传教士和野人问题

合集下载

传教士野人过河问题-两种解法思路

传教士野人过河问题-两种解法思路

实验 传教士野人过河问题37030602 王世婷一、实验问题传教士和食人者问题(The Missionaries and Cannibals Problem )。

在河的左岸有3个传教士、1条船和3个食人者,传教士们想用这条船将所有的成员运过河去,但是受到以下条件的限制:(1)传教士和食人者都会划船,但船一次最多只能装运两个;(2)在任何岸边食人者数目都不得超过传教士,否则传教士就会遭遇危险:被食人者攻击甚至被吃掉。

此外,假定食人者会服从任何一种过河安排,试规划出一个确保全部成员安全过河的计划。

二、解答步骤(1) 设置状态变量并确定值域M 为传教士人数,C 为野人人数,B 为船数,要求M>=C 且M+C <= 3,L 表示左岸,R 表示右岸。

初始状态 目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(2) 确定状态组,分别列出初始状态集和目标状态集用三元组来表示f S :(ML , CL , BL )(均为左岸状态)其中03,03ML CL ≤≤≤≤,BL ∈{ 0 , 1}0S :(3 , 3 , 1) g S : (0 , 0 , 0)初始状态表示全部成员在河的的左岸;目标状态表示全部成员从河的左岸全部渡河完毕。

(3) 定义并确定规则集合仍然以河的左岸为基点来考虑,把船从左岸划向右岸定义为Pij 操作。

其中,第一下标i 表示船载的传教士数,第二下标j 表示船载的食人者数;同理,从右岸将船划回左岸称之为Qij 操作,下标的定义同前。

则共有10种操作,操作集为F={P01,P10,P11,P02,P20,Q01,Q10,Q11,Q02,Q20}P 10 if ( ML ,CL , BL=1 ) then ( ML –1 , CL , BL –1 )P 01 if ( ML ,CL , BL=1 ) then ( ML , CL –1 , BL –1 )P 11 if ( ML ,CL , BL=1 ) then ( ML –1 , CL –1 , BL –1 )P 20 if ( ML ,CL , BL=1 ) then ( ML –2 , CL , BL –1 )P 02 if ( ML ,CL , BL=1 ) then ( ML , CL –2 , BL –1 )Q 10 if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q 01 if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q 11 if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(4)当状态数量不是很大时,画出合理的状态空间图图1 状态空间图箭头旁边所标的数字表示了P或Q操作的下标,即分别表示船载的传教士数和食人者数。

求解野人与传教士问题1

求解野人与传教士问题1
题目:设有n个传教士和m个野人来到河边,打算乘一只般从右岸到左岸云。该般的负载能力为两人。在任何时候,如果野人人数超过传教士人数,野人就会把传教士吃掉。他们怎样才能用这条般安全地把所有的人都渡过河去?
题目分析:
定义节点的结构:以取般的一个来回作为一步搜索,这样节点可由下面几个量进行描述:两岸的传教士人数和野人人数、本节点距离起始节点的距离,即由初始节点搜索几步后到达本节点。需要注意的是并不是所有节点都是可达的,题目中对可达节点作出了限制,只有两大 岸上的人数必须不能为负。
void goon(); //判断是否继续搜索
void main()
{
int flag; //标记扩展是否成功
for(;;)
{
initiate();
flag=search()
if(flag==1)
releasemem();
goon();
}
}
}
void initiate()
{
int x;
char choice;
uend=unopened=(struc SPQ*)malloc(sizeof(spq));
void releasemem(); //释放占用内存
void showresult(); //显示解
void addtoopened(struc SPQ *ntx); //将节点ntx从UNOPENED链表移至OPRNENED
//链表中
newnode -> sst = sst;
newnode -> spt = spt;
newnode -> ssr = 0
newnode -> spr = 0

传教士(牧师)与野人问题-模拟人工智能实验_CSDN博客_传教士与野人问题

传教士(牧师)与野人问题-模拟人工智能实验_CSDN博客_传教士与野人问题

传教士(牧师)与野人问题-模拟人工智能实验_结缘缘的博客-CSDN博客_传教士与野人问题题目有n个牧师和n个野人准备渡河但只有一条能容纳c个人的小船为了防止野人侵犯牧师要求无论在何处牧师的人数不得少于野人的人数(除非牧师人数为0) 且假定野人与牧师都会划船试设计一个算法确定他们能否渡过河去若能则给出小船来回次数最少的最佳方案。

实验步骤输入牧师人数(即野人人数) n 小船一次最多载人量c。

输出若问题无解则显示Failed 否则显示Successed输出所有可行方案并标注哪一组是最佳方案。

用三元组(X1, X2, X3)表示渡河过程中的状态。

并用箭头连接相邻状态以表示迁移过程初始状态- 中间状态- 目标状态。

例当输入n 2 c 2时输出221- 200- 211- 010- 021- 000 其中X1表示起始岸上的牧师人数X2表示起始岸上的野人人数X3表示小船现在位置(1表示起始岸0表示目的岸)。

要求写出算法的设计思想和源程序并有用户界面实现人机交互控制台或者窗口都可以进行输入和输出结果如Please input n: 2 Please input c: 2 Optimal Procedure: 221- 200- 211- 010- 021- 000Successed or Failed?: Successed实现代码#include stdio.h #include iostream #include stdlib.h using namespace std;struct State { int Lsavage; int Lgodfather; int Rsavage; int Rgodfather; int boat; //boat at left 0 ; boat at right struct State *States new State[150];struct routesave { int savage; int godfather;struct routesave* routesaves new routesave[150];int godfather, savage, boatnum;void init(State m) { cout 请输入野人和牧师的人数n 以及船的最大载量c endl; int n, c; cin n c; m.Rgodfather n; m.Rsavage n; godfather n, savage n; boatnum c; m.Lgodfather m.Lsavage 0; m.boat 1;void boaloading(int i, int s, int g) { //s个野人和g个传教士if (States[i].boat 0) { routesaves[i].savage s*-1; //左边到右边是负数个野人routesaves[i].godfather g * -1; //左边到右边负数个传教士States[i 1].LsavageStates[i].Lsavage - s; States[i 1].Lgodfather States[i].Lgodfather - g; States[i 1].Rsavage States[i].Rsavage s; States[i 1].Rgodfather States[i].Rgodfather g; States[i 1].boat 1; else{ routesaves[i].savage s; //右边到左边是正数个野人routesaves[i].godfather g; //右边到左边正数个传教士States[i 1].Rsavage States[i].Rsavage-s; States[i 1].RgodfatherStates[i].Rgodfather - g; States[i 1].Lsavage States[i].Lsavage s; States[i 1].Lgodfather States[i].Lgodfather g; States[i 1].boat0;bool checkState(State m) { if (m.Rgodfather 0 m.Rgodfather m.Rsavage) return false; if (m.Lgodfather 0 m.Lgodfatherm.Lsavage) return false; else return true;void showSolution(int i) { cout 问题解决解决路径为endl; for (int c 0; c i; c ) { if (routesaves[c].savage 0) cout 第c 1 步routesaves[c].savage 个野人和routesaves[c].godfather 个传教士乘船去左边endl; else cout 第c 1 步routesaves[c].savage * -1 个野人和routesaves[c].godfather * -1 个传教士乘船去有右边endl; void nextstep(int i) { int c; if (i 150) cout 试探路径过大无法计算; exit(0); for (c 0; c i; c ) /*if the current state is same to previous,retrospect*/ if (States[c].Lsavage States[i].Lsavage States[c].Lgodfather States[i].Lgodfather States[c].Rsavage States[i].Rsavage States[c].Rgodfather States[i].Rgodfather States[c].boat States[i].boat) goto a; if (States[i].Rsavage 0 States[i].Rgodfather 0 States[i].boat 0) { showSolution(i); exit(0); if (States[i].boat 1) { //船在右边for (int s 1; s boatnum s States[i].Rsavage; s ) {//g 0 int g 0; boaloading(i, s, g); if (checkState(States[i 1])) { nextstep(i 1); for (int g 1; g boatnum g States[i].Rgodfather; g ) { //g! 0 for (int s 0; s boatnum - g s States[i].Rsavage s g; s ) { boaloading(i, s, g); if(checkState(States[i 1])) { nextstep(i 1); if (States[i].boat 0) { //船在左边for (int s 1; s boatnum s States[i].Lsavage; s ) {//g 0int g 0; boaloading(i, s, g); if (checkState(States[i 1])) { nextstep(i 1); for (int g 1; g boatnum g States[i].Lgodfather; g ) { //g! 0 for (int s 0; s boatnum - g s States[i].Lsavage s g; s ) { boaloading(i, s, g); if (checkState(States[i 1])) { nextstep(i 1);a:return;void main() { init(States[0]); nextstep(0);实验结果展示。

野人与传教士问题A算法

野人与传教士问题A算法

野人与传教士问题(A*算法)SY0903620 赵磊一、实验题目请用A*算法实现传教士和野人问题问题:设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?算法设计要求给出:状态表示,规则库,启发函数等二、实验目的通过具体问题的编程求解,利用A*算法解决此经典问题,了解人工智能的启发式搜索算法的基本过程与原理。

三、设计思想1、编程工具采用C++语言在Visual Studio 6.0环境下编写;2、整体思想(1)把初始结点So放入OPEN 表中,计算f(So)。

(2)如果OPEN为空,则搜索失败,退出。

(3)把OPEN中的第一个节点(记为节点n)从表中移出放入CLOSED表。

(4)考察节点n是否为目标节点。

若是,则求得问题的解,退出。

(5)若节点n不可扩展,则转第(2)步。

(6)扩展节点n,用估价函数f(x)计算每个子节点的估价值,并为每个子节点配置指向父节点的指针,把这些子节点都送到OPEN表中,然后对OPEN表中的全部节点按估价值从小到大的顺序排列。

3、具体说明用A*算法求解传教士与野人问题。

M=C=5, K=3。

节点估价值设为f(n)=h(n)+g(n),g(n)设为节点搜索深度,而h(n)= m(n) + c(n) - 2b(n),其中m:河左岸的传教士人数;c:河左岸的野人人数;b:船是否在左岸,1:表示在左岸,0:表示不在左岸。

采用结构体定义形式,定义状态节点*NewNode(int m, int c, int b),其中包含m左岸传教士人数、c左岸野人人数、b船状态(左或右)。

开始状态为(3,3,1),目标状态为(0,0,0)。

若需要条件满足,即任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉,要对状态结点的安全性进行判断,判断一个状态是否为安全的,即是否满足在河的任何一岸,传教士人数不少于野人人数,或者只有野人而没有传教士。

传教士野人问题

传教士野人问题

问题:野人过河问题属于人工智能学科中的一个经典问题,问题描述如下:有三个牧师(也有的翻译为传教士)和三个野人过河,只有一条能装下两个人的船,在河的任何一方或者船上,如果野人的人数大于牧师的人数,那么牧师就会有危险. 你能不能找出一种安全的渡河方法呢?解答一:一、算法分析先来看看问题的初始状态和目标状态,假设和分为甲岸和乙岸:初始状态:甲岸,3野人,3牧师;乙岸,0野人,0牧师;船停在甲岸,船上有0个人;目标状态:甲岸,0野人,0牧师;乙岸,3野人,3牧师;船停在乙岸,船上有0个人;整个问题就抽象成了怎样从初始状态经中间的一系列状态达到目标状态。

问题状态的改变是通过划船渡河来引发的,所以合理的渡河操作就成了通常所说的算符,根据题目要求,可以得出以下5个算符(按照渡船方向的不同,也可以理解为10个算符):渡1野人、渡1牧师、渡1野人1牧师、渡2野人、渡2牧师算符知道以后,剩下的核心问题就是搜索方法了,本文采用深度优先搜索,通过一个FindNext(…)函数找出下一步可以进行的渡河操作中的最优操作,如果没有找到则返回其父节点,看看是否有其它兄弟节点可以扩展,然后用Process(…)函数递规调用FindNext(…),一级一级的向后扩展。

搜索中采用的一些规则如下:1、渡船优先规则:甲岸一次运走的人越多越好(即甲岸运多人优先),同时野人优先运走;乙岸一次运走的人越少越好(即乙岸运少人优先),同时牧师优先运走;2、不能重复上次渡船操作(通过链表中前一操作比较),避免进入死循环;3、任何时候河两边的野人和牧师数均分别大于等于0且小于等于3;4、由于只是找出最优解,所以当找到某一算符(当前最优先的)满足操作条件后,不再搜索其兄弟节点,而是直接载入链表。

5、若扩展某节点a的时候,没有找到合适的子节点,则从链表中返回节点a的父节点b,从上次已经选择了的算符之后的算符中找最优先的算符继续扩展b。

二、基本数据结构仔细阅读问题,可以发现有些基本东西我们必须把握,例如:每时刻河两岸野人牧师各自的数目、船的状态、整个问题状态。

人工智能:野人与修道士问题

人工智能:野人与修道士问题

野人与修道士问题(Missionaries-and-Cannibals Problem )[修道士与野人问题]:三个野人与三个传教士来到河边,打算乘一只船从右岸渡到左岸去,该船的最大负载能力为两个人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

用状态空间法表示修道士与野人问题并设计编写计算机程序求问题的解。

问题分析:从上图可知,修道士、野人和船一共有六种可能,M L 、C L 、B L 、M R 、C R 、B R 。

可以表示为q =(M ,C ,B ),其中m 表示修道士的数目(0、1、2、3)、c 表示野人的数目(0、1、2、3)、b 表示船在左岸(1)或右岸(0)。

1、定义状态的描述形式:(m ,c ,b )2、表示所有可能的状态,并确定初始状态集和目标状态集:s0(3,3,1) s8(1,3,1) s16(3,3,0) s24(1,3,0)s1(3,2,1) s9(1,2,1) s17(3,2,0) s25(1,2,0)s2(3,1,1) s10(1,1,1) s18(3,1,0) s26(1,1,0)s3(3,0,1) s11(1,0,1) s19(3,0,0) s27(1,0,0)s4(2,3,1) s12(0,3,1) s20(2,3,0) s28(0,3,0)s5(2,2,1) s13(0,2,1) s21(2,2,0) s29(0,2,0)s6(2,1,1) s14(0,1,1) s22(2,1,0) s30(0,1,0)s7(2,0,1) s15(0,0,1) s23(2,0,0) s31(0,0,0)初始状态:(3,3,1)目标状态:(0,0,0)3、定义算符:L ij :把i 个修道士,j 个野人从河的左岸送到右岸R ij :把i 个修道士,j 个野人从河的右岸送到左岸整个问题就抽象成了怎样从初始状态经中间的一系列状态达到目标状态。

问修道士M野 人C 左L 右R题状态的改变是通过划船渡河来引发的,所以合理的渡河操作就成了通常所说的算符,根据题目要求,可以得出以下5个算符(按照渡船方向的不同,也可以理解为10个算符):渡1野人、渡1牧师、渡1野人1牧师、渡2野人、渡2牧师即:L01或R01,L10或R10,L11或R11,L02或R02,L20或R204、状态空间图:5、设计编写计算机程序求问题的解:算法:在应用状态空间表示和搜索方法时,用(M,C,B)来表示状态描述,其中M和C分别表示在左岸的传教士与野人数。

传教士和野人问题

传教士和野人问题

传教士和野人问题(Missionaries and Cannibals)传教士和野人问题是一个经典的智力游戏问题。

在这个问题中,实际上隐含了这样一个条件:如果在河的某一岸只有野人,而没有传教士,也同样被认为是合法状态。

在具体书写某些条件时,为了简便,这一点有时并没有考虑,但我们默认这个条件是被考虑了的。

有N个传教士和N个野人来到河边准备渡河,河岸有一条船,每次至多可供k人乘渡。

问传教士为了安全起见,应如何规划摆渡方案,使得任何时刻,在河的两岸以及船上的野人数目总是不超过传教士的数目。

即求解传教士和野人从左岸全部摆渡到右岸的过程中,任何时刻满足M(传教士数)≥C (野人数)和M+C≤k的摆渡方案。

设N=3,k=2,则给定的问题可用图1.2表示,图中L和R表示左岸和右岸,B=1或0分别表示有船或无船。

约束条件是:两岸上M≥C,船上M+C≤2。

图1.2 M-C问题实例由于传教士和野人数是一个常数,所以知道了一岸的情况,另一岸的情况也就知道了。

因此为了简便起见,在描述问题时,只描述一岸--如左岸--的情况就可以了。

另外,该问题我们最关心的是在摆渡过程中,两岸状态的变化情况,因此船上的情况并不需要直接表达出来。

在一次摆渡过程中,船上究竟有几个传教士和野人,可以通过两个相连的状态简单得到。

这样表达更简练,突出了问题的重点。

(1)综合数据库:用三元组表示左岸的情况,即(,,),其中0≤,≤3,∈{0,1},其中表示在左岸的传教士人数,表示在左岸的野人数,=1表示船在左岸,=0表示船在右岸。

则此时问题描述可以简化为:(3,3,1)→(0,0,0)N=3的M-C问题,状态空间的总状态数为4×4×2=32,根据约束条件的要求,可以看出只有20个合法状态。

再进一步分析后,又发现有4个合法状态实际上是不可能达到的。

因此实际的问题空间仅由16个状态构成。

下表列出分析的结果:()(001)达不到(传教士()(000)均在右,船在左)(011)(021)(031)(101)不合法(右岸野人多)(111)(121)不合法(左岸野人多)(131)不合法(左岸野人多)(201)不合法(右岸野人多)(211)不合法(右岸野人多)(221)(231)不合法(左岸野人多)(301)达不到(311)(321)(331)(010)(020)(030)达不到(100)不合法(右岸野人多)(110)(120)不合法(左岸野人多)(130)不合法(左岸野人多)(200)不合法(右岸野人多)(210)不合法(右岸野人多)(230)不合法(右岸野人多)(300)(220)(310)(320)(330)达不到规则集可以划分为两组:一组是从左岸到右岸,称为p 操作,另一组是从右岸到左岸,称为q操作。

传教士野蛮人过河问题--python

传教士野蛮人过河问题--python

传教⼠野蛮⼈过河问题--python三名传教⼠和三个野蛮⼈同在⼀个⼩河渡⼝,渡⼝上只有⼀条可容两⼈的⼩船。

问题的⽬标是要⽤这条⼩船把这六个⼈全部渡到对岸去,条件是在渡河的过程中,河两岸随时都保持传教⼠⼈数不少于野蛮⼈的⼈数,否则野蛮⼈会把处于少数的传教⼠状态集合为(x,y,b)三元组,x表⽰左岸野⼈数,y表⽰左岸传教⼠数,x,y取值0~3。

b为0表⽰船在左边,b为1表⽰船在右边动作集合为⼀个传教⼠从左到右,两个传教⼠从左到右,⼀个野⼈从左到右,两个野⼈从左到右,⼀个野⼈⼀个传教⼠从左到右;从右到左类似也有5个动作,共10个动作,于是就可以画出⼀个状态转换图,下⾯的python代码可以帮助我们完成这个任state_legal判断给定状态是否合法,act_legal判断在当前状态执⾏给定动作是否合法,f(x,y,b)打印所有从(x,y,b)可以执⾏的动作和转移到的状态def state_legal(x, y, b):if x < 0 or y < 0 or x > 3 or y > 3:return Falseif y < x and y > 0:return Falseelif (3-y) < 3-x and 3-y > 0:return Falseelse:return Truedef act_legal(x, y, b, xx, yy, bb):if b != bb:return Falseif b == 0 and state_legal(x - xx, y - yy, 1 - b):return Trueelif b == 1 and state_legal(x + xx, y + yy, 1 - b):return Trueelse:return False#when calling f, (x,y,b) is ensured to be state_legaldef f(x,y,b):for act in actions:if act_legal(x, y, b, act[0], act[1], act[2]):if act[2] == 0:print(x,y,b,"---",act, '---', x - act[0], y - act[1], 1 - b)else:print(x,y,b,"---",act, '---', x + act[0], y + act[1], 1 - b)a = (0,1,2,3)actions = []for b in (0,1):for x in (0,1,2):for y in (0,1,2):if x + y >= 1 and x + y <= 2:actions.append((x,y,b))print(actions)for x in a:for y in a:for b in (0,1):if not(x == 0 and y == 0) and state_legal(x, y, b):f(x,y,b)#x is num of savages, y is num of missionaries。

传教士野人过河问题两种解法思路

传教士野人过河问题两种解法思路
第5次:左岸到右岸,传教士过去2人,野人过去0人
第6次:右岸到左岸,传教士过去1人,野人过去1人
第7次:左岸到右岸,传教士过去2人,野人过去0人
第8次:右岸到左岸,传教士过去0人,野人过去1人
第9次:左岸到右岸,传教士过去0人,野人过去2人
第10次:右岸到左岸,传教士过去1人,野人过去0人
第11次:左岸到右岸,传教士过去1人,野人过去1人
F={P01,P10,P11,P02,P20,Q01,Q10,Q11,Q02,Q20}
P10ﻩif (ML,CL,BL=1)then(ML–1 , CL,BL–1)
P01ﻩif ( ML,CL , BL=1)then ( ML ,CL–1 , BL–1)
P11ﻩif (ML,CL,BL=1) then ( ML–1 , CL–1,BL–1)
二、解答步骤
(1)设置状态变量并确定值域
M为传教士人数,C为野人人数,B为船数,要求M>=C且M+C<=3,L表示左岸,R表示右岸。
初始状态ﻩﻩ目标状态
LﻩRﻩﻩﻩLR
Mﻩ30ﻩﻩﻩM03
Cﻩ30ﻩﻩﻩﻩﻩC03
B1ﻩ0ﻩﻩﻩﻩB0ﻩ1
(2)确定状态组,分别列出初始状态集和目标状态集
用三元组来表示 :(ML,CL,BL)(均为左岸状态)
图1状态空间图
箭头旁边所标的数字表示了P或Q操作的下标,即分别表示船载的传教士数和食人者数。
三、算法设计
方法一:树的遍历
根据规则由根(初始状态)扩展出整颗树,检测每个结点的“可扩展标记”,为“-1”的即目标结点。由目标结点上溯出路径。
见源程序1。
方法二:启发式搜索
构造启发式函数为:
选择较大值的结点先扩展。

野人传教士过河问题

野人传教士过河问题

一、对N=5、k≤3时,求解传教士和野人问题的产生式系统各组成部分进行描述(给出综合数据库、规则集合的形式化描述,给出初始状态和目标条件的描述),并画出状态空间图。

答:用M表示传教士,C表示野人,B表示船,L表示左岸,R表示右岸。

初始状态:目标状态:1,综合数据库定义三元组:(M,C,B)其中:0=<M l<=5,表示传教士在河左岸的人数。

0=<C l<=5,表示野人在河左岸的人数。

B l属于集合(0,1),B l=1,表示船在左岸,B l=0,表示船在右岸。

2,规则集规则集可以用两种方式表示,两种方法均可。

按每次渡河的人数分别写出每一个规则,共(3 0)、(0 3)、(2 1)、(1 1)、(1 0)、(0 1)、(2 0)、(0 2)八种渡河的可能(其中(x y)表示x个传教士和y个野人上船渡河),因此共有16个规则(从左岸到右岸、右岸到左岸各八个)。

注意:这里没有(1 2),因为该组合在船上的传教士人数少于野人人数。

规则集如下:IF (M l, C l, 1) THEN (M l -3, C l, 0) p30IF (M l, C l, 1) THEN (M l, C l -3, 0) p03IF (M l, C l, 1) THEN (M l -2, C l -1, 0) p21IF (M l, C l, 1) THEN (M l -1, C l -1, 0) p11IF (M l, C l, 1) THEN (M l -1, C l, 0) p10IF (M l, C l, 1) THEN (M l, C l -1, 0) p01IF (M l, C l, 1) THEN (M l -2, C l, 0) p20IF (M l, C l, 1) THEN (M l, C l -2, 0) p02IF (M l , C l, 0) THEN (M l +3, C l, 1) q30IF (M l, C l, 0) THEN (M l, C l +3, 1) q03IF (M l, C l, 0) THEN (M l +2, C l +1, 1) q21IF (M l, C l, 0) THEN (M l +1, C l +1, 1) q11IF (M l, C l, 0) THEN (M l +1, C l, 1) q10IF (M l, C l, 0) THEN (M l, C l +1, 1) q01IF (M l, C l, 0) THEN (M l +2, C l, 1) q20IF (M l, C l, 0) THEN (M l, C l +2, 1) q02第二种方法:将规则集综合在一起,简化表示。

传教士和野人问题

传教士和野人问题

状态空间法详解传教士和野人问题传教士和野人问题(The Missionaries and Cannibals Problem)在河的左岸有三个传教士、一条船和三个野人,传教士们想用这条船将所有的成员都运过河去,但是受到以下条件的限制:①教士和野人都会划船,但船一次最多只能装运两个;②②在任何岸边野人数目都不得超过传教士,否则传教士就会遭遇危险:被野人攻击甚至被吃掉。

此外,假定野人会服从任何一种过河安排,试规划出一个确保全部成员安全过河的计划。

(1)设定状态变量及确定值域。

为了建立这个问题的状态空间,设左岸传教士数为m,则m ={0,1,2,3};对应右岸的传教士数为3-m;左岸的野人数为c,则有c ={0,1,2,3};对应右岸野人数为3-c;左岸船数为b,故又有b={0,1},右岸的船数为1-b.(2)确定状态组,分别列出初始状态集和目标状态集。

问题的状态可以用一个三元数组来描述,以左岸的状态来标记,即Sk =(m,c,b),右岸的状态可以不必标出。

初始状态一个:S0 =(3,3,1),初始状态表示全部成员在河的左岸;目标状态也只一个:Sg =(0,0,0),表示全部成员从河左岸渡河完毕。

(3)定义并确定操作集。

仍然以河的左岸为基点来考虑,把船从左岸划向右岸定义为Pij操作。

其中,第一下标i表示船载的传教士数, 第二下标j表示船载的野人数;同理,从右岸将船划回左岸称之为Qij 操作,下标的定义同前。

则共有10种操作,操作集为F={P01,P10,P11,P02,P20,Q01,Q10,Q11,Q02,Q20}(4)估计全部的状态空间数,并尽可能列出全部的状态空间或予以描述之。

在这个问题世界中,S0 =(3,3,1)为初始状态,S31 = Sg =(0,0,0)为目标状态。

全部的可能状态共有32个,如表所示。

表1 传教士和野人问题的全部可能状态注意:按题目规定条件,应划去非法状态,从而加快搜索效率。

传教士和野人问题实验报告

传教士和野人问题实验报告

传教士和野人问题实验报告1.上机内容传教士与野人问题求解(宽度搜索算法)二二问题背景:从前有一条河,河的左岸有 m 个传教士(Missionary)和 m 个野人(Cannibal),和一艘最多可乘 n 人的小船。

约定左岸,右岸和船上或者没有传教士,或者野人数量少于传教士,否则野人会把传教士吃掉。

三三实验内容:编程,接收 m 和 n,搜索一条可让所有的野人和传教士安全渡到右岸的方案,例如下图: (M 表示传教士(Missionary),C 表示野人(Cannibal))初态目标 Left Bank River Right bankLeft Bank River Right bank M....M....C....C....注:本实验的举例均以 3 个传教士和 3 个野人同在左岸作为初始状态。

四四实验方案和算法:1 .数据结构:本实验需要用到的数据结构主要是队列和堆栈,其实现均包含于 dso.h 头文件中,分别命名为 class stack 和 class queue。

2 2 .宽度搜索算法:(1) 结点结构:class Move {public:int missionary;//要移动的传教士数量int cannibal;//野人}; class ElemType : Move {//继承 Move 类,获得传教士,野人数据成员。

private:bool boat;//船是否在左岸?public:ElemType_flag;// 标示前一状态即扩展出本结点的父结点信息ElemType(int MA__PEOPLE) {//创建初始状态missionary = cannibal = MA__PEOPLE;boat = true;flag = NULL;} ......在这里,Elemtype 集成了 Move,从而获得 Move 类的传教士和野人数据成员。

以上两个类的数据成员用于保存所有扩展生成的结点。

传教士野人过河问题-两种解法思路

传教士野人过河问题-两种解法思路

实验 传教士野人过河问题37030602 王世婷一、实验问题传教士和食人者问题(The Missionaries and Cannibals Problem )。

在河的左岸有3个传教士、1条船和3个食人者,传教士们想用这条船将所有的成员运过河去,但是受到以下条件的限制:(1)传教士和食人者都会划船,但船一次最多只能装运两个;(2)在任何岸边食人者数目都不得超过传教士,否则传教士就会遭遇危险:被食人者攻击甚至被吃掉。

此外,假定食人者会服从任何一种过河安排,试规划出一个确保全部成员安全过河的计划。

二、解答步骤(1) 设置状态变量并确定值域M 为传教士人数,C 为野人人数,B 为船数,要求M>=C 且M+C <= 3,L 表示左岸,R 表示右岸。

初始状态 目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(2) 确定状态组,分别列出初始状态集和目标状态集用三元组来表示f S :(ML , CL , BL )(均为左岸状态)其中03,03ML CL ≤≤≤≤,BL ∈{ 0 , 1}0S :(3 , 3 , 1) g S : (0 , 0 , 0)初始状态表示全部成员在河的的左岸;目标状态表示全部成员从河的左岸全部渡河完毕。

(3) 定义并确定规则集合仍然以河的左岸为基点来考虑,把船从左岸划向右岸定义为Pij 操作。

其中,第一下标i 表示船载的传教士数,第二下标j 表示船载的食人者数;同理,从右岸将船划回左岸称之为Qij 操作,下标的定义同前。

则共有10种操作,操作集为F={P01,P10,P11,P02,P20,Q01,Q10,Q11,Q02,Q20}P 10 if ( ML ,CL , BL=1 ) then ( ML –1 , CL , BL –1 )P 01 if ( ML ,CL , BL=1 ) then ( ML , CL –1 , BL –1 )P 11 if ( ML ,CL , BL=1 ) then ( ML –1 , CL –1 , BL –1 )P 20 if ( ML ,CL , BL=1 ) then ( ML –2 , CL , BL –1 )P 02 if ( ML ,CL , BL=1 ) then ( ML , CL –2 , BL –1 )Q 10 if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q 01 if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q 11 if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(4)当状态数量不是很大时,画出合理的状态空间图图1 状态空间图箭头旁边所标的数字表示了P或Q操作的下标,即分别表示船载的传教士数和食人者数。

野人与传教士问题A算法

野人与传教士问题A算法

野人与传教士问题(A*算法)SY0903620 赵磊一、实验题目请用A*算法实现传教士和野人问题问题:设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?算法设计要求给出:状态表示,规则库,启发函数等二、实验目的通过具体问题的编程求解,利用A*算法解决此经典问题,了解人工智能的启发式搜索算法的基本过程与原理。

三、设计思想1、编程工具采用C++语言在Visual Studio 6.0环境下编写;2、整体思想(1)把初始结点So放入OPEN 表中,计算f(So)。

(2)如果OPEN为空,则搜索失败,退出。

(3)把OPEN中的第一个节点(记为节点n)从表中移出放入CLOSED表。

(4)考察节点n是否为目标节点。

若是,则求得问题的解,退出。

(5)若节点n不可扩展,则转第(2)步。

(6)扩展节点n,用估价函数f(x)计算每个子节点的估价值,并为每个子节点配置指向父节点的指针,把这些子节点都送到OPEN表中,然后对OPEN表中的全部节点按估价值从小到大的顺序排列。

3、具体说明用A*算法求解传教士与野人问题。

M=C=5, K=3。

节点估价值设为f(n)=h(n)+g(n),g(n)设为节点搜索深度,而h(n)= m(n) + c(n) - 2b(n),其中m:河左岸的传教士人数;c:河左岸的野人人数;b:船是否在左岸,1:表示在左岸,0:表示不在左岸。

采用结构体定义形式,定义状态节点*NewNode(int m, int c, int b),其中包含m左岸传教士人数、c左岸野人人数、b船状态(左或右)。

开始状态为(3,3,1),目标状态为(0,0,0)。

若需要条件满足,即任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉,要对状态结点的安全性进行判断,判断一个状态是否为安全的,即是否满足在河的任何一岸,传教士人数不少于野人人数,或者只有野人而没有传教士。

传教士与食人魔过河

传教士与食人魔过河

标出。
Sk=(m, c, b)
初始状态只有一个:S0=(3, 3, 1),初始状态表示全部成员在河的的左岸;
目标状态也只有一个:Sg=(0,0,0),表示全部成员从河的左岸全部渡河完毕。
(3)定义并确定操作集。
仍然以河的左岸为基点来考虑,把船从左岸划向右岸定义为 Pij 操作。其中,第一下标
i 表示船载的传教士数,第二下标 j 表示船载的食人者数;同理,从右岸将船划回左岸称之
{ int i , loop; struct SPQ *newnode; struct SPQ *ntx; loop = oend -> loop; ntx = oend; resultnum = 0; for( i = 0 ; i <= loop ; i++ ) { newnode = (struct SPQ*) malloc (sizeof(spq)); if(newnode==NULL) { printf("\n 内存不够!\n"); exit(0); } newnode -> sr = ntx -> sr; newnode -> pr = ntx -> pr;
表 6—1 传教士和食人者问题的全部可能状态
状态
m, c, b 状 态 m, c, b 状 态
m, c, b 状 态
m, c, b
S0
3,3,1
S8
1,3,1
S16
Hale Waihona Puke 3,3,0S241,3,0
S1
3,2,1
S9
1,2,1
S17
3,2,0
S25
1,2,0
S2
3,1,1
S10

传教士与野人过河问题

传教士与野人过河问题

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

传教士野人问题参考答案

传教士野人问题参考答案

传教士-野人问题有N个传教士和N个野人要过河,现在有一条船只能承载K个人(包括野人),K<N,在任何时刻,如果有野人和传教士在一起,必须要求传教士的人数多于或等于野人的人数。

设M为传教士的人数,C为野人的人数,用状态空间发求解此问题的过程如下:M、C = N,boat = k,要求M>=C且M+C <= K初始状态目标状态L R L RM 3 0 M 0 3C 3 0 C 0 3B 1 0 B 0 1(1)用三元组来表示(ML , CL , BL)其中0<=ML , CL <= 3 , BL ∈{ 0 , 1}(3 , 3 , 1) (0 , 0 , 0)(2)规则集合P10if ( ML ,CL , BL=1 ) then ( ML–1 , CL , BL –1 )P01if ( ML ,CL , BL=1 ) then ( ML , CL–1 , BL –1 )P11if ( ML ,CL , BL=1 ) then ( ML–1 , CL–1 , BL –1 )P20if ( ML ,CL , BL=1 ) then ( ML–2 , CL , BL –1 )P02if ( ML ,CL , BL=1 ) then ( ML , CL–2 , BL –1 )Q10if ( ML ,CL , BL=0 ) then ( ML+1 , CL , BL+1 )Q01if ( ML ,CL , BL=0 ) then ( ML , CL+1 , BL +1 )Q11if ( ML ,CL , BL=0 ) then ( ML+1 , CL +1, BL +1 )Q20 if ( ML ,CL , BL=0 ) then ( ML+2 , CL +2, BL +1 )Q02if ( ML ,CL , BL=0 ) then ( ML , CL +2, BL +1 )(3)寻找一个启发式函数引导规则的选用右岸总人数6 – ML – CL 两岸中传教士数目>=野人数目f =–∞其它f=3 Q 01f=2 P 02 f=1 Q 01f=1 Q 11f=1 P 01 f=2 P 11 (3,3,1) (3,2,0)(2,2,0) (3,1,0) (3,2,1) (3,0,0) f=3 P 02(3,1,1) f=2 Q 01(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(1,1,0) f=4 P 20(2,2,1) f=2 Q 11(0,2,0) f=4 P 20(0,3,1)f=3 Q 01(0,1,1)f=5 P 02(0,2,1) f=4 Q 01 (0,0,0)f=3 Q 01(1,1,1) f=4 Q 106.2.3 用状态空间法求解传教士和食人者问题例6-2 传教士和食人者问题(The Missionaries and Cannibals Problem)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

状态空间法详解传教士和野人问题
传教士和野人问题(The Missionaries and Cannibals Problem)
在河的左岸有三个传教士、一条船和三个野人,传教士们想用这条船将所有的成员都运过河去,但是受到以下条件的限制:
①教士和野人都会划船,但船一次最多只能装运两个;
②②在任何岸边野人数目都不得超过传教士,否则传教士就会遭遇危险:被野人攻击甚至被吃掉。

此外,假定野人会服从任何一种过河安排,试规划出一个确保全部成员安全过河的计划。

(1)设定状态变量及确定值域。

为了建立这个问题的状态空间,设左岸传教士数为m,则
m ={0,1,2,3};
对应右岸的传教士数为3-m;左岸的野人数为c,则有
c ={0,1,2,3};
对应右岸野人数为3-c;左岸船数为b,故又有b={0,1},右岸的船数为1-b.
(2)确定状态组,分别列出初始状态集和目标状态集。

问题的状态可以用一个三元数组来描述,以左岸的状态来标记,即
Sk =(m,c,b),
右岸的状态可以不必标出。

初始状态一个:S0 =(3,3,1),初始状态表示全部成员在河的左岸;
目标状态也只一个:Sg =(0,0,0),表示全部成员从河左岸渡河完毕。

(3)定义并确定操作集。

仍然以河的左岸为基点来考虑,把船从左岸划向右岸定义为Pij操作。

其中,第一下标i表示船载的传教士数, 第二下标j表示船载的野人数;同理,从右岸将船划回左岸称之为Qij 操作,下标的定义同前。

则共有10种操作,操作集为
F={P01,P10,P11,P02,P20,Q01,Q10,Q11,Q02,Q20}
(4)估计全部的状态空间数,并尽可能列出全部的状态空间或予以描述之。

在这个问题世界中,S0 =(3,3,1)为初始状态,S31 = Sg =(0,0,0)为目标状态。

全部的可能状态共有32个,如表所示。

表1 传教士和野人问题的全部可能状态
注意:按题目规定条件,应划去非法状态,从而加快搜索效率。

1)首先可以划去左岸边野人数目超过传教士的情况,即S4、S8、S9、S20、S24、S25等6种状态是不合法的;
2)应划去右岸边野人数目超过修道士的情况,即S6、S7、S11、S22、S23、S27等情况;
3)应划去4种不可能出现状态:划去S15和S16——船不可能停靠在无人的岸边;划去S3——传教士不可能在数量占优势的野人眼皮底下把船安全地划回来;划去S28——传教士也不可能在数量占优势的野人眼皮底下把船安全地划向对岸。

可见,在状态空间中,真正符合题目规定条件的只有16个合理状态。

(5)当状态数量不是很大时,按问题的有序元组画出状态空间图,依照状态空间图搜索求解。

根据上述分析,共有16个合法状态和允许的操作,可以划出传教士和食人者问题的状态空间图,如图所示。

图2 传教士和野人问题的状态空间
任何一条从S0到达S31的路径都是该问题的解。

A*算法详解传教士和野人问题评估函数为f=h+d=M+N-2*B+d.。

M表示左岸的传教士的人数,N表示左岸野人的数目,B取值为0或1 。

1表示船在左岸,0 表示船在右岸。

d 表示节点的深度。

下面来证明h(n)=M+C-2B是满足A*条件的。

分两种情况考虑。

先考虑船在左岸的情况。

如果不考虑限制条件,也就是说,船一次可以将三人从左岸运到右岸,然后再有一个人将船送回来。

这样,船一个来回可以运过河2人,而船仍然在左岸。

而最后剩下的三个人,则可以一次将他们全部从左岸运到右岸。

所以,在不考虑限制条件的情况下,也至少需要摆渡[(M+N-3)/2]*2+1次。

其中分子上的"-
3"表示剩下三个留待最后一次运过去。

除以"2"是因为一个来回可以运过去2人,需要[(M+N- 3)/2]个来回,而"来回"数不能是小数,需要向上取整,这个用符号[ ]表示。

而乘以"2"是因为一个来回相当于两次摆渡,所以要乘以2。

而最后的" +1",则表示将剩下的3个运过去,需要一次摆渡。

化简有: M+N-2。

再考虑船在右岸的情况。

同样不考虑限制条件。

船在右岸,需要一个人将船运到左岸。

因此对于状态(M,N,0)来说,其所需要的最少摆渡数,相当于船在左岸时状态(M+1,N,1)或(M,N+1,1)所需要的最少摆渡数,再加上第一次将船从右岸送到左岸的一次摆渡数。

因此所需要的最少摆渡数为:(M+N+1)-2+1。

其中(M+N+1)的"+1"表示送船回到左岸的那个人,而最后边的"+1",表示送船到左岸时的一次摆渡。

化简有:(M+N+1)-2+1=M+N。

综合船在左岸和船在右岸两种情况下,所需要的最少摆渡次数用一个式子表示为:M+N-2B。

其中B=1表示船在左岸,B=0表示船在右岸。

由于该摆渡次数是在不考虑限制条件下,推出的最少所需要的摆渡次数。

因此,当有限制条件时,最优的摆渡次数只能大于等于该摆渡次数。

所以该启发函数h是A*条件的。

相关文档
最新文档