蚁群算法的基本原理

合集下载

蚁群算法的原理与实现

蚁群算法的原理与实现

蚁群算法的原理与实现蚁群算法的原理与实现蚁群算法是一种基于蚁群行为觅食的启发式搜索算法,它模拟了蚁群觅食的过程,通过蚂蚁之间的信息交流和相互合作,最终找到最优解。

蚁群算法具有自组织、分布式计算和并行搜索等特点,被广泛应用于优化问题的求解。

蚁群算法的基本原理是模拟蚂蚁觅食的行为。

在蚂蚁觅食的过程中,蚂蚁们会释放信息素,并根据信息素的浓度选择路径。

当一只蚂蚁找到食物后,它会返回蚁巢,并释放更多的信息素,吸引其他蚂蚁跟随它的路径。

随着时间的推移,路径上的信息素浓度会逐渐增加,越来越多的蚂蚁会选择这条路径,形成正反馈的效应。

最终,蚂蚁们会找到一条最优路径连接蚁巢和食物。

蚁群算法的实现过程可以分为两个阶段,即路径选择阶段和信息素更新阶段。

在路径选择阶段,蚂蚁根据信息素的浓度和距离选择路径。

通常情况下,蚂蚁倾向于选择信息素浓度高且距离短的路径。

在信息素更新阶段,蚂蚁会根据路径的质量释放信息素。

一般来说,路径质量好的蚂蚁会释放更多的信息素,以吸引更多的蚂蚁跟随。

为了实现蚁群算法,需要定义一些重要的参数,如信息素浓度、信息素挥发率、蚂蚁的移动速度和路径选择的启发因子等。

信息素浓度表示路径上的信息素浓度大小,信息素挥发率表示信息素的衰减速度,蚂蚁的移动速度表示蚂蚁在路径上的移动速度,路径选择的启发因子表示蚂蚁在选择路径时信息素和距离的权重。

蚁群算法的优势在于它能够找到全局最优解,并且对解空间的搜索范围不敏感。

同时,蚁群算法还能够处理具有多个局部最优解的问题,通过信息素的传播和挥发,逐渐淘汰次优解,最终找到全局最优解。

然而,蚁群算法也存在一些不足之处。

首先,算法的收敛速度较慢,需要进行多次迭代才能达到较好的结果。

此外,算法的参数设置对算法的性能影响较大,需要进行调优。

最后,蚁群算法在处理大规模问题时,需要消耗较大的计算资源。

总的来说,蚁群算法是一种有效的优化算法,能够解决许多实际问题。

通过模拟蚂蚁的觅食行为,蚁群算法能够找到最优解,具有自组织、分布式计算和并行搜索等特点。

蚁群算法原理及其应用

蚁群算法原理及其应用

蚁群算法原理及其应用1.介绍蚁群算法蚁群算法是基于群体智能的一种优化算法,它是由蚂蚁觅食行为得到的灵感而设计的。

它通过模拟蚂蚁觅食时的信息素传递、挥发和追随机制,以寻找最优解,在优化搜索问题方面表现出了很高的效率和准确率。

蚁群算法的核心思想是通过模拟蚂蚁觅食时的联合行为,来寻找最优解。

在蚂蚁觅食的过程中,蚂蚁们会释放信息素,并且在寻找食物的过程中会不断地追随信息素浓度最高的路径。

最终,所有蚂蚁都会找到最短路径,这是通过信息素的积累实现的。

同样的,蚁群算法也是通过信息素的积累来找到最优解。

2.蚁群算法工作原理蚁群算法是基于蚂蚁觅食行为的优化算法,其主要的工作原理是通过模拟蚂蚁的联合行为寻找最优解。

其过程可以分为蚂蚁编号、路径选择、信息素更新三个阶段。

蚂蚁编号:首先,将每只蚂蚁进行编号,这个编号的目的是为了标识蚂蚁,以便于后面对信息素的更新和路径选择进行控制。

路径选择:在路径选择过程中,每只蚂蚁都会根据自己当前的位置,以及路径上已有的信息素浓度等因素,选择一条路径进行行走。

在这个过程中,蚂蚁们会保留走过的路径,并且释放信息素。

信息素更新:在信息素更新过程中,所有路径上的信息素浓度都会发生变化,其中信息素的浓度会受到蚂蚁在路径上的行走距离、信息素挥发率、以及其他因素的影响。

所有蚂蚁行走结束后,信息素更新过程便开始了。

3.蚁群算法的应用领域蚁群算法在解决优化问题方面具有很大的应用潜力,其能够用于很多领域。

以下是蚁群算法在各个领域的应用举例:(1)路径规划领域蚁群算法可以应用在路径规划领域中,用于求解最短路径和最优路径问题。

在实际应用中,蚁群算法在公共交通网络、航空路线规划、车辆路径优化等方面都表现出了很好的效果。

(2)组合优化领域蚁群算法在组合优化领域中得到了广泛的应用,可以用于解决如旅行商问题、装载问题、集合划分问题等复杂的组合优化问题。

(3)机器学习领域蚁群算法在机器学习领域的应用,包括聚类、分类、特征选择等方面。

蚁群算法的原理及其应用

蚁群算法的原理及其应用

蚁群算法的原理及其应用1. 蚁群算法的介绍蚁群算法(Ant Colony Optimization, ACO)是一种启发式优化算法,它模拟了蚂蚁在寻找食物路径时的行为。

蚁群算法通过模拟蚂蚁在信息素的引导下进行行为选择,来寻找最优解。

蚁群算法的核心思想是利用分布式的信息交流和反馈机制来完成问题的求解。

2. 蚁群算法的原理蚁群算法的原理可简述为以下几个步骤:1.创建蚁群:随机生成一定数量的蚂蚁,将其放置在问题的初始状态上。

2.信息素初始化:对于每条路径,初始化其上的信息素浓度。

3.蚂蚁的移动:每只蚂蚁根据一定的规则,在解空间中移动,并根据路径上的信息素浓度决定移动的方向。

4.信息素更新:每只蚂蚁在移动到目标位置后,根据路径的质量调整经过路径上的信息素浓度。

5.更新最优路径:记录当前找到的最优路径,并更新全局最优路径。

6.蚂蚁迭代:重复进行2-5步骤,直到满足终止条件。

3. 蚁群算法的应用蚁群算法被广泛应用于许多优化问题的求解,特别是在组合优化、路径规划、图着色等领域。

3.1 组合优化问题蚁群算法在组合优化问题中的应用主要包括旅行商问题(TSP)、背包问题(KP)、调度问题等。

通过模拟蚂蚁的移动和信息素的更新,蚁群算法可以找到全局最优解或接近最优解的解决方案。

3.2 路径规划问题在路径规划问题中,蚁群算法常被用于解决无人车、无人机等的最优路径规划。

蚁群算法能够在搜索空间中寻找最短路径,并考虑到交通拥堵等实际情况,提供合适的路径方案。

3.3 图着色问题蚁群算法可以用于解决图着色问题,即给定一个图,用尽可能少的颜色对其顶点进行着色,使得相邻顶点的颜色不同。

蚁群算法通过模拟蚂蚁的移动和信息素的更新,能够找到一种较好的图着色方案。

4. 蚁群算法的优缺点4.1 优点•收敛性好:蚁群算法能够在相对较短的时间内找到较优解。

•分布式计算:蚂蚁的并行搜索使得蚁群算法能够处理大规模复杂问题。

•鲁棒性强:蚁群算法对问题的可行域和约束条件的适应性较强。

基于蚁群算法的路径规划

基于蚁群算法的路径规划

基于蚁群算法的路径规划路径规划是指在给定起点和终点的情况下,找到一条最优路径使得在特定条件下完成其中一种任务或达到目标。

蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁寻找食物路径的启发式算法,已经广泛应用于路径规划领域。

本文将详细介绍基于蚁群算法的路径规划的原理、方法和应用,旨在帮助读者深入理解该领域。

1.蚁群算法原理蚁群算法的灵感源自蚂蚁在寻找食物过程中携带信息以及通过信息交流来引导其他蚂蚁找到食物的群体行为。

算法的基本原理如下:1)路径选择方式:蚂蚁根据信息素浓度和距离的启发信息进行路径选择,信息素浓度高的路径和距离短的路径更容易被选择。

2)信息素更新方式:蚂蚁在路径上释放信息素,并通过信息素挥发过程和信息素增强机制来更新路径上的信息素浓度。

3)路径优化机制:较短路径上释放的信息素浓度较高,经过多次迭代后,社会积累的信息素会指引蚂蚁群体更快地找到最优路径。

4)局部和全局:蚂蚁在选择路径时,既有局部的能力,也有全局的能力,这使得算法既能收敛到局部最优解,又能跳出局部最优解继续探索新的路径。

2.蚁群算法步骤1)定义问题:明确起点、终点以及路径上的条件、约束等。

2)初始化信息素与距离矩阵:设置初始信息素值和距离矩阵。

3)蚂蚁移动:每只蚂蚁根据信息素浓度和距离的启发选择下一个节点,直到到达终点。

4)信息素更新:蚂蚁根据路径上释放的信息素更新信息素矩阵。

5)迭代:不断重复蚂蚁移动和信息素更新过程,直到满足停止条件为止。

6)输出最优路径:根据迭代结果输出最优路径。

3.蚁群算法应用1)TSP问题:旅行商问题(Traveling Salesman Problem,TSP)是蚁群算法应用的典型问题之一、该问题是在给定一组城市以及它们之间的距离,求解一条经过每个城市一次且最短的路径。

蚁群算法通过模拟蚂蚁在城市之间的移动来求解该问题,并能够较快地找到接近最优解的路径。

2)无人机路径规划:无人机路径规划是指在给定起点和终点的情况下,找到无人机的最优飞行路径。

蚁群算法(ACO)解决TSP问题

蚁群算法(ACO)解决TSP问题

蚁群算法(ACO)解决TSP问题⼀、蚁群算法1.基本原理蚁群算法(Ant Colony Optimization,ACO)是⼀种基于种群寻优的启发式搜索算法,有意⼤利学者M.Dorigo等⼈于1991年⾸先提出。

该算法受到⾃然界真实蚁群集体在觅⾷过程中⾏为的启发,利⽤真实蚁群通过个体间的信息传递、搜索从蚁⽳到⾷物间的最短路径等集体寻优特征,来解决⼀些离散系统优化中的困难问题。

经过观察发现,蚂蚁在寻找⾷物的过程中,会在它所经过的路径上留下⼀种被称为信息素的化学物质,信息素能够沉积在路径上,并且随着时间逐步挥发。

在蚂蚁的觅⾷过程中,同⼀蚁群中的其他蚂蚁能够感知到这种物质的存在及其强度,后续的蚂蚁会根据信息素浓度的⾼低来选择⾃⼰的⾏动⽅向,蚂蚁总会倾向于向信息素浓度⾼的⽅向⾏进,⽽蚂蚁在⾏进过程中留下的信息素⼜会对原有的信息素浓度予以加强,因此,经过蚂蚁越多的路径上的信息素浓度会越强,⽽后续的蚂蚁选择该路径的可能性就越⼤。

通常在单位时间内,越短的路径会被越多的蚂蚁所访问,该路径上的信息素强度也越来越强,因此,后续的蚂蚁选择该短路径的概率也就越⼤。

经过⼀段时间的搜索后,所有的蚂蚁都将选择这条最短的路径,也就是说,当蚁巢与⾷物之间存在多条路径时,整个蚁群能够通过搜索蚂蚁个体留下的信息素痕迹,寻找到蚁巢和⾷物之间的最短路径。

蚁群算法中,蚂蚁个体作为每⼀个优化问题的可⾏解。

⾸先随机⽣成初始种群,包括确定解的个数、信息素挥发系数、构造解的结构等。

然后构造蚁群算法所特有的信息素矩阵每只妈蚁执⾏蚂蚊移动算⼦后,对整个群体的蚂蚁做⼀评价,记录最优的蚂蚁。

之后算法根据信息素更新算⼦更新信息素矩阵,⾄此种群的⼀次选代过程完成。

整个蚂蚁群体执⾏⼀定次数的选代后退出循环、输出最优解。

2.术语介绍(1)蚂蚁个体。

每只蚂蚁称为⼀个单独的个体,在算法中作为⼀个问题的解。

(2)蚂蚁群体。

⼀定数量的蚂蚁个体组合在⼀起构成⼀个群体,蚂蚁是群体的基本单位。

蚁群算法

蚁群算法

蚁群算法
蚁群算法是一种仿生类非线性优化算法,具有并行性、正反馈性和全局极小搜索能力强等特点。

蚁群算法的基本原理是:生物界中蚂蚁农搜寻食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物——信息素。

使得在一定范围内的其他蚂蚁能够觉察并影响其行为。

当某些路径上走过的蚂蚁越来越多时,留下的这种信息素轨迹也越多,以致信息素强度增大,使后来蚂蚁选择该路径的概率也越来越高,从而更增加了该路径的信息素强度。

蚁群算法(Ant Colony Optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。

它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。

蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。

蚁群算法原理
蚁群算法搜索过程中,每只人工蚂蚁独立地按下面的方式进行工作:①从起点出发②按一定的转移概率确定下一个节点,修改路径轨迹强度(局部轨迹强度更新)③对所有路径轨迹上的强度进行修改。

数据分析知识:数据挖掘中的蚁群算法

数据分析知识:数据挖掘中的蚁群算法

数据分析知识:数据挖掘中的蚁群算法蚁群算法是一种模拟蚂蚁觅食行为的启发式算法。

它是一种基于群体智能的方法,能够有效地用于数据挖掘和机器学习领域。

本文将介绍蚁群算法的基本原理和应用案例。

一、蚁群算法的基本原理蚁群算法受到了蚂蚁觅食行为的启发。

蚂蚁在觅食过程中会遵循一定的规则,例如在路径上释放信息素,吸引其他蚂蚁前往同一方向;在路径上的信息素浓度较高的路径更容易选择。

蚁群算法利用了这些规则,以一种群体智能的方式搜索解空间。

具体来说,蚁群算法由以下几个步骤组成:1.初始化:定义问题的解空间和初试信息素浓度。

解空间可以是任何基于排列、图形或其他对象的集合,例如TSP问题中的城市序列集合。

信息素浓度矩阵是一个与解空间大小相同的矩阵,用于反映每个解的吸引力。

2.移动规则:蚂蚁在解空间中移动的规则。

通常规则包括根据当前解和信息素浓度选择下一步解以及更新当前解的信息素浓度。

3.信息素更新:蚁群中的蚂蚁经过路径后,更新路径上的信息素浓度。

通常信息素浓度的更新涉及一个挥发系数和一个信息素增量。

4.终止条件:确定蚁群算法的运行时间,例如最大迭代次数或达到特定解的准确度。

蚁群算法是一种群体智能的方法,每只蚂蚁只能看到局部的解。

通过信息素的释放和更新,蚁群最终能够找到全局最优解。

二、蚁群算法的应用案例蚁群算法最常用于解决组合优化问题,例如TSP问题、车辆路径问题和任务分配问题。

下面将介绍蚁群算法在TSP问题和车辆路径问题中的应用。

1. TSP问题TSP问题是一个NP难问题,是指在旅行时,如何有效地走遍所有篮子,使得总的旅行距离最小。

蚁群算法是适用于TSP问题的一种有效的算法。

在每一代,蚂蚁会在城市之间移动,假设当前城市为i,则下一个选择的城市j是基于概率函数计算得到的。

概率函数考虑了当前城市的信息素浓度以及城市之间的距离。

每条路径释放的信息素浓度大小根据路径长度而定。

这样,蚂蚁可以在TSP问题上找到最优解。

2.车辆路径问题车辆路径问题是指在有限时间内如何合理地分配车辆到不同的客户,以最小化送货时间和车辆的旅行距离。

蚁群算法的基本原理

蚁群算法的基本原理

蚁群算法的基本原理蚁群算法 (Ant Colony Optimization, ACO) 是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为,被广泛应用于求解组合优化问题、路径规划等领域。

蚁群算法的基本思路蚁群算法的基本思路是通过模拟蚂蚁在寻找食物的过程中释放信息素来获取全局最优解。

具体过程如下:1.初始化信息素: 首先,需要在所有可行解的路径上放置一些信息素。

在开始时,信息素值可以选择为等量的值或一些默认值。

2.蚁群搜索: 一开始,所有的蚂蚁都分别随机选择一个节点作为起点,并开始在网络中搜索。

蚂蚁行动的过程中,会根据路径上信息素浓度的大小来选择下一步的方向。

同时,每只蚂蚁都会记录其所经过的路径和信息素值。

3.信息素更新: 每只蚂蚁到达终点之后,计算其所经过路径的费用,然后根据一定的规则更新路径上的信息素。

较优的路径上将会添加更多的信息素,使下一次蚂蚁选择该路径的概率更大。

4.重复搜索: 重复上面的步骤,直到满足一个停止条件为止。

一种常见的停止条件是达到预定的迭代次数。

蚁群算法的优势蚁群算法在解决组合优化问题时,具有以下的优势:1.全局优化能力极强: 因为每只蚂蚁都只关注自己所经过的路径上的信息素值,所以可以同时搜索并更新多个路径,从而有可能找到全局最优解。

2.能够避免陷入局部最优: 蚁群算法可以通过信息素的挥发、说长存、信息素值的启发式更新等手段来避免陷入局部最优解。

3.易于扩展和并行化: 蚁群算法通常是一种并行的算法,可以很轻松地应用于分布式计算环境中。

蚁群算法的应用蚁群算法在解决组合优化问题、路径规划、调度等方面有着广泛的应用,如下所示:1.旅行商问题: 蚁群算法可以用于解决旅行商问题。

2.线性规划问题: 蚁群算法可以用于求解线性规划问题。

3.路径规划问题: 蚁群算法可以用于车辆路径规划问题。

4.调度问题: 蚁群算法可以用于作业车间调度问题。

蚁群算法是一种基于群体智能的优化算法,模拟了蚂蚁在寻找食物时候的行为。

蚁群算法基本原理

蚁群算法基本原理

蚁群算法基本原理
蚁群算法(Ant Colony Algorithm)是一种基于模拟蚁群行为的优化算法,用于解决复杂的优化问题。

其原理是模拟蚂蚁寻找食物的行为,在寻找过程中通过信息素来引导蚂蚁探索最优解。

基本流程:
1. 初始化:将蚂蚁随机分散在问题空间中,每只蚂蚁都随机选择一个起点。

2. 蚂蚁搜索:每只蚂蚁根据一定的概率选择下一个节点,概率与当前节点的信息素有关,如果信息素较高则该节点被选中的概率较大。

3. 信息素更新:每只蚂蚁在搜索过程中会留下一定的信息素,当搜索完成后,信息素会根据一定的规则进行更新,具体规则可以为:信息素浓度与路径长度成反比例关系,或者信息素挥发速度固定。

4. 最优解记录:当所有蚂蚁完成搜索后,从它们所走过的路径中选择获得最优解,并将该路径上的信息素浓度进行更新。

5. 重复搜索:重复上述所有步骤,直到达到设定的迭代次数或者满足终止条件。

蚁群算法基本原理就是通过模拟蚁群行为,通过信息素的引导来搜索最优解。


实际应用中,蚁群算法可以用于解决诸如旅行商问题、作业调度问题、路径规划问题、图像分割问题等优化问题。

蚁群算法简介

蚁群算法简介

蚁群算法简介蚁群算法是一种优化技术,受到自然界中蚂蚁寻找食物的行为的启发。

这种算法模拟了蚂蚁的信息共享和移动模式,用于解决复杂的组合优化问题,如旅行商问题(TSP)、车辆路径问题(VRP)等。

一、蚁群算法的基本原理在自然界中,蚂蚁寻找食物的行为非常有趣。

它们会在路径上留下信息素,后续的蚂蚁会根据信息素的强度选择路径,倾向于选择信息素浓度高的路径。

这样,一段时间后,大多数蚂蚁都会选择最短或最佳的路径。

这就是蚁群算法的基本原理。

二、蚁群算法的主要步骤1.初始化:首先,为每条边分配一个初始的信息素浓度。

通常,所有边的初始信息素浓度都是相等的。

2.路径选择:在每一步,每个蚂蚁都会根据当前位置和周围信息素浓度选择下一步的移动方向。

选择概率与信息素浓度成正比,与距离成反比。

这意味着蚂蚁更倾向于选择信息素浓度高且距离短的路径。

3.释放信息素:当蚂蚁完成一次完整的路径后,它会在其经过的边上留下信息素。

信息素的浓度与解决问题的质量成正比,即如果蚂蚁找到了一条更好的路径,那么这条路径上的信息素浓度会增加。

4.更新:经过一段时间后,信息素会随时间的推移而挥发,这使得那些不再被认为是最优的路径上的信息素浓度逐渐减少。

同时,每条边上的信息素浓度也会随着时间的推移而均匀增加,这使得那些从未被探索过的路径也有被选择的可能性。

5.终止条件:算法会在找到满足条件的最优解或达到预设的最大迭代次数后终止。

三、蚁群算法的优势和局限性蚁群算法的优势在于其对于组合优化问题的良好性能和其自然启发式的搜索过程。

这种算法能够有效地找到全局最优解,并且在搜索过程中能够避免陷入局部最优解。

此外,蚁群算法具有较强的鲁棒性,对于问题的规模和复杂性具有较强的适应性。

然而,蚁群算法也存在一些局限性。

首先,算法的性能高度依赖于参数的设置,如信息素的挥发速度、蚂蚁的数量、迭代次数等。

其次,对于一些复杂的问题,可能需要很长的计算时间才能找到最优解。

此外,蚁群算法可能无法处理大规模的问题,因为这可能导致计算时间和空间的复杂性增加。

蚁群算法的基本原理和应用

蚁群算法的基本原理和应用

蚁群算法的基本原理和应用简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的启发式算法,它源于对蚂蚁在寻找食物时的行为规律的研究。

蚁群算法模拟了蚂蚁在寻找最佳路径时释放信息素、选择路径的策略,通过蚁群成员之间的相互合作和信息共享来求解各类优化问题。

蚁群算法具有较高的适应性和鲁棒性,被广泛应用于优化问题求解中。

基本原理蚁群算法基于一种基本的反馈机制:蚂蚁在行动过程中释放信息素,并根据所释放的信息素密度来选择路径。

信息素在路径上的积累程度会影响蚂蚁选择路径的概率,从而引导整个蚁群向目标位置集中。

具体的基本原理如下:1.蚂蚁的行动规则:蚂蚁按照一定的规则进行移动,每个蚂蚁根据当前位置的信息素密度以及启发式信息(例如距离、路径质量等)选择下一步的移动方向。

2.信息素的更新:蚂蚁在路径上释放信息素,并且信息素的蒸发和更新过程会导致信息素的动态变化。

经过多次迭代后,信息素会逐渐积累在最优路径上,从而引导后续的蚂蚁选择该路径。

3.路径选择概率:蚂蚁在选择下一步移动方向时,会根据当前位置的信息素和启发式信息计算路径选择概率。

较高的信息素密度和启发式信息将增加路径的选择概率。

应用领域蚁群算法在众多领域中取得了广泛的应用,以下列举几个示例:1.路径规划问题:蚁群算法可以用于解决路径规划问题,例如在城市中找到最短路径。

蚁群算法通过模拟蚂蚁的觅食行为,可以在复杂的网络中找到最优路径,无论是在城市道路网络还是在电信网络中。

–寻找最短路径:蚁群算法可以应用于解决最短路径问题,例如在城市导航、物流路径规划等领域。

–车辆路径优化:蚁群算法可以优化车辆的路线,减少行驶距离和时间,提高运输效率。

2.优化问题:蚁群算法在求解各种优化问题中具有较好的性能,例如旅行商问题、装箱问题等。

–旅行商问题:蚁群算法可以应用于解决旅行商问题,找到最短的旅行路线,减少旅行的距离和时间。

–装箱问题:蚁群算法可以优化装箱问题,将不同大小的物品装入不同大小的容器中,减少空间浪费。

蚁群算法原理

蚁群算法原理

蚁群算法原理一、什么是蚁群算法蚁群算法(Ant Colony Optimization,ACO)是一种仿生智能算法,它模拟蚂蚁搜索食物的行为,从而解决多种优化问题。

该算法旨在建立蚂蚁在搜索空间中的路径,并在这些路径上传播信息,从而使蚂蚁在搜索空间中最终能够找到最优解的路径。

二、蚁群算法的原理1、蚁群算法的基本原理蚁群算法建立在模拟生物天性的基础上,它的基本原理如下:蚂蚁在搜索过程中会搜索出一系列可能的路径,当它们回到搜索起点时,会把它们走过的路线信息传给其它蚂蚁,然后其它蚂蚁据此搜索出其它可能的路线,此过程一直持续,所有蚂蚁在搜索空间中随机探索,把自己走过的路线都留下越多的信息,这样就把多条路线的信息逐渐累积,最终能够找到最优解的路径,从而解决优化问题。

2、蚁群算法的过程(1)协作首先,许多蚂蚁在搜索空间中进行协作,它们在这个空间中进行随机搜索,并尝试找到最优解的路径。

(2)共嗅搜索过程中,蚂蚁会随机尝试搜索各种可能的路径,并在路径上沿途留下一些信息,这些信息就是蚂蚁在搜索过程中搜集到的数据,以这些数据为基础,一方面蚂蚁能够自动判断路径上的优劣,另一方面其它蚂蚁也可以共享这些信息,从而改进和优化搜索效率。

(3)路径搜索蚂蚁在搜索过程中会随机尝试搜索所有可能的路径,它们也会把自己走过的最好的路径留下,这个路径就是最后需要搜索的最优路径,当蚂蚁搜索完毕时,就能够把这条最优路径传给其它蚂蚁,从而解决优化问题。

三、蚁群算法的优势1、收敛性好蚁群算法拥有良好的收敛性,它可以较快地找到最优解。

2、实现简单蚁群算法实现简单,只需要定义蚂蚁在寻找最优路径时的行为模型即可,无需定义较多的参数,因此能够大大减少计算量。

3、鲁棒性高蚁群算法的鲁棒性很高,它可以有效地避免局部最优路径,从而更容易达到全局最优路径。

四、蚁群算法的应用1、旅行商问题蚁群算法可以用来解决旅行商问题,即给定一组城市,求解访问相关城市的最优路径。

蚁群算法的基本原理

蚁群算法的基本原理

2.1 蚁群算法的基本原理蚁群优化算法是摹拟蚂蚁觅食的原理,设计出的一种群集智能算法。

蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向挪移,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。

某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。

蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成为了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。

蚁穴食物源AB 15cm(a) 蚁穴 1 2 食物源A B (b)人工蚂蚁的搜索主要包括三种智能行为:(1)蚂蚁的记忆行为。

一只蚂蚁搜索过的路径在下次搜索时就再也不被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行摹拟。

(2)蚂蚁利用信息素进行相互通信。

蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。

(3)蚂蚁的集群活动。

通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就彻底不同。

当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。

3.3.1蚂蚁系统蚂蚁系统是最早的蚁群算法。

其搜索过程大致如下:在初始时刻,m 只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启示式方法构造的路径长度。

蚁群算法的原理和应用

蚁群算法的原理和应用

蚁群算法的原理和应用蚁群算法是一种基于模拟蚂蚁寻求食物路径的群智能算法。

它的理论基础来自于蚁群的自组织行为。

该算法已应用于求解多种优化问题,包括旅行商问题、车辆路径问题等。

本文将对蚁群算法的原理和应用进行探讨。

一、蚁群算法的原理蚁群算法模拟了蚂蚁寻找食物的行为。

在蚁群中,每只蚂蚁只能看见其它蚂蚁留下的信息素,而不能直接观察到食物的位置。

当一只蚂蚁找到了食物,它返回巢穴并留下一些信息素。

其它蚂蚁能够感知到这些信息素,并会朝着有更多信息素的方向前进。

这种通过信息素来引导蚂蚁集体行动的行为被称为“自组织行为”。

蚁群算法模拟了蚂蚁的行为,并借助信息素来引导解空间中的搜索。

蚁群算法具体操作流程如下:1. 初始化信息素矩阵和蚂蚁的位置。

2. 每只蚂蚁根据信息素和启发式信息选择一个位置,并向其移动。

3. 当所有蚂蚁完成移动后,更新全局最优路径。

4. 更新信息素矩阵,使信息素浓度与路径长度呈反比例关系。

5. 重复步骤2-4,直到达到终止条件。

二、蚁群算法的应用1. 旅行商问题旅行商问题是一种著名的组合优化问题。

给定 n 个城市和其间的距离,要求找出一条最短路径,使得每个城市都被恰好经过一次。

这是一个 NP 难问题,目前不存在快速求解方法。

蚁群算法可以有效地解决旅行商问题。

该算法使用蚂蚁移动的路径来表示旅行商的路径,通过信息素来引导蚂蚁选择路径。

在一定数量的迭代次数后,蚁群算法能够找到近似最优解。

2. 车辆路径问题车辆路径问题是指在一定时间内,如何安排车辆进行配送,从而最大化效益、最小化成本。

传统的运筹学方法通常采用贪心或者遗传算法等算法进行求解,但这些算法都存在着计算复杂度高、收敛速度慢等问题。

蚁群算法具有搜索速度快、计算复杂度低等优点,因此在车辆路径问题中也得到了广泛的应用。

蚁群算法可以有效地降低车辆离散配送的成本,提高配送质量和效率。

3. 其他应用除了上述两个领域,蚁群算法还可以应用于诸如调度、机器学习、智能优化、信号处理等领域。

蚁群算法的基本原理js

蚁群算法的基本原理js

蚁群算法的基本原理js蚁群算法是一种模拟蚁群觅食行为的启发式优化算法,能够用于解决排列组合优化问题。

其基本原理如下:1. 初始化蚁群:首先,随机放置一定数量的蚂蚁在问题空间中的各个位置。

2. 信息素的初始化:将问题空间中的每个位置上都初始化一个信息素值,表示该位置的吸引力。

3. 蚂蚁的移动:每只蚂蚁根据一定的策略选择下一个移动的位置,策略通常包括贪婪选择和随机选择两种方式。

4. 信息素的更新:每只蚂蚁完成移动后,根据其所经过的路径长度更新经过路径上的各个位置的信息素值。

5. 重复步骤3和4:重复执行步骤3和4,直到满足终止条件,如达到最大迭代次数或找到满足要求的解。

6. 结果输出:输出蚁群算法得到的最优路径或解。

在JavaScript中实现蚁群算法的基本原理,可以借助数组来表示问题空间和路径,通过循环和随机数生成来模拟蚂蚁的移动和信息素的更新,最终得到最优解。

以下是一个简单的JavaScript示例代码:javascript初始化蚁群function initAnts(numAnts, numCities) { let ants = [];for (let i = 0; i < numAnts; i++) {let ant = {path: [], 蚂蚁的路径visited: [], 记录城市是否被访问过distance: 0 蚂蚁经过的路径长度};for (let j = 0; j < numCities; j++) {ant.visited.push(false);}ants.push(ant);}return ants;}蚂蚁的移动function antMove(ant, pheromone, alpha, beta) {let currentCity = ant.path[ant.path.length - 1];let nextCity = chooseNextCity(currentCity, ant.visited, pheromone, alpha, beta);ant.path.push(nextCity);ant.visited[nextCity] = true;ant.distance += calculateDistance(currentCity, nextCity);}信息素的更新function updatePheromone(pheromone, ants, rho, Q) {for (let i = 0; i < pheromone.length; i++) {for (let j = 0; j < pheromone[i].length; j++) {pheromone[i][j] *= (1 - rho);}}for (let i = 0; i < ants.length; i++) {let ant = ants[i];for (let j = 0; j < ant.path.length - 1; j++) {let currentCity = ant.path[j];let nextCity = ant.path[j + 1];pheromone[currentCity][nextCity] += Q / ant.distance;}}}主函数function runAntAlgorithm(numAnts, numCities, maxIterations, alpha, beta, rho, Q) {let ants = initAnts(numAnts, numCities);let pheromone = initPheromone(numCities); 初始化信息素let bestPath = []; 最优路径let bestDistance = Infinity; 最优路径长度for (let iteration = 0; iteration < maxIterations; iteration++) {for (let i = 0; i < ants.length; i++) {let ant = ants[i];while (ant.path.length < numCities) {antMove(ant, pheromone, alpha, beta);}ant.path.push(ant.path[0]); 回到起点ant.distance += calculateDistance(ant.path[numCities-1], ant.path[0]);if (ant.distance < bestDistance) {bestPath = ant.path.slice();bestDistance = ant.distance;}ant.path = [];ant.visited = [];ant.distance = 0;for (let j = 0; j < numCities; j++) {ant.visited.push(false);}}updatePheromone(pheromone, ants, rho, Q); 更新信息素}return { path: bestPath, distance: bestDistance };}示例调用let result = runAntAlgorithm(10, 5, 100, 1, 1, 0.5, 1); console.log(result.path);console.log(result.distance);这里只是一个简单的示例代码,并未包括所有细节。

蚁群算法的原理和应用

蚁群算法的原理和应用

蚁群算法的原理和应用1. 蚁群算法简介蚁群算法(Ant Colony Optimization,ACO)是一种模仿蚂蚁在寻找食物时的行为而设计的一种启发式算法。

它模拟了蚂蚁在寻找食物和返回巢穴的过程,并通过信息素的传递和挥发来引导蚂蚁在搜索空间中找到最优解。

2. 蚁群算法的基本原理蚁群算法的基本原理是蚂蚁通过释放信息素来进行通信和引导。

当一只蚂蚁在搜索过程中找到了一条路径,它会释放一种叫做信息素的化学物质。

其他蚂蚁在选择路径时会受到信息素的引导,越多的信息素意味着路径的吸引力越大。

随着时间的推移,信息素会挥发,路径上的信息素浓度会逐渐降低,这会使得蚂蚁更加注重新的路径。

3. 蚁群算法的应用蚁群算法可以应用于很多问题的求解,特别适用于组合优化问题,如旅行商问题、背包问题等。

以下是一些具体的应用场景:3.1 旅行商问题旅行商问题是求解一条路径,使得旅行商可以依次经过所有的城市,并回到起点,使得总的旅行距离最短。

蚁群算法可以通过模拟蚂蚁在搜索过程中释放信息素来找到最优解。

3.2 路径规划路径规划是指在地图上找到一条从起点到终点的最优路径。

蚁群算法可以通过模拟蚂蚁在搜索过程中的行为来找到最优路径,可以应用于自动驾驶、物流配送等领域。

3.3 排产问题排产问题是指在一定资源约束下,安排一组任务的执行顺序和时间,以使得生产效率最大化。

蚁群算法可以通过模拟蚂蚁在搜索过程中的行为来找到最优的任务安排策略。

3.4 资金分配问题资金分配问题是指在有限的资金下,如何合理分配给不同的项目以达到最大效益。

蚁群算法可以通过模拟蚂蚁在寻找食物的过程来找到最优的资金分配策略。

4. 蚁群算法的优缺点蚁群算法有以下几个优点: - 并行处理能力强: 蚁群算法可以通过并行处理多个蚂蚁的行为来加快求解速度。

- 适应性强: 蚁群算法可以通过信息素的传递和挥发来自适应地调整搜索策略,从而更好地适应问题的特点。

- 可以求解非线性、非凸、高维的问题。

蚁群算法的基本原理及应用

蚁群算法的基本原理及应用

蚁群算法的基本原理及应用1. 简介蚁群算法(Ant Colony Optimization,简称ACO)是一种模拟蚂蚁觅食行为的计算机算法。

蚁群算法最早由意大利学者Dorigo等人于1992年提出,它通过模拟蚂蚁在搜索食物时的行为规律,能够解决很多优化问题。

在近年来,蚁群算法在路线规划、任务分配、组合优化等方面得到了广泛的应用。

2. 基本原理蚁群算法的基本原理是模拟蚂蚁在搜索食物过程中的行为规律。

蚂蚁在搜索食物的过程中,会释放一种称为信息素(pheromone)的化学物质,用以指引其他蚂蚁前往食物的路径。

当蚂蚁选择了一条路径后,它会在路径上释放信息素,并且信息素会随着时间的推移逐渐挥发。

蚂蚁在选择路径时具有一定的随机性,同时也受到信息素浓度的影响。

信息素浓度高的路径会更有可能被选择,从而使得路径上的信息素浓度进一步增加。

蚁群算法利用蚂蚁在搜索食物过程中的行为规律来解决优化问题。

算法首先随机生成一群蚂蚁,在每一次迭代中,蚂蚁根据信息素浓度和启发式信息(即问题本身的特征)来选择路径,并更新路径上的信息素浓度。

随着迭代次数的增加,信息素浓度会不断迭代更新,蚂蚁在路径选择时也会趋向于选择信息素浓度高的路径。

最终,蚁群算法通过大量蚂蚁的合作和信息素的反馈来寻找到最优解。

3. 应用领域蚁群算法在很多优化问题中得到了广泛的应用。

以下是一些常见的应用领域:•路线规划:蚁群算法可以用于解决旅行商问题(TSP),在城市之间找到最优的路径,从而提高运输效率和降低成本。

•任务分配:蚁群算法可以用于解决多机器人的任务分配问题,将任务分配给不同的机器人来实现协作完成。

•组合优化:蚁群算法可以用于解决组合优化问题,例如在工程中安排最优的资源分配,或者在电信网络中找到最短的路径以优化网络流量。

4. 算法流程蚁群算法的基本流程如下:1.初始化信息素和启发式信息。

2.生成一群蚂蚁,放置在起始位置。

3.每只蚂蚁根据信息素浓度和启发式信息选择路径,并更新路径上的信息素浓度。

蚁群算法毕业论文

蚁群算法毕业论文

蚁群算法毕业论文蚁群算法毕业论文引言在当今信息时代,人工智能和智能算法的发展日新月异。

蚁群算法作为一种模拟生物群体行为的优化算法,已经在多个领域取得了优秀的成果。

本篇论文将探讨蚁群算法的原理、应用以及未来的发展方向。

一、蚁群算法的原理蚁群算法是一种基于蚂蚁觅食行为的启发式算法。

蚂蚁在觅食过程中通过信息素的沉积和蒸发来实现信息的传递和集成,从而找到最优的路径。

蚁群算法利用这种信息素机制,通过模拟蚂蚁的觅食行为来求解优化问题。

蚁群算法的基本原理包括两个方面:正向反馈和负向反馈。

正向反馈是指蚂蚁在觅食过程中,发现食物后释放信息素,吸引其他蚂蚁前往。

负向反馈是指蚂蚁在觅食过程中,经过的路径上的信息素会逐渐蒸发,从而减少后续蚂蚁选择该路径的概率。

二、蚁群算法的应用蚁群算法在多个领域都有广泛的应用。

其中最为著名的应用之一是在旅行商问题(TSP)中的应用。

旅行商问题是指在给定的一组城市中,找到一条最短路径,使得旅行商能够经过每个城市且只经过一次,最后回到起点城市。

蚁群算法通过模拟蚂蚁的觅食行为,成功地解决了这个NP难问题。

除了旅行商问题,蚁群算法还被广泛应用于图像处理、机器学习、网络优化等领域。

在图像处理中,蚁群算法可以用于图像分割、图像匹配等任务。

在机器学习中,蚁群算法可以用于优化神经网络的权重和偏置。

在网络优化中,蚁群算法可以用于优化网络拓扑结构,提高网络的性能。

三、蚁群算法的发展方向尽管蚁群算法已经取得了一定的成果,但仍然存在一些问题和挑战。

首先,蚁群算法在处理大规模问题时,容易陷入局部最优解。

其次,蚁群算法对参数的选择比较敏感,需要经验调整。

此外,蚁群算法在处理动态环境下的问题时,效果不尽如人意。

为了解决这些问题,研究者们提出了一些改进的蚁群算法。

例如,基于混沌理论的蚁群算法、蚁群算法与遗传算法的融合等。

这些改进算法在一定程度上提高了蚁群算法的性能和鲁棒性。

此外,蚁群算法还可以与其他智能算法相结合,形成混合算法。

蚁群算法的基本原理与改进

蚁群算法的基本原理与改进

蚁群算法的基本原理与改进蚁群算法是一种模拟蚂蚁群体行为的启发式算法,通过模拟蚂蚁在寻找食物和归巢过程中的行为,来解决优化问题。

蚂蚁在移动的过程中,通过信息素的释放和感知,实现了全局信息传递和局部信息更新。

蚁群算法基于这种行为特性,通过模拟蚂蚁在解空间中的过程,找到问题的最优解。

1.初始化一群蚂蚁在问题的解空间中随机选择一个起点。

2.每只蚂蚁根据问题的特性和上一次的行走经验,利用概率选择下一步要行走的方向。

3.每只蚂蚁根据选择的方向进行移动,并释放一定量的信息素到路径上。

4.蚁群中的每只蚂蚁根据选择的方向和移动的结果,更新自己的经验和信息素矩阵。

5.重复步骤2-4,直到达到停止条件。

1.路径选择策略的改进:蚂蚁选择下一步行走方向的概率通常根据路径上的信息素浓度和启发式信息来计算,可以根据具体问题的特性,采用不同的路径选择策略,如轮盘赌选择、最大值选择等,来提升算法的能力。

2.信息素更新策略的改进:信息素释放和更新对算法的性能起到重要影响。

可以通过引入一定的衰减因子,控制信息素的挥发速率,降低过快的信息素挥发过程;同时,可以通过引入信息素增强/衰减机制,根据蚂蚁经验和当前信息素浓度调整信息素的更新速率,以提升算法的收敛速度和稳定性。

3.多种启发式信息的融合:在算法中,蚂蚁根据启发信息来选择下一步行走方向。

可以采用多种启发式信息,并将它们进行适当的融合,以增加算法对问题的能力。

4.并行计算和局部:蚁群算法由于全局信息传递的特性,容易陷入局部最优解。

可以通过引入并行计算和局部机制,增加算法的广度和多样性,提升算法的全局能力。

5.参数的自适应调节:蚁群算法中存在一些参数,如信息素释放量、信息素衰减因子等,合理的参数设置对算法的性能至关重要。

可以考虑通过自适应调节参数的方法,如基于概率或规则的自适应机制,自适应地调节参数值,以提高算法的效果。

总而言之,蚁群算法通过模拟蚂蚁的行为特性,实现了全局信息传递和局部信息更新,并通过适当的改进措施,提升了算法的能力和收敛速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 蚁群算法的基本原理蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。

蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。

某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。

蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。

(a)蚁穴 1 2 食物源A B (b)人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。

一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。

(2)蚂蚁利用信息素进行相互通信。

蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。

(3)蚂蚁的集群活动。

通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。

当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。

3.3.1蚂蚁系统蚂蚁系统是最早的蚁群算法。

其搜索过程大致如下:在初始时刻,m 只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构造的路径长度。

其次,蚂蚁(1,2,)k k m =,按照随机比例规则选择下一步要转移的城市,其选择概率为:[()][()],[()][()]()0k ij ij k k is is ij s allowed t t j allowed t t p t αβαβτητη∈⎧∈⎪⎪=⎨⎪⎪⎩∑,否则其中,ij τ为边(,)i j 上的信息素,1ij ij d η=为从城市i 转移到城市j 的启发式因子,k allowed 为蚂蚁k 下一步被允许访问的城市集合。

为了不让蚂蚁选择已经访问过的城市,采用禁忌表k tabu 来记录蚂蚁k 当前所走过的城市。

经过t 时刻,所有蚂蚁都完成一次周游,计算每只蚂蚁所走过的路径长度,并保存最短的路径长度,同时,更新各边上的信息素。

首先是信息素挥发,其次是蚂蚁在它们所经过的边上释放信息素,其公式如下:(1)ij ij τρτ=- ,其中ρ为信息素挥发系数,且01ρ<≤。

1mk ij ij ij k τττ==+∆∑,其中k ij τ∆是第k 只蚂蚁向它经过的边释放的信息素,定义为:10k ij k ijd τ⎧⎪∆=⎨⎪⎩,如果边(i,j)在路径T 上,否则 (3.2) 根据(3.2)可知,蚂蚁构建的路径长度ij d 越小,则路径上各条边就会获得更多的信息素,则在以后的迭代中就更有可能被其他的蚂蚁选择。

蚂蚁完成一次循环后,清空禁忌表,重新回到初始城市,准备下一次周游。

大量的仿真实验发现,蚂蚁系统在解决小规模TSP 问题时性能尚可,能较快的发现最优解,但随着测试问题规模的扩大,AS 算法的性能下降的比较严重,容易出现停滞现象。

因此,出现了大量的针对其缺点的改进算法。

3.3.2精英蚂蚁系统精英蚂蚁系统[11]是对基本AS 算法的第一次改进,它首先由Dorigo 等人中提出,它的设计思想是对算法每次循环之后给予最优路径额外的信息素量。

找出这个解的蚂蚁称为精英蚂蚁。

将这条最优路径记为bs T (best-so-far tour )。

针对路径bs T 的额外强化是通过向bs T 中的每一条边增加bs L e /大小的信息素得到的,其中e 是一个参数,它定义了给予路径bs T 的权值大小,bs L 代表了bs T 的长度。

这样相应的信息素的更新公式如式(3.3):1(1)(1)()()()mk bs ij ij ij ij k t t t e t τρτττ=+=-+∆+∆∑ (3.3)其中,)(t k ij τ∆的定义方法跟以前的相同,)(t bs ij τ∆的定义则如式(3.4):⎪⎩⎪⎨⎧∈=∆ otherwise 0T j)(i, f 1)(bs ,,i Lt bs bs ij τ (3.4) Dorigo 等人的文章列举的计算结果表明,使用精英策略并选取一个适当的e 值将使得AS 算法不但可以得到更好的解,而且能够在更少的迭代次数下得到一些更好的解。

3.3.3最大-最小蚂蚁系统最大-最小蚂蚁系统(MM AS [13-15])是到目前为止解决TSP 问题最好的ACO 算法方案之一。

MM AS 算法是在AS 算法的基础之上,主要作了如下的改进:(1)为避免算法过早收敛于局部最优解,将各条路径可能的外激素浓度限制于[]max min ,ττ,超出这个范围的值被强制设为m in τ或者是m ax τ,可以有效地避免某条路径上的信息量远大于其余路径,避免所有蚂蚁都集中到同一条路径上;(2)强调对最优解的利用。

每次迭代结束后,只有最优解所属路径上的信息被更新,从而更好地利用了历史信息;(3)信息素的初始值被设定为其取值范围的上界。

在算法的初始时刻,ρ取较小的值时,算法有更好的发现较好解的能力。

所有蚂蚁完成一次迭代后,按(3.5)式对路径上的信息作全局更新:()()()()()1,0,11∈∆+⋅-=+ρττρτt t t best ij ij ij (3.5)()⎪⎩⎪⎨⎧=∆否则,包含在最优路径中如果边0,,1j i L bestbest ij τ (3.6) 允许更新的路径可以是全局最优解,或本次迭代的最优解。

实践证明逐渐增加全局最优解的使用频率,会使该算法获得较好的性能。

3.3.4基于排序的蚁群算法基于排序的蚂蚁系统(AS rank )[16]是对AS 算法的一种改进。

其改进思想是:在每次迭代完成后,蚂蚁所经路径将按从小到大的顺序排列,即)()()(21t L t L t L m ≤≤。

算法根据路径长度赋予不同的权重,路径长度越短权重越大。

全局最优解的权重为w ,第r 个最优解的权重为{}r w -,0m ax ,则AS rank 的信息素更新规则为:()()()()()()()gb gb ij r r ij gb ij r ijw r ij ij L t t L t t w t r w t t /1/11,0,)()1()1(11=∆=∆∈∆⋅+∆⋅-+⋅-=+∑-=ττρτττρτ,其中, (3.7)3.3.5蚁群系统蚁群系统(ACS [12])是由Dorigo 等人提出来的改进的蚁群算法,它与AS 的不同之处主要体现在三个方面:(1)采用不同的路径选择规则,能更好地利用蚂蚁所积累的搜索经验。

(2)信息素挥发和信息素释放动作只在至今最优路径的边上执行,即每次迭代之后只有至今最优蚂蚁被允许释放信息素;(3)除了全局信息素更新规则外,还采用了局部信息素更新规则。

在ACS 中,位于城市i 的蚂蚁k ,根据伪随机比例规则选择城市j 作为下一个访问的城市。

路径选择规则由下面式子给出:[]{}0arg max ,k il il l allowed q q j J βτη∈⎧≤⎪=⎨⎪⎩如果,否则 (3.8)()()()()()0kij ij k k is is ij s allowed t t if j allowed t t p t elseαβαβτητη⊂⎧⎡⎤⎡⎤⎣⎦⎣⎦⎪∈⎪⎡⎤⎡⎤=⎨⎣⎦⎣⎦⎪⎪⎩∑ (3.9) 其中,q 是均匀分布在区间[]01,中的一个随机变量,()0001q q ≤≤是一个参数,J 是根据(3.9)给出的概率分布产生出来的一个随机变量(其中1α=)。

ACS 的全局信息素更新规则为:()1bs ij ij ij τρτρτ=-+∆ , (),bs i j T ∀∈ (3.10)1bs bs ij C τ∆= (3.11)ACS 的局部信息素更新规则方式定义:在路径构建过程中,蚂蚁每经过一条边(),i j ,都将立刻调用这条规则更新该边上的信息素:()01ij ij τρτξτ=-+ (3.12)其中,ξ和0τ是两个参数,ξ满足01ξ<<,0τ是信息素量的初始值。

局部更新的作用在于,蚂蚁每一次经过边(),i j ,该边的信息素ij τ将会减少,从而使得其他蚂蚁选中该边的概率相对减少。

一、一个星期七天Sunday Monday Tuesday Wednesday Thursday Friday Saturday二、一年十二个月January February March April May JuneJuly August September October November December三、一年四季1. spring2. summer3. autumn4. winter四、容易拼写错的数字1. eighth第八2. ninth第九3. forty四十4. twelfth第十二5. twentieth第二十四、亲属称呼1. daughter (女儿)2. niece (女性晚辈)3. nephew (男性晚辈)4. cousin (同辈兄弟姐妹)5. aunt (女性长辈)6. uncle (男性长辈)五、以下动词加-ed或-ing要双写最后一个字母1. regret (regretted, regretting) 后悔2. control (controlled, controlling) 控制3. admit (admitted, admitting) 承认4. occur (occurred, occurring) 出现5. prefer (preferred, preferring) 宁愿6. refer (referred, referring) 提到7. forget (forgetting ) 忘记8. permit (permitted, permitting)允许9. equip (equipped, equipping) 装备注意:quarrel, signal, travel中的l可双写(英国英语)也可不双写(美国英语)六、部分过去式和过去分词不规则变化的动词1. broadcast (broadcast, broadcast) 广播2. flee (fled, fled) 逃跑3. forbid (forbade, forbidden) 禁止4. forgive (forgave, forgiven) 原谅5. freeze (froze, frozen) 结冰6. hang (作“绞死”讲,是规则的;作“悬挂”讲,其过去式过去分词都是hung)7. lie –lied –lied 说谎; lie—lay---lain躺下lay-laid-laid 放置8. seek (sought, sought) 寻求 9. shake (shook, shaken) 发抖10. sing (sang, sung) 唱歌 11. sink (sank, sunk/sunken) 下沉12. spread (spread, spread) 传播 13. swim (swam, swum) 游泳14. tear (tore, torn) 撕碎 16.wear( wore;worn) 穿/戴17.hold (held, held ) 18.make (made, made)19. keep (kept, kept)七、意思相近的词1. check (核对)/ examine(检查)/ test(测试)2. receive(收到) / accept(接受)3. destroy (毁坏;毁灭)/ damage(破坏)4. celebrate(庆祝)/ congratulate(祝贺)5. wear sth / dress sb 穿衣八、注意形容词变名词时的拼写变化1. long—length 长度2. wide—width 宽度3. high—height 高度4. strong—strength力量九、以-ic结尾的动词,应先把-ic变为-ick,再加ing或ed1. picnic (picnicked, picnicking) 野餐十、个别名词的复数拼写1. German (Germans) 德国人2. gulf (gulfs) 海湾3. handkerchief (handkerchiefs) 手帕roof (roofs) 房顶4. hero (英雄),potato (土豆),tomato (西红柿) 等有生命的以-o结尾的名词变复数时要加-es。

相关文档
最新文档