘除,最后算加减进行计算,每步计算先确定符号再计算结果.【教学说明】有理数的计算要遵循先观察,后计算,先确定符号,再计算结果的原则;观察时,先看每个算式可以用括号和“+、-”号分成几个部分(如第(1)题可分为三部分,第(2)题可分为两部分),再看每个部分能否进行简算(如\[21×317-713×722÷312\]2及(0.12510×89)均可进行简算),乘除法中带分数一般化为假分数进行计算.完成此例题后,教师让学生自行阅读教材第43~44页例3、例4.试一试教材第44页练习.例2观察下面三行数:1,4,9,16,25,…;①0,3,8,15,24,…;②4,7,12,19,28,…;③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第12个,计算这三个数的和.分析通过比较可以发现,第②③行数据都是在①的基础上进行加减后得到的,所以根据这个思路很容易知道怎么解题.解:(1)第①行数是12,22,32,42,52,….(2)对比①②两行中的数据,可以发现:第②行数是第①行相应数减1,即12-1,22-1,32-1,42-1,52-1,….对比①③两行中的数据,可以发现,第③行数是第①行相应数加3,即12+3,22+3,32+3,42+3,52+3,….(3)每行第12个数是122,122-1,122+3,其和是122+122-1+122+3=434.【教学说明】这道例题与课本上的例题比较类似,教师可事先让学生学习教材例4后再解这道题.例3已知y=ax5+bx3+cx-5,当x=-3时,y=7;求x=3的y的值.解:当x=-3时,y=a·(-3)5+b·(-3)3+c·(-3)-5=-35a-33b-3c-5=7,∴35a+33b+3c=-12那么,当x=3时,y=35a+33b+3c-5=-12-5=-17【教学说明】本题重在让学生体会整体思想的运用.三、运用新知,深化理解1.计算下列各题.2.解:由表格知,3n中,当n是连续自然数变化时,幂3n的个位数字是3,9,7,1,3,9,7,1,…周期变化,且四个数为一个周期,易知37的个位数字为7,20 ÷4=5,则320的个位数字与第四个数的个位数字相同,即320的个位数字与34的个位数字相同,为1.四、课堂小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算;2.在运算中要注意像-72与(-7)2等这类式子的区别.五、布置作业1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.六、板书设计1.5.1乘方(第二课时)1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.教学反思:。

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

《1.5.1 第2课时 有理数的混合运算》教案、同步练习(附导学案)

1.5.1 乘方《第2课时有理数的混合运算》教案【教学目标】:1.了解有理数混合运算的意义,掌握有理数的混合运算法则及运算顺序.2.能够熟练地进行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律.【教学重点】:根据有理数的混合运算顺序,正确地进行有理数的混合运算.【教学难点】:有理数的混合运算.【教学过程】:一、有理数的混合运算顺序:1.先乘方,再乘除,最后加减.2.同级运算,从左到右进行.3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.【例1】计算:(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);(2)1-×[3×(-)2-(-1)4]+÷(-)3.强调:按有理数混合运算的顺序进行运算,在每一步运算中,仍然是要先确定结果的符号,再确定结果的绝对值.【例2】观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和.【例3】已知a=-,b=4,求()2--(ab)3+a3b的值.二、课堂练习 1.计算:(1)|-|2+(-1)101-×(0.5-)÷; (2)1÷(1)×(-)÷(-12); (3)(-2)3+3×(-1)2-(-1)4; (4)[2-(-)3]-(-)+(-)×(-1)2; (5)5÷[-(2-2)]×6. 2.若|x+2|+(y-3)2=0,求的值.3.已知A=a+a 2+a 3+…+a 2004,若a=1,则A 等于多少?若a=-1,则A 等于多少? 三、课时小结1.注意有理数的混合运算顺序,要熟练进行有理数混合运算.2.在运算中要注意像-72与(-7)2等这类式子的区别.1.5.1 乘方《第2课时 有理数的混合运算》同步练习1.填空题(1)求几个相同因数的积的运算,叫做_______,即n n a a a a •⋅⋅⋅•=个=a n 在a n 中,a 叫做_______,n 叫做______,a n 叫做_______;(2)正数的任何次幂都是______;负数的奇次幂是_______,负数的偶次幂是________;(3)乘方(-2)5的意义是____________________,结果为________; (4)-25的意义是____________________,结果为________;(5)在(-2)4中,-2是______,4是______,(-2)4读作_______或读作_______.思路解析:按照乘方定义及幂的结构解题. 答案:(1)乘方 底数 指数 幂(2)正数负数正数(3)5个-2的积 -32(4)5个2的积的相反数 -32(5)底数指数负二的四次幂负二的四次方2.把下列各式写成幂的形式,并指出底数是什么?指数是什么?(1)(-113)(-113)(-113)(-113);(2)(-0.1)×(-0.1)×(-0.1). 思路解析:根据幂的意义写出.答案:(1)(-113)4,底数是-113,指数是4;(2)(-0.1)3,底数是-0.1,指数是3.1.把下列各式写成幂的形式,并指出底数、指数各是什么?(1)(-1.2)×(-1.2)×(-1.2)×(-1.2)×(-1.2);(2)12×12×12×12×12×12;(3)2nb b b b ••⋅⋅⋅个.思路解析:底数是负数或分数时,要用括号将底数括起来,在括号外边写上指数,如(-1.2)5不能写成-1.25,(12)6不能写成612.答案: (1) (-1.2)5,其中底数是-1.2,指数是5;(2) (12)6,其中底数是12,指数是6;(3)222nn nb b b b b b••⋅⋅⋅==个,底数是b,指数是2n.2.判断题:(1)-52中底数是-5,指数是2;()(2)一个有理数的平方总是大于0;()(3)(-1)2 001+(-1)2 002=0;()(4)2×(-3)2=(-6)2=36; ()(5)223=49. ()思路解析:区别底的符号与幂结果的符号,注意底数是负数和分数时要把该底数用小括号括起来.答案:(1)×(2)×(3)×(4)×(5)×3.计算:(1)(-6)4;(2)-64;(3)(-23)4;(4)-423.思路解析:本题中(-6)4表示4个-6相乘,-64表示64的相反数,切不可看成同样的,且结果互为相反数.(-23)4表示4个-23相乘,而-423表24除以3的商的相反数.要注意区别.答案:(1)1 296; (2)-1 296; (3)1681; (4)-163.4.计算:(1)(-1)100;(2)(-1)101;(3)(-0.2)3;(4)(+25)3;(5)(-12)4;(6)(+0.02)2.思路解析:根据乘方的定义进行计算.答案:(1)1; (2)-1; (3)-0.008; (4)8125; (5)116; (6)0.000 4.5.计算下列各题:(1)(-3)2-(-2)3÷(-23)3;(2)(-1)·(-1)2·(-1)3……(-1)99·(-1)100.思路解析:由乘方的符号法则,易知对于一个有理数a,有(-a)2n=a2n,(-a)2n+1=-a2n+1(n为整数).本例应依此先确定幂的符号,再进行乘方运算.答案:(1)-18; (2)-1.(巩固类训练)1.6a2-2ab-2(3a2+12ab)的结果是()A.-3abB.-abC.3a2D.9a2答案:A2.填空:(1)若x<0且x2=49,则x=_______;(2)若|x+2|+(y+1)2=0,则x=______,y=______,x3y2 002=_______;(3)平方小于10的整数有_______个,其和为_______,积为________. 答案:(1)-7 (2)-2 -1 -8 (3)7 0 03.计算:(1)(-5)4; (2)-54; (3)-(-27)3;(4)[-(-27)]3; (5)-245; (6)(-45)2.思路解析:本题意在考查对(-a)n与-a n的意义的理解,要注意二者的区别与联系.解:(1)原式=(-5)×(-5)×(-5)×(-5)=625;(2)原式=-5×5×5×5=-625;(3)原式=-(-27)(-27)(-27)=8343;(4)原式=(27)3=27×27×27=8343;(5)原式=-445=-165;(6)原式=(-45)(-45)=1625.4.计算:(1)-(14)2×(-4)2÷(-18)2;(2)(-33)×(-1527)÷(-42)×(-1)25.思路解析:本题是乘、除、乘方混合运算运算时一要注意运算顺序:先乘方、后乘除,二要注意每一步运算中符号的确定.解:(1)原式=-116×16÷164=-64;(2)原式=(-27)×(-3227)÷(-16)×(-1)=27×3227×116=2.5.已知a、b为有理数,且(a+12)2+(2b-4)2=0,求-a2+b2的值.解:因为任意有理数的平方非负,可得:(a+12)2≥0,(2b -4)2≥0.又因为(a+12)2+(2b -4)2=0,得a+12=0,a=-12,2b -4=0,b=2,把a=-12, b=2代入a 2+b 2,得334.6.若n 为自然数,求(-1)2n -(-1)2n+1+(-2)3的值.思路解析:因为n 为自然数,所以2n 为偶数,2n+1为奇数.由负数的奇次幂是负数,负数的偶次幂是正数可知: (-1)2n =1,(-1)2n+1=-1.答案:-6.7.x 2=64,x 是几?x 3=64,x 是几?思路解析:由于任何数的偶次幂都是正数或0,平方也是偶次幂,所以平方是64的数有可能是正数,也有可能是负数,这两个数互为相反数.先求出正数,再求出其相反数.立方是正数(64)的数只能是正数,因为负数的奇次幂为负数,所以立方是64的数只能有一个.解:x=±8时,x 2=64;x=4时,x 3=64. 8.求(1-212)×(1-213)×(1-214)…(1-219)×(1-2110)的值. 思路解析:由于每一项都可以改写成两项积的形式,因此可利用分解相约的方法.答案:1120. 9.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?思路解析:此题的关键是找出每次截完后,剩下的小棒占整根棒的比例与所截次数之间的关系.现将它们的关系列表如下:答案:128米.1.5.1 乘方《第2课时 有理数的混合运算》导学案【学习目标】:1、熟练进行有理数的混合运算2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度【重难点】:有理数的四则混合运算 【学习过程】 一、自主学习: (一)复习回顾:1、有理数的加、减、乘、除及乘方的运算法则2、加入乘方后,有理数的混合运算的顺序如何? (二)导学:有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。

乘方第二课时教案

乘方第二课时教案

乘方第二课时教案乘方第二课时教案一、教学目标:1. 知识与技能目标:掌握乘方的运算规则和特殊的乘方运算。

2. 过程与方法目标:通过多种形式的练习,提高学生对乘方的理解和熟练运用。

3. 情感态度价值观目标:培养学生对数学的兴趣爱好,激发学生学习数学的积极性。

二、教学重点:1. 乘方运算规则的掌握。

2. 特殊的乘方运算的掌握。

三、教学难点:1. 特殊的乘方运算的理解和运用。

2. 梳理乘方运算规则。

四、教具准备:1. 教学课件。

2. 黑板、粉笔。

五、教学过程:1. 热身导入(10分钟)教师出示一个简单的乘方运算题目,要求学生快速计算并回答答案。

然后,教师总结乘方的定义和运算规则,并要求学生默写并读出。

2. 新课讲解(10分钟)教师通过PPT依次讲解每条乘方运算规则,并通过例题进行讲解和演示。

3. 练习训练(15分钟)教师教学课件上呈现一系列的练习题,让学生自己动手计算,并给出解题思路。

当学生完成时,教师逐一检查答案,并讲解不理解的地方。

4. 拓展延伸(10分钟)教师提出一些特殊的乘方运算,如负指数乘方、零次方等,通过例题和讲解使学生理解和掌握这些特殊情况的乘方运算。

5. 讲评总结(5分钟)教师对本节课涉及的知识点进行总结,并进行相关概念的梳理与解释。

同时,对本节课的学习效果进行总结和评价。

六、课后作业1. 完成课堂上未完成的练习题。

2. 思考并列举出更多的特殊乘方运算例子。

七、板书设计乘方运算规则:1. 幂运算的运算规则a^(m+n) = a^m * a^n(a^m)^n = a^(m*n)(a*b)^n = a^n * b^n(a^m)/(a^n) = a^(m-n)2. 幂运算的特殊情况a^0 = 1, a不等于0a^(-n) = 1/(a^n), a不等于0八、教学反思本节课主要讲解了乘方运算的规则,并通过多种形式的练习加深学生对乘方运算规则的理解和掌握。

在教学过程中,教师采用了多媒体教学法,结合实例,生动形象地给学生讲解了知识点。

1.5有理数的乘方(2)

1.5有理数的乘方(2)

1.5有理数的乘方(2)1.5.1乘方【课时】第二课时【课型】新授课【教师寄语】业精于勤而荒于嬉,行成于思而毁于随--韩愈【学习目标】1、能确定有理数加、减、乘、除、乘方混合运算的顺序;2、会进行有理数的混合运算;3、培养并提高正确迅速的运算能力.【重点难点】重点:有理数的混合运算。

难点:符号问题、顺序问题。

【学法指导】进行混合运算时:一审(审题意),二定(定顺序),三动笔。

【知识链接】有理数的加、减、乘、除、乘方的运算法则分别是什么?有理数的符号法则是什么?【学习过程】【问题探究】 1、在2+23×(-6)这个式子中,存在着种运算.应该先算、再算、最后算 .2、在(2)(-2)3+(-3)×[(-4)2+2]- (-3)2÷(-2).这个式子中,存在着种运算.应该先算、再算、最后算 . 【归纳总结】:做有理数的混合运算时,运算顺序是:1、______________________________________________,2、______________________________________________,3、______________________________________________.【精讲点拨】1、计算:(1) 2×(-3)3-4×(-3)+15(先独立思考,确定运算顺序,再动手尝试,然后与同学交流一下。

)(2)(-2)3+(-3)×[(-4)2+2]- (-3)2÷(-2).(有多重括号怎么办?)【能力提升】1、加入绝对值的稍复杂的混合运算:-1+2|-8|÷(3-5)-(-2)32、观察下面三行数:-2, 4, -8, 16, -32, 64, …; 0, 6, -6, 18, -30, 66, …; -1, 2, -4, 8, -16, 32, …;(1)第一行数按什么规律排列?(2)第二、三行数与第一行数分别有什么关系?(3)取每行的第10个数,计算这三个数的和。

1.5.1 乘方(第2课时有理数的混合运算2023-2024学年七年级数学上册同步备课系列(人教版)

1.5.1 乘方(第2课时有理数的混合运算2023-2024学年七年级数学上册同步备课系列(人教版)

月份 用水量/立方米 水费/元
4
16
33.60
5
25
65.00
(1)请你算一算,这个地区水费的“调节价”为每立方米多少钱? (2)若该用户6月用水量为30立方米,请你算一算,他6月的水费是多 少元?
【详解】(1)“基本价”:33.6÷16=2.1(元) “调节价”:[65-(20×2.1)]÷(25-20)=4.6(元) (2)20×2.1+(30-20)×4.6=88(元)
【详解】解∶根据题意得:4个队一共要比场4×(42−1) = 6比赛,每个 队都要进行3场比赛,∵各队的总得分恰好是四个连续奇数,甲、乙、丙、 丁四队的得分情况只能是7,5,3,1 所以,甲队胜2场,平1场,负0场. 乙队胜1场,平2场,负0场. 丙队胜1场,平0场,负2场. 丁队胜0场,平1场,负2场. 战胜丁的球队是甲和丙, 故选D.
在这些数中加上适当的运算符号就能得到100.
1+1+3×4+5×6+7×8+100
问题1 小学的四则混合运算的顺序是怎样的? 先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号 外,括号计算顺序:先小括号,再中括号,最后大括号.
问题2 我们目前都学习了哪些运算? 加法、减法、乘法、除法、乘方. 一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有 理数的混合运算.
练一练
1.如图是一个运算程序:若第一次输入a的值为8,则2022次輸出的结 果是 . 【详解】解:由题意得:当第一次输入a的值为8时, 则第二次输出的结果为4; ∴第三次输出的结果为2, 第四次输出的结果为1, 第五次输出的结果为4, 第六次输出的结果为2, 第七次输出的结果为1,…..; ∴从第二次开始,按照4、2、1循环输出结果, ∴(2022-1)÷=673······2, ∴第2022次输出的结果为2.故答案为:2.

《乘方2》 精品教案

《乘方2》 精品教案

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。

这些资料因为用的比较少,所以在全网范围内,都不易被找到。

您看到的资料,制作于2021年,是根据最新版课本编辑而成。

我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。

本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。

本作品为珍贵资源,如果您现在不用,请您收藏一下吧。

因为下次再搜索到我的机会不多哦!1.5.1 乘方第1课时乘方教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算.教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作a n,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数,当a n 看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94来说明概念及读法.(2)一个数可以看作这个数本身的一次方,通常省略指数1不写.(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.(4)乘方是一种运算,幂是乘方运算的结果.(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值.(2)注意(-2)4与-24的区别.根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)()3;(2)(-)3;(3)(-)4;(4)-;(5)-22×(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:(1)表示一种运算;(2)表示运算的结果.乘方的读法:(1)当a n表示运算时,读作a的n 次方;(2)当a n表示运算结果时,读作a的n次幂.乘方的符号法则:(1)正数的任何次幂都是正数;(2)零的任何正整数次幂都是零;(3)负数的偶次幂是正数,奇次幂是负数.注意(-a)n与-a n及()n与的区别和联系.(五)课堂跟踪反馈1.课本P42练习第1、2题.2.补充练习(1)在(-2)6中,指数为,底数为.(2)在-26中,指数为,底数为.(3)若a2=16,则a= .(4)平方等于本身的数是,立方等于本身的数是.(5)下列说法中正确的是()A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数(6)下列各组数中,不相等的是()A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.|2|3与|-23|(7)下列各式中计算不正确的是()A.(-1)2003=-1B.-12002=1C.(-1)2n=1(n为正整数)D.(-1)2n+1=-1(n为正整数)(8)下列各数表示正数的是()A.|a+1|B.(a-1)2C.-(-a)D.||本课教学反思本节课主要采用过程教案法训练学生的听说读写。

1.5.2有理数的乘方——有理数的混合运算

1.5.2有理数的乘方——有理数的混合运算


二十八、青少年是一个美好而又是一去不可再得的时期,是将来一切光明和幸福的开端。——加里宁

二十九、梦想家命长,实干家寿短。——约·奥赖利

三十、青年时准备好材料,想造一座通向月亮的桥,或者在地上造二所宫殿或庙宇。活到中年,终于决定搭一个棚。——佚名

三十一、在这个并非尽善尽美的世界上,勤奋会得到报偿,而游手好闲则要受到惩罚。——毛姆

六十、青春是人生最快乐的时光,但这种快乐往往完全是因为它充满着希望,而不是因为得到了什么或逃避了什么。——佚名

六十一、生命里最重要的事情是要有个远大的目标,并借助才能与坚毅来完成它。——歌德

六十二、没有大胆的猜测就作不出伟大的发现。──牛顿

六十三、梦想,是一个目标,是让自己活下去的原动力,是让自己开心的原因。——佚名

十九、要想成就伟业,除了梦想,必须行动。——佚名

二十、忘掉今天的人将被明天忘掉。──歌德

二十一、梦境总是现实的反面。——伟格利

二十二、世界上最快乐的事,莫过于为理想而奋斗。——苏格拉底

二十三、“梦想”是一个多么“虚无缥缈不切实际”的词啊。在很多人的眼里,梦想只是白日做梦,可是,如果你不曾真切的拥有过梦想,你就不会理解梦想的珍贵。——柳岩
(来自教材)
2 (2015·杭州)下列计算正确的是( )
A.23+25=28
B.23-24=2-1
C.23×24=27
D.28÷24=22
(来自《典中点》)
知1-练
3 计算9-3×(-2)的结果为( )
A.15
B.3
C.-3 D.-15
4 计算8-23÷(-4)×(-7+5)的结果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(-23)+(-12)=_________。
2、(-21)+12=_________。
3、(-2009)+2009=__________。
4、0+(-32)=_______。
5、-4-7= ________。
6、8-(-9)=_________。
7、(-27)×(-3)=_________。
8、(-4)×( -5)×(-6) =_______。 3 9、12÷(- ) 4 10、(-2)3=_______。 11、-(-3)2=________。
练习、观察下面三行数: -3,9,-27,81,-243,…; -5,7,-29,79,-245,…; -1,3,-9, 27, -81,…; (1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什 么关系? (3)取每行数的第7个数,计算这三 个数的和。
练习:P45第1、2题 (由4位同学演板)
3 2 2
运算顺序:
(1) 2 3 4 3 15
2
1 ( 2 ) 3 50 2 1 5
2
( 3 ) 1 (3) 5
4 2
由三位同学演板完成
例4、观察下面三行数: -2,4,-8,16,-32,64,…; 0,6,-6,18,-30,66,…; -1,2,-4, 8, -16,32,…; (1)第①行数按什么规律排列? (2)第②③行数与第①行数分别有什么关 系? (3)取每行数的第10个数,计算这三个数 的和。
3 12、 =________。 4
2
13、 (-2)3×3=________。
1、先乘方,再乘除,最后加减; 2、同级运算,从左到右进行; 3、如有括号,先做括号内的运 算,按小括号、中括号、大括 号依次进行。
例3、计算: 3 ① 2 (3) 4 (3) 15
② (2) (3) [(4) 2] (3) (2)
有理数的混合运算
教学目标:
1、进一步熟悉有理数的除法法则。 2、会对有理数中 的应用。
自学提纲:自学教材P36-37
1、有理数的加减乘除运算顺序是怎样的?
2、通过例9体会有理数的加减乘除在实际问 题中的应用?
口答完成下列各题,看谁答得又快又 准?
作业:P47第3题
相关文档
最新文档