钢筋的主要力学性能

合集下载

钢筋工考试题库及答案

钢筋工考试题库及答案

钢筋工考试题库及答案一、选择题1. 以下哪个选项不属于钢筋的主要力学性能?A. 抗拉强度B. 延伸率C. 硬度D. 耐磨性答案:D2. 在钢筋工程中,下列哪种钢筋主要用于受拉构件?A. 热轧钢筋B. 预应力混凝土钢筋C. 冷轧钢筋D. 碳素钢丝答案:A3. 钢筋焊接接头应满足以下哪个要求?A. 焊接质量符合国家标准B. 焊接接头强度不低于钢筋母材强度C. 焊接接头抗拉强度不低于钢筋母材强度D. 焊接接头延伸率不低于钢筋母材延伸率答案:C4. 以下哪个选项是钢筋绑扎的基本要求?A. 钢筋间距均匀B. 钢筋位置准确C. 钢筋接头牢固D. 所有选项都是答案:D5. 在混凝土结构中,下列哪个因素对钢筋的锚固长度有影响?A. 混凝土强度B. 钢筋直径C. 钢筋种类D. 所有选项都有答案:D二、判断题1. 钢筋工程中,同一构件内的钢筋直径应尽量一致。

()答案:正确2. 钢筋焊接时,焊接电流过大或过小都会影响焊接质量。

()答案:正确3. 钢筋绑扎时,箍筋间距应满足设计要求,但可以适当调整。

()答案:错误4. 钢筋锚固长度越长,钢筋的锚固效果越好。

()答案:错误5. 钢筋混凝土结构中,钢筋主要承受拉力,混凝土主要承受压力。

()答案:正确三、填空题1. 钢筋工程中,钢筋的锚固长度应满足______的要求。

答案:国家标准2. 钢筋焊接接头应满足______的要求。

答案:焊接接头强度不低于钢筋母材强度3. 在混凝土结构中,钢筋的直径、间距、锚固长度等参数应满足______的要求。

答案:设计规范4. 钢筋绑扎时,箍筋间距应______设计要求。

答案:符合5. 钢筋焊接时,焊接电流的选择应根据______、______和______等因素确定。

答案:钢筋直径、焊接方法、焊接速度四、简答题1. 简述钢筋焊接的基本要求。

答案:钢筋焊接的基本要求包括:焊接质量符合国家标准,焊接接头强度不低于钢筋母材强度,焊接接头延伸率不低于钢筋母材延伸率。

钢筋与混凝土的力学性能

钢筋与混凝土的力学性能
(4) 变形钢筋的粘结强度比光面钢筋的大;但 若在光面钢筋末端做弯钩,则拔出力大大提高。
图3.12 钢筋拔出试验中粘结应力分布图
3.3.3 保证钢筋和混凝土之间粘结力的措施
3.3.3.1 纵向受拉钢筋的基本锚固长度
规范根据拔出试验给出受拉钢筋的基本锚固长度

la
fy d ft
其中,锚固钢筋的外形系数按表3.1取值。
普通钢筋、预应力钢筋的强度标准值见附表2、 附表3。
2. 在进行钢筋混凝土结构构件承载力设计计算时,
钢筋强度设计值等于钢筋强度标准值除以钢筋 材料分项系数γs,按不同钢筋种类,分别取 γs=1.10~1.20
钢筋的强度设计值见附表4、附表5。
3.1.2 钢筋的种类
我国《混凝土结构设计规范》中推荐的钢筋由 碳素结构钢和普通低合金钢制成。我国常用的钢筋 品种有以下几类(见图3.6):
3.2.2 混凝土的变形
混凝土变形有两类:一类是荷载作用下的受力 变形,包括一次短期加荷时的变形、多次重复加荷 时的变形和长期荷载作用下的变形;另一类是体积 变形,包括收缩、膨胀和温度变形。
3.2.2.1 混凝土的弹性模量
1. 混凝土在一次短期加荷时的应力-应变关系可
通过对混凝土棱柱体的受压或受拉试验测定。 混凝土受压时典型的应力-应变曲线如图3.7所
3 钢筋与混凝土的力学性能
本章提要
本章主要论述了混凝土的力学性能(混凝土的 立方体抗压强度、轴心抗压强度、轴心抗拉强度; 混凝土的变形和混凝土的选用)和钢筋的力学性能。 重点讨论了钢筋与混凝土之间的相互作用——粘结 力。它们是学习混凝土结构设计原理和构造要求的 基础。
本章内容
3.1 钢筋 3.2 混凝土 3.3 钢筋与混凝土的相互作用

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能

规范规定轴心抗拉强度标准值ftk与立方体抗压强度标准值fcu,k 的关系为:
ftk 0.880.395 fcu,k0.55(11.645 )0.45 c2
c2
高强混凝土的脆性折减系数,C40以下取1.00,C80取0.87,中
间线性插值。
0.88 考虑实际构件与试件混凝土之间的差异等,引入的修正系数。
中高强钢丝和钢绞线强度较高,均无明显的屈服点和屈服台阶,主要用于预应 力混凝土结构。
热处理钢筋,将强度大致相当于Ⅳ级热轧钢筋的某些特定品种热轧钢筋通过加热 、淬火和回火等调质工艺处理,使强度得到较大幅度的提高,但无明显的屈服点和 屈服台阶。主要用于预应力混凝土结构。
硬钢的应力应变曲线
N/mm2
1600σ σ0.2
150×150×150
C
200×200×200
A、B、C三个试块,材料、养护条件等均相同,三者强度的大小关系?
A>B> C,为什么?
试验方法方面 试件形状、尺寸、加载速度等 (3)润滑剂
涂润滑剂
涂润滑剂
A
B
150×150×150
150×150×150
A、B两个试块,材料、养护条件等均相同,二者强度的大小关系?(A>B)
储备,fy/σb=0.6~0.7。
不同级别热轧钢 筋的应力应变曲线
热轧钢筋级别越高,强度越 高,屈服平台越 ,塑短性越 。差
塑性性能
伸长率
l
l’
l'l 100%
l
伸长率越高,塑性性能越好。
冷弯性能
把钢筋在常温下围绕直径为D的辊轴弯转α角而要求不发生裂纹。
冷弯直径越小,角度 越大,塑性越好。
(3)钢筋的冷拉和冷拔

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能

Remained heat
treatment
屈服强度 fyk(标准值=钢材废品限值,保证率95%)
HPB235级: fyk = 235 N/mm2
HRB335级: fyk = 335 N/mm2
HRB400级、RRB400级: .fyk = 400 N/mm2
2.1 钢 筋
第二章 钢筋和混凝土的力学性能
HPB235级(Ⅰ级) 为热轧光面钢筋(Plain Bar),符号 ,多 作为现浇楼板的受力钢筋和箍筋。
HRB335级(Ⅱ级)和 HRB400级(Ⅲ级)为热轧带肋钢筋 (Ribbed Bar),符号 。钢筋强度较高,多作为钢筋混凝土构 件的受力钢筋,尺寸较大的构件,也有用Ⅱ级钢筋作箍筋的。 为增强与混凝土的粘结(Bond),外形制作成月牙肋或等高肋 的变形钢筋(Deformed Bar)。
消除应力钢丝、螺旋肋钢丝、刻痕钢丝
钢绞线
.
Es 2.1×105
2.0×105
2.05×105 1.95×105
2.1 钢筋
第二章 钢筋和混凝土的力学性能
◆无明显屈服点的钢筋(Steel bar without yield point)
fu
s0.2
a
0.2%
a点:比例极限,约为0.65fu a点前:应力-应变关系为线弹性 a点后:应力-应变关系为非线性, 有一定塑性变形,且没有明显的屈 服点 强度设计指标——条件屈服点 残余应变为0.2%所对应的应力
有物理屈服点的钢筋,如热轧钢筋、冷拉钢筋;
无物理屈服点的钢筋,如钢丝、钢绞线及热处理钢筋。
. 2.1 钢筋
第二章 钢筋和混凝土的力学性能
二、钢筋的形式
▪ 普通钢筋(柔性钢筋)

钢筋混凝土材料力学性能

钢筋混凝土材料力学性能

砼结构对钢筋质量要求 适当强度:屈服和极限强度,屈服强度是计算主要依据; 可焊性好:要求钢筋焊接后不产生裂纹及过大变形;
足够塑性:以伸长率和冷弯性能为主要指标,即要求钢筋断裂前有足够变形,在钢筋混凝土结构 中,能给出构件将要破坏的预告信号,同时保证钢筋冷弯要求。一般而言强度高的钢筋塑性和可 焊性就差些;
1 混凝土立方体抗压强度的定义和强度等级 砼立方体强度的定义:立方体试件的强度比较稳定,我国把立方体强度值作为混 凝土强度的基本指标,并把立方体抗压强度作为评定混凝土强度等级的标准。我国《规 范》规定:,用ƒ表示,单位2。
换句话:混凝土强度等级应按立方体强度标准值确定。
立方体抗压强度标准值(ƒ) 两重含义: 1、采用边长为150㎜的立方体试块,在标准条件(温度为17~23℃,湿度在90%以上) 下养护28d,按照标准的试验方法加压到破坏测得的立方体抗压强度。
1 钢筋强度指标 (1)软钢:屈服强度、极限强度
当某截面钢筋应力达到屈服强度后,试件将在荷载基本不增加情况下产生持续塑性变形,构件 可能在钢筋尚未进入强化阶段之前就已破坏或产生过大的变形与裂缝。因此,钢筋的屈服强度是钢 筋关键性强度指标;此外,钢筋的屈强比(屈服强度与极限强度之比)表示结构可靠性潜力。在抗 震结构中,考虑受拉钢筋可能进入强化阶段,要求其屈强比≤0.8,因而钢筋极限强度是检验钢筋质 量的另一强度指标。
近年来,我国强度高,性能好的预应力钢筋已可充分供应,冷加工钢筋不再列入规范。

1.1.2 钢筋品种、级别和分类
推广具有较好延性、可焊性、机械连接性能及施工适应性的系列普通热轧带肋钢筋。列入采 用控温轧制工艺生产的系列细晶粒带肋钢筋。
系列余热处理钢筋由轧制钢筋经高温淬水,余热处理后提高强度。而其它性能则相应降低, 一般可用于对变形性能及加工性能要求不高的构件中,如基础、大体积混凝土、楼板、墙体及 次要的中小结构构件中。

第二章钢筋和混凝土的力学性能

第二章钢筋和混凝土的力学性能

第二章钢筋和混凝土的力学性能主要内容:2.1 钢筋的力学性能2.2 混凝土的力学性能2.3 钢筋与混凝土之间的粘结作用重难点:钢筋的种类及力学指标;混凝土的力学指标及力学性能;钢筋与混凝土共同工作的原理2.1 钢筋的力学性能一、钢筋的品种 (Reinforcement types)表面形状:光圆钢筋、带肋钢筋化学成份:碳素钢(低碳钢)普通低合金钢供货方式:直条式(d≥10mm)——6、9、12m盘圆式生产工艺和强度:热轧钢筋、中高强钢丝、钢绞线、冷加工钢筋。

普通混凝土结构中采用较多的是热轧钢筋。

力学性能不同:软钢——有明显屈服台阶的钢筋(热轧钢筋、冷拉钢筋)硬钢——无明显屈服台阶的钢筋(钢丝、热处理钢筋)1、热轧钢筋(Hot Rolled Steel Reinforcing Bar)HPB300级、HRB335级、HRB400级、HRB500级屈服强度 fyk(标准值)HPB300: fyk = 300 N/mm2HRB400: fyk = 400 N/mm2HPB300钢筋(Ⅰ级)多为光面钢筋,多作为现浇楼板的受力钢筋和各种构件中的箍筋。

HRB335 (Ⅱ级) 、HRB400(RRB400)(Ⅲ级) 强度较高,为表面带肋的钢筋,多作为钢筋混凝土构件的受力钢筋。

2、钢丝 (Wire):中强钢丝的强度为800~1200MPa,高强钢丝、钢绞线的强度为 1470 ~1860MPa;钢丝的直径3~9mm;外形有光面、刻痕和螺旋肋三种,另有二股、三股和七股钢绞线,外接圆直径9.5~15.2 mm。

中高强钢丝和钢绞线均用于预应力混凝土结构。

3、冷加工钢筋 Cold working rebar:是由热轧钢筋和盘条经冷拉、冷拔、冷轧、冷扭加工后而成。

冷加工的目的是为了提高钢筋的强度,节约钢材。

但经冷加工后,钢筋的延伸率降低。

近年来,冷加工钢筋的品种很多,应根据专门规程使用。

4、热处理钢筋 Heat treatment :是将Ⅳ级钢筋通过加热、淬火和回火等调质工艺处理,使强度得到较大幅度的提高,而延伸率降低不多。

钢材的力学性能特点

钢材的力学性能特点

钢材的力学性能特点
钢材是一种重要的建筑材料,具有优异的力学性能,被广泛用于建筑、桥梁、船舶和机械制造等领域。

钢材的力学性能特点主要体现在以下几个方面。

强度高
钢材具有很高的抗拉强度和屈服强度,可以承受较大的拉伸力而不易断裂。

这使得钢材成为制造各种强度要求高的结构和零部件的理想材料。

韧性好
钢材不仅具有高强度,还具有良好的韧性,能够在受到外部冲击或压力时产生一定程度的塑性变形而不破裂。

这种性能使得钢材在受到动态荷载时表现出较好的抗震、抗冲击性能,可以有效保护建筑结构和设备。

可塑性强
钢材的塑性变形能力较强,易于加工成各种形状和尺寸的零部件,因而广泛应用于各种机械制造领域。

此外,钢材还可以通过冷加工或热加工等工艺加工成各种复杂的构件,满足不同工程项目的需求。

焊接性好
钢材具有良好的焊接性能,可以通过各种焊接方法连接成各种复杂的结构和部件,提高了施工的效率和工程质量。

耐腐蚀性能优异
一些合金钢、不锈钢等钢材具有较好的耐腐蚀性能,能够在潮湿、腐蚀性环境中长期工作而不受影响,因而可以用于制造船舶、化工设备、海洋平台等耐腐蚀性能要求高的产品。

总的来说,钢材具有高强度、良好的韧性、较强的塑性变形能力、良好的焊接性能和优异的耐腐蚀性能等特点,使其成为工程结构和机械制造中不可或缺的重要材料。

随着技术的发展,钢材的性能不断得到提升和优化,将在更多领域得到应用。

钢筋和混凝土的材料力学性能

钢筋和混凝土的材料力学性能
养护不好,混凝土构件表面或水泥地面会出现收缩裂缝。
影响混凝土收缩的因素:
(1) 水泥强度等级:强度等级越高,混凝土收缩越大;
(2) 水泥的用量:水泥越多,收缩越大; (3) 水灰比:水灰比越大,收缩也越大; (3) 骨料:级配越好、弹性模量越大,收缩越小; (4) 养护条件:养护温度、湿度越高,收缩越小;
罕遇地震下“裂而不倒”, 钢筋应力可考虑进入强化段, 要
求极限抗拉强度 fu ≥1.25 fy 。
(3)塑性指标
1)伸长率:钢筋拉断后的伸长值与原长的比率。伸长 率越大,塑性越好。伸长率最小值可参照国家标准。 2) 冷弯性能: 将直径为d 的钢筋绕直径为D的弯芯,弯 曲到规定的角度后无裂纹、断裂及起层现象,则表示合格。 弯芯直径D越小,弯转角越大,说明钢筋的塑性越好。 相应的弯芯直径及弯转角可参照相应的国家标准。
的依据;
BC段 (σ=0.8fc~fc ):裂缝快速发展的不稳定状态直至 峰点C,峰值应力σmax通常作为混凝土棱柱体的抗压强度fc, 相应的应变称为峰值应变ε0,通常取ε0=0.002。
2)下降段(CE):
在峰值应力以后,裂缝迅速发展,试件应力下降, 应力一应变曲线向下弯曲,直到凹向发生改变,曲线出
图3.7 混凝土变形模量的表示方法
(1) 混凝土的弹性模量(即原点模量)
在原点(图中的O点)作一切线,其斜率为混凝土的原 点模量,称为弹性模量Ec。 Ec=tg α0 混凝土的弹性模量Ec取值见表3.2
(2) 混凝土的变形模量
连接O点至曲线任一点割线的斜率,称为割线模量或变 形模量。包含弹性变形和塑性变形两部分,也称为弹塑性
《规范》规定: 钢筋混凝土不应低于C15;当采用HRB335级钢 筋时,混凝土不宜低于C20;当采用HRB400和RRB400级钢筋以 及承受重复荷载的构件,混凝土强度等级不得低于C20。 预应力混凝土不应低于C30;当采用钢绞线、钢丝、热处理 钢筋作预应力钢筋时,混凝土强度等级不宜低于C40。

钢筋力学性能

钢筋力学性能

钢筋力学性能钢筋是建筑工程中使用最为普遍的一种材料,它的力学性能决定了其应用范围的丰富性。

因此,了解钢筋力学性能的相关知识,对于设计者来说非常重要。

钢筋的力学性能是其力学性能的主要组成部分,包括屈服强度、抗弯强度、断裂强度和延伸率等。

屈服强度是钢筋在抗弯应力下受力到不能继续抗拉或抗压时的应力大小。

一般来说,混凝土结构构件在抗弯应力下的钢筋屈服强度通常为260MPa或以上。

抗弯强度是指钢筋受抗弯应力或裂缝开启载荷时的最大抗弯应力强度,一般情况下设计中抗弯强度不应低于屈服强度的1.1倍,也就是约286MPa,如果设计抗弯强度比屈服强度小,则可能影响构件的抗弯性能。

断裂强度是指钢筋受力时的最大抗拉应力强度,一般情况下实际应用中断裂强度不低于640MPa,高于屈服强度2.5倍以上。

延伸率是指钢筋断裂强度和屈服强度之间的比率,一般情况下实际应用中延伸率不低于15%,表明钢筋的抗拉强度很高。

除此之外,还有其他一些钢筋的力学性能,如抗冷弯强度、硬度、抗腐蚀性能等,它们也是钢筋力学性能评价的重要数据之一。

钢筋在经过高温轧制、拉伸机加工、漆包线缠绕等其他过程之后,其力学性能也会有所变化,为了保持钢筋的良好性能,可以对其进行规范化处理,如表面防护、表面涂漆、表面处理、去污清洁等,以确保钢筋的正常使用。

钢筋的力学性能有许多影响因素,如原料的材质、生产工艺、表面处理以及成型过程中的温度等,都会影响钢筋的力学性能。

因此,在生产和使用钢筋时,一定要了解其力学性能,并进行科学合理的把握,确保钢筋正常使用,避免构件由于材料不合格而出现破坏。

总之,钢筋的力学性能是影响钢筋的使用性能的重要因素,任何使用者都必须了解学习钢筋的力学性能,以确保钢筋的正常使用,提供有效力学保障,保障钢筋的力学安全和稳定性。

钢筋和混凝土的力学性能

钢筋和混凝土的力学性能

1 、钢筋的应力应变曲线钢筋的强度与变形钢筋的力学性能有强度、变形(包括弹性和塑性变形)等。

图1—1 有明显流幅的钢筋应力应变曲线图1—2 没明显流幅的钢筋的应力应变曲线-3对于有明显流幅的钢筋(俗称软钢),一般取屈服强度作为钢筋设计强度的依据。

因为屈服之后,钢筋的塑性变形将急剧增加,钢筋混凝土构件将出现很大的变形和过宽的裂缝,以致不能正常使用。

对于没有明显流幅的钢筋一般取为0.85 (硬钢)钢材的极限强度是材料能承受的最大应力。

通常以屈强比(屈服强度/极限强度)来反映钢筋的强度储备,屈强比越小,强度储备就越大,钢筋的利用程度越低。

反映钢筋塑性性能的基本指标是伸长率和冷弯性能。

伸长率是钢筋试件拉断后的伸长值与原长的比值,即(1-1)冷弯性能:要求钢筋绕一规定直径辊进行弯曲,在达到规定的冷弯角度时,钢筋不出现裂缝或断裂。

对于有明显流幅的钢筋,其主要指标为屈服强度、抗拉强度、伸长率和冷弯性能四项;对于没有明显流幅的钢筋,其主要指标为抗拉强度、伸长率和冷弯性能三项。

我国用于混凝土结构的钢筋主要有:HPB235级、HRB335级、HRB400级和RRB400级热轧钢筋。

纵向受力钢筋宜采用HRB400级和HRB335级钢筋。

混凝土混凝土强度是混凝土受力性能的一个基本指标。

在工程中常用的混凝土强度有立方体抗压强度标准值、轴心抗压强度和轴心抗拉强度等。

1 、立方体抗压强度标准值我国《混凝土结构设计规范》规定,混凝土强度等级应按立方体抗压强度标准值确定。

立方体抗压强度标准值( )系指按照标准方法制作养护的边长为150 的立方体试块,在28天龄期,用标准试验方法测得的具有95%保证率的抗压强度。

按照砼立方体抗压强度标准值的大小我国《混凝土结构设计规范》将混凝土的强度划分为十四个强度等级,如C80即表示其立方体抗压强度标准值是80N/mm2。

混凝土的立方体抗压强度也和试块的尺寸有关,立方体尺寸越小,测得的混凝土抗压强度越高,这种现象称为“尺寸效应”,因此采用200 和l00 的立方体试块时,所得强度数值要分别乘以强度换算系数1.05和0.95加以校正。

钢筋力学性能---2

钢筋力学性能---2
热轧钢筋、高强钢丝、钢绞线、热处理钢筋和冷加工钢筋
刻痕钢丝
D—公称直径 A — 3 股钢绞线量测尺寸 钢绞线
螺旋肋钢丝
常用钢筋形式
变形钢筋
1. 热轧钢筋 将碳素钢和普通低合金钢在高温下轧制而成。 分为: 1、HPB235(R235):(光圆)235指该种钢筋的屈服强度标准值。
fyk=235M/mm2;(建筑结构已不适用、桥梁结构为箍筋)
5、 HRB500(普通热轧带肋钢筋) :fyk=500N/mm2;建筑结构推广使
用的受力筋,桥梁结构使用很少
符号表示 R235(HPB235)- ,d = 8~20mm, HRB335- ,d = 6~50mm HRB400- , d = 6~50mm RRB400- R , d = 8~40mm HRB500- , d = 6~50mm
按直径分 :钢丝(d<6mm)、钢筋( d≥ 6mm) 按表面形状分 :光圆钢筋(I级钢和光圆钢丝)、 变形钢筋(≥II级) 按加工方法分 :热轧钢筋 、热处理钢筋、冷加工 钢筋(冷轧、冷拉、冷拔) 按力学特性分 :软钢、硬钢 按组成形式分:单根钢筋(丝)、钢绞线
二. 钢筋的品种
4、硬钢- 曲线的数学模型
四.钢筋的冷加工和热处理
冷加工方法:冷拉、冷拔、冷轧和冷轧扭 钢筋冷加工后的力学性能变化:强度提高、塑性 降低 钢筋的冷加工均以热轧钢筋为母材。
冷拉

B
K ’ K Z 无时效 Z’
冷拔
经时效

残余变形 冷拉伸长率
经过冷拔后钢筋没有明 显的屈服点和流幅
特性:只提高抗拉强度,不提高抗 压强度,强度提高,塑性下降
3、伸长率、冷弯性能要求 伸长率:

建筑常用钢材的力学性能和工艺性能讲解

建筑常用钢材的力学性能和工艺性能讲解

建筑常用钢材的力学性能和工艺性能讲解钢材的技术性能包括力学性能、工艺性能和化学性能等。

力学性能主要包括拉伸性能、冲击韧性、疲劳强度、硬度等;工艺性能是钢材在加工制造过程中所表现的特性,包括冷弯性能、焊接性能、热处理性能等。

只有了解、掌握钢材的各种性能,才能正确、经济、合理地选择和使用各种钢材。

一、力学性能(一)拉伸性能钢材的拉伸性能,典型地反映在广泛使用的软钢(低碳钢)拉伸试验时得到的应力σ与应变ε的关系上,如图7.7所示。

钢材从拉伸到拉断,在外力作用下的变形可分为四个阶段,即弹性阶段、屈服阶段、强化阶段和颈缩阶段。

图7.7低碳钢受拉应力-应变1.弹性阶段在OA范围内应力与应变成正比例关系,如果卸去外力,试件则恢复原来的形状,这个阶段称为弹性阶段。

弹性阶段的最高点A所对应的应力值称为弹性极限σp。

当应力稍低于A点时,应力与应变成线性正比例关系,其斜率称为弹性模量,用e表示。

弹性模量反映钢材的刚度,即产生单位弹性应变时所需要应力的大小。

2.屈服阶段当应力超过弹性极限σp后,应力和应变不再成正比关系,应力在B上和B 下小范围内波动,而应变迅速增长。

在σ-ε关系图上出现了一个接近水平的线段。

试件出现塑性变形,AB称为屈服阶段,B下所对应的应力值称为屈服极限σs。

钢材受力达到屈服强度后,变形即迅速发展,虽然尚未破坏,但已不能满足使用要求。

所以设计中一般以屈服强度作为钢材强度取值的依据。

对于在外力作用下屈服现象不明显的钢材,规定以产生残余变形为原标距长度0.2%时的应力作为屈服强度,用σ0.2表示,称为条件屈服强度。

3.强化阶段当应力超过屈服强度后,由于钢材内部组织产生晶格扭曲、晶粒破碎等原因,阻止了塑性变形的进一步发展,钢材抵抗外力的能力重新提高。

在σ-ε关系图上形成BC段的上升曲线,这一过程称为强化阶段。

对应于最高点C的应力称为抗拉强度,用σb来表示,它是钢材所能承受的最大应力。

钢材屈服强度与抗拉强度的比值(屈强比σs/σb),是评价钢材受力特征的一个参数,屈强比能反映钢材的利用率和结构安全可靠程度。

钢筋的基本力学性能

钢筋的基本力学性能
2。应力-应变关系的数学描述 硬钢的应力-应变关系一般采用 Ramberg-Osgood 模型来描述。 已知弹性极限(σe,εe)和一个参考点 P(σP,εP=σP/Es+eP),则对应任意
4
一点应力σs 的应变为
ε s = σ s / Es 0≤σs≤σe
εs
=
σs Es
+
e
P
σ σ
s P
−σ e −σe
•单向单调荷载下,钢筋受拉应力-应变关系等同于其受压应力-应变关 系;
• 对于(c)类全曲线型,曲线的形状与钢筋的强度、化学成分以及试验条 件有关,最全面的反映了钢筋的所有力学性能;
3
• 在结构设计中,一般钢筋混凝土结构破坏时钢筋的应变不大于 1%(在 《混凝土结构设计规范》中规定:当受弯构件混凝土达到其极限压应变
5
一、有明显屈服点的钢筋 钢筋在拉力重复加卸载作用下的应力-应变曲线如图所示,在钢筋的屈服
点之前加卸载无残余应变,且加载与卸载路径相重合。 钢筋进入屈服段后,卸载曲线基本上与弹性段的直线相平行,卸载至零应
力时,存在残余应变,残余应变的大小与卸载时的应变有关,随之增长而增 长。再加载时,再加载曲线也基本上与弹性阶段的直线平行(试验中,在卸 载和再加载中,存在微小的滞回部分,表示在这一过程中存在着不可恢复的 能量耗散)。
拉压反复循环加载的钢筋应力-应变曲线
骨架部分应力-应力曲线的连接
二、反复循环荷载作用下钢筋应力-应变关系的数学描述 反复循环加载下钢筋力学性能的数学描述应包括骨架曲线和滞回曲线,其
中滞回曲线包括卸载曲线和体现 Bauschinger 效应的软化段构成。 尽管与实际的试验曲线有差异,仍假定:但无论是正向或反向都近似认为

钢筋的力学性能主要包括

钢筋的力学性能主要包括

钢筋的力学性能主要包括引言钢筋是一种广泛应用于建筑和基础设施工程中的重要材料。

它具有优异的力学性能,能够承受巨大的拉力和抗压能力。

本文将重点介绍钢筋的力学性能,包括钢筋的强度、韧性、延性和疲劳寿命等方面。

钢筋的强度钢筋的强度是指钢筋能够承受的最大力量。

钢筋的强度与其钢材的性质有关,一般可以分为屈服强度和抗拉强度两种。

屈服强度是指钢筋开始产生塑性变形时所能承受的最大应力,而抗拉强度是指钢筋在拉伸过程中能够承受的最大应力。

钢筋的强度决定了它在结构中所能发挥的作用,对工程安全和可靠性有着重要的影响。

钢筋的韧性韧性是指材料在受到外力作用时能够产生的塑性变形能力。

钢筋具有良好的韧性,这意味着在受力作用下能够发生较大的形变而不会立即断裂。

钢筋的韧性使其能够吸收能量,增加结构的抗震性能,从而提高工程的安全性。

钢筋的延性延性是指材料在受到外力作用下能够发生较大的塑性变形而不断裂的性能。

钢筋具有良好的延性,这意味着当结构遭受较大荷载时,钢筋能够发生较大的变形,从而吸收能量,减少结构的应力集中,提高结构的抗震能力。

钢筋的疲劳寿命疲劳寿命是指材料在长期交替载荷作用下能够承受的循环次数。

钢筋在建筑结构中常常受到重复的荷载作用,例如地震、风力等。

钢筋的疲劳寿命是衡量其在长期使用过程中的耐久性能指标之一。

通过合理的设计和材料选择,可以提高钢筋的疲劳寿命,从而延长结构的使用寿命。

结论钢筋作为一种重要的建筑材料,具有优异的力学性能。

本文介绍了钢筋的强度、韧性、延性和疲劳寿命等方面的性能。

钢筋的强度决定了其在结构中的作用,韧性和延性使得钢筋能够吸收能量,提高结构的抗震性能。

通过合理的设计和材料选择,可以延长钢筋的使用寿命,提高工程的安全性和可靠性。

第一章钢筋的物理力学性能

第一章钢筋的物理力学性能
s fy (s sh )tg sh s su tg 0.01Es
s=Ess

y
s fs,u fy
s=Ess

y
s,h s θ′
s,h s,u s
(3)双斜线模型
s fs,u
fy
θ′′
s=Ess

y
s,u
s
s Ess s y s fy (s y )tg tg fsu fy
应力的循环特征可用下列参数表示: (1)应力幅 或应力范围 。
(2)平均应力 或应力比 。
(3)加载频率 ,单位为Hz。 上式中的 和 分别为循环最大应力和循环 最小应力。 钢筋在弹性范围循环加载,应力与应变呈线性 关系。当循环加载超出弹性范围,材料的应力—应 变行为不再保持简单的线性关系,可以用循环滞后
钢筋外形与尺寸 变形钢筋的作用—增加与混凝土的摩
擦力。 要求: 表面变形距离不得超过名义直径0.7倍
;高度不得小于名义直径0.04-0.05倍;变 形部分至少要环绕名义周长的75%、与钢 筋轴线不小于45º。
名义尺寸: 每延米相同重量的光面钢筋尺寸。
2、硬钢的基本力学性能 硬钢通常没有明显的屈服台阶,为了便于应用 通常取残余变形的0.1%处应力作为弹性极限强度, 取残余变形的0.2%处的应力作为钢筋的条件屈服强 度(图1-4)。硬钢的抗拉 强度比软钢大得多,但延 伸率(伸长率)却小得多, 一般呈脆性破坏。
精品资料简化曲线精品资料钢筋应力应变曲线的数学模型1双直线模型完全弹塑性模型2三折线模型完全弹塑性加硬化模型?s?s?ses?s?y?shfy?s?s?ses?s?y?shfyfsu?sussssysyysshef?????????????ssssysyysshsysshshssus001efftgtge?????????????????????????????精品资料钢筋应力应变曲线的数学模型1双直线模型完全弹塑性模型2三折线模型完全弹塑性加硬化模型?s?s?ses?s?y?shfy?s?s?ses?s?y?shfyfsu?sussssysyysshef?????????????ssssysyysshsysshshssus001efftgtge?????????????????????????????精品资料?s?s?ses?s?y?sufyfsu3双斜线模型ssssysysyyssusuysuyeftgfftg????????????????????????????精品资料重复加载交变受力3

一 钢筋的物理力学性能讲解

一  钢筋的物理力学性能讲解

一钢筋的物理力学性能钢筋混凝土及预应力混凝土结构中,所用钢筋的物理力学性能主要是在静力、反复和重复荷载下的强度和弹塑性变形性能,弹塑性性能一般用延伸率和冷弯性能来表示。

目前的发展趋向是尽量采用高强度的钢筋,以减轻结构的重量。

如:美国钢筋混凝土规范允许采用屈f)为56kg/mm2作为钢筋混凝土结构中钢筋的设计强度。

预应力混凝土结构中,服强度(y采用热处理钢筋以及碳素钢丝,钢绞线的强度分别达到160kg/mm2和180kg/mrn2。

提高钢筋强度的同时,要注意钢筋的塑性性能,避免钢筋脆断。

预应力混凝土中的应力松弛、应力腐蚀等问题受广泛重视。

国内外学者对钢筋的延性、承受反复作用力和重复荷载下的疲劳性能也进行了研究。

此外,温度,特别是低温对钢筋的物理力学性能的影响,我国也进行了一定的研究。

1.1 钢筋的类型和应力应变曲线1 钢筋的类型混凝土及预应力混凝土结构中采用的钢筋有碳素钢和低合金钢。

碳素钢分为低碳钢(含碳量少于0.25%)和高碳钢(含碳量在0.6%~1.4%)。

含有锰、硅、钒、钛等合金元素的低合金钢(含有少量合金元素)。

加入少量合金元素能显著地提高钢筋的综合性能和强度。

锰系的合金元素如16Mn,25MnSi等,硅钒系的低合金钢如15SiV,35Si2V等,硅钛系的低合金钢如16SiTi,35Si2Ti等,另外还有锰硅钒系的如45MnSiV,65MnSiV等。

国外多采用硅-锰系低合金钢,欧洲、美国、日本常加铬、钒,苏联则加入铌、钛、锆。

混凝土结构设计规范(GB50010-2002)选用的钢筋,是按照现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499、《钢筋混凝土用热轧光圆钢筋》GB13013、《钢筋混凝土用余热处理钢筋》GB13014和《预应力混凝土用钢丝》GB/T5223选用。

热轧钢筋根据强度等级分为I至Ⅳ级如表1-1所示。

除I级钢筋(3号钢)为光面外。

其余均为螺纹钢筋。

采用月牙形变形钢筋。

钢丝除碳素钢丝、刻痕钢丝外,还有用低碳钢(0号、2号、3号、4号不等)的钢筋经数道冷拔成的冷拔低碳钢丝。

钢筋混凝土用钢筋力学性能技术指标

钢筋混凝土用钢筋力学性能技术指标

钢筋混凝土用热轧光圆钢筋(GB1499.1-2008)力学性能技术指标:钢筋混凝土用热轧带肋钢筋(GB1499.2-2007)力学性能技术指标:注:1、抗震钢筋要求:a )R o m /R o eL ≥1.25;b )R o eL /R eL ≤1.30;c )A gt ≥9%。

2、0.9A s f yk :后锚固承载力设计标准值;0.8N RK,*:非钢材破坏承载力标准值。

3、A gt =10000⨯⎥⎦⎤⎢⎣⎡+-E R LL L m ;R om :抗拉强度实测值(MPa );E :弹性模量,可取2×105(MPa )。

4、重量偏差=()100-⨯⨯⨯理论重量试样总长度理论重量试样总长度试样实际总质量5、钢筋机械连接残余变形名义上的零荷载:0.012倍的钢筋抗拉荷载标准值。

牌号直径公称横截面积(mm 2)力学性能 屈服点R eL (Mpa)屈服力(kN)抗拉强度R m (Mpa)拉力(kN)0.9A s f yk0.8N RK,*伸长率A(%)A gt (%)重量偏差冷弯HPB 2356 28.27 235 6.6 370 10.5 5.94 8.4 2510.0±7d=a6.533.18 235 7.8 370 12.3 7.02 9.84 8 50.27 235 11.8 370 18.6 10.62 14.88 10 78.54 235 18.5 370 29.1 16.65 23.28 12 113.1 235 26.6 370 41.8 23.94 33.44 14 153.9 235 36.2 370 56.9 32.58 45.52 ±5HPB 3006 28.27 300 8.5 420 11.9 7.65 9.52 ±76.533.18 300 9.95 420 13.9 8.96 11.12 8 50.27 300 15.1 420 21.1 13.59 16.88 10 78.54 300 23.6 420 33.0 21.24 26.4 12 113.1 300 33.9 420 47.5 30.51 38.0 14153.930046.242064.641.5851.68±5 牌号直径公称横截面积(mm 2)力学性能屈服点R eL (Mpa)屈服力(kN)抗拉强度R m (Mpa)拉力(kN)0.9A s f yk 0.8N RK,*伸长率A(%)A gt (%)重量偏差冷弯HRB 33510 78.54 335 26.32 455 35.74 23.69 28.59 177.5±7d=3a12 113.1 335 37.89 455 51.46 34.10 41.17 14 153.9 335 51.56 455 70.02 46.40 56.02 ±5 16201.1 335 67.37 455 91.50 60.63 73.20 18 254.5 335 85.26 455 115.80 76.73 92.64 20 314.2 335 105.26 455 142.96 94.73 114.4 22 380.1 335 127.34 455 172.95 114.6 138.4 ±425 490.9 335 164.46 455 223.36 148.2 178.7 28 615.8 335 206.3 455 280.19 185.7 224.2 d=4a32 804.2 335 269.41 455 365.91 242.5 292.7 HRB 4006 28.27 400 11.31 540 15.27 10.18 12.22 16±7d=4a 8 50.27 400 20.11 540 27.15 18.10 21.72 10 78.54 400 31.42 540 42.41 28.28 33.93 12 113.1 400 45.24 540 61.07 40.72 48.86 14153.9 400 61.56 540 83.11 55.40 66.49 ±516 201.1 400 80.44 540 108.59 72.40 86.87 18 254.5 400 101.8 540 137.43 91.62 109.9 20 314.2 400 125.68 540 169.67 113.1 135.7 22 380.1 400 152.04 540 205.25 136.8 164.2 ±425 490.9 400 196.36 540 265.09 176.7 212.1 28 615.8 400 246.32 540 332.53 221.7 266.0 d=5a32804.2400321.68540434.27289.5347.4。

钢筋的物理力学性能

钢筋的物理力学性能

1.2 钢筋的强度与变形 ◆ 有明显屈服点的钢筋
sfufy源自b aa’ c d
e
a´为比例极限
f oa为弹性阶段
b为屈服上限
c为屈服下限,即屈服强度 fy cd为屈服台阶 de为强化阶段
e e为极限抗拉强度 fu
ef为颈缩阶段
屈服强度:是钢筋强度的设计依据,因为钢筋屈服后将发生很大 的塑性变形,且卸载时这部分变形不可恢复,这会使钢筋混凝土 构件产生很大的变形和不可闭合的裂缝。屈服上限与加载速度有 关,不太稳定,一般取屈服下限作为屈服强度。
延伸率d5=25、16、14、10%,直径8~40。
钢丝,中强钢丝的强度为800~1200MPa,高强钢丝、钢绞线 的为 1470 ~1860MPa;延伸率d10=6%,d100=3.5~4%;钢丝的 直径3~9mm;外形有光面、刻痕和螺旋肋三种,另有二股、 三股和七股钢绞线,外接圆直径9.5~15.2 mm。中高强钢丝和 钢绞线均用于预应力混凝土结构。
a点后:应力-应变关系为非线性, 有一定塑性变形,且没有明显的屈 服点
强度设计指标——条件屈服点
残余应变为0.2%所对应的应力
《规范》取s0.2 =0.85 fu
混凝土设计与施工
延 伸 率:钢筋拉断后的伸长值与原长的比率,是反映钢筋塑性 性能的指标。延伸率大的钢筋,在拉断前有足够预兆,延性较好。
d5
or
10
l
l0 l0
s
屈 强 比:反映钢筋的强度储备,
fy/fu=0.6~0.7。
弹性变形ee
e
残余变形er
◆无明显屈服点的钢筋
fu
s0.2
a
0.2%
a点:比例极限,约为0.65fu a点前:应力-应变关系为线弹性

钢筋的主要力学性能

钢筋的主要力学性能

ll la
式中,ζ为受拉钢筋搭接长度修正系数, 它与同一连接区内搭接钢筋的截面面积有关, 详见第5章内容。
按生产工艺分类
三种钢筋的生产工艺不同,见P22
(二)钢筋的级别 1、热轧钢筋:由普通(低碳)碳素钢、低合 金钢轧制而成——软钢
常用热轧钢筋的级别、符号、钢种和形状
级别 Ⅰ Ⅱ 代号 HPB235 HRB335 符号 钢种 Q235 20MnSi 20MnSiV, 20MnSi Nb, 20MnTi K20MnSi 形状 光面 变形
三、影响粘结强度的因素 平均粘结应力

N dl
式中:N为钢筋的拉力,d为钢筋的直径,l为粘结 长度。

影响粘结强度的主要因素:
(1)混凝土强度等级:粘结强度与混凝土的抗拉强 度 ft 大致成比例。 (2)保护层厚度及钢筋净间距: 越大,粘结强度 越高。 (3)横向钢筋(箍筋)及侧向压应力:可以限制裂 缝的发展、提高粘结强度。 (4)浇筑混凝土处钢筋所处的位置。
二、粘结力的组成 (1)钢筋和混凝土接触面上的化学吸附作用力—— 化学胶结力(水泥对钢筋表面氧化层渗透较小) (2)混凝土收缩握裹钢筋而产生的摩阻力——摩阻 力 (3)钢筋表面凹凸不平与混凝土之间产生的机械咬 合作用力——机械咬合力

光圆钢筋粘结力主要来自胶结力和摩阻力。 变形钢筋粘结力主要来自机械咬合力。
Ý ý ß Ö ¿ Â Ð À ¸ Ë
¼ 2-1 ³ Ó ¸ ½ Ð Ê Í £ Ã Ö î Î ½
二、钢筋的强度和变形(通过拉伸试验获得的应力应 变曲线来说明) 应力——应变曲线分两类: 有明显的流幅:热轧钢筋(软钢) 无明显的流幅:高碳钢(硬钢)(预应力钢丝、钢 绞线、热处理钢筋) 设计强度取值依据: 有明显流幅钢筋,取其屈服点强度作为设计取值依 据。 无明显流幅钢筋,取 0.85 b (极限抗拉强度)作为 条件屈服点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
级别 Ⅰ Ⅱ 代号 HPB235 HRB335 符号 钢种 Q235 20MnSi 20MnSiV, 20MnSi Nb, 20MnTi K20MnSi 形状 光面 变形

HRB400
变形
Ⅲ余热
RRB400
余热处理
性能:随着钢筋级别的增加,强度提高,塑性降低。

H为热轧(Hotrolled) P为光圆(Plain) R为带肋(Ribbed) B为钢筋(Bars) E为地震(Earthquake) RRB400余热处理带肋钢筋
二、钢筋的强度和变形(通过拉伸试验获得的应力应 变曲线来说明) 应力——应变曲线分两类: 有明显的流幅:热轧钢筋(软钢) 无明显的流幅:高碳钢(硬钢)(预应力钢丝、钢 绞线、热处理钢筋) 设计强度取值依据: 有明显流幅钢筋,取其屈服点强度作为设计取值依 据。 无明显流幅钢筋,取 0.85 b (极限抗拉强度)作为 条件屈服点。
按外形分类 光面钢筋——表面光滑,与混凝土粘结力差。 变形钢筋——表面带肋,螺旋纹、 人字纹、 月牙纹, 与混凝土粘结力高。 热轧钢筋 混凝土结构) 按生产工艺分类 (用于钢筋
预应力钢丝和钢绞线、热处理钢筋
(用
于预应力混凝土结构) 冷加工钢筋 混凝土结构) (用于预应力
Ì º ¿ Û ¸ Ö Ë ¿
D¡ ª ¹ « ³ ÆÖ ±¾ ¶
Aª ¡ 3¹ É ¸ Ö½ Ê Ï ßÁ ¿ ² â³ ß ´ ç Ö ½ ¸ ÊÏ ß
Ý Ð Â ý À ß ¸ Ö Ë ¿
¼ Í 2-1 ³ £ Ó Ã ¸ Ö ½ î Ð Î Ê ½
钢筋的级别 热轧钢筋:由普通(低碳)碳素钢、低合金 钢轧制而成——软钢
常用热轧钢筋的级别、符号、钢种和形状
力学万能试验机
有明显屈服点钢筋Βιβλιοθήκη 应力-应变曲线《建筑结构》
建筑系:闫晓彦
钢筋的分类和主要力学性能
一、钢筋的品种和级别 (一)钢筋的品种(分类) 按化学成分分类: 低碳钢 碳素钢 中碳钢 随含碳量增加,钢筋强度提高, 高碳钢 塑性性能 降低。
普通低合金钢:除碳素钢已有的成分外,再加入少量的 硅、锰、钛、钒等合金元素。 强度显著提高,塑性性能也好。
相关文档
最新文档