最短路径问题

合集下载

最短路径问题介绍

最短路径问题介绍

最短路径问题介绍全文共四篇示例,供读者参考第一篇示例:最短路径问题是指在一个带有边权的图中,寻找连接图中两个特定节点的最短路径的问题。

在实际生活中,最短路径问题广泛应用于交通运输、通信网络、物流配送等领域。

通过解决最短路径问题,可以使得资源的利用更加高效,节约时间和成本,提高运输效率,并且在紧急情况下可以迅速找到应急通道。

最短路径问题属于图论中的基础问题,通常通过图的表示方法可以简单地描述出这样一个问题。

图是由节点和边组成的集合,节点表示不同的位置或者对象,边表示节点之间的连接关系。

在最短路径问题中,每条边都有一个权重或者距离,表示从一个节点到另一个节点移动的代价。

最短路径即是在图中找到一条路径,使得该路径上的边权和最小。

在解决最短路径问题的过程中,存在着多种算法可以应用。

最著名的算法之一是Dijkstra算法,该算法由荷兰计算机科学家Edsger W. Dijkstra于1956年提出。

Dijkstra算法是一种贪心算法,用于解决单源最短路径问题,即从一个给定的起点到图中所有其他节点的最短路径。

该算法通过维护一个距离数组和一个集合来不断更新节点之间的最短距离,直到找到目标节点为止。

除了Dijkstra算法和Floyd-Warshall算法外,还有一些其他与最短路径问题相关的算法和技术。

例如A*算法是一种启发式搜索算法,结合了BFS和Dijkstra算法的特点,对图中的节点进行评估和排序,以加速搜索过程。

Bellman-Ford算法是一种解决含有负权边的最短路径问题的算法,通过多次迭代来找到最短路径。

一些基于图神经网络的深度学习方法也被应用于最短路径问题的解决中,可以获得更快速和精确的路径搜索结果。

在实际应用中,最短路径问题可以通过计算机程序来实现,利用各种算法和数据结构来求解。

利用图的邻接矩阵或者邻接表来表示图的连接关系,再结合Dijkstra或者Floyd-Warshall算法来计算最短路径。

《最短路径问题》课件

《最短路径问题》课件

E
M
CF
G B
N
H
随堂练习
某大学建立分校,本部与分校隔着两条平行的小河.如图,
小河甲的两岸为l1,l2,且l1//l2,小河乙的两岸为l3,l4,且l3//l4, A为本部大门,B为分校大门.为了方便两校区人员来往,
要在两条小河上各建一座桥,桥面垂直于河岸.为使A,B
两点间来往路径最短,试在图中画出
B′
AB′交直线l于点C,此时点C就是
所求作的点.
2.两线一点型问题. 如图,在直线l1和直线l2上分别找 到点M,N,使得△AMN的周长 最小.此时过点A分别作关于直线 l1,l2的对称点A1,A2,连接A1A2 分别交直线l1,l2于点M,N,则 点M,N即为所求.
A2 N
l2 A
M
l1
A1
3.两线两点型问题.
A A1
符合条件的路径,并标明桥的位置.
ll12
l3 B1 l4 B
课堂小结


A∙
路 径
造桥选址问题
M

A′
a b

N
∙B
《最短路径问题》
知识回顾
1.两点一线型.
如图,点A,B分别是直线l异侧的两个点,在直线l上找
一点C,使得AC+BC的值最小,此时点C就是线段AB与
直线l的交点.
A
C
பைடு நூலகம்
l
B
1.两点一线型.
如图,点A,B是直线l同侧的两
B
点,在直线l上找一点C使得
A
AC+BC的值最小,这时先作点B
l
C
关于直线l的对称点的B′,连接
即AM+NB+MN的值最小.

第21讲 最短路径问题

第21讲  最短路径问题

第21讲 最短路径问题一、方法剖析与提炼引例:如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距离为d(已知d 2=400000m 2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小,则最小距离为___________m 。

【解答】1000。

【解析】如图,作点B 关于公路l 的对称点B′,连接AB′交公路于点C ,CA+CB最短距离就是AB′的长度。

根据勾股定理可以求得AB′=1000m 。

【解法】同侧的两点,通过轴对称变换成异侧,利用两点之间线段最短确定最小距离。

【解释】通过生活中的实际例子,让学生感受最短路径来源于生活,并引出求最短路径常用的方法,利用轴对称变换找对称点及两点之间线段最短(即饮马问题)。

学习时可作如下归纳:(1)在初中范围内和边的不等量有关的知识有哪些,引出两点之间线段最短,三角形两边之和大于第三边;(2)在此图中哪种变换方式比较适合将马路同侧的两条线段变换到异侧,并且保持线段长度不变,旨在复习轴对称、平移、旋转等变换特点;(3)在移动变换中,有没有可能将两条线段置于共线的情形,即最短路径。

例1:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,求DN+MN 的最小值。

【解答】连结BD 交AC 于点O ,根据正方形的对称性可知,B 点即为D 的对称点。

连结BM 交AC 于点N ,则BM 的值为DN+MN 的最小值。

所以BM=10。

【解析】如图,点B 即为点D 关于AC 的对称点,连接BM ,BM 的长度即为DN+MN的最小距离。

在Rt△BCM 中,根据勾股定理可求得BM=10。

【解法】此题 DN ,MN 这两条线段中,M ,D 两点固定,只有N 一个点是移动的,故只需确定点N ,使得距离之和最短即可。

【解释】此例从最基本的图形出发,让学生易于接受,敢于探索。

学生依据正方形自身拥有的轴对称性找到对称点,将同侧两条线段利用翻折变成异侧的两条线段,利用两点之间线段最短找到最短路径。

最短路径问题例题与讲解

最短路径问题例题与讲解

13.4 课题学习最短路径问题1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如下图,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如下图,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如下图:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不管题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.(1)假设要使厂部到A,B村的距离相等,则应选择在哪建厂?(2)假设要使厂部到A,B两村的水管最短,应建在什么地方?分析:(1)到A,B两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB的垂直平分线,与EF的交点即为符合条件的点.(2)要使厂部到A村、B村的距离之和最短,可联想到“两点之间线段最短”,作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求.解:(1)如图1,取线段AB的中点G,过中点G画AB的垂线,交EF于P,则P到A,B的距离相等.也可分别以A、B为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如下图,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC 的线段即为最短的,此时不难说明点N 即为建桥位置,MN 即为所建的桥.解:(1)如图2,过点A 作AC 垂直于河岸,且使AC 等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想方法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D 的路线行走,所走的总路程最短.利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如下图,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如下图,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA -CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.。

最短路径问题

最短路径问题

最短路径问题分两种情况,分别为阶段k=3和k=4:一、阶段:k=3显然,从始点A 到终点E 只有两条路径:A →1B →1D →E,路径距离是10;A →3B →3D →E,路径距离是9.二、阶段:k=4决策:逆序递推k d 1(,)k k x x +表示第k 阶段由初始状态k x 到下一阶段初始状态1k x +的距离。

()k k f x 表示从第k 阶段的k x 到终点E 的最短距离。

(1)阶段k=4有三个初始状态1D 、2D 、3D若最短路径经过1D ,41()f D =3若最短路径经过2D ,42()f D =1若最短路径经过3D ,43()f D =5(2)阶段k=3有两个初始状态1C 、2C若最短距离经过1C ,31()f C =min {311(,)d C D +41()f D ,312(,)d C D +42()f D ,313(,)d C D +43()f D }=min {5,6,8}=5若最短距离经过2C ,同理,32()f C =min {4,5,7}=4(3)阶段k=2有三个初始状态123B B B 、、若最短距离经过1B ,21()f B =min {211(,)d B C +31()f C ,212(,)d B C +32()f C }=min{9,7}=7 若最短距离经过2B ,22()f B =min {221(,)d B C +31()f C ,222(,)d B C +32()f C }=min {6,7}=6若最短距离经过3B ,23()f B = min {231(,)d B C +31()f C ,232(,)d B C +32()f C }=min{8,9}=8(4)阶段k=11()f A =min {11(,)d A B +21()f B ,12(,)d A B +22()f B ,13(,)d A B +23()f B }=min {10,8,9}=8故当经过四个阶段时,最短路径距离为8.综合一、二两种情况,可以明显得出最短路径距离是8,其相对应的最佳路径为A →2B →1C →1D →E。

最短路径问题梳理

最短路径问题梳理
常见路径最值模型梳捋
按照路径最值问题的构成或解答方式分组。
模型组一
1 两点一线异侧和最小值问题 问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB值最 小. 问题解决:
结论:根据两点之间线段最短,PA+PB的最小值即为线段AB长.
模型组一
2. 两点一线同侧和最小值问题 问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得PA+PB值 最小. 问题解决:
(分析:PQ为定值,只需AP+QB的值最小,可通 过平移,使P、Q“接头”,转化为基本模型)
解:将点A沿着平行于l的方向,向右移至A´, 使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取
PQ=a(P在Q左边),则线段PQ即为所求,此 时
AP+PQ+QB的最小值为A´B+PQ,即A´B+a
ห้องสมุดไป่ตู้
模型组三
解:作点A关于OM的对称点A′,过点A′作AQ⊥ON 于 点Q,A′Q交OM于点P,此时AP+PQ最小;
理由:由轴对称的性质知AP=A′P, 要使AP+PQ最小, 只需A′P+PQ最小,从而 转化为拓展模型1
模型组二
3. “胡不归”问题 基本模型:两定一动,动点在定直线上
问题:点A为直线l上一定点,点B为直线外一定点, P为直线l上一动点,要使 AP+BP最小.
模型组四
2.异侧差最小值问题
问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-
PB|的值最小. 问题解决:
A▪
B▪
结论:根据垂直平分线上的点到线段两端点的距 离相等,当PA=PB时,|PA-PB|=0.
模型组四总结:

最短路径问题

最短路径问题

A
O
N
3. 两定两动型最值
例:在∠MON的内部有点A和点B,在OM 上找一点C,在ON上找一点D,使得四边形 ABCD周长最短.
M
A
B
O
N
例:(造桥选址)将军每日需骑马从军营出发,去 河岸对侧的瞭望台观察敌情,已知河流的宽度为30 米,请问,在何地修浮桥,可使得将军每日的行程 最短?
A
C
D
B
4. 垂线段最短型
最短路径问题
1.两定一动型:两定点到一动 点的距离和最小
原理:两点之间线段最短。
例:在定直线l上找一个动点C,使动点C到两 个定点A与B的距离之和最小, 即CA+CB的和最小.
B A
l
2.两动一定型 例:在∠MON的内部有一点A,在OM上找 一点B,在ON上找一点C,使得△BAC周长 最短.
M
A
D
E
B
C
3.正方形ABCD的边长为8,M在DC上,且 DM=2,N是AC上的一动点,DN+MN的最小值 为————
课堂小结
通过本节课的学习,
你有哪些收获 ?作业CD NhomakorabeaA
B
典型例题
1.如图,在等边△ABC中,AB = 6,AD⊥BC, E是AC上的一点,M是AD上的一点,且AE = 2, 求EM+EC的最小值
A
A
E M
E
M
H
B
D
CB
D
C
2.正方形ABCD的面积为12, ABE是等边三角 形,点E在正方形ABCD内,在对角线AC上有一 点P,使PD+PE的和最小,则这个最小值是
例1:在∠MON的内部有一点A,在OM上找一点 B,在ON上找一点C,使得AB+BC最短.

最短路径的十二个基本问题

最短路径的十二个基本问题
原理
两点之间线段最短. PA+PB 最小值为 A B'.
原理
分别作点 P 关于两直 线的对称点 P'和 P'', 在直线 l1 、l2 上分别求 连 P'P'',与两直线交 点 M、N,使△PMN 的 点即为 M,N. 周长最小.
两点之间线段最短. PM+MN+PN 的最小值为 线段 P'P''的长.
【十二个基本问题】
【问题 1】
作法
图形
原理
连 AB,与 l 交点即为
P.
在直线 l 上求一点 P,
使 PA+PB 值最小.
【问题 2】“将军饮马”
作法
作 B 关于 l 的对称点
B'连 A B',与 l 交点
在直线 l 上求一点 P,
即为 P.
使 PA+PB 值最小.
【问题 3】
作法
图形 图形
两点之间线段最短. PA+PB 最小值为 AB.
原理
将点 A 向下平移 MN 的
长度单位得 A',连 A'
B,交 n 于点 N,过 N 作
直线 m ∥ n ,在 m 、n , NM⊥ m 于 M.
上分别求点 M、N,使
MN⊥ m ,且 AM+MN+BN
的值最小.
【问题 6】
作法
图形
将点 A 向右平移 a 个
长度单位得 A',作 A'
关于 l 的对称点 A'',连 在直线 l 上求两点 M、N
对称点 B',连 A'B' l2 上一定点,在 l2 上求 交l2 于 M,交 l1 于 N.
点 M,在 l1 上求点 N,
使 AM+MN+NB 的 值 最
小.

运筹学最短路径问题

运筹学最短路径问题

运筹学最短路径问题
在运筹学中,最短路径问题是指寻找图中两个节点之间的最短路径。

最短路径可以通过一系列边连接起来,使得路径上的累计权值总和最小。

最短路径问题是运筹学中的经典问题,有广泛的应用领域,如交通网络规划、物流路径优化等。

常见的最短路径算法包括迪杰斯特拉算法和弗洛伊德算法。

迪杰斯特拉算法是用于解决单源最短路径问题的一种算法。

它从起点开始,通过不断更新节点的最短路径估计值和前驱节点,逐步扩展到其他节点,直到找到目标节点或所有节点都被处理。

弗洛伊德算法是用于解决全源最短路径问题的一种算法。

它通过动态规划的方式,对所有节点之间的最短路径进行逐步计算和更新,最终得到所有节点之间的最短路径。

除了迪杰斯特拉算法和弗洛伊德算法,还有其他一些算法可以用于解决最短路径问题,如贝尔曼-福特算法和A*算法等。

总之,最短路径问题在运筹学中具有重要的实际应用价值,可以通过不同的算法来求解。

这些算法在实践中可以根据具体的问题特点和需求选择合适的算法进行求解。

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

最短路径(将军饮马)问题(知识梳理与考点分类讲解)(人教版)(教师版) 24-25学年八年级数学上册

专题13.10最短路径(将军饮马)问题(知识梳理与考点分类讲解)第一部分【知识点归纳】【模型一:两定交点型】如图1,直线l和l的异侧两点A.B,在直线l上求作一点P,使PA+PB 最小;图1【模型二:两定一动型】如图2,直线l和l的同侧两点A.B,在直线l上求作一点P,使PA+PB 最小(同侧转化为异侧);图2【模型三:一定两动型】如图3,点P是∠MON内的一点,分别在OM,ON上作点A,B。

使△PAB的周长最小。

图3【模型四:两定两动型】如图4,点P,Q为∠MON内的两点,分别在OM,ON上作点A,B。

使四边形PAQB的周长最小。

图4【模型五:一定两动(垂线段最短)型】如图5,点A是∠MON外的一点,在射线ON上作点P,使PA与点P到射线OM的距离之和最小。

图5【模型六:一定两动,找(作)对称点转化型】如图6,点A是∠MON内的一点,在射线ON 上作点P,使PA与点P到射线OM的距离之和最小。

图6【考点1】两定一动型;【考点2】一定两动(两点之间线段最短)型;【考点3】一定两动(垂线段最短)型;【考点4】两定两动型;【考点5】一定两动(等线段)转化型;.第二部分【题型展示与方法点拨】【考点1】两定一动型;【例1】(23-24八年级上·全国·课后作业)如图,在ABC ∆中,3,4AB AC ==,EF 垂直平分BC ,交AC 于点D ,则ABP 周长的最小值是()A .12B .6C .7D .8【答案】C 【分析】本题主要考查了,轴对称﹣最短路线问题的应用,解此题的关键是找出P 的位置.凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点D 重合时,AP BP +的值最小,即可得到ABP 周长最小.解:∵EF 垂直平分BC ,∴点B ,C 关于EF 对称.∴当点P 和点D 重合时,AP BP +的值最小.此时AP BP AC +=,∵3,4AB AC ==,ABP ∴ 周长的最小值是347AP BP AB AB AC ++=+=+=,故选:C .【变式】(23-24八年级上·广东广州·期中)如图,在ABC V 中,1216AB AC ==,,20BC =.将ABC V 沿射线BM 折叠,使点A 与BC 边上的点D 重合,E 为射线BM 上的一个动点,则CDE 周长的最小值.【答案】24【详解】设BM 与AC 的交点为点F ,连接AE ,DF 先根据折叠的性质可得12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,再根据两点之间线段最短可得当点E 与点F 重合时,CDE 周长最小,进而求解即可.解:如图,设BM 与AC 的交点为点F ,连接AE ,DF ,由折叠的性质得:12BD AB ==,DF AF =,DE AE =,BDF BAF ∠=∠,20128CD BC BD ∴=-=-=,CDE ∴ 周长8CD DE CE AE CE =++=++,要使CDE 周长最小,只需AE CE +最小,由两点之间线段最短可知,当点E 与点F 重合时,最小值为AC ,∴CDE 周长为:681624AC +=+=.故答案为:24.【点拨】本题考查了折叠的性质等知识点,熟练掌握折叠的性质是解题关键.【考点2】一定两动(两点之间线段最短)型;【例2】(23-24八年级上·湖北省直辖县级单位·期末)如图,45MON ∠=︒,P 为MON ∠内一点,A 为OM 上一点,B 为ON 上一点,当PAB 的周长取最小值时,APB ∠的度数为()A .45︒B .90︒C .100︒D .135︒【答案】B 【分析】本题主要考查了最短路线问题、四边形的内角和定理、轴对称的性质等知识点,掌握两点之间线段最短的知识画出图形是解题的关键.如图:作P 点关于OM ON 、的对称点A B ''、,连接A B '',此时PAB 的周长最小为A B '',求出A B ''即可.解:如图:作P 点关于OM ON 、的对称点A B ''、,然后连接A B '',∵点A '与点P 关于直线OM 对称,点B '与点P 关于ON 对称,∴A P OM B P ON A A AP B B BP ''''⊥⊥==,,,,∴A APA B BPB ''''∠=∠∠=∠,,∵A P OM B P ON ''⊥⊥,,∴180MON A PB ''∠+∠=︒,∴18045135A PB ''∠=︒-︒=︒,在A B P ''△中,由三角形的内角和定理可知:18013545A B ''∠+∠=︒-︒=︒,∴45A PA BPB ''∠+∠=︒,∴1354590APB ∠=︒-︒=︒.故选:B .【变式】(23-24八年级上·江苏无锡·期中)如图,45AOB ∠=︒,点M N 、分别在射线OA OB 、上,5MN =,15OMN S = ,点P 是直线MN 上的一个动点,点P 关于OA 的对称点为1P ,点P 关于OB 的对称点为2P ,连接1OP 、2OP 、12PP ,当点P 在直线MN 上运动时,则12OPP 面积的最小值是.【考点3】一定两动型(垂线段最短);【例3】(22-23八年级上·湖北武汉·期末)如图,在ABC V 中,3AB =,4BC =,5AC =,AB BC ⊥,点P 、Q 分别是边BC 、AC 上的动点,则AP PQ +的最小值等于()A .4B .245C .5D .275【答案】B 【分析】作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,根据对称可得:AP PQ A P PQ A Q ''+=+≥,得到当,,A P Q '三点共线时,AP PQ +最小,再根据垂线段最短,得到A Q AC '⊥时,A Q '最小,进行求解即可.解:作A 过于BC 的对称点A ',过点A '作A Q AC '⊥,交AC 于点Q ,交BC 于点P ,【变式】(23-24七年级下·陕西西安·阶段练习)如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 是ABC V 的角平分线,若P Q 、分别是AD 和AC 边上的动点,则PC PQ +的最小值是.AD 是BAC ∠的平分线,1QAD Q AD∴∠=∠在AQD 与1AQ D 中【考点4】两定两动型;【例4】如图,已知24AOB ∠=︒,OP 平分AOB ∠,1OP =,C 在OA 上,D 在OB 上,E 在OP 上.当CP CD DE ++取最小值时,此时PCD ∠的度数为()A .36︒B .48︒C .60︒D .72︒【答案】D 【分析】作点P 关于OA 的对称点P',作点E 关于OB 的对称点'E ,连接'OP 、'PP 、'OE 、'EE 、''P E ,则由轴对称知识可知=''CP CD DE CP CD DE ++++,所以依据垂线段最短知:当''P C D E 、、、在一条直线上,且'''P E OE ⊥时,CP CD DE ++取最小值,根据直角三角形的两锐角互余及三角形外角的性质可以'P C PC =,'E D ED =,'1OP OP ==,=''CP CD DE CP CD DE ++++,'P OE ∠''P C D E 、、、在一条直线上,且''P E ''=9048=42OP E ∠︒-︒︒,'='''=7842CP P OP P OP E ∠∠-∠︒-︒=【答案】44βα-=︒【分析】本题考查轴对称—最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题.OQM OQM NQP '∴∠=∠=∠,OPQ ∠∴1(180)2PQN AOB α∠=︒-=∠+∠44βα∴-=︒,故答案为:44βα-=︒.【考点5】一定两动(等线段)转化型;【例5】(20-21八年级上·湖北鄂州·期中)如图,AD 为等腰△ABC 的高,其中∠ACB =50°,AC =BC ,E ,F 分别为线段AD ,AC 上的动点,且AE =CF ,当BF +CE 取最小值时,∠AFB 的度数为()A .75°B .90°C .95°D .105°【答案】C 【分析】先构造△CFH 全等于△AEC ,得到△BCH 是等腰直角三角形且FH=CE ,当FH+BF 最小时,即是BF+CE 最小时,此时求出∠AFB 的度数即可.解:如图,作CH ⊥BC ,且CH=BC ,连接HB ,交AC 于F ,此时△BCH 是等腰直角三角形且FH+BF 最小,∵AC=BC ,∴CH=AC ,∵∠HCB=90°,AD ⊥BC ,∴AD//CH ,∵∠ACB=50°,∴∠ACH=∠CAE=40°,∴△CFH ≌△AEC ,∴FH=CE ,∴FH+BF=CE+BF 最小,此时∠AFB=∠ACB+∠HBC=50°+45°=95°.故选:C .【点拨】本题考查全等三角形的性质和判定、等腰三角形的性质、最短路径问题,关键是作出辅助线,有一定难度.【变式】(23-24七年级下·四川宜宾·期末)在ABC V 中,80CAB ∠=︒,2AB =,3AC =,点E 是边AB 的中点,CAB ∠的角平分线交BC 于点D .作直线AD ,在直线AD 上有一点P ,连结PC 、PE ,则PC PE -的最大值是.∵CAB ∠的角平分线交∴FAP ∠∠=∵AP AP =,∴APF APE ≌∴PF PE =,第三部分【中考链接与拓展延伸】1、直通中考【例1】(2020·湖北·中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为.【答案】12【分析】以CD 为边向外作等边三角形CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE=AD ,再根据三角形的三边关系即可得出结论.解:如图1,以CD 为边向外作等边三角形CDE ,连接BE ,∵CE=CD ,CB=CA ,∠ECD=∠BCA=60°,∴∠ECB=∠DCA ,∴△ECB ≌△DCA (SAS ),∴BE=AD ,∵DE=CD=6,BD=8,∴8-6<BE<8+6,∴2<BE<14,∴2<AD<14.∴则AD 的最大值与最小值的差为12.故答案为:12【点拨】本题考查三角形全等与三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.【例2】(2020·新疆·中考真题)如图,在ABC V 中,90,60,4A B AB ∠=∠=︒=︒,若D 是BC 边上的动点,则2AD DC +的最小值为.在Rt DFC △中,30DCF ∠=︒,12DF DC ∴=,122()2AD DC AD DC +=+2()AD DF =+,∴当A ,D ,F 在同一直线上,即此时,60B ADB ∠=∠=︒,2、拓展延伸【例1】(23-24八年级上·江苏镇江·阶段练习)如图,AC 、BD 在AB 的同侧,点M 为线段AB 中点,2AC =,8BD =,8AB =,若120CMD ∠=︒,则CD 的最大值为()A .18B .16C .14D .12【答案】C 【分析】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题.如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',证明'' A MB 为等边三角形,即可解决问题.解:如图,作点A 关于CM 的对称点A ',点B 关于DM 的对称点B ',∵120CMD ∠=︒,∴60∠+∠=︒AMC DMB ,∴60''∠+∠=︒CMA DMB ,∴60''∠=︒A MB ,∵MA MB MA MB ''===,∴'' A MB 为等边三角形∵14CD CA A B B D CA AM BD ''''<++=++=,∴CD 的最大值为14,故选:C .【例2】(22-23八年级上·湖北武汉·期末)如图,锐角ABC V 中,302A BC ∠=︒=,,ABC V 的面积是6,D 、E 、F 分别是三边上的动点,则DEF 周长的最小值是()A .3B .4C .6D .7∴AM AE AN ==,MF =∵BAC BAD DAC ∠=∠+∠∴MAN MAB BAD ∠=∠+∠∴(2MAN BAE EAC ∠=∠+∠。

最短路径12种类型例题

最短路径12种类型例题

最短路径12种类型例题最短路径问题是图论中的一个重要问题。

它通常指从一个点到另一个点的最短距离或最短路径。

解决此类问题需要选择一个恰当的算法和数据结构。

本文将介绍12种最短路径类型的例题,并逐步解决它们。

1.单源最短路径单源最短路径指从一个源点到其他所有点的最短距离。

使用Dijkstra算法或Bellman-Ford算法来解决。

2.最短路径树最短路径树是从一个源点到所有其他节点的最短路径构成的一棵树。

使用Dijkstra算法或Bellman-Ford算法来解决。

3.多源最短路径多源最短路径指从所有源点到所有其他点的最短距离。

使用Floyd-Warshall算法来解决。

4.任意两点之间的最短路径任意两点之间的最短路径指从一个点出发,到达另一个点的最短距离。

使用Johnson算法来解决。

5.负权边的最短路径负权边的最短路径指当图中存在负权边时,求取从一个源点到其他所有节点的最短距离。

使用Bellman-Ford算法来解决。

6.负权环的最短路径负权环的最短路径指当图中存在负权环时,求取从一个源点到其他所有节点的最短距离。

使用Bellman-Ford算法来解决。

7.非全源点的最短路径非全源点的最短路径指从集合S中的任意一个节点到集合T中的任意一个节点的最短距离。

使用Dijkstra算法和A*算法来解决。

8.带优先级的最短路径带优先级的最短路径指在一张具有边权和点权的图中,到达终点时要满足某些特殊条件,如使路径上没有超过限定时间的边。

使用A*算法来解决。

9.带障碍的最短路径带障碍的最短路径指在一张具有障碍物的图中,找到穿过障碍物的最短路径。

使用A*算法来解决。

10.可走斜向的最短路径可走斜向的最短路径指在一个八方向图中,找到从起点到终点的最短路径。

使用A*算法来解决。

11.带环的最短路径带环的最短路径指在一个含有环的图中,找到从起点到终点的最短路径。

使用Bellman-Ford算法来解决。

12.非最短路径非最短路径是指除最短路径以外的路径。

最短路径问题的求解

最短路径问题的求解

最短路径问题的求解
四、宽度优先搜索+剪枝 搜索之所以低效,是因为在搜索过程中存在着大量的重复和不必要的搜索。因此,提高搜索效率的关 键在于减少无意义的搜索。假如在搜索时已经搜出从起点A到点B的某一条路径的长度是X,那么我们就可以 知道,从A到B的最短路径长度必定≤X,因此,其他从A到B的长度大于或等于X的路径可以一律剔除。具体 实现时,可以开一个数组h[1..n],n是结点总数,h[i]表示从起点到结点i的最短路径长度。 算法流程如下: 1、 初始化: 将起点start入队,h[start]:=0,h[k]:=maxlongint(1<=k<=n,且k≠start)。 2、repeat 取出队头结点赋给t; while t有相邻的结点没被扩展 begin
最短路径问题的求解
八、Dijkstra算法(从一个顶点到其余各顶点的最短路径,单源最短路径) 例3、如下图,假设C1,C2,C3,C4,C5,C6是六座城市,他们之间的连线表示两 城市间有道路相通,连线旁的数字表示路程。请编写一程序,找出C1到Ci 的最短路径(2≤i≤6),输出路径序列及最短路径的路程长度。
最短路径问题的求解
[问题分析] 对于一个含有n个顶点和e条边的图来说,从某一个顶点Vi到其余任一顶点Vj的最短路径,可 能是它们之间的边(Vi,Vj),也可能是经过k个中间顶点和k+1条边所形成的路径(1≤k≤n-2)。 下面给出解决这个问题的Dijkstra算法思想。 设图G用邻接矩阵的方式存储在GA中,GA[i,j]=maxint表示Vi,Vj是不关联的,否则为权值 (大于0的实数)。设集合S用来保存已求得最短路径的终点序号,初始时S=[Vi]表示只有源点, 以后每求出一个终点Vj,就把它加入到集合中并作为新考虑的中间顶点。设数组dist[1..n]用来 存储当前求得的最短路径,初始时Vi,Vj如果是关联的,则dist[j]等于权值,否则等于maxint, 以后随着新考虑的中间顶点越来越多,dist[j]可能越来越小。再设一个与dist对应的数组 path[1..n]用来存放当前最短路径的边,初始时为Vi到Vj的边,如果不存在边则为空。 执行时,先从S以外的顶点(即待求出最短路径的终点)所对应的dist数组元素中,找出其 值最小的元素(假设为dist[m]),该元素值就是从源点Vi到终点Vm的最短路径长度,对应的 path[m]中的顶点或边的序列即为最短路径。接着把Vm并入集合S中,然后以Vm作为新考虑的中 间顶点,对S以外的每个顶点Vj,比较dist[m]+GA[m,j]的dist[j]的大小,若前者小,表明加入 了新的中间顶点后可以得到更好的方案,即可求得更短的路径,则用它代替dist[j],同时把Vj 或边(Vm,Vj)并入到path[j]中。重复以上过程n-2次,即可在dist数组中得到从源点到其余 各终点的最段路径长度,对应的path数组中保存着相应的最段路径。 对于上图,采用Dijkstra算法找出C1到Ci之间的最短路径(2≤i≤6)的过程如下:

行程问题7大经典题型

行程问题7大经典题型

行程问题7大经典题型行程问题是在现代计算机科学中研究的重要研究领域之一,也称为旅行商问题。

根据具体的应用,行程问题可分为七类经典题型:一、最短路径问题最短路径问题是指使行程开销最小化的最优路径问题,即在有权网(即有距离弧权值的有向图)中求出从起点到终点的最短路径问题。

最短路径问题的特点是将多条路径的值做比较,选择最优的路径。

最短路径问题的解法一般有迪杰斯特拉算法和贝尔曼-福德算法。

二、最小生成树问题最小生成树问题是指在连通图中求最小代价覆盖图(最小生成树)的问题。

求最小生成树也可以用迪杰斯特拉算法、贝尔曼-福德算法、克鲁斯卡尔算法等求解。

三、拓扑排序问题拓扑排序问题是指要解决有向图中的局部拓扑排序问题,让用户能够处理有向图的排序操作。

例如,拓扑排序可以用来求解项目管理中的生产流程排序,求解最长路径问题,用来求解运输问题。

某些拓扑排序问题常用拓扑排序法来解决,它的优点是举例简单,容易解决,但是在处理较大的网络可能不太方便。

四、负责度限制约束最小生成树问题负责度限制约束最小生成树问题是指当有负责度限制或边限制时,求出最小生成树的问题。

负责度限制最小生成树问题与最小生成树问题相似,但限制要求不同,使其可以求最小生成树但不需要所有节点出现。

解决负责度限制最小生成树问题的常见算法有Prim,Kruskal算法,单源最短路径算法等。

五、旅行商问题旅行商问题是指将一个实体从一个位置出发,访问所有位置,最后返回原位置,要尽可能使得整个行程之和最小的问题。

旅行商问题与最短路径问题之间存在着一定的联系,但是它更加复杂,可能有多个路径都是最优的,旅行商问题最优解的求解方法有穷举法、贪心法、遗传算法等。

六、交通网络问题交通网络问题是指涉及多晶体的旅行问题,在该问题中,客户的行程将跨越多个晶体构成的网络,以最小的费用或最短的时间从起点到终点运输物品或人员。

交通网络问题可以使用模拟退火法、遗传算法、混合算法等解决。

七、联通子图覆盖问题联通子图覆盖问题是指求解一个图G是否存在一个联通子图T,满足T中所有顶点和G中的全部顶点是相同的,最小顶点覆盖问题是联通子图覆盖问题的一个特殊情况,该问题的解法一般有贪心法和回溯法。

最短路径问题

最短路径问题

最短路径问题
2.3.1最短路径的定义
最短路径问题是运动规划的一个主要的课题。

运动规划问题由二部分组成,分别是最短路径和轨迹规划,其中路径问题归结起来就是连接起点和终点的一条曲线,而与之相匹配的路径规划问题就是形成这样一种路径的策略。

最短路径问题在生活生产的方方面面都会遇到,已经在很多领域都有着充分的运用。

比如现在中国最前端的领域就有涉及,比如:机器人在行动的时候必须做到自主无碰;无人机在飞行的时候必须做到避障突防;巡航导弹在飞行的时候必须做到躲避雷达的范围性探知;在我们的现实生活之中有:全球定位系统导航;各个城市内部不同的道路网规划等。

2.3.2最短路径的一般步骤
最短路径问题总结起来一般有下面三个步骤:
(1)环境建模。

其中,环境建模可以说是最短路径的一个不容忽视的一步,环境建模的目的是建立在实际上可以让计算机来操作进一步来最短路径的环境模型,也就是把现实之中的物理空间转化成算法从而可以形成抽象空间,实现相互间的映射。

(2)路径搜索。

路径搜索就是在环境模型已经完成了之后,运用之前已经建立好的算法,进而去寻找一条最优的的路径,使得我们所建立目标函数能够获得我们所期望的最优值。

(3)路径平滑。

通过之前已经建立好的算法,找到的最优的的路径在实际情况之中,并不一定实际上可行路径,需要后期继续作进一步处理,并且进行平滑的操作,才能使之前找到的最优的的路径成为一条在现实之中可以行走的路径。

最短路径问题

最短路径问题

最短路径问题最短路径问题是图论中一个重要的研究领域,即求解两个节点之间的最短路径。

在实际生活中,最短路径问题有着广泛的应用,例如导航系统、交通规划以及网络通信等领域。

本文将介绍最短路径问题的定义、常见算法以及应用实例。

一、定义最短路径问题可以用来求解从一个节点到另一个节点的最短路径。

在图论中,最短路径通常指的是路径上的边的权重之和最小。

图可以由节点和边组成,边可以有权重,表示两个节点之间的距离或成本。

最短路径问题的目标是找到两个节点之间的路径,使得路径上的边的权重之和最小。

二、算法1. Dijkstra算法Dijkstra算法是解决最短路径问题的经典算法之一。

该算法采用贪心策略,逐步确定起点到其他节点的最短路径。

具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,所有其他节点的距离为无穷大。

(2)选择一个未被访问过的节点,标记为当前节点。

(3)对于当前节点的所有邻居节点,更新其距离为当前节点距离加上边的权重,并更新最短路径。

(4)继续选择未被访问过的节点中最短路径最小的节点,标记为当前节点,重复步骤(3)。

(5)重复步骤(3)和(4),直到所有节点都被访问过。

Dijkstra算法的时间复杂度为O(V^2),其中V为节点的数量。

2. Bellman-Ford算法Bellman-Ford算法是另一种解决最短路径问题的算法。

与Dijkstra 算法不同,Bellman-Ford算法可以处理带有负权边的图。

该算法通过迭代更新距离数组,逐步确定最短路径。

具体步骤如下:(1)初始化距离数组,起点到起点的距离为0,其他节点的距离为无穷大。

(2)对于图中的每条边,重复以下步骤:a. 从边的起点到终点的距离是否可以通过起点到起点的距离加上边的权重来达到更小值。

b. 如果是,则更新终点的距离为该更小值。

(3)重复步骤(2)|V|-1次,其中V为节点的数量。

Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的数量,E为边的数量。

最短路径问题(珍藏版)

最短路径问题(珍藏版)

最短路径问题(珍藏版)【问题概述】最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:①确定起点的最短路径问题-即已知起始结点,求最短路径的问题.②确定终点的最短路径问题-与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题.③确定起点终点的最短路径问题-即已知起点和终点,求两结点之间的最短路径.④全局最短路径问题-求图中所有的最短路径.【问题原型】“将军饮马”,“造桥选址”,“费马点”.【涉及知识】“两点之间线段最短”,“垂线段最短”,“三角形三边关系”,“轴对称”,“平移”.【出题背景】角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等.【解题思路】找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.【十二个基本问题】【问题1】作法图形原理在直线l上求一点P ,使PA +PB 值最小.连AB ,与l 交点即为P .两点之间线段最短.PA +PB 最小值为AB .【问题2】“将军饮马”作法图形原理在直线l 上求一点P ,使PA +PB 值最小.作B 关于l 的对称点B '连A B ',与l 交点即为P .两点之间线段最短.PA +PB 最小值为A B '.【问题3】作法图形原理在直线1l 、2l 上分别求点M 、N ,使△PMN 的周长最小.分别作点P 关于两直线的对称点P '和P '',连P 'P '',与两直线交点即为M ,N .两点之间线段最短.PM +MN +PN 的最小值为线段P 'P ''的长.【问题4】作法图形原理在直线1l 、2l 上分别求点M 、N ,使四边形PQMN 的周长最小.分别作点Q 、P 关于直线1l 、2l 的对称点Q '和P '连Q 'P ',与两直线交点即为M ,N .两点之间线段最短.四边形PQMN 周长的最小值为线段P 'P ''的长.直线m∥n,在m、n上分别求点M、N,使MNm,且AM+MN+BN值最小.【问题6】图形在直线l上求两点M、N(MN=,并使在左),使a+MN+NB的值最小.【问题7】图形上求点A,在2l上求1B,使PA+AB值最小.【问题8】图形为1l上一定点,B为2l上一定点,在2l上求点M,在1l上求点N,使AM+MN+NB的值最小.【问题9】图形在直线l上求一点P,使P A-的值最小.PB【问题10】作法图形原理在直线l上求一点P,使PBP A-的值最大.作直线AB,与直线l的交点即为P.三角形任意两边之差小于第三边.PBP A-≤AB.PBP A-的最大值=AB.【问题11】作法图形原理在直线l上求一点P,使PBP A-的值最大.作B关于l的对称点B'作直线A B',与l交点即为P.三角形任意两边之差小于第三边.PBP A-≤AB'.PBP A-最大值=AB'.【问题12】“费马点”作法图形原理△ABC中每一内角都小于120°,在△ABC内求一点P,使PA+PB+PC值最小.所求点为“费马点”,即满足∠APB=∠BPC=∠APC=120°.以AB、AC为边向外作等边△ABD、△ACE,连CD、BE相交于P,点P即为所求.两点之间线段最短.PA+PB+PC最小值=CD.【精品练习】1.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.B.C.3D2.如图,在边长为2的菱形ABCD中,∠ABC=60°,若将△ACD绕点A旋转,当AC′、AD′分别与BC、CD 交于点E、F,则△CEF的周长的最小值为()A.2B.32C.32+D.4A DEPB C3.四边形ABCD 中,∠B =∠D =90°,∠C =70°,在BC 、CD 上分别找一点M 、N ,使△AMN 的周长最小时,∠AMN +∠ANM 的度数为()A .120°B .130°C .110°D .140°4.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是.5.如图,Rt △ABC 中,∠C =90°,∠B =30°,AB =6,点E 在AB 边上,点D 在BC 边上(不与点B 、C 重合),且ED =AE ,则线段AE 的取值范围是.6.如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =1,ON =3,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是_________.(注“勾股定理”:直角三角形中两直角边的平方和等于斜边的平方,即Rt △ABC 中,∠C =90°,则有222AB BC AC =+)7.如图,三角形△ABC 中,∠OAB =∠AOB =15°,点B 在x 轴的正半轴,坐标为B (36,0).OC 平分∠AOB ,点M 在OC 的延长线上,点N 为边OA 上的点,则MA +MN 的最小值是______.8.已知A(2,4)、B(4,2).C在y轴上,D在x轴上,则四边形ABCD的周长最小值为,此时C、D两点的坐标分别为.9.已知A(1,1)、B(4,2).(1)P为x轴上一动点,求PA+PB的最小值和此时P点的坐标;P A 的值最大时P点的坐标;(2)P为x轴上一动点,求PB(3)CD为x轴上一条动线段,D在C点右边且CD=1,求当AC+CD+DB的最小值和此时C点的坐标;10.点C为∠AOB内一点.(1)在OA求作点D,OB上求作点E,使△CDE的周长最小,请画出图形;(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值和此时∠DCE的度数.11.(1)如图①,△ABD和△ACE均为等边三角形,BE、CE交于F,连AF,求证:AF+BF+CF=CD;(2)在△ABC中,∠ABC=30°,AB=6,BC=8,∠A,∠C均小于120°,求作一点P,使PA+PB+PC的值最小,试求出最小值并说明理由.。

最短路径问题

最短路径问题

最短路径问题陈道蓄 南京大学计算机系在道路网络中确定起点到终点的最短路径,可以抽象为一个有向图模型。

图中每个节点表示一个“路口”,对任意节点u,v,存在uv-边当且仅当从u到v有“路段”直接相连(当中没有其他路口)。

也可以建立无向图模型,则任一条边对应于双向可通行的路段。

其实这样的模型并不限于道路交通问题,从本专栏前面的文章中读者已经看到许多与交通运输无关的问题都可以抽象为图模型,“最短路径”在不同应用中可能背景意义不同,但确定最短路是大量基于图模型的应用问题求解中的一个基本环节。

● 用广度优先搜索(BFS)算法求解先来考虑有向图模型上一种最简单的情况:假设每个路段长度均为1,那么,从u到v最短路的长度即为所有uv-路中包含的边数的最小值,也称为从u到v的距离。

设想房间的角上有个水龙头,其所在位置是房间地面最高点。

地面高度向房内其他地方极其平缓地均匀下降,将龙头开到适当大小,水会在地面以扇形缓缓漫开。

如果像动画片一样间隔固定时间段记录漫水区域的边界,看到的将是一道道大致平行的弧形曲线,它们反映了边界上的点与水龙头位置的大致距离。

在图中遍历所有节点常用算法包括“深度优先(DFS)”与“广度优先(BFS)”。

本专栏在前面讨论走迷宫和调度问题时,都采用了深度优先算法。

从上面的比喻很容易想到:考虑点与点的距离时该采用广度优先算法。

事实上,在本专栏在前面讨论图的连通性时,简单地用到了广度优先(尽管我们没有提到这个名词)。

图1给出一个简单的例子,指定a为起点,则广度优先搜索生成的BFS树可能如图1中右图所示。

右边结果图中每个节点名称旁标的数字表示从起点a到该点最短路的长度。

在广度优先搜索过程中,距离a较远的节点被发现的时间一定晚于较近的节点。

这个例子显示了广度优先搜索过程与最短路径的关联。

由此在每条边长度均为1的假设下,我们可以用广度优先算法解最短路问题。

为了体现前面的比喻中漫水区前缘均匀推进,算法用队列Q放置当前已经“看见”并等待处理的顶点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《MATLAB及应用》课程论文实践选题:最短路径问题专业班级:10级信信息管理与信息系统1班指导教师:周宏宇成绩评定:最短路径问题摘要:在图论当中,任意两点间的最短路径问题,运用Dijkstra 算法,Flord 算法,匈牙利算法等都可以就解决这类相关问题,本文主要就是运用图论相关知识,来分析问题的。

在问题一中,需要为货车司机选择一条从地点1到地点11的最短时间问题,其实际归结为求一个两点间最短路径问题,运用运筹学中的网络模型相关知识,建立了一个一个0-1线性模型,并最终求的其结果,最短时间为21,货车司机的运输路线为1891011vvvvv →→→→。

运用Floyd 算法解决问题二,并且运用Matlab 软件编程,Floyd 算法与Matlab 软件编程所得出的结果一致,最后得出了一个最短航程表,及任意两点间的最短航程图。

本文的最大亮点在于将问题二进行更深一步的拓展,从问题实际出发,从公司的差旅费用最小出发,利用Mtlab 软件编程的出了公司到个城市间差旅费用最小图,从而更能为公司节省成本。

任意城市间差旅费用最小其次是本文结果的准确性,问题一运用Lingo 软件编程,和WinQSB 软件,所得出结果都是一致的,问题二更是运用Floyd 算法,Matlab 软件编程,WinQSB 软件,大大地保证了结果的准确性,并且十分恰当地运用WinQSB 软件将作图功能,把每一提的最短路径都清晰的描绘出来,更加直观地将结果展现出来。

关键字:Matlab Lingo WinQSB Floyd 算法 0-1规划一、 问题重述问题一需要解决的问题是在一个城市交通网络中(图一),如何从地点1找到一条时间最短路径通往地点11,在这个城市交通网络中,有单向道,也有双向道,即如何处理一个有向图与无向图结合的图论问题,并且是一个两点间的最短路径问题:图(一)问题二阐述的是某公司员工往来于六个城市间,给出了这六个城市间的直达航班票价(表二),需要为这家公司提供出这六个城市间任意两点间的最小航班费用表050402510500152025150102040201001025252010055102525550∞⎡⎤⎢⎥∞⎢⎥⎢⎥∞∞⎢⎥⎢⎥⎢⎥∞⎢⎥∞⎣⎦表(二)二、问题分析问题一的分析:实际问题是货车运输问题,货车运输从起点1到终点11,一般情况下,不存在货物往回运输,所以地点1到地点8是可以看成是一个单向道,即8指向1,同样的地点8也是指向地点9的。

假设货物到达地点9时,货物要运送到终点,则地点9只能指向地点10,同理货物到达地顶点点7,只能是往地点6的方向运输。

如果货物到达地点5时,货物只有经过5 →6 →9 →10 →11,才是最短的,所以在这里地点5指向地点6.同理3指向5,得出图(二),这样按照时间耗费的目的,将一个有向图与无向图结合的图,转化为一个单纯的有向图,这将有利于问题的分析。

图(二)问题二的分析;通过题目给出的六个城市间的直达航班票价(表二),可以将其绘成无向图(图三),可以将其转换成一个图轮问题,即求一个具有六个顶点无向图的任意两点间的最短路径问题,这里用到图论当中的Flord算法。

图(三)三、基本假设1、货车在各路段中所花时间数据属实。

2、货车在行驶中是按匀速行驶3、货运车在路途中无意外发生,无需返回原地。

4、假设天气等一些客观因素不影响交通运输。

5、飞机航班不存在延误现象。

6、公司员工转机过程中不存在逗留现象。

四、符号说明1、:i j e 货车从地点i 到地点j 所花的时间:2、i jx:货车司机是否选择地点i 到地点j ,1(,0,{ij i j ij x = 弧)包括在最短路径中 不选择弧(); 3、i jc公司员工选择从城市i 到城市j 的航班,1,0i ji j c ⎧=⎨⎩选择城市间航班,不选择; 4、i D ,插入点i ; 5、ip:插入点i 后的路径;五、模型的建立与求解问题1的模型建立与求解跟据已得出的分析再加上题目所给的已知条件,可以得出其赋全矩阵(表(三)):·v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v1 0 8 ∞ ∞ ∞ ∞ 7 8 ∞ ∞ ∞ v2 ∞ 0 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ v3 ∞ ∞ 0 5 6 ∞ 5 ∞ ∞ ∞ ∞ v4 ∞ ∞ ∞ 0 11 ∞ ∞ ∞ ∞ ∞ 12 v5 ∞ ∞ 6 ∞ 0 2 ∞ ∞ ∞ ∞ 10 v6 ∞ ∞ ∞ ∞ 2 0 ∞ ∞ 3 ∞ ∞ v7 ∞ ∞ ∞ ∞ ∞ 9 0 ∞ ∞ ∞ ∞ v8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 9 ∞ ∞ v9 ∞ ∞ ∞ ∞ 7 ∞ ∞ ∞ 0 2 ∞ v10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2 0 2 v11∞∞∞∞∞∞∞∞∞∞表(三)建立如下0-1规划数学模型:i j i j i jM i n z c x =⋅∑12171812231776188923343537173776766569896995910344541135456595511354595655117669657665699101011000000000000x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx x x x x x x x x x x x x ++=-=-=-=---=+-=--=+--=--=+++-=++--=--=+-=-13441145411511101100110,x x x x x x x ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪=⎪⎪--=⎪++=⎪⎪=⎩或所有弧(i ,j )运用Lingo 软件输入一个线性规划程序(见附录(一)),分析得出如下结果:form to time time v1 v8 8 8 v8 v9 9 17 v9 v10 2 19 v10 v11 2 21 v1 v11 = 21 v1 v2 = 8 v1 v3 = 11 v1 v4 = 16 v1 v5 = 17 v1 v6 = 16 v1 v7 = 7 v1 v8 = 8 v1 v9 = 17 v1 v10 = 19表(四)模型一的结果分析:利用WinQSB 软件中的Network model,选择Short Path problem,输入问题一的赋权矩阵(表 )输入如下数据:图(三)得出结果表(见附录三),并得出如下直观图:图(四)图四中可以看出111v v →的最短路径为21,所以模型一的最优解可以得到验证为181x =,891x =,9101x =10111x =,所以货车司机应选路线1891011vvvvv→→→→最短,所花时间最短为21。

问题2的模型建立与求解6.2.1由问题2的分析,可利用图论方法、Floyd 算法及WinQSB 软件求解该问题, 由问题中所给的各个节点的坐标进行如下的Floyd 算法步骤:以及得出每次插入点的路径变化(见附录表(三)),得出六个城市间的任意两点间的最短路径表和最终选择路径矩阵:165511622242533334544444545554664646p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 最短航程图由Matlab 编程(见附录五)运行得出的结果与Floyd 算法一致、问题二的结果分析利用WinQSB 软件求得这6个城市间的任意两点最短航程见(附录四),并得出直观图:六、模型二的扩展在问题二该公司员工出差途中,在搭乘航班过程所使用的总时间,都算作公司损失时间,此时公司差旅费用=每小时员工正常创造价值⨯航班总时间+票价。

公司员工搭乘航班时间是航班总飞行时间是与飞机飞行时间和员工转乘时间有关,计算公司员工出差从i 地到j 地,公司差旅费用最少。

①员工在六个城市C1,C2,C3,C4,C5,C6个机场等待重新登机起飞所等待的时间(机场估算),如下:0 1.530.5120 1.52 2.51.50120.5210120.12350.510 1.5010.61.50456c c c c c c ∞⎡⎤⎢⎥∞⎢⎥⎢⎥∞∞⎢⎥⎢⎥⎢⎥∞⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎢⎦⎦∞⎥⎣⎥⎣ ②假设:航程越长⇒飞行时间越长⇒票价越贵,这三者间存在联系,查找数据得两个城市之间飞行时间(机场估算),如下:航班飞行时间=054 2.5150 1.52 2.51.501242101 2.52.5210 5.512.5 2.5 5.50⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦∞∞∞∞∞∞航班飞行总时间=飞机飞行时间+员工重新登机时间。

公司员工为公司创造价值每小时a (a =30)元(公司估计值)。

公司差旅费用=员工为公司创造价值⨯航班总时间+票价。

通过计算得:公司差旅费用=票价+飞行总时间069.5613416710243240240163253.5321601638.53427.51607614.835.534.3760a ∞⎡⎤⎢⎥∞⎢⎥⎢⎥∞∞⨯=⎢⎥⎢⎥⎢⎥∞⎢⎥∞⎣⎦,根据此矩阵的出如下图形:利用Matlab软件编程求解(程序见附录七),整理结果得出任意城市差旅费用最小表(四),并利用WinQSB软件得出如下任意城市间差旅费用最小图:任意城市间差旅费用最小图七、模型的评价问题一的模型评价运用了Lingo编程、利用WinQSB软件验证,大大地减少了计算量,同时提高了计算的准确性。

模型一求最短路径问题,将问题按实际常理出发,将一个有向与无向结合的图,转化为一个单一的有向图,使得问题变得简化易解,将模型建立为一个线性规划问题,该模型有利于解决一些解决常见的最短路问题,并且其Lingo程序只需改动相关数据便可适用于常见的求最短路问题。

问题二的模型评价采用了Floyd算法并利用Matlab软件编程,再利用WinQSB软件,确保了结果的准确性,并以图表的形式,更加直观清晰地展示出每一个城市到任意城市的最短路径。

针对问题二,从实际问题出发,对问题进行了拓展,求出了公司差旅费用最小矩阵,更加有利于为公司节省最大费用。

但由于渠道不畅,对于拓展内容的相关数据的可靠性还有待核实,但这并不会减掉模型拓展内容的丰富性,并不会抹掉其内在的,实质性魅力。

八、参考文献[1] 熊伟,运筹学,第二版,北京:机械工业出版社,2011。

[2] 薛毅,数学建模基础,第二版,北京:科学出版社,2011。

[3] 魏巍, Matlab应用数学工具箱技术手册,北京:国防工业出版社,2004。

[4] 姜启源谢金星叶俊,数学模型,第三版:高等教育出版社,2007。

[5] 韩中庚宋明武邵广纪,数学建模竞赛获奖论文精选与点评,北京:科学出版社,2007。

九、附录附录一(问题一中的Lingo程序):model:! vij表示选择从地点i到地点j;! eij表示从地点i到地点j货车司机所花时间;[obj]min=v12*e12+v17*e17+v18*e18+v23*e23+v34*e34+v37*e37+v35*e35 +v411*e411+v45*e45+v511*e511+v56*e56+v69*e69+v76*e76+v89*e89+v910*e910+v95*e95+v1011*e1011;[a]v12+v17+v18=1;[b]v18-v89=0;[c]v17+v37-v76=0;[d]v12-v23=0;[e]v23-v34-v37-v35=0;[f]v34-v411-v45=0;[g]v35+v45+v95-v56-v511=0;[h]v76+v56-v69=0;[l]v89+v69-v95-v910=0;[n]v910-v1011=0;[o]v411+v511+v1011=1;@bin(v12);@bin(v17);@bin(v18);@bin(v76);@bin(v89);@bin(v35);@bin(v37);@bin(v23);@bin(v34);@bin(v45);@bin(v411);@bin(v511);@bin(v56);@bin(v69);@bin(v95);@bin(v910);@bin(v1011);data:e12=8;e23=3;e34=5;e411=12;e37=5;e17=7;e18=8;e45=1;e35=6;e76=9;e56=2;e511=10;e89=9;e910=2;e1011=2;e95=7;e69=3;enddataend附录二(问题一中的Lingo程序的运行结果):Feasible solution found.Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable ValueV12 0.000000V17 0.000000V18 1.000000V89 1.000000V37 0.000000V76 0.000000V23 0.000000V34 0.000000V35 0.000000V411 0.000000V45 0.000000V95 0.000000V56 0.000000V511 0.000000V69 0.000000V910 1.000000V1011 1.000000E12 8.000000E23 3.000000E34 5.000000E411 12.00000E37 5.000000E17 7.000000E18 8.000000E45 1.000000E35 6.000000E76 9.000000E56 2.000000E511 10.00000E89 9.000000E910 2.000000E1011 2.000000E95 7.000000E69 3.000000Row Slack or SurplusA 0.000000B 0.000000C 0.000000D 0.000000E 0.000000F 0.000000G 0.000000H 0.000000L 0.000000N 0.000000O 0.000000附录三问题一在WinQSB软件中运行的结果:附录四问题二在WinQSB软件中运行的结果,任意两点间的最短航程表c到各个城市的最短航程1c到各个城市的最短航程2c到各个城市的最短航程3c到各个城市的最短航程4c到各个城市的最短航程56c到各个城市的最短航程附录五问题二在进行Floydj算法进行插值时,每次插值所发生的选择路径的变化:1111111 222212 333333 444444 515551 666616p⎛⎫⎪⎪⎪⎪=⎪⎪⎪⎪⎝⎭2112111222212233332444444515551662616p⎛⎫⎪⎪⎪⎪=⎪⎪⎪⎪⎝⎭3112111222232233332444444535551662616p⎛⎫⎪⎪⎪⎪=⎪⎪⎪⎪⎝⎭4114111222242433334444444545554664646p⎛⎫⎪⎪⎪⎪=⎪⎪⎪⎪⎪⎝⎭5115511 222242 533334 544444 545554 664646p⎛⎫⎪⎪⎪⎪=⎪⎪⎪⎪⎝⎭6165511622242533334544444545554664646p⎛⎫⎪⎪⎪⎪=⎪⎪⎪⎪⎝⎭附录六问题二用Matlab软件编程程序与运行结果:>> clear>> n=6;>> a=zeros(n);>> a(1,2)=50;a(1,4)=40;a(1,5)=25;a(1,6)=10;>> a(2,3)=15;a(2,4)=20;a(2,6)=25;a(3,4)=10;a(3,5)=20; >> a(4,5)=10;a(4,6)=25; a(5,6)=55;>> a=a+a'; M=max(max(a))*n^2; %M为充分大的正实数>> a=a+((a==0)-eye(n))*M;>> path=zeros(n);>> for k=1:nfor i=1:nfor j=1:nif a(i,j)>a(i,k)+a(k,j)a(i,j)=a(i,k)+a(k,j);path(i,j)=k;endendendend>> a, path运行结果:a, patha =0 35 45 35 25 1035 0 15 20 30 2545 15 0 10 20 3535 20 10 0 10 2525 30 20 10 0 3510 25 35 25 35 0path =0 6 5 5 0 06 0 0 0 4 05 0 0 0 0 45 0 0 0 0 00 4 0 0 0 10 0 4 0 1 0附录七问题二的拓展用Matlab软件编程程序与运行结果:>> n=6;>> a=zeros(n);>> a(1,2)=69.5;a(1,4)=61;a(1,5)=34;a(1,6)=16;>> a(2,1)=71;a(2,3)=24;a(2,4)=32;a(2,6)=40;>> a(3,2)=24;a(3,4)=16;a(3,5)=32;>> a(4,1)=53.5;a(4,2)=32;a(4,3)=16;a(4,5)=16;a(4,6)=38.5;>> a(5,1)=34;a(5,3)=27.5;a(5,4)=16;a(5,6)=76;>> a(6,1)=14.8;a(6,2)=35.5;a(6,4)=34.3;a(6,5)=76;>> M=max(max(a))*n^2;>> a=a+((a==0)-eye(n))*M;>> path=zeros(n);>> for k=1:nfor i=1:nfor j=1:nif a(i,j)>a(i,k)+a(k,j)a(i,j)=a(i,k)+a(k,j);path(i,j)=k;endendendend>> a, path问题二拓展Matlab运行结果:a =0 51.5000 61.5000 50.0000 34.0000 16.000054.8000 0 24.0000 32.0000 48.0000 40.000066.0000 24.0000 0 16.0000 32.0000 54.500050.0000 32.0000 16.0000 0 16.0000 38.500034.0000 48.0000 27.5000 16.0000 0 50.000014.8000 35.5000 50.3000 34.3000 48.8000 0path =0 6 5 5 0 06 0 0 0 4 05 0 0 0 0 45 0 0 0 0 00 4 0 0 0 10 0 4 0 1 0。

相关文档
最新文档