临沂中考数学试题和答案
2024年临沂市中考数学真题试题及答案
2024年山东省临沂市中考数学真题试卷(枣庄、聊城、临沂、菏泽)一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1. 下列实数中,平方最大的数是( ) A. 3B.12C.1- D. 2-2. 用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为( ) A. 30.61910⨯B. 461.910⨯C. 56.1910⨯D. 66.1910⨯4. 下列几何体中,主视图是如图的是( )A. B. C. D.5. 下列运算正确的是( )A. 437a a a +=B. ()2211a a -=- C. ()2332a ba b =D. ()2212a a a a +=+6. 为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为( ) A. 200B. 300C. 400D. 5007. 如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为( )A. 12B. 10C. 8D. 68. 某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是( ) A.19B.29C.13D.239. 如图,点E 为ABCD 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为( )A.52B. 3C.72D. 410. 根据以下对话给出下列三个结论①1班学生的最高身高为180cm ①1班学生的最低身高小于150cm ①2班学生的最高身高大于或等于170cm . 上述结论中,所有正确结论的序号是( ) A. ①①B. ①①C. ①①D. ①①①二、填空题:本题共6小题,每小题3分,共18分.11. 因式分解:22x y xy +=________.12. 写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.13. 若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________. 14. 如图,ABC ∆是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15. 如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM ,AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16. 任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. (11122-⎛⎫--⎪⎝⎭(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.18. 【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据胡岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈) 【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号) ①解直角三角形 ①三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19. 某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤. 下面给出了部分信息8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题 (1)请补全频数分布直方图(2)所抽取学生的模型设计成绩的中位数是________分(3)请估计全校1000名学生的模型设计成绩不低于80分的人数(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩. 某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下通过计算,甲、乙哪位学生的综合成绩更高?20. 列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与ky x=部分自变量与函数值的对应关系(1)求a ,b 的值,并补全表格(2)结合表格,当2y x b =+的图像在ky x=的图像上方时,直接写出x 的取值范围. 21. 如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE 交AB 于点E ,以点B 为圆心,以BE 为半径作EF 所交BC 于点F ,连接FD 交EF 于另一点G ,连接CG .(1)求证:CG 为EF 所在圆的切线 (2)求图中阴影部分面积.(结果保留π)22. 一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P . ①当30α=︒时,如图3,求证:四边形CNPM 为正方形①当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23. 在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年山东省临沂市中考数学真题试卷答案(枣庄、聊城、临沂、菏泽)一、选择题.9. 解:延长DF 和AB ,交于G 点①四边形ABCD 是平行四边形 ①DC AB ∥,DC AB =即DC AG ∥ ①DEC GAE ∽ ①CE DE DCAE GE AG== ①5AC =,1CE =①514AE AC CE =-=-= ①14CE DE DC AE GE AG === 又①EF DE =,14DE DE GE EF FG ==+ ①13EF FG = ①14DC DC AG AB BG ==+,DC AB = ①13DC BG =①13EF DC FG BG == ①34BG FG AG EG == ①AE BF ∥①BGF AGE ∽ ①34BF FG AE EG == ①4AE =①3BF =.故选:B .10. 解:设1班同学的最高身高为cm x ,最低身高为cm y ,2班同学的最高身高为cm a ,最低身高为cm b 根据1班班长的对话,得180x ≤,350x a +=①350x a =-①350180a -≤解得170a ≥故①,①正确根据2班班长的对话,得140b >,290y b +=①290b y =-①290140y ->①150y <故①正确故选:D .二、填空题.11. 【答案】()2xy x +12. 【答案】1-(答案不唯一)【解析】解:21215x x +≥⎧⎨-<⎩①② 由①得:1x ≥-由①得:3x <①不等式组的解集为:13x -≤<①不等式组的一个整数解为:1-故答案为:1-(答案不唯一).13. 【答案】14【解析】解:①关于x 的方程2420x x m -+=有两个相等的实数根①2242444160b ac m m ∆=-=-⨯⨯=-= 解得:14m =. 故答案为:14. 14. 【答案】40︒【解析】解①连接OB①25ACB ∠=︒①250AOB ACB ∠=∠=︒①OA OB = ①()1180652OAB OBA AOB ∠=∠=︒-∠=︒ ①OA CB ∥①25A OAC CB ∠=︒∠=①40CAB OAB OAC ∠=∠-∠=︒故答案为:40︒.15.【解析】解:如图,过F 作FH AC ⊥于H由作图可得:BAP CAP ∠=∠,DE AB ⊥,122AF BF AB === ①67.5PQE ∠=︒①67.5AQF ∠=︒①9067.522.5BAP CAP ∠=∠=︒-︒=︒①45FAH ∠=︒①2AH FH AF ===①F 到AN16. 【答案】()2,1【解析】解:点()1,4经过1次运算后得到点为()131,42⨯+÷,即为()4,2 经过2次运算后得到点为()42,21÷÷,即为()2,1经过3次运算后得到点为()22,131÷⨯+,即为()1,4……发现规律:点()1,4经过3次运算后还是()1,4①202436742÷=①点()1,4经过2024次运算后得到点()2,1故答案为:()2,1.三、解答题.17. 【答案】(1)3 (2)3a - 2-18. 【答案】(1)A ,P 两点间的距离为89.8米;(2)①19. 【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【小问1详解】解:①510%50÷=,而8090x ≤<有20人①7080x ≤<有502051015---=补全图形如下。
2018年山东省临沂市中考数学试卷-答案
2018山东省临沂市初中学业水平考试数学答案解析第Ⅰ卷一、选择题。
1.【答案】A【解析】解:3101﹣<-<<,∴最小的是3-,故选:A . 【考点】实数大小比较2.【答案】B【解析】解:1 100万71.110=⨯,故选:B .【考点】科学计数法表示较大的数3.【答案】C【解析】解:AB CD ∥,64ABC C ∴∠=∠=︒,在BCD △中,180180644274CBD C D ∠=︒∠∠=︒︒︒=︒----,故选:C .【考点】平行线的性质.4.【答案】B【解析】解:222230434114112y y y y y y y -==+=--=--()故选:B . 【考点】解一元二次方程—配方法.5.【答案】C【解析】解:解不等式123x -<,得:1x ->,解不等式122x +≤,得:3x ≤, 则不等式组的解集为13x -<≤,所以不等式组的正整数解有1、2、3这3个,故选:C .【考点】一元一次不等式组的整数解.6.【答案】B【解析】解:EB CD ∥,ABE ACD ∴△∽△,AB BE AC CD ∴=,即 1.6 1.21.612.4CD=+, 10.5CD ∴=(米).故选:B .【考点】相似三角形的应用.7.【答案】C【解析】解:先由三视图确定该几何体是圆柱体,底面半径是22 1 cm ÷=,高是3 cm .所以该几何体的侧面积为22π136πcm ⨯⨯=().故选:C .【考点】由三视图判断几何体,几何体的表面积8.【答案】D【解析】解:如图所示:,一共有9种可能,符合题意的有1种, 故小华和小强都抽到物理学科的概率是:19. 故选:D .【考点】列表法与树状图法.9.【答案】C【解析】解:该公司员工月收入的众数为3 300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工11136111125+++++++=人,所以该公司员工月收入的中位数为3 400元;由于在25名员工中在此数据及以上的有13人,所以中位数也能够反映该公司全体员工月收入水平;故选:C .【考点】统计量的选择.10.【答案】A【解析】解:设今年1—5月份每辆车的销售价格为x 万元,则去年的销售价格为1x +()万元/辆, 根据题意,得:()5000120%50001x x-=+, 故选:A . 【考点】由实际问题抽象出分式方程.11.【答案】B【解析】解:BE CE ⊥,AD CE ⊥,90E ADC ∴∠=∠=︒,90EBC BCE ∴∠+∠=︒.90BCE ACD ∠+∠=︒,EBC DCA ∴∠=∠.在CEB △和ADC △中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩CEB ADC AAS ∴△≌△(), 1BE DC ∴==,3CE AD ==.312DE EC CD ∴=-=-=故选:B .【考点】全等三角形的判定与性质.12.【答案】D 【解析】解:正比例函11y k x =与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为1. B ∴点的横坐标为:1-,故当12y y <时,x 的取值范围是:1x -<或01x <<. 故选:D .【考点】反比例函数与一次函数的交点问题.13.【答案】A【解析】解:因为一般四边形的中点四边形是平行四边形,当对角线BD AC =时,中点四边形是菱形,当对角线AC BD ⊥时,中点四边形是矩形,当对角线AC BD =,且AC BD ⊥时,中点四边形是正方形,故④选项正确,故选:A .【考点】中点四边形,行四边形的性质,菱形的判定与性质,矩形的判定与性质,正方形的性质14.【答案】D【解析】解:设原数为a ,则新数为21100a ,设新数与原数的差为y 则2211100100y a a a a =-=-+ 易得,当0a =时,0y =,则A 错误 10100-< ∴当150122100b a a =-=-=⎛⎫⨯- ⎪⎝⎭时,y 有最大值,B 错误,A 正确.当21y =时,2121100a a -+= 解得130a =,270a =,则C 错误.故选:D .【考点】规律型:数字的变化类.第Ⅱ卷二、填空题15.1【解析】解1=1.【考点】实数的性质.16.【答案】1【解析】解:()()()111m n mn m n --=-++,m n mn +=,()()()1111m n mn m n ∴--=-++=,故答案为1.【考点】整式的混合运算—化简求值.17.【答案】【解析】解:四边形ABCD 是平行四边形,6BC AD ∴==,OB D =,OA OC =,AC BC ⊥,8AC ∴==,4OC ∴=,OB ∴2BD OB ∴==故答案为:【考点】平行四边形的性质.18. 【解析】解:设圆的圆心为点O ,能够将ABC 完全覆盖的最小圆是ABC 的外接圆, 在ABC △中,60A ∠=︒,5BC cm =,120BOC ∴∠=︒,作OD BC ⊥于点D ,则90ODB ∠=︒,60BOD ∠=︒,52BD ∴=,30OBD ∠=︒, 52sin 60OB ∴=︒,得OB =2OB ∴即ABC △,. 【考点】三角形的外接圆与外心.19.【答案】411【解析】解:设0.36x =,则36.36100x =,10036x x ∴-=, 解得:411x =. 故答案为:411【考点】一元一次方程的应用.20.【答案】解:原式()()221242x x x x x x x ⎡⎤+-=-⋅⎢⎥---⎢⎥⎣⎦()()()()222142x x x x x x x x +---=⋅-- ()2442x x x x x -=⋅-- ()212x =-.【考点】分式的混合运算.21.【答案】解:(1)补充表格如下:(2)补全频数分布直方图如下:(3)由频数分布直方图知,1722x ≤<时天数最多,有10天.【考点】频率分布直方图.22.【答案】解:工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门,理由是:过B 作BD AC ⊥于D ,AB BD >,BC BD >,AC AB >,∴求出DB 长和2.1 m 比较即可,设 m BD x =,30A ∠=︒,45C ∠=︒,m DC BD x ∴==, m AD BD x ==,)21 m AC =,21x ∴=),2x ∴=, 即 2 m 2.1 m BD =<,∴工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门.【考点】垂径定理的应用.23.【答案】(1)证明:连接OD ,作OF AC ⊥于F ,如图,ABC 为等腰三角形,O 是底边BC 的中点,AO BC ∴⊥,AO 平分BAC ∠, AB 与O 相切于点D ,OD AB ∴⊥,而OF AC ⊥,OF OD ∴=,AC ∴是O 的切线;(2)解:在Rt BOD 中,设O 的半径为r ,则OD OE r ==,2221r r ∴+=+(),解得1r =,1OD ∴=,2OB =,30B ∴∠=︒,60BOD ∠=︒,30AOD ∴∠=︒,在Rt AOD △中,AD ==, ∴阴影部分的面积2AOD DOF S S =扇形﹣2160π-1212360⋅=⨯⨯π6-. 【考点】四边形与三角形的综合应用.24.【答案】解:(1)设PQ 解析式为y kx b =+把已知点010P (,),115,42⎛⎫ ⎪⎝⎭代入得1512410k b b ⎧=+⎪⎨⎪=⎩ 解得:1010k b =-⎧⎨=⎩,1010y x =-+ 当0y =时,1x =∴点Q 的坐标为()1,0点Q 的意义是:甲、乙两人分别从A ,B 两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为 km/h a ,乙的速度为 km/h b 由已知第53小时时,甲到B 地,则乙走1小时路程,甲走52133-=小时 1023a b b a +=⎧⎪∴⎨=⎪⎩,64a b =⎧∴⎨=⎩ ∴甲、乙的速度分别为6 km/h 、4 km/h【考点】二次函数.25.【答案】解:(1)由旋转可得,AE AB =,90AEF ABC DAB ∠=∠=∠=︒,EF BC AD ==,AEB ABE ∴∠=∠,又90ABE GDE AEB DEG ∠+∠=︒=∠+∠,EDG DEG ∴∠=∠,DG EG ∴=,FG AG ∴=,又DGF EGA ∠=∠,AEG Rt FDG SAS ∴△≌△(),DF AE ∴=,又AE AB CD ==,CD DF ∴=;(2)如图,当GB GC =时,点G 在BC 的垂直平分线上, 分两种情况讨论:①当点G 在AD 右侧时,取BC 的中点H ,连接GH 交AD 于M ,GC GB =,GH BC ∴⊥,∴四边形ABHM 是矩形,1122AM BH AD AG ∴===, GM ∴垂直平分AD ,GD GA DA ∴==,ADG ∴△是等边三角形,60DAG ∴∠=︒,∴旋转角60α=︒;②当点G 在AD 左侧时,同理可得ADG 是等边三角形,60DAG ∴∠=︒,∴旋转角36060300α=︒-︒=︒.【考点】旋转的性质;全等三角形的判定与性质;矩形的性质.26.【答案】解:(1)()1,0B ,1OB ∴=, 22OC OB ==,()2,0C ∴-,Rt ABC △中,tan 2ABC ∠=,2AC BC ∴=,23AC ∴=, 6AC ∴=,()26A ∴-,,把()26A ∴-,和()1,0B 代入2y x bx c =-++ 得:42610b c b c --+=⎧⎨-++=⎩, 解得:34b c =-⎧⎨=⎩∴抛物线的解析式为:234y x x =+-﹣; (2)①()26A -,,()1,0B ,易得AB 的解析式为:22y x =-+,设()2,34P x x x -+-,则(),22E x x +-, 12PE DE =,()()2342222x x x x ∴-+-+=+---, 1x =(舍)或1-,()1,6P ∴-;②M 在直线PD 上,且()1,6P -,设()1,M y -,()()()222212616AM y y ∴=++-=+--,()2222114BM y y =++=+,()22212645AB =++=, 分三种情况:i )当90AMB ∠=︒时,有222AM BM AB +=, ()2216445y y ∴+-++=,解得:3y =(1,3M ∴-或(1,3-; ii )当90ABM ∠=︒时,有222AB BM AM +=, ()2245416y y ∴++=+-,1y =-, ()1,1M ∴--,iii )当90BAM ∠=︒时,有222AM AB BM +=,2216454y y ∴+-+=+(),132y =, 131,2M ⎛⎫∴ ⎪⎝⎭-;综上所述,点M 的坐标为:(3M ∴-1,或(1,3--或()1,1--或131,2⎛⎫ ⎪⎝⎭-. 【考点】二次函数综合题.。
临沂市-2021年山东省临沂市中考数学试卷
一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2021•临沂)12-的相反数是( ) A .12- B .2- C .2 D .122.(3分)(2021•临沂)2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着陆的国家.据测算,地球到火星的最近距离约为55000000km ,将数据55000000用科学记数法表示为( )A .65.510⨯B .80.5510⨯C .75.510⨯D .65510⨯3.(3分)(2021•临沂)计算3325a a ⋅的结果是( )A .610aB .910aC .37aD .67a4.(3分)(2021•临沂)如图所示的几何体的主视图是( )A .B .C .D .5.(3分)(2021•临沂)如图,在//AB CD 中,40AEC ∠=︒,CB 平分DCE ∠,则ABC ∠的度数为( )A .10︒B .20︒C .30︒D .40︒6.(3分)(2021•临沂)方程256x x -=的根是( )A .17x =,28x =B .17x =,28x =-C .17x =-,28x =D .17x =-,28x =-7.(3分)(2021•临沂)不等式113x x -<+的解集在数轴上表示正确的是( )A.B.C.D.8.(3分)(2021•临沂)计算11()()a bb a-÷-的结果是()A.ab-B.abC.ba-D.ba9.(3分)(2021•临沂)如图,点A,B都在格点上,若2133BC=,则AC的长为()A.13B.4133C.213D.31310.(3分)(2021•临沂)现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()A.12B.23C.34D.5611.(3分)(2021•临沂)如图,PA、PB分别与O相切于A、B,70P∠=︒,C为O 上一点,则ACB∠的度数为()A.110︒B.120︒C.125︒D.130︒12.(3分)(2021•临沂)某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫2100m所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫x2m,根据题意可列方程为()A .10010020.53x x =+B .10021000.53x x +=C .10021003 1.5x x +=D .10010021.53x x =+ 13.(3分)(2021•临沂)已知a b >,下列结论:①2a ab >;②22a b >;③若0b <,则2a b b +<;④若0b >,则11a b <,其中正确的个数是( ) A .1 B .2 C .3 D .414.(3分)(2021•临沂)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.如图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年二.填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2021•临沂)分解因式:328a a -= .16.(3分)(2021•临沂)比较大小:6 5(选填“>”、“ =”、“ <” ).17.(3分)(2021•临沂)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是 .18.(3分)(2021•临沂)在平面直角坐标系中,平行四边形ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(1,1)-、(2,1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点1C 的坐标是 .19.(3分)(2021•临沂)数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是 (只填写序号). ①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”; ②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”; ④地板砖可以做成矩形,应用了“矩形对边相等”.三.解答题(本大题共7小题,共63分)20.(7分)(2021•临沂)计算2211|2(2)(2)22-+-. 21.(7分)(2021•临沂)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:0.65x0.70<0.70x0.75<0.75x0.80<0.80x0.85<0.85x0.90<0.90x0.95<0.95x 1.00<统计量平均数数值(1)表格中:a=,b=,c=,d=;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.22.(7分)(2021•临沂)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知3DO m=,=,3=,5CO mCM m∠=︒,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?70AOD(参考数据:sin370.60︒≈,cos700.34︒≈,︒≈;sin700.94︒≈,tan370.75︒≈,cos370.80︒≈tan70 2.75)23.(9分)(2021•临沂)已知函数3,1,3,11,3,1x x y x x x x⎧-⎪⎪=-<⎨⎪⎪⋅⎩ (1)画出函数图象;列表:x ⋯⋯ y ⋯.⋯ 描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设1(x ,1)y ,2(x ,2)y 是函数图象上的点,若120x x +=,证明:120y y +=.24.(9分)(2021•临沂)如图,已知在O 中,AB BC CD ==,OC 与AD 相交于点E .求证:(1)//AD BC;(2)四边形BCDE为菱形.25.(11分)(2021•临沂)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:)m s与时间t(单m、速度v(单位:/)位:)s的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9/m s时,它行驶的路程是多少?(2)若乙车以10/m s的速度匀速行驶,两车何时相距最近,最近距离是多少?26.(13分)(2021•临沂)如图,已知正方形ABCD,点E是BC边上一点,将ABE∆沿直线AE折叠,点B落在F处,连接BF并延长,与DAF∠的平分线相交于点H,与AE,CD 分别相交于点G,M,连接HC.(1)求证:AG GH=;(2)若3BE=,求点D到直线BH的距离;AB=,1(3)当点E在BC边上(端点除外)运动时,BHC∠的大小是否变化?为什么?2021年山东省临沂市中考数学试卷参考答案与试题解析一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
2021年山东省临沂市数学中考试题及答案
2021年山东省临沂市数学中考试题一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
1.﹣的相反数是()A.﹣B.﹣2C.2D.【解答】解:﹣的相反数是,故选:D.2.2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着陆的国家.据测算,地球到火星的最近距离约为55000000km,将数据55000000用科学记数法表示为()A.5.5×106B.0.55×108C.5.5×107D.55×106【解答】解:将55000000用科学记数法表示为5.5×107.故选:C.3.计算2a3•5a3的结果是()A.10a6B.10a9C.7a3D.7a6【解答】解:2a3•5a3=10a3+3=10a6,故选:A.4.如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看该几何体,由能看见的轮廓线用实线表示可得选项B中的图形符合题意,故选:B.5.如图,在AB∥CD中,∠AEC=40°,CB平分∠DCE,则∠ABC的度数为()A.10°B.20°C.30°D.40°【解答】解:∵AB∥CD,∠AEC=40°,∴∠ECD=∠AEC=40°,∵CB平分∠DCE,∴∠BCD=∠DCE=20°,∵AB∥CD,∴∠ABC=∠BCD=20°,故选:B.6.方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣8【解答】解:∵x2﹣x=56,∴x2﹣x﹣56=0,则(x﹣8)(x+7)=0,∴x﹣8=0或x+7=0,解得x1=﹣7,x2=8,故选:C.7.不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.【解答】解:去分母,得:x﹣1<3x+3,移项,得:x﹣3x<3+1,合并同类项,得:﹣2x<4,系数化为1,得:x>﹣2,将不等式的解集表示在数轴上如下:故选:B.8.计算(a﹣)÷(﹣b)的结果是()A.﹣B.C.﹣D.【解答】解:(a﹣)÷(﹣b)=÷==﹣,故选:A.9.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【解答】解:由图可得,AB====2,∵BC=,∴AC=AB﹣BC=2﹣=,故选:B.10.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()A.B.C.D.【解答】解:把2盒不过期的牛奶记为A、B,2盒已过期的牛奶记为C、D,画树状图如图:共有12种等可能的结果,至少有一盒过期的结果有10种,∴至少有一盒过期的概率为=,故选:D.11.如图,P A、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为()A.110°B.120°C.125°D.130°【解答】解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,∵AP、BP是⊙O切线,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣70°=110°,∴∠ADB=AOB=55°,又∵圆内接四边形的对角互补,∴∠ACB=180°﹣∠ADB=180°﹣55°=125°.故选:C.12.某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+B.+=C.+=D.=+【解答】解:若设A型扫地机器人每小时清扫xm2,则B型扫地机器人每小时清扫(1+50%)xm2,根据题意,得=+.故选:D.13.已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.4【解答】解:∵a>b,∴当a>0时,a2>ab,当a<0时,a2<ab,故①结论错误;∵a>b,∴当|a|>|b|时,a2>b2,∴当|a|<|b|时,a2<b2,故②结论错误;∵a>b,b<0,∴a+b>2b,故③结论错误;∵a>b,b>0,∴a>b>0,∴,故④结论正确;∴正确的个数是1个.故选:A.14.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是()A.4860年B.6480年C.8100年D.9720年【解答】解:由图可知:1620年时,镭质量缩减为原来的,再经过1620年,即当3240年时,镭质量缩减为原来的,再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的,...,∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的,此时32×=1mg,故选:C.二.填空题(本大题共5小题,每小题3分,共15分)15.分解因式:2a3﹣8a=2a(a+2)(a﹣2).【解答】解:原式=2a(a2﹣4)=2a(a+2)(a﹣2),故答案为:2a(a+2)(a﹣2)16.比较大小:2<5(选填“>”、“=”、“<”).【解答】解:∵2=,5=,而24<25,∴2<5.故填空答案:<.17.某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是95.5.【解答】解:由统计图可知四个成绩的人数分别为3,2,5,10,∴,故答案为95.5.18.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C 的对应点C1的坐标是(4,﹣1).【解答】解:∵平行四边形ABCD的对称中心是坐标原点,∴点A,点C关于原点对称,∵A(﹣1,1),∴C(1,﹣1),∴将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是(4,﹣1),故答案为:(4,﹣1).19.数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是①③(只填写序号).①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.【解答】解:①在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,应用了“两点确定一条直线”,故符合题意.②因为圆上各点到圆心的距离相等,所以车轮中心与地面的距离保持不变,坐车的人感到非常平稳,故不符合题意.③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”,故符合题意;④地板砖可以做成矩形,应用了“矩形四个内角都是直角”的性质,故不符合题意.故答案是:①③.三.解答题(本大题共7小题,共63分)20.(7分)计算|﹣|+(﹣)2﹣(+)2.【解答】解:原式=+[()²﹣+]﹣[()²++],=+(2﹣+)﹣(2++),==+2﹣+﹣2﹣﹣,=﹣.21.(7分)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a=5,b=3,c=0.82,d=0.89;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.【解答】解:(1)由统计频数的方法可得,a=5,b=3,将A村家庭收入从小到大排列,处在中间位置的两个数的平均数为(0.81+0.83)÷2=0.82,因此中位数是0.82,即c=0.82,他们一季度家庭人均收入的数据出现最多的是0.89,因此众数是0.89,即d=0.89,故答案为:5,3,0.82,0.89;(2)300×=210(户),答:估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数有210户;(3)该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭,理由:该村300户家庭一季度家庭人均收入的中位数是0.82,0.83>0.82,所以该村梁飞家今年一季度人均收入为0.83万元,能超过村里一半以上的家庭.22.(7分)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)【解答】解:∵CM=3m,OC=5m,∴OM==4(m),∵∠CMO=∠BDO=90°,∠COM=∠BOD,∴△COM∽△BOD,∴,即,∴BD==2.25(m),∴tan∠AOD=tan70°=,即≈2.75(m),解得:AB=6m,∴汽车从A处前行约6米才能发现C处的儿童.23.(9分)已知函数y=(1)画出函数图象;列表:x…﹣3﹣2﹣101234…y…﹣1﹣3031.…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.【解答】解:(1)列表如下:x...﹣3﹣2﹣101234...y...﹣1﹣3031...函数图像如图所示:(2)根据图像可知:当x=1时,函数有最大值3;(3)∵(x1,x2)是函数图象上的点,x1+x2=0,∴x1和x2互为相反数,当﹣1<x1<1时,﹣1<x2<1,∴y1=3x1,y2=3x2,∴y1+y2=3x1+3x2=3(x1+x2)=0;当x1≤﹣1时,x2≥1,则y1+y2==0;同理:当x1≥1时,x2≤﹣1,y1+y2=0,综上:y1+y2=0.24.(9分)如图,已知在⊙O中,==,OC与AD相交于点E.求证:(1)AD∥BC;(2)四边形BCDE为菱形.【解答】解:(1)连接BD,∵,∴∠ADBADB=∠CBD,∴ADAD∥BCBC;(2)连接CD,∵ADAD∥BBC,∴∠EDFEDF=∠CBFCB,∵,∴BCC=CDCD,∴BFBF=DF,又∠DFE=∠BFBFC,∴△DEFDEF≌△BCF(ASAa),∴DE=BCDE=BC,∴四边形BCDEBCDE是平行四边形,又BCBC=CD,∴四边形BCDEBCDE是菱形.25.(11分)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?【解答】解:(1)由图可知:二次函数图像经过原点,设二次函数表达式为s=at2+bt,一次函数表达式为v=kt+c,∵一次函数经过(0,16),(8,8),则,解得:,∴一次函数表达式为v=﹣t+16,令v=9,则t=7,∴当t=7时,速度为9m/s,∵二次函数经过(2,30),(4,56),则,解得:,∴二次函数表达式为,令t=7,则s==87.5,∴当甲车减速至9m/s时,它行驶的路程是87.5m;(2)∵当t=0时,甲车的速度为16m/s,∴当10<v<16时,两车之间的距离逐渐变小,当0<v<10时,两车之间的距离逐渐变大,∴当v=10m/s时,两车之间距离最小,将v=10代入v=﹣t+16中,得t=6,将t=6代入中,得s=78,此时两车之间的距离为:10×6+20﹣78=2m,∴6秒时两车相距最近,最近距离是2米.26.(13分)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC.(1)求证:AG=GH;(2)若AB=3,BE=1,求点D到直线BH的距离;(3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?【解答】(1)证明:∵将△ABE沿直线AE折叠,点B落在F处,∴∠BAG=∠GAF=∠BAF,B,F关于AE对称,∴AG⊥BF,∴∠AGF=90°,∵AH平分∠DAF,∴∠F AH=∠F AD,∴∠EAH=∠GAF+∠F AH=∠BAF+∠F AD=(∠BAF+∠F AD)=∠BAD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAH=∠BAD=45°,∵∠HGA=90°,∴GA=GH;(2)解:如图1,连接DH,DF,交AH于点N,由(1)可知AF=AD,∠F AH=∠DAH,∴AH⊥DF,FN=DN,∴DH=HF,∠FNH=∠DNH=90°,又∵∠GHA=45°,∴∠FNH=45°=∠NDH=∠DHN,∴∠DHF=90°,∴DH的长为点D到直线BH的距离,由(1)知AE2=AB2+BE2,∴AE===,∵∠BAE+∠AEB=∠BAE+∠ABG=90°,∴∠AEB=∠ABG,又∠AGB=∠ABE=90°,∴△AEB∽△ABG,∴,,∴AG==,∴BG=,由(1)知GF=BG,AG=GH,∴GF=,GH=,∴DH=FH=GH﹣GF==.即点D到直线BH的距离为;(3)不变.理由如下:方法一:连接BD,如图2,在Rt△HDF中,,在Rt△BCD中,=sin45°=,∴,∵∠BDF+∠CDH=45°,∠FDC+∠CDH=45°,∴∠BDF=∠CDH,∴△BDF∽△CDH,∴∠CDH=∠BFD,∵∠DFH=45°,∴∠BFD=135°=∠CHD,∵∠BHD=90°,∴∠BHC=∠CHD﹣∠BHD=135°﹣90°=45°.方法二:∵∠BCD=90°,∠BHD=90°,∴点B,C,H,D四点共圆,∴∠BHC=∠BDC=45°,∴∠BHC的度数不变.。
2024年临沂中考数学试题
选择题
下列哪个数是无理数?
A. 3.14
B. √2(正确答案)
C. 22/7
D. -1
若a2 = 4,则 a 的值为?
A. 2
B. -2
C. ±2(正确答案)
D. 4
下列哪个图形不是轴对称图形?
A. 等边三角形
B. 平行四边形(正确答案)
C. 正方形
D. 圆
已知x + y = 5,xy = 6,则x2 + y2 的值为?
A. 13(正确答案)
B. 25
C. 31
D. 37
下列哪个选项是方程2x - 5 = 3x + 2 的解?
A. x = -7(正确答案)
B. x = 7
C. x = -1
D. x = 1
已知直角三角形的两条直角边分别为3 和4,则其斜边长为?
A. 5(正确答案)
B. 6
C. 7
D. 8
下列哪个不等式组的解集为x > 2?
A. x > 1 且x > 2
B. x > 1 或x > 2
C. x ≥ 2 且x ≠ 2
D. x > 1 且x < 3(正确答案)
若一个圆的半径为r,则其面积S 与r 的关系为?
A. S = πr
B. S = 2πr
C. S = πr2(正确答案)
D. S = 2πr2
下列哪个选项描述了函数y = 2x + 1 的图像?
A. 一条过原点的直线
B. 一条与x 轴平行的直线
C. 一条斜率为2 的直线(正确答案)
D. 一条垂直于x 轴的直线。
2023年山东省临沂市中考数学真题(答案解析)
2023年临沂市初中学业水平考试试题数学一、选择题1.【答案】C【解析】解:2(7)(5)()57=----+=-;故选C .2.【答案】C【解析】解:由题意,可得130ABC ∠=︒,故选:C .3.【答案】B【解析】解:最符合视图特点的建筑物的图片是选项B 所示图片.故选:B .4.【答案】A【解析】解:由题意,得:点B 的坐标为(6,2);故选A .5.【答案】C【解析】解:∵在同一平面内,过直线l 外一点P 作l 的垂线m ,即l m ⊥,又∵过P 作m 的垂线n ,即n m ⊥,∴l n ∥,∴直线l 与n 的位置关系是平行,故选:C .6.【答案】D【解析】解:A 选项,32a a a -=,故选项错误,不符合题意;B 选项,222()2a b a ab b -=-+,故选项错误,不符合题意;C 选项,()2510a a =,故选项错误,不符合题意;D 选项,325326a a a ⋅=,故选项正确,符合题意;故选D .7.【答案】B【解析】解:正六边形的中心角的度数为:360606︒=︒,∴正六边形绕其中心旋转60︒或60︒的整数倍时,仍与原图形重合,∴旋转角的大小不可能是90︒;故选B .8.【答案】B【解析】解:m ====-∵=<<∴54-<-<-,即54m -<<-,故选:B .9.【答案】D【解析】解:设两名男生分别记为A ,B ,两名女生分别记为C ,D ,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为82123=,故选:D .10.【答案】A【解析】解:由题意,得:105V t=,∴V 与t 满足反比例函数关系.故选A .11.【答案】C【解析】解:∵一次函数y kx b =+的图象不经过第二象限,∴00k b ><,,故选项A 正确,不符合题意;∴0kb <,故选项B 正确,不符合题意;∵一次函数y kx b =+的图象经过点()20,,∴20k b +=,则2b k =-,∴20k b k k k +=-=-<,故选项C 错误,符合题意;∵2b k =-,∴12k b =-,故选项D 正确,不符合题意;故选:C .12.【答案】A【解析】解:∵0a b +=∴a b =,故①错误,∵0,0a b b c c a +=->->∴b c a >>,又0a b +=∴0,0a b <>,故②③错误,∵0a b +=∴=-b a∵0b c c a ->->∴a c c a -->-∴c c->∴0c <,故④正确或借助数轴,如图所示,故选:A .二、填空题13.【答案】24【解析】解:根据菱形面积等于两条对角线乘积的一半可得:面积168242=⨯⨯=,故答案为:24.14.【答案】()()111n n -++【解析】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++15.【答案】14【解析】解:如图,由题意得13AD AB =,四边形DECF 是平行四边形,∴DF BC ∥,DE AC ∥,∴ ∽ADF ABC ,BDE BAC ∽△△,∴13DF AD BC AB ==,23DE BD AC AB ==,∵69AC BC ==,,∴3DF =,4DE =,∵四边形DECF 平行四边形,∴平行四边形DECF 纸片的周长是()23414+=,故答案为:14.16.【答案】②③④【解析】解:列表,x L 2.5-2-1-0.5-0.512L yL5.4531- 3.75- 4.2535L描点、连线,图象如下,根据图象知:①当1x <-时,x 越小,函数值越大,错误;②当10x -<<时,x 越大,函数值越小,正确;③当01x <<时,x 越小,函数值越大,正确;④当1x >时,x 越大,函数值越大,正确.故答案为:②③④.三、解答题17.【答案】(1)3x >(2)从第①步开始出错,过程见解析【解析】解:(1)1522xx --<,去分母,得:1041x x -<-,移项,合并,得:39x -<-,系数化1,得:3x >;(2)从第①步开始出错,正确的解题过程如下:()()22111111a a a a a a a a +---=----22111a a a a -=---11a =-.18.【答案】(1)见解析(2)①90.5;②测试成绩分布在9195 的较多(不唯一);(3)估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.【解析】(1)解:数据从小到大排列:81、82、83、85、86、87、87、88、89、90、91、92、92、92、93、94、95、96、99、100最大值是100,最小值为81,极差为1008119-=,若组距为5,则分为4组,频数分布表成绩分组8185 8690 9195 96100划记正一频数4673频数分布直方图,如图;;(2)解:①中位数是909190.52+=;故答案为90.5;②测试成绩分布在9195 的较多(不唯一);(3)解:67360048020++⨯=(人),答:估计该校九年级学生在同等难度的信息技术操作考试中达到优秀等次的人数约为480人.19.【答案】渔船没有触礁的危险【解析】解:过点A 作AD BC ⊥,由题意,得:905832ABC ∠=︒-︒=︒,45ACD ∠=︒,6BC =,设AD x =,在Rt ADC 中,45ACD ∠=︒,∴AD CD x ==,∴6BD x =+,在Rt ADB 中,tan 0.6256AD xABD BD x ∠==≈+,∴10x =,∴10AD =,∵109>,∴渔船没有触礁的危险.20.【答案】(1)这台M 型平板电脑的价值为2100元(2)她应获得120m 元的报酬【解析】(1)解:设这台M 型平板电脑的价值为x 元,由题意,得:15003003020x x ++=,解得:2100x =;∴这台M 型平板电脑的价值为2100元;(2)解:由题意,得:2100150012030m m +⋅=;答:她应获得120m 元的报酬.21.【答案】(1)见解析(2)43π【解析】(1)证明:连接AO 并延长交BC 于点F ,∵O 是ABC 的外接圆,∴点O 是ABC 三边中垂线的交点,∵AB AC =,∴AO BC ⊥,∵AE BC ∥,∴AO AE ⊥,∵AO 是O 的半径,∴AE 是O 的切线;(2)解:连接OC ,∵AB AC =,∴75ABC ACB ∠=∠=︒,∴18027530BAC ∠=︒-⨯︒=︒,∴260BOC BAC ∠=∠=︒,∵OB OC =,∴BOC 为等边三角形,∴2===OC OB BC ,∴180120COD BOC ∠=︒-∠=︒,∴ CD的长为120241803ππ⨯=.22.【答案】(1))21AB BD =,(2)见解析(3)见解析【解析】(1)解:∵90,A AB AC ∠=︒=∴2BC =,∵BC AB BD =+2AB BD =+即)21AB BD =;(2)证明:如图所示,∴90,A AB AC ∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∵CE BC =,12∠=∠,CF DC =∴CBD CEF ≌∴=45E DBC ∠=∠︒∴EF BD ∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG ∠=∠∴EG EC =∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,即FG EF AC EF +=+,∴AC EG =,又AC FG ∥,则HAG HFG ∠=∠,在,AHC FHG 中,HAG HFG AHG FHG AC FG ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS AHC FHG ≌,∴AHHF=23.【答案】(1)见解析(2)售价每涨价2元,日销售量少卖4盆(3)①定价为每盆25元或每盆35元时,每天获得400元的利润;②售价定为30元时,每天能够获得最大利润【解析】(1)解:按照售价从低到高排列列出表格如下:售价(元/盆)1820222630日销售量(盆)5450463830【小问2详解】由表格可知,售价每涨价2元,日销售量少卖4盆;(3)①设:定价应为x 元,由题意,得:()()181********x x -⎡⎤--⨯=⎢⎥⎣⎦,整理得:2212017500x x -+-=,解得:1225,35x x ==,∴定价为每盆25元或每盆35元时,每天获得400元的利润;②设每天的利润为w ,由题意,得:()()22120135018155442x w x x x -⎡⎤=--⨯+⎣--=⎢⎥⎦,∴()2221201350230450w x x x -+---+==,∵20-<,∴当30x =时,w 有最大值为450元.答:售价定为30元时,每天能够获得最大利润.。
2020年山东省临沂市中考数学试卷和答案
2020年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列温度比﹣2℃低的是()A.﹣3℃B.﹣1℃C.1℃D.3℃2.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.3.(3分)如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A.﹣B.﹣2 C.D.4.(3分)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.(3分)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°6.(3分)计算(﹣2a3)2÷a2的结果是()A.﹣2a3B.﹣2a4C.4a3D.4a47.(3分)设a=+2.则()A.2<a<3 B.3<a<4 C.4<a<5 D.5<a<6 8.(3分)一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2,x2=﹣2﹣2 B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣29.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.10.(3分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.B.C.D.11.(3分)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定12.(3分)如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关13.(3分)计算﹣的结果为()A.B.C.D.14.(3分)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)不等式2x+1<0的解集是.16.(3分)若a+b=1,则a2﹣b2+2b﹣2=.17.(3分)点(﹣,m)和点(2,n)在直线y=2x+b上,则m 与n的大小关系是.18.(3分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.19.(3分)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.三、解答题(本大题共7小题,共63分)20.(7分)计算:+×﹣sin60°.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg组中值频数(只)0.9≤x<1.1 1.061.1≤x<1.3 1.291.3≤x<1.5 1.4a1.5≤x<1.7 1.6151.7≤x<1.9 1.88根据以上信息,解答下列问题:(1)表中a=,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω……I/A……(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?24.(9分)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A 交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m 的取值范围.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?答案一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.2.【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.3.【解答】解:点A向左移动2个单位,点B对应的数为:﹣2=﹣.故选:A.4.【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.5.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.6.【解答】解:原式=4a6÷a2=4a4.故选:D.7.【解答】解:∵2<<3,∴4<+2<5,∴4<a<5.故选:C.8.【解答】解:一元二次方程x2﹣4x﹣8=0,移项得:x2﹣4x=8,配方得:x2﹣4x+4=12,即(x﹣2)2=12,开方得:x﹣2=±2,解得:x1=2+2,x2=2﹣2.故选:B.9.【解答】解:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是=;故选:C.10.【解答】解:依题意,得:.故选:B.11.【解答】解:乙==90,甲==84,因此乙的平均数较高;S2乙=[(100﹣90)2+(85﹣90)2+(80﹣90)2+(95﹣90)2]=50,S2甲=[(85﹣84)2+(90﹣84)2+(80﹣84)2+(80﹣84)2+(85﹣84)2]=14,∵50>14,∴乙的离散程度较高,不稳定,甲的离散程度较低,比较稳定;故选:D.12.【解答】解:过点P作EF⊥AD交AD于点E,交BC于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,,,∵EF=PE+PF,AD=BC,∴S1+S2=,故选:C.13.【解答】解:原式=﹣==.故选:A.14.【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.二、填空题(本大题共5小题,每小题3分,共15分)15.【解答】解:移项,得:2x<﹣1,系数化为1,得:x<﹣,故答案为x<﹣.16.【解答】解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.17.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵﹣<2,∴m<n.故答案为m<n.18.【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=2,∴DH=EF=×2=1,故答案为:1.19.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA==,∵OB=1,∴AB=﹣1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为﹣1,故答案为:﹣1.三、解答题(本大题共7小题,共63分)20.【解答】解:原式=﹣+﹣=+﹣=.21.【解答】解:(1)a=50﹣8﹣15﹣9﹣6=12(只),补全频数分布直方图;故答案为:12;(2)3000×=480(只)答:这批鸡中质量不小于1.7kg的大约有480只;(3)==1.44(千克),∵1.44×3000×15=64800>54000,∴能脱贫,答:该村贫困户能脱贫.22.【解答】解:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα=,∴AC=AB•sinα≈5.5×0.97≈5.3,答:使用这架梯子最高可以安全攀上约5.3m的墙;(2)在Rt△ABC中,cosα==0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.23.【解答】解:(1)电流I是电阻R的反比例函数,设I=,∵R=4Ω时,I=9A∴9=,解得k=4×9=36,∴I=;(2)列表如下:R/Ω3456891012 I/A12 9 7.2 6 4.54 3.63(3)∵I≤10,I=,∴≤10,∴R≥3.6,即用电器可变电阻应控制在不低于3.6欧的范围内.24.【解答】(1)证明:连接AP,∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P=,∴∠O1AO2=90°,∵BC∥O2A,∴∠O1BC=∠O1AO2=90°,过点O2作O2D⊥BC交BC的延长线于点D,∴四边形ABDO2是矩形,∴AB=O2D,∵O1A=r1+r2,∴O2D=r2,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A=,∴∠BO1C=60°,∴O1C=2O1B=4,∴BC===2,∴S阴影===﹣=2﹣π.25.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=或a=﹣1,∴抛物线为y=x2﹣3x+或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.26.【解答】解:(1)连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN=AF,NG=CF,即MN+NG=(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠FAE+∠FEA,∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD=∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠FAE+∠ABF=∠FAE+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.观沧海两汉:曹操东临碣石,以观沧海。
2021年山东省临沂市中考数学试题及答案解析
2021年山东省临沂市中考数学试卷一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
1.﹣的相反数是()A.﹣B.﹣2C.2D.2.2021年5月15日,天问一号探测器成功着陆火星,中国成为全世界第二个实现火星着陆的国家.据测算,地球到火星的最近距离约为55000000km,将数据55000000用科学记数法表示为()A.5.5×106B.0.55×108C.5.5×107D.55×1063.计算2a3•5a3的结果是()A.10a6B.10a9C.7a3D.7a64.如图所示的几何体的主视图是()A.B.C.D.5.如图,在AB∥CD中,∠AEC=40°,CB平分∠DCE,则∠ABC的度数为()A.10°B.20°C.30°D.40°6.方程x2﹣x=56的根是()A.x1=7,x2=8B.x1=7,x2=﹣8C.x1=﹣7,x2=8D.x1=﹣7,x2=﹣87.不等式<x+1的解集在数轴上表示正确的是()A.B.C.D.8.计算(a﹣)÷(﹣b)的结果是()A.﹣B.C.﹣D.9.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.310.现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()A.B.C.D.11.如图,P A、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为()A.110°B.120°C.125°D.130°12.某工厂生产A、B两种型号的扫地机器人.B型机器人比A型机器人每小时的清扫面积多50%;清扫100m2所用的时间A型机器人比B型机器人多用40分钟.两种型号扫地机器人每小时分别清扫多少面积?若设A型扫地机器人每小时清扫xm2,根据题意可列方程为()A.=+B.+=C.+=D.=+13.已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,则a+b<2b;④若b>0,则<,其中正确的个数是()A.1B.2C.3D.414.实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.如图为表示镭的放射规律的函数图象,据此可计算32mg镭缩减为1mg所用的时间大约是()A.4860年B.6480年C.8100年D.9720年二.填空题(本大题共5小题,每小题3分,共15分)15.分解因式:2a3﹣8a=.16.比较大小:25(选填“>”、“=”、“<”).17.某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是.18.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C 的对应点C1的坐标是.19.数学知识在生产和生活中被广泛应用,下列实例所应用的最主要的几何知识,说法正确的是(只填写序号).①射击时,瞄准具的缺口、准星和射击目标在同一直线上,应用了“两点确定一条直线”;②车轮做成圆形,应用了“圆是中心对称图形”;③学校门口的伸缩门由菱形而不是其他四边形组成,应用了“菱形的对角线互相垂直平分”;④地板砖可以做成矩形,应用了“矩形对边相等”.三.解答题(本大题共7小题,共63分)20.(7分)计算|﹣|+(﹣)2﹣(+)2.21.(7分)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a=,b=,c=,d=;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.22.(7分)如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)23.(9分)已知函数y=(1)画出函数图象;列表:x……y….…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.24.(9分)如图,已知在⊙O中,==,OC与AD相交于点E.求证:(1)AD∥BC;(2)四边形BCDE为菱形.25.(11分)公路上正在行驶的甲车,发现前方20m处沿同一方向行驶的乙车后,开始减速,减速后甲车行驶的路程s(单位:m)、速度v(单位:m/s)与时间t(单位:s)的关系分别可以用二次函数和一次函数表示,其图象如图所示.(1)当甲车减速至9m/s时,它行驶的路程是多少?(2)若乙车以10m/s的速度匀速行驶,两车何时相距最近,最近距离是多少?26.(13分)如图,已知正方形ABCD,点E是BC边上一点,将△ABE沿直线AE折叠,点B落在F处,连接BF并延长,与∠DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC.(1)求证:AG=GH;(2)若AB=3,BE=1,求点D到直线BH的距离;(3)当点E在BC边上(端点除外)运动时,∠BHC的大小是否变化?为什么?2021年山东省临沂市中考数学试卷答案解析一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的。
【真题】临沂市中考数学试卷含答案解析
山东省临沂市中考数学试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(山东省临沂市)在实数﹣3,﹣1,0,1中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.【解答】解:∵﹣3<﹣1<0<1,∴最小的是﹣3.故选:A.【点评】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.2.(山东省临沂市)自10月提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为()A.1.1×103人B.1.1×107人C.1.1×108人D.11×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100万=1.1×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(山东省临沂市)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(山东省临沂市)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.5.(山东省临沂市)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(山东省临沂市)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.7.(山东省临沂市)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm2【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.(山东省临沂市)某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.【解答】解:如图所示:,一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.45000 18000 10000 5500 5000 3400 3300 1000月收入/元人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差【分析】求出数据的众数和中位数,再与25名员工的收入进行比较即可.【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为5000元;由于在25名员工中在此数据及以上的有12人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.【点评】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.10.(山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.= B.=C.= D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.11.(山东省临沂市)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.12.(山东省临沂市)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值范围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.故选:D.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出B点横坐标是解题关键.13.(山东省临沂市)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.【点评】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.14.(山东省临沂市)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,A正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.【点评】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.二、填空题(本大题共5小题,每小题3分,共15分)15.(山东省临沂市)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.【点评】本题考查了实数的性质,是基础题,主要利用了绝对值的性质.16.(山东省临沂市)已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.17.(山东省临沂市)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=4.【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=D,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点评】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.18.(山东省临沂市)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.19.(山东省临沂市)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【分析】设0.=x,则36.=100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共63分)20.(山东省临沂市)计算:(﹣).【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:原式=[﹣]•=•=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(山东省临沂市)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【分析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:(1)补充表格如下:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有9天.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(山东省临沂市)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?【分析】过B作BD⊥AC于D,解直角三角形求出AD=xm,CD=BD=xm,得出方程,求出方程的解即可.【解答】解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.23.(山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.24.(山东省临沂市)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.【分析】(1)两人相向而行,当相遇时y=0本题可解;(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到B用小时,乙走这段路程用1小时,依此可列方程.【解答】解:(1)设PQ解析式为y=kx+b把已知点P(0,10),(,)代入得解得:∴y=﹣10x+10当y=0时,x=1∴点Q的坐标为(1,0)点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为akm/h,乙的速度为bkm/h由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时∴∴∴甲、乙的速度分别为6km/h、4km/h【点评】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.25.(山东省临沂市)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先运用SAS判定△AEG≌Rt△FDG,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,∴∠EDG=∠DEG,∴DG=EG,∴FG=AG,又∵∠DGF=∠EGA,∴△AEG≌Rt△FDG(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.26.(1山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点评】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度及勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。
2020年山东省临沂市中考数学试卷(附答案解析)
2020年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列温度比﹣2℃低的是()A.﹣3℃B.﹣1℃C.1℃D.3℃2.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.3.(3分)如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A.﹣B.﹣2C.D.4.(3分)根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.(3分)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°6.(3分)计算(﹣2a3)2÷a2的结果是()A.﹣2a3B.﹣2a4C.4a3D.4a47.(3分)设a=+2.则()A.2<a<3B.3<a<4C.4<a<5D.5<a<68.(3分)一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣29.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.10.(3分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.B.C.D.11.(3分)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定12.(3分)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关13.(3分)计算﹣的结果为()A.B.C.D.14.(3分)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)不等式2x+1<0的解集是.16.(3分)若a+b=1,则a2﹣b2+2b﹣2=.17.(3分)点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.18.(3分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG 的交点.若AC=6,则DH=.19.(3分)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.三、解答题(本大题共7小题,共63分)20.(7分)计算:+×﹣sin60°.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg组中值频数(只)0.9≤x<1.1 1.061.1≤x<1.3 1.291.3≤x<1.5 1.4a1.5≤x<1.7 1.6151.7≤x<1.9 1.88根据以上信息,解答下列问题:(1)表中a=,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω……I/A……(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?24.(9分)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?参考答案一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.2.【解答】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.3.【解答】解:点A向左移动2个单位,点B对应的数为:﹣2=﹣.故选:A.4.【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.5.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.6.【解答】解:原式=4a6÷a2=4a4.故选:D.7.【解答】解:∵2<<3,∴4<+2<5,∴4<a<5.故选:C.8.【解答】解:一元二次方程x2﹣4x﹣8=0,移项得:x2﹣4x=8,配方得:x2﹣4x+4=12,即(x﹣2)2=12,开方得:x﹣2=±2,解得:x1=2+2,x2=2﹣2.故选:B.9.【解答】解:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是=;故选:C.10.【解答】解:依题意,得:.故选:B.11.【解答】解:乙==90,甲==84,因此乙的平均数较高;S2乙=[(100﹣90)2+(85﹣90)2+(80﹣90)2+(95﹣90)2]=50,S2甲=[(85﹣84)2+(90﹣84)2+(80﹣84)2+(80﹣84)2+(85﹣84)2]=14,∵50>14,∴乙的离散程度较高,不稳定,甲的离散程度较低,比较稳定;故选:D.12.【解答】解:过点P作EF⊥AD交AD于点E,交BC于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,,,∵EF=PE+PF,AD=BC,∴S1+S2=,故选:C.13.【解答】解:原式=﹣==.故选:A.14.【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.二、填空题(本大题共5小题,每小题3分,共15分)15.【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解答】解:移项,得:2x<﹣1,系数化为1,得:x<﹣,故答案为x<﹣.16.【分析】由于a+b=1,将a2﹣b2+2b﹣2变形为a+b的形式,整体代入计算即可求解.【解答】解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.17.【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵﹣<2,∴m<n.故答案为m<n.18.【分析】由三等分点的定义与平行线的性质得出BE=DE=AD,BF=GF=CG,AH=HF,DH是△AEF的中位线,易证△BEF∽△BAC,得=,解得EF=2,则DH=EF=1.【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=2,∴DH=EF=×2=1,故答案为:1.19.【分析】连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,根据勾股定理即可得到结论.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA==,∵OB=1,∴AB=﹣1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为﹣1,故答案为:﹣1.三、解答题(本大题共7小题,共63分)20.【分析】直接利用二次根式的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=﹣+﹣=+﹣=.21.【分析】(1)根据频数之和为50,可求出a的值;进而补全频数分布直方图;(2)样本估计总体,样本中,鸡的质量不小于1.7kg所占的百分比为,因此估计总体3000只的是鸡的质量不小于1.7kg的只数;(3)计算样本平均数,估计总体平均数,计算出总收入,比较得出答案.【解答】解:(1)a=50﹣8﹣15﹣9﹣6=12(只),补全频数分布直方图;故答案为:12;(2)3000×=480(只)答:这批鸡中质量不小于1.7kg的大约有480只;(3)==1.44(千克),∵1.44×3000×15=64800>54000,∴能脱贫,答:该村贫困户能脱贫.22.【分析】(1)根据正弦的定义求出AC,得到答案;(2)根据余弦的定义求出α,根据题意判断即可.【解答】解:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα=,∴AC=AB•sinα≈5.5×0.97≈5.3,答:使用这架梯子最高可以安全攀上约5.3m的墙;(2)在Rt△ABC中,cosα==0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.23.【分析】(1)先由电流I是电阻R的反比例函数,可设I=,将R=4Ω时,I=9A代入利用待定系数法即可求出这个反比例函数的解析式;(2)将R的值分别代入(1)中所求的函数解析式,即可求出对应的I值,从而完成图表;(3)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.【解答】解:(1)电流I是电阻R的反比例函数,设I=,∵R=4Ω时,I=9A∴9=,解得k=4×9=36,∴I=(R>0);(2)列表如下:R/Ω…3456891012…I/A…1297.26 4.54 3.63…(3)∵I≤10,I=,∴≤10,∴R≥3.6,即用电器可变电阻应控制在不低于3.6欧的范围内.24.【分析】(1)由题意得出O1P=AP=O2P=,则可得出∠O1AO2=90°,由平行线的性质可得出∠O1BC=90°,过点O2作O2D⊥BC交BC的延长线于点D,证得O2D=r2,则可得出结论;(2)由直角三角形的性质求出∠BO1C=60°,由勾股定理求出BC长,则可根据S阴影=求出答案.【解答】(1)证明:连接AP,∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P=,∴∠O1AO2=90°,∵BC∥O2A,∴∠O1BC=∠O1AO2=90°,过点O2作O2D⊥BC交BC的延长线于点D,∴四边形ABDO2是矩形,∴AB=O2D,∵O1A=r1+r2,∴O2D=r2,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A=,∴∠BO1C=60°,∴O1C=2O1B=4,∴BC===2,∴S 阴影===﹣=2﹣π.25.【分析】(1)把解析式化成顶点式即可求得;(2)根据顶点式求得坐标,根据题意得到关于a的方程解方程求得a的值,从而求得抛物线的解析式;(3)根据对称轴得到其对称点,再根据二次函数的增减性写出m的取值.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=或a=﹣1,∴抛物线为y=x2﹣3x+或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.26.【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF 即可得证;(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG 的最小值为AC的一半,即可求解;(3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠F AE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠F AE+∠ABF=∠FEA+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.【解答】解:(1)连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN=AF,NG=CF,即MN+NG=(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠FEA+∠FEA,∴∠AFC=∠FCE+∠FEC+∠F AE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD=∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠F AE+∠ABF=∠FEA+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.。
山东省临沂市2020年中考数学试题(Word版,含答案与解析)
山东省临沂市2020年中考数学试卷一、单选题(共14题;共28分)1.下列温度比 −2℃ 低的是( )A. −3℃B. −1℃C. 1℃D. 3℃【答案】 A【考点】正数和负数的认识及应用【解析】【解答】解:根据两个负数,绝对值大的反而小可知-3<-2,所以比-2℃低的温度是-3℃.故答案为:A .【分析】先根据正数都大于0,负数都小于0,可排除C 、D ,再根据两个负数,绝对值大的反而小,可得比-2小的数是-3.2.下列交通标志中,是中心对称图形的是( )A. B. C. D.【答案】 B【考点】中心对称及中心对称图形【解析】【解答】解:A 、不是中心对称图形,不符合题意;B 、是中心对称图形,故本选项符合题意;C 、不是中心对称图形,不符合题意;D 、不是中心对称图形,故本选项不符合题意.故答案为:B .【分析】根据中心对称图形的定义和交通标志的图案特点即可解答.3.如图,数轴上点A 对应的数是 32 ,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A. −12B. -2C. 72D. 12【答案】 A【考点】实数在数轴上的表示,平移的性质【解析】【解答】解:∵将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数为: 32 -2= −12 ,故答案为:A.【分析】数轴上向左平移2个单位,相当于原数减2,据此解答.4.根据图中三视图可知该几何体是()A. 三棱锥B. 三棱柱C. 四棱锥D. 四棱柱【答案】B【考点】由三视图判断几何体【解析】【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形可得为三棱柱.故答案为:B.【分析】根据主视图和左视图为长方形可得此几何体为柱体,再根据俯视图为三角形可得为三棱柱.5.如图,在△ABC中,AB=AC,∠A=40°,CD//AB,则∠BCD=()A. 40°B. 50°C. 60°D. 70°【答案】 D【考点】平行线的性质,等腰三角形的性质【解析】【解答】解:∵AB=AC,∠A=40°,∴∠B=∠ACB=70°,∵CD∥AB,∴∠BCD=∠B=70°,故答案为:D.【分析】先根据等腰三角形的性质得到∠B的度数,再根据平行线的性质得到∠BCD.6.计算(−2a3)2÷a2的结果是()A. −2a3B. −2a4C. 4a3D. 4a4【答案】 D【考点】同底数幂的除法,积的乘方,幂的乘方【解析】【解答】解:(−2a3)2÷a2= 4a6÷a2= 4a4,故答案为:D.【分析】根据积的乘方和幂的乘方以及同底数幂的除法运算法则即可求出答案.7.设a=√7+2,则()A. 2<a<3B. 3<a<4C. 4<a<5D. 5<a<6【答案】C【考点】二次根式的性质与化简,二次根式的化简求值【解析】【解答】解:∵4<7<9,∴2<√7<3,∴4<√7+2<5,即4<a<5,故答案为:C.【分析】先估计√7的范围,再得出a的范围即可.8.一元二次方程x2−4x−8=0的解是()A. x1=−2+2√3,x2=−2−2√3B. x1=2+2√3,x2=2−2√3C. x1=2+2√2,x2=2−2√2D. x1=2√3,x2=−2√3【答案】B【考点】一元二次方程的根【解析】【解答】解:∵x2−4x−8=0中,a=1,b=-4,c=-8,∴△=16-4×1×(-8)=48>0,∴方程有两个不相等的实数根∴x= 4±4√32=2±2√3,即x1=2+2√3,x2=2−2√3,故答案为:B.【分析】得出方程各项系数,再利用公式法求解即可.9.从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A. 112B. 18C. 16D. 12【答案】C【考点】概率公式【解析】【解答】解:列表得:所有等可能的情况有12种,其中恰好抽到马鸣和杨豪的情况有2种,恰好抽到马鸣和杨豪的概率是 212=16 ,故答案为:C.【分析】列表得出所有等可能的情况数,找出所选两人恰好是马鸣和杨豪的情况数,即可求出所求的概率.10.《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x 人,y 辆车,可列方程组为( ) A. {x 3=y +2x 2+9=y B. {x 3=y −2x−92=y C. {x 3=y +2x−92=y D. {x 3=y −2x 2−9=y【答案】 B【考点】二元一次方程组的其他应用【解析】【解答】解:设有x 人,y 辆车,依题意得: {x3=y −2x−92=y ,故答案为:B .【分析】根据若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,列二元一次方程组. 11.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是( )A. 甲平均分高,成绩稳定B. 甲平均分高,成绩不稳定C. 乙平均分高,成绩稳定D. 乙平均分高,成绩不稳定【答案】 A【考点】平均数及其计算【解析】【解答】解:x甲=85+90+80+85+805=84,x乙=100+85+90+80+955=90,S2甲=15×[(85−84)2+(90−84)2+(80−84)2+(85−84)2+(80−842]=14,S2乙=15×[(100−90)2+(85−90)2+(90−90)2+(80−90)2+(95−902]=50,可得乙的平均分高,成绩不稳定.故答案为:D.【分析】分别求出甲、乙的平均数、方差,比较即可得到答案.12.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A. S1+S2>S2B. S1+S2<S2C. S1+S2=S2D. S1+S2的大小与P点位置有关【答案】C【考点】三角形的面积【解析】【解答】解:如图,过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,根据平行四边形的性质可知PE⊥BC,AD=BC,∴S1= 12AD×PF,S2= 12BC×PE,∴S1+ S2= 12AD×PF+ 12BC×PE= 12AD×(PE+PE)= 12 AD×EF= 12 S ,故答案为:C .【分析】过点P 作AD 的垂线PF ,交AD 于F ,再延长FP 交BC 于点E ,表示出S 1+ S 2 , 得到 S 1+S 2=S 2 即可.13.计算 x x−1−y y−1 的结果为( ) A. −x+y (x−1)(y−1) B. x−y (x−1)(y−1) C. −x−y (x−1)(y−1) D. x+y (x−1)(y−1)【答案】 A【考点】分式的混合运算,利用分式运算化简求值【解析】【解答】解: x x−1−y y−1=x(y−1)−y(x−1)(x−1)(y−1) = xy−x−xy+y(x−1)(y−1)= −x+y (x−1)(y−1)故答案为:A.【分析】利用异分母分式的加减法计算即可.14.如图,在 ⊙O 中, AB 为直径, ∠AOC =80° ,点D 为弦 AC 的中点,点E 为 BC⌢ 上任意一点,则 ∠CED 的大小可能是( )A. 10°B. 20°C. 30°D. 40°【答案】 B【考点】等腰三角形的性质,圆心角、弧、弦的关系【解析】【解答】解:连接OD 、OE∵OC=OA∴△OAC是等腰三角形∵∠AOC=80°,点D为弦AC的中点∴∠DOC=40°,∠BOC=100°设∠BOE=x,则∠COE=100°-x,∠DOE=100°-x+40°∵OC=OE,∠COE=100°-x∴∠OEC= 180∘−(100∘−x)2=40∘+x2∵OD=OE,∠DOE=100°-x+40°=140°-x∴∠OED= 180∘−(140∘−x)2=20∘+x2∴∠CED=∠OEC-∠OED= (40∘+x2)−(20∘+x2)=20°.故答案为B.【分析】连接OD、OE,先求出∠COD=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°-x,∠DOE=100°-x+40°;然后运用等腰三角形的性质分别求得∠OED和∠COE,最后根据线段的和差即可解答.二、填空题(共5题;共5分)15.不等式2x+1<0的解集是________.【答案】x< −12【考点】不等式的解及解集【解析】【解答】解:移项,得:2x<-1,系数化成1得:x< −12,故答案为:x< −12.【分析】移项系数化成1即可求解.16.若a+b=1,则a2−b2+2b−2=________.【答案】-1【考点】代数式求值【解析】【解答】解:a2−b2+2b−2= (a+b)(a−b)+2b−2将a+b=1代入,原式= a−b+2b−2= a+b−2=1-2=-1故答案为:-1.【分析】将原式变形为(a+b)(a−b)+2b−2,再将a+b=1代入求值即可.,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是________.17.点(−12【答案】m<n【考点】一次函数的性质【解析】【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−1<2,2∴m<n.故答案为:m<n.【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.18.如图,在△ABC中,D,E为边AB的三等分点,EF//DG//AC,H为AF与DG的交点.若AC=6,则DH=________.【答案】1【考点】平行线分线段成比例,三角形的中位线定理【解析】【解答】解:∵D,E为边AB的三等分点,EF//DG//AC,∴EF:DG:AC=1:2:3∵AC=6,∴EF=2,EF=1由中位线定理得到,在△AEF中,DH平行且等于12故答案是:1【分析】利用平行线分线段成比例得到EF=2,再利用中位线得到DH的长即可.19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点 A(2,1) 到以原点为圆心,以1为半径的圆的距离为________.【答案】 √5−1【考点】勾股定理,圆心角、弧、弦的关系【解析】【解答】解:根据题意可得:点到圆的距离为:该点与圆上各点的连线中,最短的线段长度,连接OA ,与圆O 交于点B ,可知:点A 和圆O 上点B 之间的连线最短,∵A (2,1),∴OA= √22+12 = √5 ,∵圆O 的半径为1,∴AB=OA-OB= √5−1 ,∴点 A(2,1) 到以原点为圆心,以1为半径的圆的距离为 √5−1 ,故答案为: √5−1 .【分析】连接OA ,与圆O 交于点B ,根据题干中的概念得到点到圆的距离即为OB ,再求出OA ,结合圆O 半径可得结果.三、解答题(共7题;共81分)20.计算: √(13−12)2+√22√6−sin60° . 【答案】 解: √(13−12)2+√22×√6−sin60°= √(−16)2+√22×√66−√32 = 16+√36−√32= −√33+16【考点】二次根式的性质与化简,二次根式的化简求值【解析】【分析】利用二次根式的性质,二次根式的乘法,特殊角的正弦值分别化简各项,再作加减法即可.21.2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场,经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a=________,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫因户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?【答案】(1)12;解:频数分布图如下:(2)解:850×3000=480(只);(3)解:650×1.0+950×1.2+1250×1.4+1550×1.6+850×1.8=1.44(千克),1.44×3000×15=64800(元),∵64800>54000,∴该村贫困户能脱贫.【考点】用样本估计总体,条形统计图【解析】【解答】解:(1)50−6−9−15−8=12(只);故答案为:12;【分析】(1)用总数量减去其它组的数量即为a的值;(2)先求出随机抽取的50只中质量不小于1.7kg 的鸡占的比值,再乘以3000即可;(3)先求出50只鸡的平均质量,根据市场价格,利润是15元/kg,再利用每千克利润×只数×每只的平均质量求出总利润,再进行比较即可.22.如图.要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足60°⩽α⩽75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°=0.97,cos75°=0.26,tan75°=3.73,sin23.6°=0.40,cos56.4°= 0.40,tan21.8°=0.40)【答案】(1)解:当∠ABC=75°时,梯子能安全使用且它的顶端最高;在Rt△ABC中,有sin∠ABC= ACAB∴AC=AB•sin∠ABC=5.5×sin75°≈5.3;答:安全使用这个梯子时,梯子的顶端距离地面的最大高度AC约为5.3m(2)解:在Rt△ABC中,有cos∠ABC= BCAB = 2.25.5=0.4由题目给的参考数据cos56.4°=0.40,可知∠ABC=56.4°∵56.4°<60°,不在安全角度内;∴这时人不能安全使用这个梯子,答:人不能够安全使用这个梯子.【考点】锐角三角函数的定义,解直角三角形的应用【解析】【分析】(1)若使AC最长,且在安全使用的范围内,则∠ABC的度数最大,即∠ABC=75°;可通过解直角三角形求出此时AC的长.(2)当BC=2.2m时,可在Rt△BAC中,求出∠ABC的余弦值,进而可得出∠ABC的度数,然后判断这个角度是否在安全使用的范围内即可.23.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A.那么用电器可变电阻应控制在什么范围内?【答案】(1)解:电流I是电阻R的反比例函数,设I=k,R∵当R=4Ω时,I=9A,代入,得:k=4×9=36,∴I=36;R(2)解:填表如下:函数图像如下:(3)解:∵I≤10,I=36,R∴36≤10,R∴R≥3.6,即用电器可变电阻应控制在3.6 Ω以上的范围内.【考点】反比例函数的图象,反比例函数的性质,根据当R=4Ω时,I=9A可【解析】【分析】(1)先由电流I是电阻R的反比例函数,可设I=kR求出这个反比例函数的解析式;(2)将R的值分别代入函数解析式,即可求出对应的I值,从而完成表格和函数图像;(3)将I≤10代入函数解析式即可确定电阻的取值范围.24.已知⊙O1的半径为r1,⊙O2的半径为r2,以O1为圆心,以r1+r2的长为半径画弧,再以O1O2的长为半径画弧,两弧交于点A,连接Q1A,O2A,O1A交线段O1O2的中点P为圆心,以12⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【答案】(1)解:由作图过程可得:AP=O1P=O2P= 1O1O2,AO1=AB+BO1= r1+r2,2∴∠PAO1=PO1A,∠PAO2=∠PO2A,AB= r2,而∠PAO1+∠PO1A+∠PAO2+∠PO2A=180°,∴∠PAO1+∠PAO2=90°,即AO2⊥AO1,∵BC∥AO2,∴O1B⊥BC,即BC与圆O1相切,过点O2作O2D⊥BC,交BC于点D,可知四边形ABDO2为矩形,∴AB=O2D= r2,而圆O2的半径为r2,∴点D在圆O2上,即BC是⊙O2的切线;(2)解:∵AO2∥BC,∴△AO1O2∽△BO1C,∴AO1BO1=O1O2O1C,∵r1=2,r2=1,O1O2=6,即AO1= r1+r2=3,BO1=2,∴32=6O1C,∴O1C=4,∵BO1⊥BC,∴cos∠BO1C= BO1CO1=24=12,∴∠BO1C=60°,∴BC= √O1C2−O1B2=2√3,∴S阴影= S△BO1C - S扇形BO1E= 12×2√3×2−60×π×22360= 2√3−2π3【考点】三角形内角和定理,等腰三角形的性质,矩形的判定与性质【解析】【分析】(1)过点O2作O2D⊥BC,交BC于点D,根据作图过程可得AP=O1P=O2P,利用等腰三角形的性质和三角形内角和证明AO2⊥AO1,再根据BC∥AO2,证明四边形ABDO2为矩形,得到O2D= r2,点D在圆O2上,可得结论;(2)证明△AO1O2∽△BO1C,求出O1C,利用△BO1C的面积减去扇形BO1E的面积即可.25.已知抛物线y=ax2−2ax−3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.【答案】(1)解:∵y=ax2−2ax−3+2a2,∴y=a(x−1)2−a−3+2a2,∴其对称轴为:x=1.(2)解:由(1)知抛物线的顶点坐标为:(1,2a2−a−3),∵抛物线顶点在x轴上,∴2a2−a−3=0,解得:a=32或a=−1,当a=32时,其解析式为:y=32x2−3x+32,当a=−1时,其解析式为:y=−x2+2x−1,综上,二次函数解析式为:y=32x2−3x+32或y=−x2+2x−1.(3)解:由(1)知,抛物线的对称轴为x=1,∴Q(3,y2)关于x=1的对称点为(−1,y2),当函数解析式为y=32x2−3x+32时,其开口方向向上,∵P(m,y1)且y1<y2,∴−1<m<3;当函数解析式为y=−x2+2x−1时,其开口方向向下,∵P(m,y1)且y1<y2,∴m<−1或m>3.【考点】轴对称的性质,二次函数y=ax^2+bx+c的图象,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m的取值范围.26.如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?【答案】(1)解:连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)解:连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN= 12AF,NG= 12CF,即MN+NG= 12(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为12;(3)解:不变,理由是:∵∠EGF=90°,点N为EF中点,∴GN=FN=EN,∵AF=CF=EF,N为EF中点,∴MN=GN=FN=EN,∴△FNG为等边三角形,即∠FNG=60°,∵NG=NE,∴∠FNG=∠NGE+∠CEF=60°,∴∠CEF=30°,为定值.【考点】三角形的外角性质,线段垂直平分线的性质,等边三角形的判定与性质,菱形的性质【解析】【分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG的最小值为AC 的一半,即可求解;(3)证明△FNG为等边三角形,再结合NG=NE,最后利用外角性质得到∠CEF.。
2021年山东省临沂市数学中考真题含答案解析
2021年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2015•临沂)的绝对值是( ) A .B .C .2D .﹣2 2.(3分)(2015•临沂)如图,直线a ∥b,∠1=60°,∠2=40°,则∠3等于( )A .40°B .60°C .80°D .100° 3.(3分)(2015•临沂)下列计算正确的是( ) A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 4 4.(3分)(2015•临沂)某市6月某周内每天的最高气温数据如下(单位:℃):24 26 29 26 29 32 29则这组数据的众数和中位数分别是( ) A .29,29B .26,26C .26,29D .29,32 5.(3分)(2015•临沂)如图所示,该几何体的主视图是( )A .B .C .D .6.(3分)(2015•临沂)不等式组的解集,在数轴上表示正确的是( )A .B .C .D .7.(3分)(2015•临沂)一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是( ) A.B.C.D.18.(3分)(2015•临沂)如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于( ) A.50°B.80°C.100°D.130°9.(3分)(2015•临沂)多项式mx2﹣m与多项式x2﹣2x+1的公因式是( ) A.x﹣1B.x+1C.x2﹣1D.(x﹣1)210.(3分)(2015•临沂)已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于小时速度v(单位:千米/小时)的函数关系式是( ) A.t=20v B.t=C.t=D.t=11.(3分)(2015•临沂)观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2015个单项式是( ) A.2015x2015B.4029x2014C.4029x2015D.4031x201512.(3分)(2015•临沂)如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( ) A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE13.(3分)(2015•临沂)要将抛物线y=x2+2x+3平移后得到抛物线y=x2,下列平移方法正确的是( ) A.向左平移1个单位,再向上平移2个单位 B.向左平移1个单位,再向下平移2个单位 C.向右平移1个单位,再向上平移2个单位 D.向右平移1个单位,再向下平移2个单位14.(3分)(2015•临沂)在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是( ) A.b>2B.﹣2<b<2C.b>2或b<﹣2D.b<﹣2二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)(2015•临沂)比较大小:2 (填“<”、“=”、“>”).16.(3分)(2015•临沂)计算:﹣= .17.(3分)(2015•临沂)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是 .18.(3分)(2015•临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD与CE相交于点O,则= .19.(3分)(2015•临沂)定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有 (填上所有正确答案的序号)①y=2x。
【数学】2019年山东省临沂市中考真题(解析版)
2019年山东省临沂市中考数学试卷一、选择题(每小题3分,共42分)1.|﹣2019|=()A.2019 B.﹣2019 C.D.﹣【答案】A【解析】|﹣2019|=2019.故选:A.2.如图,a∥b,若∠1=100°,则∠2的度数是()A.110°B.80°C.70°D.60°【答案】B【解析】∵a∥b,∴∠1=∠3=100°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=80°,故选:B.3.不等式1﹣2x≥0的解集是()A.x≥2 B.x≥C.x≤2 D.x【答案】D【解析】移项,得﹣2x≥﹣1,系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.4.如图所示,正三棱柱的左视图()A. B. C. D.【答案】A【解析】主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选:A.5.将a3b﹣ab进行因式分解,正确的是()A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【答案】C【解析】a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.6.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5 B.1 C.1.5 D.2【答案】B【解析】∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.7.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2﹣xy2=xy2【答案】C【解析】选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确,选项B,积的乘方,(﹣mn3)2=m2n6,选项正确,选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误,选项D,合并同类项,xy2﹣xy2=xy2﹣xy2=xy2,选项正确,故选:C.8.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是()A.B.C.D.【答案】B【解析】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,∴一辆向右转,一辆向左转的概率为;故选:B.9.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【答案】A【解析】原式===.故选:A.10.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:则这周最高气温的平均值是()A.26.25℃B.27℃C.28℃D.29℃【答案】B【解析】这周最高气温的平均值为(1×22+2×26+1×28+3×29)=27(℃);故选:B.11.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【答案】A【解析】∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+,故选:A.12.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【答案】D【解析】∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.13.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND 【答案】A【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵对角线BD上的两点M、N满足BM=DN,∴OB﹣BM=OD﹣DN,即OM=ON,∴四边形AMCN是平行四边形,∵OM=AC,∴MN=AC,∴四边形AMCN是矩形.故选:A.14.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③【答案】D【解析】①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=﹣,∴函数解析式为h=﹣(t﹣3)2+40,把h=30代入解析式得,30=﹣(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.二、填空题:(每题3分,共15分)15.计算:×﹣tan45°=﹣1.【解析】×﹣tan45°=﹣1=﹣1,故答案为:﹣1.16.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【解析】∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).17.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11块.【解析】设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.18.一般地,如果x4=a(a≥0),则称x为a的四次方根,一个正数a的四次方根有两个.它们互为相反数,记为±,若=10,则m=±10.【解析】∵=10,∴m4=104,∴m=±10.故答案为:±10.19.如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是8.【解析】∵DC⊥BC,∴∠BCD=90°,∵∠ACB=120°,∴∠ACD=30°,延长CD到H使DH=CD,∵D为AB的中点,∴AD=BD,在△ADH与△BCD中,,∴△ADH≌△BCD(SAS),∴AH=BC=4,∠H=∠BCD=90°,∵∠ACH=30°,∴CH=AH=4,∴CD=2,∴△ABC的面积=2S△BCD=2××4×2=8,故答案为:8.三、解答题:(共63分)20.(7分)解方程:=.解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.21.(7分)争创全国文明城市,从我做起,某学校在七年级开设了文明礼仪校本课程,为了解学生的学习情况,学校随机抽取30名学生进行测试,成绩如下(单位:分)78 83 86 86 90 94 97 92 89 86 84 81 81 84 86 88 92 89 86 83 81 81 85 86 89 93 93 89 85 93整理上面的数据得到频数分布表和频数分布直方图:回答下列问题:(1)以上30个数据中,中位数是86;频数分布表中a=6;b=6;(2)补全频数分布直方图;(3)若成绩不低于86分为优秀,估计该校七年级300名学生中,达到优秀等级的人数.解:(1)根据题意排列得:78,81,81,81,81,83,83,84,84,85,85,86,86,86,86,86,86,88,89,89,89,89,90,92,92,93,93,93,94,97,可得中位数为86,频数分布表中a=6,b=6;故答案为:86;6;6;(2)补全频数直方图,如图所示:(3)根据题意得:300×=190,则该校七年级300名学生中,达到优秀等级的人数为190人.22.(7分)鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD==2km,即BD的长是2km.23.(9分)如图,AB是⊙O的直径,C是⊙O上一点,过点O作OD⊥AB,交BC的延长线于D,交AC于点E,F是DE的中点,连接CF.(1)求证:CF是⊙O的切线.(2)若∠A=22.5°,求证:AC=DC.(1)证明:∵AB是⊙O的直径,∴∠ACB=∠ACD=90°,∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE,∵OA=OC,∴∠OCA=∠OAC,∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∴CF与⊙O相切;(2)解:∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°,∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°,∵AO=BO,∴AD=BD,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=∠ADC=45°,∴AC=CD.24.(9分)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得,解得:k=,b=14,y与x的关系式为:y=x+14,经验证(2,15),(4,16),(6,17)都满足y=x+14,因此放水前y与x的关系式为:y=x+14(0<x<8),观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×10.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:(x>8),所以开闸放水前和放水后最符合表中数据的函数解析式为:y=x+14(0<x<8)和(x>8).(3)当y=6时,6=,解得:x=24,因此预计24h水位达到6m.25.(11分)如图,在正方形ABCD中,E是DC边上一点,(与D、C不重合),连接AE,将△ADE沿AE所在的直线折叠得到△AFE,延长EF交BC于G,连接AG,作GH⊥AG,与AE的延长线交于点H,连接CH.显然AE是∠DAF的平分线,EA是∠DEF的平分线.仔细观察,请逐一找出图中其他的角平分线(仅限于小于180°的角平分线),并说明理由.解:过点H作HN⊥BM于N,则∠HNC=90°,∵四边形ABCD为正方形,∴AD=AB=BC,∠D=∠DAB=∠B=∠DCB=∠DCM=90°,①∵将△ADE沿AE所在的直线折叠得到△AFE,∴△ADE≌△AFE,∴∠D=∠AFE=∠AFG=90°,AD=AF,∠DAE=∠F AE,∴AF=AB,又∵AG=AG,∴Rt△ABG≌Rt△AFG(HL),∴∠BAG=∠F AG,∠AGB=∠AGF,∴AG是∠BAF的平分线,GA是∠BGF的平分线;②由①知,∠DAE=∠F AE,∠BAG=∠F AG,又∵∠BAD=90°,∴∠GAF+∠EAF=×90°=45°,即∠GAH=45°,∵GH⊥AG,∴∠GHA=90°﹣∠GAH=45°,∴△AGH为等腰直角三角形,∴AG=GH,∵∠AGB+∠BAG=90°,∠AGB+∠HGN=90°,∴∠BAG=∠NGH,又∵∠B=∠HNG=90°,AG=GH,∴△ABG≌△GNH(AAS),∴BG=NH,AB=GN,∴BC=GN,∵BC﹣CG=GN﹣CG,∴BG=CN,∴CN=HN,∵∠DCM=90°,∴∠NCH=∠NHC=×90°=45°,∴∠DCH=∠DCM﹣∠NCH=45°,∴∠DCH=∠NCH,∴CH是∠DCN的平分线;③∵∠AGB+∠HGN=90°,∠AGF+∠EGH=90°,由①知,∠AGB=∠AGF,∴∠HGN=∠EGH,∴GH是∠EGM的平分线;综上所述,AG是∠BAF的平分线,GA是∠BGF的平分线,CH是∠DCN的平分线,GH 是∠EGM的平分线.26.(13分)在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a<0)经过点A、B.(1)求a、b满足的关系式及c的值.(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围.(3)如图,当a=﹣1时,在抛物线上是否存在点P,使△P AB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由.解:(1)y=x+2,令x=0,则y=2,令y=0,则x=﹣2,故点A、B的坐标分别为(﹣2,0)、(0,2),则c=2,则函数表达式为:y=ax2+bx+2,将点A坐标代入上式并整理得:b=2a+1;(2)当x<0时,若y=ax2+bx+c(a<0)的函数值随x的增大而增大,则函数对称轴x=﹣≥0,而b=2a+1,即﹣≥0,解得:a,故:a的取值范围为:﹣≤a<0;(3)当a=﹣1时,二次函数表达式为:y=﹣x2﹣x+2,过点P作直线l∥AB,作PQ∥y轴交BA于点Q,作PH⊥AB于点H,∵OA=OB,∴∠BAO=∠PQH=45°,S△P AB=×AB×PH=2×PQ×=1,则y P﹣y Q=1,在直线AB下方作直线m,使直线m和l与直线AB等距离,则直线m与抛物线两个交点坐标,分别与点AB组成的三角形的面积也为1,故:|y P﹣y Q|=1,设点P(x,﹣x2﹣x+2),则点Q(x,x+2),即﹣x2﹣x+2﹣x﹣2=±1,解得:x=﹣1或﹣1,故点P(﹣1,2)或(﹣1,1)或(﹣1﹣,﹣).。
2022年山东省临沂市中考数学试卷(解析版)
2022年山东省临沂市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•临沂)﹣2的相反数是()A.±2B.﹣C.2D.2.(3分)(2022•临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+14.(3分)(2022•临沂)如图,A,B位于数轴上原点两侧,且OB=2OA.若点B表示的数是6,则点A表示的数是()A.﹣2B.﹣3C.﹣4D.﹣55.(3分)(2022•临沂)如图所示的三棱柱的展开图不可能是()A.B.C.D.6.(3分)(2022•临沂)如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是()A.900°B.720°C.540°D.360°7.(3分)(2022•临沂)满足m>|﹣1|的整数m的值可能是()A.3B.2C.1D.08.(3分)(2022•临沂)方程x2﹣2x﹣24=0的根是()A.x1=6,x2=4B.x1=6,x2=﹣4C.x1=﹣6,x2=4D.x1=﹣6,x2=﹣49.(3分)(2022•临沂)为做好疫情防控工作,某学校门口设置了A,B两条体温快速检测通道,该校同学王明和李强均从A通道入校的概率是()A.B.C.D.10.(3分)(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=()A.B.C.D.11.(3分)(2022•临沂)将5kg浓度为98%的酒精,稀释为75%的酒精.设需要加水xkg,根据题意可列方程为()A.0.98×5=0.75x B.=0.75C.0.75×5=0.98x D.=0.9812.(3分)(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上B.A城与B城的距离是300kmC.乙车的平均速度是80km/hD.甲车比乙车早到B城二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)(2022•临沂)比较大小:(填“>”,“<”或“=”).14.(3分)(2022•临沂)因式分解:2x2﹣4x+2=.15.(3分)(2022•临沂)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别是A (0,2),B(2,﹣1).平移△ABC得到△A'B'C',若点A的对应点A'的坐标为(﹣1,0),则点B的对应点B'的坐标是.16.(3分)(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠F AN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是(填上所有符合要求的条件的序号).三、解答题(本大题共7小题,共72分)17.(12分)(2022•临沂)计算:(1)﹣23÷×(﹣);(2)﹣.18.(8分)(2022•临沂)省农科院为某县选育小麦种子,为了解种子的产量及产量的稳定性,在该县的10个乡镇中,每个乡镇选择两块自然条件相近的实验田分别种植甲、乙两种小麦,得到其亩产量数据如下(单位:kg):甲种小麦:804 818 802 816 806 811 818 811 803 819乙种小麦:804 811 806 810 802 812 814 804 807 809画以上甲种小麦数据的频数分布直方图,甲乙两种小麦数据的折线图,得到图1,图2(1)图1中,a=,b=;(2)根据图1,若该县选择种植甲种小麦,则其亩产量W(单位:kg)落在内的可能性最大;A.800≤W<805B.805≤W<810C.810≤W<815D.815≤W<820(3)观察图2,从小麦的产量或产量的稳定性的角度,你认为农科院应推荐种植哪种小麦?简述理由.19.(8分)(2022•临沂)如图是一座独塔双索结构的斜拉索大桥,主塔采用倒“Y”字形设计.某学习小组利用课余时间测量主塔顶端到桥面的距离.勘测记录如下表:活动内容测量主塔顶端到桥面的距离成员组长:×××组员××××××××××××测量工具测角仪,皮尺等测量示意图说明:左图为斜拉索桥的侧面示意图,点A,C,D,B在同一条直线上,EF⊥AB,点A,C分别与点B,D关于直线EF对称.测量数据∠A的大小28°AC的长度84m CD的长度12m请利用表中提供的信息,求主塔顶端E到AB的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm),确定支点O,并用细麻绳固定,在支点O左侧2cm的A处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤驼挂在支点O右侧的B处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB的长度随之变化.设重物的质量为xkg,OB的长为ycm.写出y关于x的函数解析式;若0<y<48,求x的取值范围.(2)调换秤砣与重物的位置,把秤驼挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg……0.250.5124……y/cm…………21.(10分)(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.22.(12分)(2022•临沂)已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点P(端点除外),连接PD.将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点P在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.23.(12分)(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x 轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?2022年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•临沂)﹣2的相反数是()A.±2B.﹣C.2D.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,熟记相反数的定义是解答本题的关键.2.(3分)(2022•临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.不是轴对称图形,是中心对称图形,故本选项不符合题意;C.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.(3分)(2022•临沂)计算a(a+1)﹣a的结果是()A.1B.a2C.a2+2a D.a2﹣a+1【分析】去括号后合并同类项即可得出结论.【解答】解:a(a+1)﹣a=a2+a﹣a=a2,故选:B.【点评】本题主要考查了整式的混合运算,正确使用去括号的法则是解题的关键.4.(3分)(2022•临沂)如图,A,B位于数轴上原点两侧,且OB=2OA.若点B表示的数是6,则点A表示的数是()A.﹣2B.﹣3C.﹣4D.﹣5【分析】根据条件求出OA的长度,点A在原点的左侧,点A为负数,从而得出答案.【解答】解:∵点B表示的数是6,∴OB=6,∵OB=2OA,∴OA=3,∴点A表示的数为﹣3,故选:B.【点评】本题考查了实数与数轴,根据条件求出OA的长度是解题的关键.5.(3分)(2022•临沂)如图所示的三棱柱的展开图不可能是()A.B.C.D.【分析】根据题意和各个选项中的图形,可以判断哪个图形不可能是三棱柱的展开图.【解答】解:如图所示的三棱柱的展开图不可能是,故选:D.【点评】本题考查几何体的展开图,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)(2022•临沂)如图是某一水塘边的警示牌,牌面是五边形,这个五边形的内角和是()A.900°B.720°C.540°D.360°【分析】根据多边形的内角和公式:(n﹣2)•180°即可得出答案.【解答】解:(5﹣2)×180°=540°,故选:C.【点评】本题考查了多边形内角与外角,掌握多边形的内角和公式:(n﹣2)•180°是解题的关键.7.(3分)(2022•临沂)满足m>|﹣1|的整数m的值可能是()A.3B.2C.1D.0【分析】用夹逼法估算无理数的大小,根据正数的绝对值等于它本身得到2<|﹣1|<3,从而得出答案.【解答】解:∵9<10<16,∴3<<4,∴2<﹣1<3,∴2<|﹣1|<3,∴m可能是3,故选:A.【点评】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.8.(3分)(2022•临沂)方程x2﹣2x﹣24=0的根是()A.x1=6,x2=4B.x1=6,x2=﹣4C.x1=﹣6,x2=4D.x1=﹣6,x2=﹣4【分析】利用十字相乘法因式分解即可.【解答】解:x2﹣2x﹣24=0,(x﹣6)(x+4)=0,x﹣6=0或x+4=0,解得x1=6,x2=﹣4,故选:B.【点评】本题考查了利用因式分解法解一元二次方程,掌握十字相乘法因式分解是解答本题的关键.9.(3分)(2022•临沂)为做好疫情防控工作,某学校门口设置了A,B两条体温快速检测通道,该校同学王明和李强均从A通道入校的概率是()A.B.C.D.【分析】画树状图,两名同学过通道的可能共有四种,然后利用概率公式求解即可.【解答】解:画树状图如图:由图可知,共有4种等可能的结果,其中王明与李强均从A通道入校的结果只有1种.∴王明和李强均从A通道入校的概率为.故选:A.【点评】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=()A.B.C.D.【分析】利用平行线分线段成比例定理解答即可.【解答】解:∵DE∥BC,∴=,∴,∴,∴EC=.故选:C.【点评】本题主要考查了平行线分线段成比例定理,正确使用定理得出比例式是解题的关键.11.(3分)(2022•临沂)将5kg浓度为98%的酒精,稀释为75%的酒精.设需要加水xkg,根据题意可列方程为()A.0.98×5=0.75x B.=0.75C.0.75×5=0.98x D.=0.98【分析】将5kg浓度为98%的酒精,稀释为75%的酒精,酒精质量不变,求出稀释后的酒精质量和酒精溶液的质量,再减去5kg得出加水的质量即可.【解答】解:由题意可知,根据稀释前后酒精的质量不变可列方程:=0.75,故选:B.【点评】本题主要考查了根据实际问题列分式方程,找准题目的等量关系式解答本题的关键.12.(3分)(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上B.A城与B城的距离是300kmC.乙车的平均速度是80km/hD.甲车比乙车早到B城【分析】根据“速度=路程÷时间”,得出两车的速度,再逐一判断即可.【解答】解:由题意可知,A城与B城的距离是300km,故选项B不合题意;甲车的平均速度是:300÷5=60(km/h),乙车的平均速度是:300÷(4﹣1)=80(km/h),故选项C不合题意;设乙车出发x小时后追上甲车,则60(x+1)=80x,解得x=3,60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;由题意可知,乙车比甲车早到B城,故选项D符合题意.故选:D.【点评】此题主要考查了看函数图象,关键是正确从函数图象中得到正确的信息.二、填空题(本大题共4小题,每小题3分,共12分)13.(3分)(2022•临沂)比较大小:<(填“>”,“<”或“=”).【分析】利用平方法比较大小即可.【解答】解:∵()2=,()2=,<,∴<,故答案为:<.【点评】本题考查了实数大小比较,利用平方法比较大小是解题的关键.14.(3分)(2022•临沂)因式分解:2x2﹣4x+2=2(x﹣1)2.【分析】先提取2,然后用完全平方公式分解即可.【解答】解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2故答案为2(x﹣1)2.【点评】此题主要考查了提取公因式和公式法分解因式,解本题的关键是提取公因式2.15.(3分)(2022•临沂)如图,在平面直角坐标系中,△ABC的顶点A,B的坐标分别是A (0,2),B(2,﹣1).平移△ABC得到△A'B'C',若点A的对应点A'的坐标为(﹣1,0),则点B的对应点B'的坐标是(1,﹣3).【分析】由A点的平移判断出B点的平移最后得出坐标即可.【解答】解:由题意知,点A从(0,2)平移至(﹣1,0),可看作是△ABC先向下平移2个单位,再向左平移1个单位(或者先向左平移1个单位,再向下平移2个单位),即B点(2,﹣1),平移后的对应点为B'(1,﹣3),故答案为:(1,﹣3).【点评】本题主要考查平移的知识,根据A点的平移情况得出B点的对应点是解题的关键.16.(3分)(2022•临沂)如图,在正六边形ABCDEF中,M,N是对角线BE上的两点.添加下列条件中的一个:①BM=EN;②∠F AN=∠CDM;③AM=DN;④∠AMB=∠DNE.能使四边形AMDN是平行四边形的是①②④(填上所有符合要求的条件的序号).【分析】①连接AD,交BE于点O,证出OM=ON,由对角线互相平分的四边形是平行四边形可得出结论;②证明△AON≌△DOM(ASA),由全等三角形的性质得出AN=DM,根据一组对边平行且相等的四边形是平行四边形可得出结论;③不能证明△ABM与△DEN全等,则可得出结论;④证明△ABM≌△DEN(AAS),得出AM=DN,根据一组对边平行且相等的四边形是平行四边形可得出结论.【解答】解:①连接AD,交BE于点O,∵正六边形ABCDEF中,∠BAO=∠ABO=∠OED=∠ODE=60°,∴△AOB和△DOE是等边三角形,∴OA=OD,OB=OE,又∵BM=EN,∴OM=ON,∴四边形AMDN是平行四边形,故①符合题意;②∵∠F AD=∠CDM,∠CDA=∠DAF,∴∠OAN=∠ODM,∴AN∥DM,又∵∠AON=∠DOM,OA=OD,∴△AON≌△DOM(ASA),∴AN=DM,∴四边形AMDN是平行四边形,故②符合题意;③∵AM=DN,AB=DE,∠ABM=∠DEN,∴△ABM与△DEN不一定全等,不能得出四边形AMDN是平行四边形,故③不符合题意;④∵∠AMB=∠DNE,∠ABM=∠DEN,AB=DE,∴△ABM≌△DEN(AAS),∴AM=DN,∵∠AMB+∠AMN=180°,∠DNM+∠DNE=180°,∴∠AMN=∠DNM,∴AM∥DN,∴四边形AMDN是平行四边形,故④符合题意.故答案为:①②④.【点评】本题考查了平行四边形的判定,全等三角形的判定与性质,正六边形的性质,熟练掌握平行四边形的判定是解题的关键.三、解答题(本大题共7小题,共72分)17.(12分)(2022•临沂)计算:(1)﹣23÷×(﹣);(2)﹣.【分析】(1)利用有理数的混合运算法则运算即可;(2)利用异分母分式的减法法则运算即可.【解答】解:(1)原式=﹣8××()=8××=3;(2)原式==.【点评】本题主要考查了有理数的混合运算,分式的减法,正确利用相关法则进行运算是解题的关键.18.(8分)(2022•临沂)省农科院为某县选育小麦种子,为了解种子的产量及产量的稳定性,在该县的10个乡镇中,每个乡镇选择两块自然条件相近的实验田分别种植甲、乙两种小麦,得到其亩产量数据如下(单位:kg):甲种小麦:804 818 802 816 806 811 818 811 803 819乙种小麦:804 811 806 810 802 812 814 804 807 809画以上甲种小麦数据的频数分布直方图,甲乙两种小麦数据的折线图,得到图1,图2(1)图1中,a=3,b=2;(2)根据图1,若该县选择种植甲种小麦,则其亩产量W(单位:kg)落在D内的可能性最大;A.800≤W<805B.805≤W<810C.810≤W<815D.815≤W<820(3)观察图2,从小麦的产量或产量的稳定性的角度,你认为农科院应推荐种植哪种小麦?简述理由.【分析】(1)根据落在800﹣805,810﹣815的人数判断即可;(2)根据落在哪个组的频数最多判断即可;(3)从离散程度判断即可.【解答】解:(1)由题意a=2,b=3,故答案为:3,2;(2)由条形图可知落在815≤W<820的可能性最大,故选:D;(3)从小麦的产量或产量的稳定性的角度,应推荐种植乙种小麦.理由:从折线图可以看出乙的离散程度比较小.【点评】本题考查频数分布直方图,折线统计图等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.(8分)(2022•临沂)如图是一座独塔双索结构的斜拉索大桥,主塔采用倒“Y”字形设计.某学习小组利用课余时间测量主塔顶端到桥面的距离.勘测记录如下表:活动内容测量主塔顶端到桥面的距离成员组长:×××组员××××××××××××测量工具测角仪,皮尺等测量示意图说明:左图为斜拉索桥的侧面示意图,点A,C,D,B在同一条直线上,EF⊥AB,点A,C分别与点B,D关于直线EF对称.测量数据∠A的大小28°AC的长度84m CD的长度12m请利用表中提供的信息,求主塔顶端E到AB的距离(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【分析】根据题意和表格中的信息,可以得到AG的长,再根据锐角三角函数即可求得EG的长,本题得以解决.【解答】解:延长EF交AB于点G,∵EF⊥AB,∴RG⊥AB,∴∠EGA=90°,∵点A,C分别与点B,D关于直线EF对称,∴CG=DG,∵AC=84m,CD=12m,∴CG=6m,∴AG=AC+CG=84+6=90(m),∵∠A=28°,tan A=,∴tan28°=,解得EG≈47.7,即主塔顶端E到AB的距离约为47.7m.【点评】本题考查解直角三角形的应用、轴对称,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.20.(10分)(2022•临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm),确定支点O,并用细麻绳固定,在支点O左侧2cm的A处固定一个金属吊钩,作为秤钩;第二步:取一个质量为0.5kg的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤驼挂在支点O右侧的B处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB的长度随之变化.设重物的质量为xkg,OB的长为ycm.写出y关于x的函数解析式;若0<y<48,求x的取值范围.(2)调换秤砣与重物的位置,把秤驼挂在秤钩上,重物挂在支点O右侧的B处,使秤杆平衡,如图2.设重物的质量为xkg,OB的长为ycm,写出y关于x的函数解析式,完成下表,画出该函数的图象.x/kg……0.250.5124……y/cm……421……【分析】(1)根据阻力×阻力臂=动力×动力臂解答即可;(2)根据阻力×阻力臂=动力×动力臂求出解析式,然后根据列表、描点、连线的步骤解答.【解答】解:(1)∵阻力×阻力臂=动力×动力臂,∴重物×OA=秤砣×OB,∵OA=2cm,重物的质量为xkg,OB的长为ycm,秤砣为0.5kg,∴2x=0.5y,∴y=4x,∵4>0,∴y随x的增大而增大,∵当y=0时,x=0;当y=48时,x=12,∴0<x<12;(2)∵阻力×阻力臂=动力×动力臂,∴秤砣×OA=重物×OB,∵OA=2cm,重物的质量为xkg,OB的长为ycm,秤砣为0.5kg,∴2×0.5=xy,∴y=,当x=0.25时,y==4;当x=0.5时,y==2;当x=1时,y=1;当x=2时,y=;当x=4时,y=;故答案为:4;2;1;;;作函数图象如图:【点评】本题考查了一次函数和反比例函数的应用,以及列表、描点、连线画函数图象的方法,求出函数解析式是解答本题的关键.21.(10分)(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.【分析】(1)连接OB,由切线的性质得出∠E+∠BOE=90°,由圆周角定理得出∠D+∠DCB=90°,证出∠BOE=∠OCB,则可得出结论;(2)求出∠BOG=60°,由三角形面积公式及扇形的面积公式可得出答案.【解答】(1)证明:连接OB,∵AB是⊙O的切线,∴∠OBE=90°,∴∠E+∠BOE=90°,∵CD为⊙O的直径,∴∠CBD=90°,∴∠D+∠DCB=90°,∵OE∥BC,∴∠BOE=∠OBC,∵OB=OC,∴∠OBC=∠OCB,∴∠BOE=∠OCB,∴∠D=∠E;(2)解:∵F为OE的中点,OB=OF,∴OF=EF=3,∴OE=6,∴BO=OE,∵∠OBE=90°,∴∠E=30°,∴∠BOG=60°,∵OE∥BC,∠DBC=90°,∴∠OGB=90°,∴OG=,BG=,∴S△BOG=OG•BG==,S扇形BOF==π,∴S阴影部分=S扇形BOF﹣S△BOG=.【点评】本题考查了切线的性质,直角三角形的性质,等腰三角形的性质,平行线的性质,圆周角定理,扇形的面积公式,熟练掌握切线的性质是解题的关键.22.(12分)(2022•临沂)已知△ABC是等边三角形,点B,D关于直线AC对称,连接AD,CD.(1)求证:四边形ABCD是菱形;(2)在线段AC上任取一点P(端点除外),连接PD.将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处.请探究:当点P在线段AC上的位置发生变化时,∠DPQ的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ与CP之间的数量关系,并加以证明.【分析】(1)根据菱形的判定定理和轴对称图形的性质解答即可;(2)连接PB,过点P分别作PE∥CB交AB于点E,PF⊥AB于点F,根据全等三角形的判定定理,等腰三角形的性质,轴对称图形的性质解答即可;(3)根据等腰三角形的性质解答即可.【解答】(1)证明:连接BD,等边△ABC中,AB=BC=AC,∵点B、D关于直线AC对称,∴AC垂直平分BD,∴DC=BC,AD=AB,∴AB=BC=CD=DA,∴四边形ABCD是菱形;(2)解:当点P在线段AC上的位置发生变化时,∠DPQ的大小不发生变化,始终等于60°,理由如下:∵将线段PD绕点P逆时针旋转,使点D落在BA延长线上的点Q处,∴PQ=PD,等边△ABC中,AB=BC=AC,∠BAC=∠ABC=∠ACB=60°,连接PB,过点P分别作PE∥CB交AB于点E,PF⊥AB于点F,如图则∠APE=∠ACB=60°,∠AEP=∠ABC=60°,∴∠BAC=∠APE=∠AEP=60°,∴△APE是等边三角形,∴AP=EP=AE,而PF⊥AB,∴∠APF=∠EPF,∵点B,D关于直线AC对称,点P在线段AC上,∴PB=PD,∠DP A=∠BP A,∴PQ=PD,而PF⊥AB,∴∠QPF=∠BPF,∴∠QPF﹣∠APF=∠BPF﹣∠EPF,即∠QP A=∠BPE,∴∠DPQ=∠DP A﹣∠QP A=∠BP A﹣∠BPE=∠APE=60°;(3)解:在满足(2)的条件下,线段AQ与CP之间的数量关系是AQ=CP,证明如下:∵AC=AB,AP=AE,∴AC﹣AP=AB﹣AE,即CP=BE,∵AP=EP,PF⊥AB,∴AF=FE,∵PQ=PD,PF⊥AB,∴QF=BF,∴QF﹣AF=BF﹣EF,即AQ=BE,∴AQ=CP.【点评】本题主要考查了菱形的判定定理,等腰三角形的性质,轴对称图形的性质,等边三角形的判定定理,熟练掌握相关性质和定理是解答本题的关键.23.(12分)(2022•临沂)第二十四届冬奥会在北京成功举办,我国选手在跳台滑雪项目中夺得金牌.在该项目中,运动员首先沿着跳台助滑道飞速下滑,然后在起跳点腾空,身体在空中飞行至着陆坡着陆,再滑行到停止区终止.本项目主要考核运动员的飞行距离和动作姿态,某数学兴趣小组对该项目中的数学问题进行了深入研究:如图为该兴趣小组绘制的赛道截面图,以停止区CD所在水平线为x轴,过起跳点A与x 轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.着陆坡AC的坡角为30°,OA=65m,某运动员在A处起跳腾空后,飞行至着陆坡的B处着陆,AB=100m.在空中飞行过程中,运动员到x轴的距离y(m)与水平方向移动的距离x(m)具备二次函数关系,其解析式为y=﹣x2+bx+c.(1)求b,c的值;(2)进一步研究发现,运动员在飞行过程中,其水平方向移动的距离x(m)与飞行时间t(s)具备一次函数关系,当运动员在起跳点腾空时,t=0,x=0;空中飞行5s后着陆.①求x关于t的函数解析式;②当t为何值时,运动员离着陆坡的竖直距离h最大,最大值是多少?【分析】(1)根据题意,可以求得点A和点B的坐标,然后代入二次函数解析式,即可得到b、c的值;(2)①根据题意,可以得到x关于t的函数图象经过的两个点,然后根据待定系数法,即可得到x关于t的函数的解析式;②先求出直线AB的解析式,再根据题意,可以表示出h,然后根据二次函数的性质,可以求得当h为何值时,运动员离着陆坡的竖直距离h最大,并求出这个最大值.【解答】解:(1)作BE⊥y轴于点E,∵OA=65m,着陆坡AC的坡角为30°,AB=100m,∴点A的坐标为(0,65),AE=50m,BE=50m,∴OE=OA﹣AE=65﹣50=15(m),∴点B的坐标为(50,15),∵点A(0,65),点B(50,15)在二次函数y=﹣x2+bx+c的图象上,∴,解得,即b的值是,c的值是65;(2)①设x关于t的函数解析式是x=kt+m,因为点(0,0),(5,50)在该函数图象上,∴,解得,即x关于t的函数解析式是x=10t;②设直线AB的解析式为y=px+q,∵点A(0,65),点B(50,15)在该直线上,∴,解得,即直线AB的解析式为y=﹣x+65,则h=(﹣x2+x+65)﹣(﹣x+65)=﹣x2+x,∴当x=﹣=25时,h取得最值,此时h=,∵25<50,∴x=25时,h取得最值,符合题意,将x=25代入x=10t,得:25=10t,解得t=2.5,即当t为2.5时,运动员离着陆坡的竖直距离h最大,最大值是m.【点评】本题考查二次函数的应用、一次函数的应用、解直角三角形,解答本题的关键是明确题意,求出相应的函数解析式,利用二次函数的性质求最值.第31页(共31页)。
2020年山东省临沂市中考数学试题及参考答案(word解析版)
2020年临沂市初中学业水平考试试题数学(满分120分,考试时间120分钟)第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列温度比﹣2℃低的是()A.﹣3℃B.﹣1℃C.1℃D.3℃2.下列交通标志中,是中心对称图形的是()A.B.C.D.3.如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A.﹣B.﹣2 C.D.4.根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱5.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°6.计算(﹣2a3)2÷a2的结果是()A.﹣2a3B.﹣2a4C.4a3D.4a47.设a=+2.则()A.2<a<3 B.3<a<4 C.4<a<5 D.5<a<68.一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣29.从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.10.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.B.C.D.11.如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定12.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关13.计算﹣的结果为()A.B.C.D.14.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°第Ⅱ卷(非选择题共78分)二、填空题(本大题共5小题,每小题3分,共15分)15.不等式2x+1<0的解集是.16.若a+b=1,则a2﹣b2+2b﹣2=.17.点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是18.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.三、解答题(本大题共7小题,共63分)20.(7分)计算:+×﹣sin60°.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a=,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)质量/kg 组中值频数(只)0.9≤x<1.1 1.0 61.1≤x<1.3 1.2 91.3≤x<1.5 1.4 a1.5≤x<1.7 1.6 151.7≤x<1.9 1.8 823.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω……I/A ……(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?24.(9分)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O 1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?答案与解析第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列温度比﹣2℃低的是()A.﹣3℃B.﹣1℃C.1℃D.3℃【知识考点】有理数大小比较.【思路分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解题过程】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2,所以比﹣2℃低的温度是﹣3℃.故选:A.【总结归纳】本题考查了有理数的大小比较.解题的关键是掌握有理数的大小比较方法,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.下列交通标志中,是中心对称图形的是()A.B.C.D.【知识考点】中心对称图形.【思路分析】根据中心对称图形的概念即可求解.【解题过程】解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:B.【总结归纳】本题考查了中心对称的概念,中心对称图形是要寻找对称中心,旋转180度后能与自身重合,难度一般.3.如图,数轴上点A对应的数是,将点A沿数轴向左移动2个单位至点B,则点B对应的数是()A.﹣B.﹣2 C.D.【知识考点】数轴.【思路分析】借助数轴,可直观得结论,亦可运用有理数的加减得结论.【解题过程】解:点A向左移动2个单位,点B对应的数为:﹣2=﹣.故选:A.【总结归纳】本题考查了点在数轴上的移动,点沿数轴往正方向移动,点对应的数加移动的距离得到移动后的数,点沿数轴往负方向移动,点对应的数减移动的距离得到移动后的数.4.根据图中三视图可知该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱【知识考点】由三视图判断几何体.【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解题过程】解:根据图中三视图可知该几何体是三棱柱.故选:B.【总结归纳】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.5.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【知识考点】平行线的性质;等腰三角形的性质.【思路分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解题过程】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.【总结归纳】考查了等腰三角形的性质,平行线的性质,关键是求出∠ACB和∠ACD.6.计算(﹣2a3)2÷a2的结果是()A.﹣2a3B.﹣2a4C.4a3D.4a4【知识考点】幂的乘方与积的乘方;整式的除法.【思路分析】直接利用积的乘方运算化简,再利用整式的除法运算法则化简即可.【解题过程】解:原式=4a6÷a2=4a4.故选:D.【总结归纳】此题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.7.设a=+2.则()A.2<a<3 B.3<a<4 C.4<a<5 D.5<a<6【知识考点】估算无理数的大小.【思路分析】直接得出2<<3,进而得出+2的取值范围.【解题过程】解:∵2<<3,∴4<+2<5,∴4<a<5.故选:C.【总结归纳】此题主要考查了估算无理数的大小,正确得出的范围是解题关键.8.一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2,x2=﹣2﹣2B.x1=2+2,x2=2﹣2C.x1=2+2,x2=2﹣2D.x1=2,x2=﹣2【知识考点】解一元二次方程﹣配方法.【思路分析】方程利用配方法求出解即可.【解题过程】解:一元二次方程x2﹣4x﹣8=0,移项得:x2﹣4x=8,配方得:x2﹣4x+4=12,即(x﹣2)2=12,开方得:x﹣2=±2,解得:x1=2+2,x2=2﹣2.故选:B.【总结归纳】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.9.从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】根据题意画出树状图得出所有等可能的情况数,再找出恰好抽到马鸣和杨豪的情况数,然后根据概率公式即可得出答案.【解题过程】解:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是=;故选:C.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.10.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.B.C.D.【知识考点】由实际问题抽象出二元一次方程组.【思路分析】根据“每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行”,即可得出关于x,y的二元一次方程组,此题得解.【解题过程】解:依题意,得:.故选:B.【总结归纳】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定【知识考点】折线统计图;方差.【思路分析】分别求出甲、乙的平均数、方差,比较得出答案.【解题过程】解:乙==90,甲==84,因此乙的平均数较高;S2乙=[(100﹣90)2+(85﹣90)2+(80﹣90)2+(95﹣90)2]=50,S2甲=[(85﹣84)2+(90﹣84)2+(80﹣84)2+(80﹣84)2+(85﹣84)2]=14,∵50>14,∴乙的离散程度较高,不稳定,甲的离散程度较低,比较稳定;故选:D.【总结归纳】本题考查平均数、方差的计算方法,从统计图中获取数据,是正确计算的前提.12.如图,P是面积为S的▱ABCD内任意一点,△PAD的面积为S1,△PBC的面积为S2,则()A.S1+S2>B.S1+S2<C.S1+S2=D.S1+S2的大小与P点位置有关【知识考点】三角形的面积;平行四边形的性质.【思路分析】根据题意,作出合适的辅助线,然后根据图形和平行四边形的面积、三角形的面积,即可得到S和S1、S2之间的关系,本题得以解决.【解题过程】解:过点P作EF⊥AD交AD于点E,交BC于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,,,∵EF=PE+PF,AD=BC,∴S1+S2=,故选:C.【总结归纳】本题考查平行四边形的性质、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.13.计算﹣的结果为()A.B.C.D.【知识考点】6B:分式的加减法.【思路分析】直接通分运算,进而利用分式的性质计算得出答案.【解题过程】解:原式=﹣==.故选:A.【总结归纳】此题主要考查了分式的加减法,正确通分运算是解题关键.14.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°【知识考点】圆心角、弧、弦的关系;圆周角定理.【思路分析】连接OD、OE,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,根据等腰三角形的性质和三角形内角和定理求出∠DEO和∠CEO,即可求出答案.【解题过程】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.【总结归纳】本题考查了圆心角、弧、弦之间的关系,圆周角定理,等腰三角形的性质等知识点,能求出∠OEC和∠OED的度数是解此题的关键.第Ⅱ卷(非选择题共78分)二、填空题(本大题共5小题,每小题3分,共15分)15.不等式2x+1<0的解集是.【知识考点】解一元一次不等式.【思路分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【解题过程】解:移项,得:2x<﹣1,系数化为1,得:x<﹣,故答案为x<﹣.【总结归纳】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.若a+b=1,则a2﹣b2+2b﹣2=.【知识考点】平方差公式.【思路分析】由于a+b=1,将a2﹣b2+2b﹣2变形为a+b的形式,整体代入计算即可求解.【解题过程】解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.【总结归纳】考查了平方差公式,注意整体思想的应用.17.点(﹣,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是【知识考点】一次函数图象上点的坐标特征.【思路分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【解题过程】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵﹣<2,∴m<n.故答案为m<n.【总结归纳】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键.18.如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG的交点.若AC=6,则DH=.【知识考点】相似三角形的判定与性质.【思路分析】由三等分点的定义与平行线的性质得出BE=DE=AD,BF=GF=CG,AH=HF,DH是△AEF的中位线,易证△BEF∽△BAC,得=,解得EF=2,则DH=EF=1.【解题过程】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=EF,∵EF∥AC,∴△BEF∽△BAC,∴=,即=,解得:EF=2,∴DH=EF=×2=1,故答案为:1.【总结归纳】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.19.我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.【知识考点】坐标与图形性质;线段的性质:两点之间线段最短;垂线段最短.【思路分析】连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,根据勾股定理即可得到结论.【解题过程】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA==,∵OB=1,∴AB=﹣1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为﹣1,故答案为:﹣1.【总结归纳】本题考查了坐标与图形性质,勾股定理,线段的性质,正确地理解题意是解题的关键.三、解答题(本大题共7小题,共63分)20.(7分)计算:+×﹣sin60°.【知识考点】分母有理化;二次根式的混合运算;特殊角的三角函数值.【思路分析】直接利用二次根式的性质以及特殊角的三角函数值分别化简得出答案.【解题过程】解:原式=﹣+﹣=+﹣=.【总结归纳】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg 组中值频数(只)0.9≤x<1.1 1.0 61.1≤x<1.3 1.2 91.3≤x<1.5 1.4 a1.5≤x<1.7 1.6 151.7≤x<1.9 1.8 8根据以上信息,解答下列问题:(1)表中a =,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?【知识考点】用样本估计总体;频数(率)分布表;频数(率)分布直方图.【思路分析】(1)根据频数之和为50,可求出a的值;进而补全频数分布直方图;(2)样本估计总体,样本中,鸡的质量不小于1.7kg所占的百分比为,因此估计总体3000只的是鸡的质量不小于1.7kg的只数;(3)计算样本平均数,估计总体平均数,计算出总收入,比较得出答案.【解题过程】解:(1)a=50﹣8﹣15﹣9﹣6=12(只),补全频数分布直方图;故答案为:12;(2)3000×=480(只)答:这批鸡中质量不小于1.7kg的大约有480只;(3)==1.44(千克),∵1.44×3000×15=64800>54000,∴能脱贫,答:该村贫困户能脱贫.【总结归纳】本题考查频数分布直方图、频数分布表的意义和制作方法,掌握频数、频率、总数之间的关系是正确计算的前提.22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)【知识考点】解直角三角形的应用﹣坡度坡角问题.【思路分析】(1)根据正弦的定义求出AC,得到答案;(2)根据余弦的定义求出α,根据题意判断即可.【解题过程】解:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα=,∴AC=AB•sinα≈5.5×0.97≈5.3,答:使用这架梯子最高可以安全攀上约5.3m的墙;(2)在Rt△ABC中,cosα==0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.【总结归纳】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡角的概念、熟记锐角三角函数的定义是解题的关键.23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω……I/A ……(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?【知识考点】反比例函数的应用.【思路分析】(1)先由电流I是电阻R的反比例函数,可设I=,将R=4Ω时,I=9A代入利用待定系数法即可求出这个反比例函数的解析式;(2)将R的值分别代入(1)中所求的函数解析式,即可求出对应的I值,从而完成图表;(3)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.【解题过程】解:(1)电流I是电阻R的反比例函数,设I=,∵R=4Ω时,I=9A∴9=,解得k=4×9=36,∴I=(R>0);(2)列表如下:R/Ω… 3 4 5 6 8 9 10 12 …I/A …12 9 7.2 6 4.5 4 3.6 3 …(3)∵I≤10,I=,∴≤10,∴R≥3.6,即用电器可变电阻应控制在不低于3.6欧的范围内.【总结归纳】本题考查了反比例函数的应用,解题的关键是正确地从中整理出函数模型,并利用函数的知识解决实际问题.24.(9分)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A 交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.(1)求证:BC是⊙O2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.【知识考点】切线的判定与性质;扇形面积的计算.【思路分析】(1)由题意得出O1P=AP=O2P=,则可得出∠O1AO2=90°,由平行线的性质可得出∠O1BC=90°,过点O2作O2D⊥BC交BC的延长线于点D,证得O2D=r2,则可得出结论;(2)由直角三角形的性质求出∠BO1C=60°,由勾股定理求出BC长,则可根据S阴影=求出答案.【解题过程】(1)证明:连接AP,∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,∴O1P=AP=O2P=,∴∠O1AO2=90°,∵BC∥O2A,∴∠O1BC=∠O1AO2=90°,过点O2作O2D⊥BC交BC的延长线于点D,∴四边形ABDO2是矩形,∴AB=O2D,∵O1A=r1+r2,∴O2D=r2,∴BC是⊙O2的切线;(2)解:∵r1=2,r2=1,O1O2=6,∴O1A=,∴∠BO1C=60°,∴O1C=2O1B=4,∴BC===2,∴S 阴影===﹣=2﹣π.【总结归纳】本题考查了切线的判定,平行线的性质,直角三角形的判定与性质,勾股定理,扇形的面积等知识,熟练掌握切线的判定是解题的关键.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;待定系数法求二次函数解析式.【思路分析】(1)把解析式化成顶点式即可求得;(2)根据顶点式求得坐标,根据题意得到关于a的方程解方程求得a的值,从而求得抛物线的解析式;(3)根据对称轴得到其对称点,再根据二次函数的增减性写出m的取值.【解题过程】解:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=或a=﹣1,∴抛物线为y=x2﹣3x+或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.【总结归纳】本题考查了待定系数法求二次函数的解析式、二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?【知识考点】四边形综合题.【思路分析】(1)连接CF,根据垂直平分线的性质和菱形的对称性得到CF=EF和CF=AF即可得证;(2)连接AC,根据菱形对称性得到AF+CF最小值为AC,再根据中位线的性质得到MN+NG 的最小值为AC的一半,即可求解;(3)延长EF,交DC于H,利用外角的性质证明∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,再由AF=CF=EF,得到∠AEF=∠EAF,∠FEC=∠FCE,从而推断出∠AFD=∠FAE+∠ABF=∠FEA+∠CEF,从而可求出∠ABF=∠CEF=30°,即可证明.【解题过程】解:(1)连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC,∵M和N分别是AE和EF的中点,点G为CE中点,∴MN=AF,NG=CF,即MN+NG=(AF+CF),当点F与菱形ABCD对角线交点O重合时,AF+CF最小,即此时MN+NG最小,∵菱形ABCD边长为1,∠ABC=60°,∴△ABC为等边三角形,AC=AB=1,即MN+NG的最小值为;(3)不变,理由是:延长EF,交DC于H,∵∠CFH=∠FCE+∠FEC,∠AFH=∠FEA+∠FEA,∴∠AFC=∠FCE+∠FEC+∠FAE+∠FEA,∵点F在菱形ABCD对角线BD上,根据菱形的对称性可得:∠AFD=∠CFD=∠AFC,∵AF=CF=EF,∴∠AEF=∠EAF,∠FEC=∠FCE,∴∠AFD=∠FAE+∠ABF=∠FEA+∠CEF,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.【总结归纳】本题考查了菱形的性质,最短路径,等边三角形的判定和性质,中位线定理,难度一般,题中线段较多,需要理清线段之间的关系.21。
2024届山东省临沂市沂水区重点中学中考联考数学试题含解析
2024学年山东省临沂市沂水区重点中学中考联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.若方程x 2﹣3x ﹣4=0的两根分别为x 1和x 2,则11x +21x 的值是( ) A .1 B .2 C .﹣34 D .﹣432.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A .πB .32πC .6﹣πD .23﹣π3.要使式子2a a +有意义,a 的取值范围是( ) A .0a ≠ B .且0a ≠ C .2a >-. 或0a ≠ D .2a ≥- 且0a ≠4.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A 、B 在同一水平面上).为了测量A 、B 两地之间的距离,一架直升飞机从A 地出发,垂直上升800米到达C 处,在C 处观察B 地的俯角为α,则A 、B 两地之间的距离为( )A .800sinα米B .800tanα米C .800sin α米D .800tan α米 5.如图,AB ∥CD ,AD 与BC 相交于点O ,若∠A=50°10′,∠COD=100°,则∠C 等于( )A .30°10′B .29°10′C .29°50′D .50°10′6.在Rt △ABC 中,∠C=90°,BC=a ,AC=b ,AB=c ,下列各式中正确的是( )A .a=b•cosAB .c=a•sinAC .a•cotA=bD .a•tanA=b7.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .138.下列函数中,y 关于x 的二次函数是( )A .y =ax 2+bx+cB .y =x(x ﹣1)C .y=21xD .y =(x ﹣1)2﹣x 2 9.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个10.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.二、填空题(本大题共6个小题,每小题3分,共18分)11111242-=11239-=113416-=…则第n 个等式为_____.(用含n 的式子表示) 12.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.13.已知⊙O半径为1,A、B在⊙O上,且2AB ,则AB所对的圆周角为__o.14.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.15.如图,已知点A(2,2)在双曲线上,将线段OA沿x轴正方向平移,若平移后的线段O'A'与双曲线的交点D恰为O'A'的中点,则平移距离OO'长为____.16.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=-x2-5x+c经过点B、C,则菱形ABCD的面积为_______.三、解答题(共8题,共72分)17.(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?18.(8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.19.(8分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.20.(8分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。
20202全国中考题-山东临沂中考数学试卷
2020年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列温度比﹣2℃低的是( ) A .﹣3℃B .﹣1℃C .1℃D .3℃2.(3分)下列交通标志中,是中心对称图形的是( )A .B .C .D .3.(3分)如图,数轴上点A 对应的数是32,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .−12B .﹣2C .72D .124.(3分)根据图中三视图可知该几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱5.(3分)如图,在△ABC 中,AB =AC ,∠A =40°,CD ∥AB ,则∠BCD =( )A.40°B.50°C.60°D.70°6.(3分)计算(﹣2a3)2÷a2的结果是()A.﹣2a3B.﹣2a4C.4a3D.4a47.(3分)设a=√7+2.则()A.2<a<3B.3<a<4C.4<a<5D.5<a<68.(3分)一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2√3,x2=﹣2﹣2√3B.x1=2+2√3,x2=2﹣2√3C.x1=2+2√2,x2=2﹣2√2D.x1=2√3,x2=﹣2√39.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.112B.18C.16D.1210.(3分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.{x3=y+2x 2+9=yB.{x3=y−2x−92=yC.{x3=y+2x−9 2=yD.{x3=y−2x2−9=y11.(3分)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定12.(3分)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC的面积为S2,则()A.S1+S2>S 2B.S1+S2<S 2C.S1+S2=S 2D.S1+S2的大小与P点位置有关13.(3分)计算xx−1−yy−1的结果为()A.−x+y(x−1)(y−1)B.x−y(x−1)(y−1)C.−x−y(x−1)(y−1)D.x+y(x−1)(y−1)14.(3分)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BĈ上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)不等式2x+1<0的解集是.16.(3分)若a+b=1,则a2﹣b2+2b﹣2=.17.(3分)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.18.(3分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG 的交点.若AC=6,则DH=.19.(3分)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.三、解答题(本大题共7小题,共63分)20.(7分)计算:√(13−12)2+√22×16−sin60°.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg组中值频数(只)0.9≤x<1.1 1.061.1≤x<1.3 1.291.3≤x<1.5 1.4a1.5≤x<1.7 1.6151.7≤x<1.9 1.88根据以上信息,解答下列问题:(1)表中a=,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系.当R =4Ω时,I =9A . (1)写出I 关于R 的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象; R /Ω … … I /A ……(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A ,那么用电器可变电阻应控制在什么范围内?24.(9分)已知⊙O 1的半径为r 1,⊙O 2的半径为r 2.以O 1为圆心,以r 1+r 2的长为半径画弧,再以线段O 1O 2的中点P 为圆心,以12O 1O 2的长为半径画弧,两弧交于点A ,连接O 1A ,O 2A ,O 1A 交⊙O 1于点B ,过点B 作O 2A 的平行线BC 交O 1O 2于点C . (1)求证:BC 是⊙O 2的切线;(2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.25.(11分)已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?2020年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列温度比﹣2℃低的是( ) A .﹣3℃B .﹣1℃C .1℃D .3℃【解答】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2, 所以比﹣2℃低的温度是﹣3℃. 故选:A .2.(3分)下列交通标志中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、不是中心对称图形,不符合题意; B 、是中心对称图形,符合题意; C 、不是中心对称图形,不符合题意; D 、不是中心对称图形,不符合题意. 故选:B .3.(3分)如图,数轴上点A 对应的数是32,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .−12B .﹣2C .72D .12【解答】解:点A 向左移动2个单位, 点B 对应的数为:32−2=−12.故选:A .4.(3分)根据图中三视图可知该几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【解答】解:根据图中三视图可知该几何体是三棱柱.故选:B.5.(3分)如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.6.(3分)计算(﹣2a3)2÷a2的结果是()A.﹣2a3B.﹣2a4C.4a3D.4a4【解答】解:原式=4a6÷a2=4a4.故选:D.7.(3分)设a=√7+2.则()A.2<a<3B.3<a<4C.4<a<5D.5<a<6【解答】解:∵2<√7<3,∴4<√7+2<5,∴4<a<5.故选:C.8.(3分)一元二次方程x2﹣4x﹣8=0的解是()A.x1=﹣2+2√3,x2=﹣2﹣2√3B.x1=2+2√3,x2=2﹣2√3C.x1=2+2√2,x2=2﹣2√2D.x1=2√3,x2=﹣2√3【解答】解:一元二次方程x2﹣4x﹣8=0,移项得:x2﹣4x=8,配方得:x2﹣4x+4=12,即(x﹣2)2=12,开方得:x﹣2=±2√3,解得:x1=2+2√3,x2=2﹣2√3.故选:B.9.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.112B.18C.16D.12【解答】解:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是212=1 6;故选:C.10.(3分)《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x人,y辆车,可列方程组为()A.{x3=y+2x 2+9=yB.{x3=y−2x−92=yC.{x3=y+2x−9 2=yD.{x3=y−2x2−9=y【解答】解:依题意,得:{x3=y−2x−9 2=y.故选:B.11.(3分)如图是甲、乙两同学五次数学测试成绩的折线图.比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定【解答】解:x乙=100+85+90+80+955=90,x甲=85+90+80+85+805=84,因此乙的平均数较高;S2乙=15[(100﹣90)2+(85﹣90)2+(80﹣90)2+(95﹣90)2]=50,S2甲=15[(85﹣84)2+(90﹣84)2+(80﹣84)2+(80﹣84)2+(85﹣84)2]=14,∵50>14,∴乙的离散程度较高,不稳定,甲的离散程度较低,比较稳定;故选:D.12.(3分)如图,P是面积为S的▱ABCD内任意一点,△P AD的面积为S1,△PBC的面积为S2,则()A.S1+S2>S 2B.S1+S2<S 2C.S1+S2=S 2D.S1+S2的大小与P点位置有关【解答】解:过点P作EF⊥AD交AD于点E,交BC于点F,∵四边形ABCD是平行四边形,∴AD=BC,∴S=BC•EF,S1=AD⋅PE2,S2=BC⋅PF2,∵EF=PE+PF,AD=BC,∴S1+S2=S 2,故选:C.13.(3分)计算xx−1−yy−1的结果为()A.−x+y(x−1)(y−1)B.x−y(x−1)(y−1)C.−x−y(x−1)(y−1)D.x+y(x−1)(y−1)【解答】解:原式=x(y−1)(x−1)(y−1)−y(x−1)(x−1)(y−1)=xy−x−xy+y(x−1)(y−1)=−x+y(x−1)(y−1).故选:A.14.(3分)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为BĈ上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°【解答】解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+12x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+12x,∴∠CED=∠OEC﹣∠OED>(40°+12x)﹣(20°+12x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)不等式2x+1<0的解集是x<−12.【解答】解:移项,得:2x<﹣1,系数化为1,得:x<−1 2,故答案为x<−1 2.16.(3分)若a+b=1,则a2﹣b2+2b﹣2=﹣1.【解答】解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.17.(3分)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是m<n.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.18.(3分)如图,在△ABC中,D、E为边AB的三等分点,EF∥DG∥AC,H为AF与DG 的交点.若AC=6,则DH=1.【解答】解:∵D、E为边AB的三等分点,EF∥DG∥AC,∴BE=DE=AD,BF=GF=CG,AH=HF,∴AB=3BE,DH是△AEF的中位线,∴DH=12EF,∵EF∥AC,∴△BEF∽△BAC,∴EF AC=BE AB,即EF 6=BE 3BE,解得:EF =2, ∴DH =12EF =12×2=1, 故答案为:1.19.(3分)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A (2,1)到以原点为圆心,以1为半径的圆的距离为 √5−1 .【解答】解:连接AO 交⊙O 于B ,则线段AB 的长度即为点A (2,1)到以原点为圆心,以1为半径的圆的距离, ∵点A (2,1), ∴OA =√22+12=√5, ∵OB =1, ∴AB =√5−1,即点A (2,1)到以原点为圆心,以1为半径的圆的距离为√5−1, 故答案为:√5−1.三、解答题(本大题共7小题,共63分)20.(7分)计算:√(13−12)2+√22×6−sin60°.【解答】解:原式=12−1312√3−√32=16+√36−√32=1−2√36.21.(7分)2020年是脱贫攻坚年.为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场.经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:质量/kg组中值频数(只)0.9≤x<1.1 1.061.1≤x<1.3 1.291.3≤x<1.5 1.4a1.5≤x<1.7 1.6151.7≤x<1.9 1.88根据以上信息,解答下列问题:(1)表中a=12,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫困户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?【解答】解:(1)a=50﹣8﹣15﹣9﹣6=12(只),补全频数分布直方图;故答案为:12;(2)3000×850=480(只)答:这批鸡中质量不小于1.7kg的大约有480只;(3)x=1×6+1.2×9+1.4×12+1.6×15+1.8×850=1.44(千克),∵1.44×3000×15=64800>54000,∴能脱贫,答:该村贫困户能脱贫.22.(7分)如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)【解答】解:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα=AC AB,∴AC=AB•sinα≈5.5×0.97≈5.3,答:使用这架梯子最高可以安全攀上5.3m的墙;(2)在Rt△ABC中,cosα=BCAB=0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.23.(9分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系.当R=4Ω时,I=9A.(1)写出I关于R的函数解析式;(2)完成下表,并在给定的平面直角坐标系中画出这个函数的图象;R/Ω…3456891012…I/A…1297.26 4.54 3.63…(3)如果以此蓄电池为电源的用电器的限制电流不能超过10A,那么用电器可变电阻应控制在什么范围内?【解答】解:(1)电流I是电阻R的反比例函数,设I=k R,∵R=4Ω时,I=9A∴9=k 4,解得k=4×9=36,∴I=36 R;(2)列表如下:R/Ω3456891012 I/A12 9 7.2 6 4.54 3.63(3)∵I ≤10,I =36R, ∴36R≤10,∴R ≥3.6,即用电器可变电阻应控制在不低于3.6欧的范围内.24.(9分)已知⊙O 1的半径为r 1,⊙O 2的半径为r 2.以O 1为圆心,以r 1+r 2的长为半径画弧,再以线段O 1O 2的中点P 为圆心,以12O 1O 2的长为半径画弧,两弧交于点A ,连接O 1A ,O 2A ,O 1A 交⊙O 1于点B ,过点B 作O 2A 的平行线BC 交O 1O 2于点C . (1)求证:BC 是⊙O 2的切线;(2)若r 1=2,r 2=1,O 1O 2=6,求阴影部分的面积.【解答】(1)证明:连接AP ,∵以线段O 1O 2的中点P 为圆心,以12O 1O 2的长为半径画弧, ∴O 1P =AP =O 2P =12O 1O 2,∴∠O 1AO 2=90°,∵BC ∥O 2A ,∴∠O 1BC =∠O 1AO 2=90°,过点O 2作O 2D ⊥BC 交BC 的延长线于点D ,∴四边形ABDO 2是矩形,∴AB =O 2D ,∵O 1A =r 1+r 2,∴O 2D =r 2,∴BC 是⊙O 2的切线;(2)解:∵r 1=2,r 2=1,O 1O 2=6,∴O 1A =12O 1O 2,∴∠BO 1C =60°,∴O 1C =2O 1B =4,∴BC =√O 1C 2−O 1B 2=√42−22=2√3,∴S 阴影=S △O 1BC −S 扇形BO 1E =12O 1B ⋅BC −60π×r 22360=12×2×2√3−60×π×22360=2√3−23π. 25.(11分)已知抛物线y =ax 2﹣2ax ﹣3+2a 2(a ≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点P (m ,y 1),Q (3,y 2)在抛物线上,若y 1<y 2,求m 的取值范围.【解答】解:(1)∵抛物线y =ax 2﹣2ax ﹣3+2a 2=a (x ﹣1)2+2a 2﹣a ﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=32或a=﹣1,∴抛物线为y=32x2﹣3x+32或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.26.(13分)如图,菱形ABCD的边长为1,∠ABC=60°,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N.(1)求证:AF=EF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,∠CEF的大小是否变化?为什么?【解答】解:(1)连接CF,∵FG垂直平分CE,∴CF=EF,∵四边形ABCD为菱形,∴A和C关于对角线BD对称,∴CF=AF,∴AF=EF;(2)连接AC ,∵M 和N 分别是AE 和EF 的中点,点G 为CE 中点,∴MN =12AF ,NG =12CF ,即MN +NG =12(AF +CF ),当点F 与菱形ABCD 对角线交点O 重合时,AF +CF 最小,即此时MN +NG 最小,∵菱形ABCD 边长为1,∠ABC =60°,∴△ABC 为等边三角形,AC =AB =1,即MN +NG 的最小值为12;(3)不变,理由是:延长EF ,交DC 于H ,∵∠CFH =∠FCE +∠FEC ,∠AFH =∠F AE +∠FEA ,∴∠AFC =∠FCE +∠FEC +∠F AE +∠FEA ,∵点F 在菱形ABCD 对角线BD 上,根据菱形的对称性可得:∠AFD =∠CFD =12∠AFC ,∵AF =CF =EF ,∴∠AEF =∠EAF ,∠FEC =∠FCE ,∴∠AFD =∠F AE +∠ABF =∠F AE +∠CEF ,∴∠ABF=∠CEF,∵∠ABC=60°,∴∠ABF=∠CEF=30°,为定值.初中数学解题方法大全一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年山东省临沂市中考题
数
学试题 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至12页。
满分120
分,考试时间120分钟。
第Ⅰ卷(选择题 共42分)
一.选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目
要求的。
01.-5的绝对值是( )。
A 、-5
B 、5
C 、5
1 D 、51- 02.据了解,我市每年用于校舍维护维修的资金约需7300万元,用科学记数法表示这一数据为( )。
A 、7.3×106元
B 、73×106元
C 、7.3×107元
D 、73×107元
03.下列运算正确的是( )。
A 、x 3+x 5=x 8
B 、(x 3)2=x 9
C 、x 4·x 3=x 7
D 、(x +3)2=x 2+9
04.如图,△ABC 中,∠A =50°,点D 、E 分别在AB 、AC 上,则∠1+∠2的大小为( )。
A 、130°
B 、230°
C 、180°
D 、310° 05.计算)4831375(12-+的结果是( )。
A 、6 B 、34 C 、632+ D 、12
06.如图表示一个用于防震的L 形的包装用泡沫塑料,当俯视这一物体时看到的图形形状是( )。
07.若a <b <0,则下列式子:①a +1<b +2;②
b a >1;③a +b <ab ;④a 1<b
1中,正确的有( )。
A 、1个 B 、2个 C 、3个 D 、4个
08.已知反比例函数x
k y =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。
A 、y 1>y 2 B 、y 1=y 2 C 、y 1<y 2 D 、无法确定 09.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )。
A 、x >-1
B 、x <-1
C 、x <-2
D 、无法确定
10.如图,在△ABC 中,AB =2,AC =1,以AB 为直径的圆与AC 相切,与边BC 交于点D ,则AD 的长
为( )。
2424A 1 C D E 2 (第04题图
) A B C D (第06题图)
y k 2x
11.如图,矩形ABCD 中,AB =1,AD =2,M 是CD 的中点,点P 在矩形的边上沿A →B →C →M 运动,
则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )。
12.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区
域的概率为( )。
A 、2
1 B 、π63 C 、π93 D 、π33 13.如图,客轮在海上以30km /h 的速度由B 向C 航行,在B 处测得灯塔A 的方位角为北偏东80°,测得
C 处的方位角为南偏东25°,航行1小时后到达C 处,在C 处测得A 的方位角为北偏东20°,则C 到A 的距离是( )。
A 、615km
B 、215km
C 、)26(15+km
D 、)236(5+km
14.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料
上截取矩形(阴影部分)铁片备用,当截取的矩形面积最大时,矩形两边长x 、y 应分别为( )。
A 、x =10,y =14
B 、x =14,y =10
C 、x =12,y =15
D 、x =15,y =12
第Ⅱ卷(非选择题 共78分)
注意事项:
1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目及座号填写清楚。
二.填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上。
15.计算:)3
a a 3a a 3(+--·a 9a 2-= 。
16.从数字1、2、3中任取两个不同数字组成一个两位数,则这个两位数大于21的概率是 。
17.如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱
形,四边形ABCD 还应满足的一个条件是 。
18.有如图所示的两种广告牌,其中图①是由两个等腰直角三角形构成的,图②是一个矩形,从图形上确
定这两个广告牌面积的大小关系,并将这种大小关系用含字母a 、b 的不等式表示为 。
(第11题图)
(第12题图) A B
C D
(第10题图)
(第13题图)
(第14题图) A E C B D G H F (第17题图) (第18题图)
所有因数为1、2、3,而且6=1+2+3,所以6是完全数。
大约2200多年前,欧几里德提出:如果
2n -1是质数,那么2n -1·(2n -1)是一个完全数。
请你根据这个结论写出6之后的下一个完全数是__
________________。
三.开动脑筋,你一定能做对!(本大题共3小题,共20分)
20.(本小题满分6分)某校为了了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学
生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示)。
(1)这50名学生在这一天课外阅读所用时间的众数是多少?
(2)这50名学生在这一天平均每人的课外阅读所用时间是多少?
(3)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0小时以上(含1.0小时)的有多少人?
21.(本小题满分6分)“种粮补贴”惠农政策的出台,大大激发了农民的种粮积极性,某粮食生产专业户
去年计划生产小麦和玉米共18吨,实际生产了20吨,其中小麦超产12%,玉米超产10%,该专业户去年实际生产小麦、玉米各多少吨?
22.(本小题满分8分)如图,已知矩形ABCD 。
(1)在图中作出△CDB 沿对角线BD 所在的直线对折后的△C ’DB ,C 点的对应点为C ’(用尺规作图,保留清晰的作图痕迹,简要写明作法);
(2)设C ’B 与AD 的交点为E ,若△EBD 的面积是整个矩形面积的31,求∠DBC 的度数。
(第20题图) (小时) A B C
D (第22题图)
四.认真思考,你一定能成功!(本大题共2小题,共19分)
23.(本小题满分9分)如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10。
(1)求此圆的半径;
(2)求图中阴影部分的面积。
24.(本小题满分10分)某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该
厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产此两型挖掘机,
(2)该厂如何生产能获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),
该厂应该如何生产可以获得最大利润?(注:利润=售价-成本)
五.相信自己,加油呀!(本大题共2小题,共24分)
25.(本小题满分11分)如图1,已知△ABC 中,AB =BC =1,∠ABC =90°,把一块含30°角的直角三角
板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转。
(1)在图1中,DE 交AB 于M ,DF 交BC 于N 。
①证明DM =DN ;
②在这一旋转过程中,直角三角板DEF 与△ABC 的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB 交DE 于M ,延长BC 交DF 于N ,DM =DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD 交BC 于N ,延长ED 交AB 于M ,DM =DN 是否仍然成立?请写出结论,不用证明。
26.(本小题满分13分)如图①,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
(1)求抛物线的解析式;
(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;
(3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
A A A
B B B
C C C
D D D N N
E E E
F F M M M 图1 图2 图3 (第25题图)
(第26题图)
说明
在此,首先对扫描卷的制作者表示感谢。
由于本人水平有限,编辑过程中难免出错,如有错落,请大家见谅并对照扫描卷自行更正。
强烈鄙视转发此卷不注明出处、改头换面剥夺他人劳动成果的某些网站和个人。
天门市卢家口中学Herewave
2007.06.16。