01253759.4半导体放电管半导体芯片
600v的半导体放电管

600v的半导体放电管600V的半导体放电管在现代电子技术中扮演着重要的角色。
它是一种能够在高压环境下实现电流控制的器件,具有很多应用领域。
在本文中,我们将探索半导体放电管的工作原理、特性以及应用。
半导体放电管是一种半导体器件,能够在电压超过一定阈值时产生放电现象。
这种器件通常由多个半导体材料层叠而成,其中包含N 型和P型硅等材料。
当电压施加到半导体放电管上时,电子和空穴会在半导体材料中产生,并形成电流。
当电压超过一定阈值时,半导体放电管中的电子和空穴会发生复合,产生能量释放,从而引发放电现象。
半导体放电管的特性使得它在许多领域得到了广泛应用。
首先,它可以用作电子开关,因为它能够在开关状态间快速切换。
这使得它在电力系统中的保护装置中得到了广泛应用,可以有效地防止电流过载和短路等故障。
其次,半导体放电管还可以用于电磁干扰的抑制。
它可以通过在电路中引入一个阻抗,将电磁干扰分散或吸收,从而减少电子设备之间的干扰。
此外,半导体放电管还可以用于光电子器件和激光器等高科技领域。
除了以上应用外,半导体放电管还可以用于电力电子转换器、医疗设备、通信设备等领域。
它的小体积、高效率和可靠性使得它成为了现代电子技术中不可或缺的一部分。
尽管半导体放电管在电子技术中起着重要的作用,但它也存在一些局限性。
首先,它的工作电压范围相对有限,通常在几百伏特至几千伏特之间。
其次,半导体放电管对温度变化非常敏感,过高或过低的温度都可能影响其性能。
此外,半导体放电管还存在寿命限制,长时间使用后可能出现性能下降或故障。
600V的半导体放电管是一种重要的半导体器件,具有广泛的应用领域。
它的工作原理和特性使得它成为现代电子技术中不可或缺的一部分。
然而,它也存在一些局限性,需要在实际应用中加以考虑。
通过深入了解半导体放电管的工作原理和应用,我们可以更好地利用它的优点,为现代电子技术的发展做出贡献。
芯片封装类型图鉴

一.TO 晶体管外形封装TO〔Transistor Out-line〕的中文意思是“晶体管外形〞。
这是早期的封装规格,例如TO-92,TO-92L,TO-220,TO-252等等都是插入式封装设计。
近年来外表贴装市场需求量增大,TO封装也进展到外表贴装式封装。
TO252和TO263就是外表贴装封装。
其中TO-252又称之为D-PAK,TO-263又称之为D2PAK。
D-PAK封装的MOSFET有3个电极,栅极〔G〕、漏极〔D〕、源极〔S〕。
其中漏极〔D〕的引脚被剪断不用,而是使用背面的散热板作漏极〔D〕,直接焊接在PCB上,一方面用于输出大电流,一方面通过PCB散热。
所以PCB的D-PAK焊盘有三处,漏极〔D〕焊盘较大。
二. DIP 双列直插式封装DIP(DualIn-line Package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(IC)均采用这种封装形式,其引脚数一般不超过100个。
封装材料有塑料和陶瓷两种。
采用DIP封装的CPU芯片有两排引脚,使用时,需要插入到具有DIP结构的芯片插座上。
当然,也可以直接插在有一样焊孔数和几何排列的电路板上进展焊接。
DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP〔含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式〕等。
DIP封装具有以下特点:1.适合在PCB (印刷电路板)上穿孔焊接,操作方便。
2.比TO型封装易于对PCB布线。
3.芯片面积与封装面积之间的比值较大,故体积也较大。
以采用40根I/O引脚塑料双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=(3×3)/(15.24×50)=1:86,离1相差很远。
〔PS:衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。
如果封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。
XB5352G 贴片SOT23-5 单节锂电池充电保护芯片 电源管理IC

XB5352G ____________________________________________________________________________________________________________________________ One Cell Lithium-ion/Polymer Battery Protection ICGENERAL DESCRIPTIONThe XB5352G product is a high integration solution for lithium-ion/polymer battery protection.XB5352G contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits.XB5352G is put into an ultra-smallSOT23-5 package and only oneexternal component makes it an ideal solution in limited space of battery pack. XB5352G has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage.The device is not only targeted for digital cellular phones, but also for any otherLi-Ion and Li-Poly battery-powered information appliances requiring long-term battery life. FEATURES·Protection of Charger Reverse Connection·Protection of Battery Cell Reverse Connection·Integrate Advanced Power MOSFET with Equivalent of 45mΩ R SS(ON)·Ultra-small SOT23-5 Package ·Only One External Capacitor Required·Over-temperature Protection ·Overcharge Current Protection ·Two-step Overcurrent Detection: -Overdischarge Current-Load Short Circuiting·Charger Detection Function·0V Battery Charging Function- Delay Times are generated inside ·High-accuracy Voltage Detection ·Low Current Consumption- Operation Mode: 2.8μA typ.- Power-down Mode: 1.5μA typ. ·RoHS Compliant and Lead (Pb) FreeAPPLICATIONSOne-Cell Lithium-ion Battery PackLithium-Polymer Battery PackFigure 1. Typical Application CircuitORDERING INFORMATIONNote: “YW” is manufacture date code, “Y” means the year, “W” means the weekPIN CONFIGURATIONFigure 2. PIN ConfigurationPIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS(Note: Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)ELECTRICAL CHARACTERISTICSTypicals and limits appearing in normal type apply for T A= 25o C, unless otherwise specifiedFigure 3. Functional Block Diagram FUNCTIONAL DESCRIPTIONThe XB5352G monitors the voltage and current of a battery and protects it from being damaged due to overcharge voltage, overdischarge voltage, overdischarge current, and short circuit conditions by disconnecting the battery from the load or charger. These functions are required in order to operate the battery cell within specified limits.The device requires only one external capacitor. The MOSFET is integrated andits R SS(ON) is as low as45mΩtypical. Normal operating modeIf no exception condition is detected, charging and discharging can be carried out freely. This condition is called the normal operating mode.Overcharge ConditionWhen the battery voltage becomes higher than the overcharge detection voltage (V CU) during charging under normal conditionand the state continues for the overcharge detection delay time (t CU) or longer, theXB5352G turns the charging control FEToff to stop charging. This condition is called the overcharge condition. The overcharge condition is released in the following two cases:1, When the battery voltage drops below the overcharge release voltage (V CL), the XB5352G turns the charging control FET on and returns to the normal condition.2, When a load is connected and discharging starts, the XB5352G turns the charging control FET on and returns to the normal condition. The release mechanism is as follows: the discharging current flows through an internal parasitic diode of the charging FET immediately after a load is connected and discharging starts, and the VM pin voltage increases about 0.7 V (forward voltage of the diode) from the GND pin voltage momentarily. TheXB5352G detects this voltage and releases the overcharge condition. Consequently, in the case that the battery voltage is equal to or lower than the overcharge detection voltage (V CU), the XB5352G returns to the normal condition immediately, but in the case the battery voltage is higher than the overcharge detection voltage (V CU),the chip does not return to the normal condition until the battery voltage drops below the overcharge detection voltage (V CU) even if the load is connected. In addition, if the VM pin voltage is equal to or lower than the overcurrent 1 detection voltage when a load is connected and discharging starts, the chip does not return to the normal condition.Remark If the battery is charged to a voltage higher than the overcharge detection voltage (V CU) and the battery voltage does not drops below the overcharge detection voltage (V CU) even when a heavy load, which causes an overcurrent, is connected, the overcurrent 1 and overcurrent 2 do not work until the battery voltage drops below the overcharge detection voltage (V CU). Since an actual battery has, however, an internal impedance of several dozens of mΩ, and the battery voltage drops immediately after a heavy load which causes an overcurrent is connected, the overcurrent 1 and overcurrent 2 work. Detection of load short-circuiting works regardless of the battery voltage.Overdischarge ConditionWhen the battery voltage drops below the overdischarge detection voltage (V DL) during discharging under normal condition and it continues for the overdischarge detection delay time (t DL) or longer, theXB5352G turns the discharging control FET off and stops discharging. This condition is called overdischarge condition. After the discharging control FET is turned off, the VM pin is pulled up by the R VMD resistorbetween VM and VDD in XB5352G. Meanwhile when VM is bigger than 1.5V (typ.) (the load short-circuiting detection voltage), the current of the chip is reduced to the power-down current (I PDN). This condition is called power-down condition. The VM and VDD pins are shorted by theR VMD resistor in the IC under the overdischarge and power-down conditions. The power-down condition is released when a charger is connected and the potential difference between VM and VDD becomes 1.3 V (typ.) or higher (load short-circuiting detection voltage). At this time, the FET is still off. When the battery voltage becomes the overdischarge detection voltage (V DL) or higher (see note), the XB5352G turns the FET on and changes to the normal condition from the overdischarge condition.Remark If the VM pin voltage is no less than the charger detection voltage (V CHA), when the battery under overdischarge condition is connected to a charger, the overdischarge condition is released (the discharging control FET is turned on) as usual, provided that the battery voltage reaches the overdischarge release voltage (V DU) or higher. Overcurrent ConditionWhen the discharging current becomes equal to or higher than a specified value (the VM pin voltage is equal to or higher than the overcurrent detection voltage)during discharging under normal condition and the state continues for the overcurrent detection delay time or longer, theXB5352G turns off the discharging control FET to stop discharging. This condition is called overcurrent condition. (The overcurrentincludes overcurrent, or load short-circuiting.)The VM and GND pins are shorted internally by the R VMS resistor under the overcurrent condition. When a load is connected, the VM pin voltage equals the VDD voltage due to the load.The overcurrent condition returns to the normal condition when the load is released and the impedance between the B+ and B- pins becomes higher than the automatic recoverable impedance. When the load is removed, the VM pin goes back to the GND potential since the VM pin is shorted the GND pin with the R VMS resistor. Detecting that the VM pin potential is lower than the overcurrent detection voltage(V IOV), the IC returns to the normal condition.Abnormal Charge Current DetectionIf the VM pin voltage drops below the charger detection voltage (V CHA) during charging under the normal condition and it continues for the overcharge detection delay time (t CU) or longer, the XB5352G turns the charging control FET off and stops charging. This action is called abnormal charge current detection. Abnormal charge current detection works when the discharging control FET is on and the VM pin voltage drops below the charger detection voltage (V CHA). When an abnormal charge current flows into a battery in the overdischarge condition, the XB5352G consequently turns the charging control FET off and stops charging after the battery voltage becomes the overdischarge detection voltage and the overcharge detection delay time (t CU) elapses.Abnormal charge current detection is released when the voltage difference between VM pin and GND pin becomes lower than the charger detection voltage (V CHA) by separating the charger. Since the 0 V battery charging function has higher priority than the abnormal charge current detection function, abnormal charge current may not be detected by the product with the 0 V battery charging function while the battery voltage is low.Load Short-circuiting conditionIf voltage of VM pin is equal or below short circuiting protection voltage (V SHORT), the XB5352G will stop discharging and battery is disconnected from load. The maximum delay time to switch current off is t SHORT. This status is released when voltage of VM pin is higher than short protection voltage (V SHORT), such as when disconnecting the load.Delay CircuitsThe detection delay time for overdischarge current 2 and load short-circuiting starts when overdischarge current 1 is detected. As soon as overdischarge current 2 or load short-circuiting is detected over detection delay time for overdischarge current 2 or load short- circuiting, the XB5352G stops discharging. When battery voltage falls below overdischarge detection voltage due to overdischarge current, the XB5352G stop discharging by overdischarge current detection. In this case the recovery of battery voltage is so slow that if battery voltage after overdischarge voltage detection delay time is still lower than overdischarge detection voltage, the XB5352G shifts to power-down.Figure 4. Overcurrent delay time0V Battery Charging Function (1) (2) (3) This function enables the charging of a connected battery whose voltage is 0 V by self-discharge. When a charger having 0 V battery start charging charger voltage(V0CHA) or higher is connected between B+ and B- pins, the charging control FET gate is fixed to VDD potential. When the voltage between the gate and the source of the charging control FET becomes equal to or higher than the turn-on voltage by the charger voltage, the charging control FET is turned on to start charging. At this time, the discharging control FET is off and the charging current flows through the internal parasitic diode in the discharging control FET. If the battery voltage becomes equal to or higher than the overdischarge release voltage (V DU), the normal condition returns. Note(1) Some battery providers do not recommend charging of completely discharged batteries. Please refer to battery providers before the selection of 0 V battery charging function.(2) The 0V battery charging function has higher priority than the abnormal charge current detection function. Consequently, a product with the 0 V battery charging function charges a battery and abnormal charge current cannot be detected during the battery voltage is low (at most 1.8 V or lower).(3) When a battery is connected to the IC for the first time, the IC may not enter the normal condition in which discharging is possible. In this case, set the VM pin voltage equal to the GND voltage (short the VM and GND pins or connect a charger) to enter the normal condition.TIMING CHART1.Overcharge and overdischarge detectionV V CU -V V DL +V V DL ONONCHARGEV DDV ov1V SS V VMFigure5-1 Overcharge and Overdischarge Voltage Detection2.Overdischarge current detectionV CU V CU -V HC V DL +V DH V DLONDISCHARGEOFFV DDV V ov2V ov1V SS(1)(4)(1)(1)(1)(4)(4)Figure5-2 Overdischarge Current DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent condition3.Charger DetectionVV CU-VV DL+VV DLONV DDVMV SSVFigure5-3 Charger Detection4.Abnormal Charger DetectionVV CU-VV DL+VV DLONONCHARGEV DDVMV SSVFigure5-4 Abnormal Charger DetectionRemark: (1) Normal condition (2) Overcharge voltage condition (3) Overdischarge voltage condition (4)Overcurrent conditionTYPICAL CHARACTERISTICS(Test based on XB5352G version, V BAT = 3.6V, T A= 25 C unless otherwise specified)Internal FET On-Resistance vs. Junction TemperatureTYPICAL APPLICATIONAs shown in Figure 6, the bold line is the high density current path which must be kept as short as possible. For thermal management, ensure that these trace widths are adequate. C1 is a decoupling capacitor which should be placed as close as possible to XB5352G.Fig 6 XB5352G in a Typical Battery Protection CircuitPrecautions• Pay attention to the operating conditions for input/output voltage and load current so that the power loss in XB5352G does not exceed the power dissipation of the package.• Do not apply an el ectrostatic discharge to this XB5352G that exceeds the performance ratings of the built-in electrostatic protection circuit.XB5352G______________________________________ ____________________________________________________ ________ _________ ____________ - 11 -PACKAGE OUTLINESOT23-5 PACKAGE OUTLINE AND DIMENSIONS。
半导体放电管SMA

A.General Description 简要概述半导体放电管器件专门用来防止敏感的电信设备、POS 终端、基站设备、网络视频等设备出现由闪电、电源接触和电源感应引起的过压故障危险。
它们具有高电气浪涌抑制能力,有助于防止瞬间故障和断开状态的高阻抗,使系统的正常运行过程变得实际上更加透明。
广泛应用在:网络通迅及消费类电子产品、高速数据传输设备(T1/E1、XDSL、ISDN、HDSL、CATV、SLIC 等)。
经典应用:电话信号接口防护、RS485、RS232、RS422等数据接口。
产品特点产品特点:: 精确导通电压、快速响应 超强的浪涌处理能力 双向对称,可靠性高 安装简便,器件体积小分SMA、SMB 贴片型/DO-15、TO-92直插型 符合ROHS 要求满足通信产品标准要求SMA/DO-214ACB.Dimension产品尺寸D.Surge Ratings 浪涌额定值E.Product Terminology 产品术语Electrical Parameters电气参数V DM :Repetitive peak Off-state Voltage 最高峰值电压,器件可保持关断状态,也即:不正作峰值电压VBo:Switching Voltage半导体雪崩或开关切换动作电压Ipp :Surge Ratings最大额定峰值脉冲电流I DM :Off-state current在V DM 下最大泄漏电流值I H Min :Minimum Holding current 导通状态最小电流C :O ff-state Capacitance 不工作状态下器件电容值di/dt :Rate of Rise of Current 电流上升率dv/dt :Rate of Rise of Voltage电压上升率F.Thermal Considerations温度特性考虑封装形式Symbol符号Parameter参数Value值SMA/Do-214ACT J Operating Junction Temperature Range工作温度范围-40~+150℃T S Storage Temperature Range贮存温度范围-55~+150℃RØJA Thermal Resistance:Junction to Ambient90℃/WG.Part Name Information 产品命名信息H.Packing information 包装信息505000PCS/Reel 00PCS/Reel1010000PCS 000PCS /BOX50,000PCS /CartonNOTE:ALL DATA AND SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.注意注意::所有的规格、参数更新将不例行通知。
半导体元器件 hs编码

半导体元器件hs编码
根据2023年12月的最新HS编码(海关编码)标准,半导体元器件的HS编码通常属于以下范畴:
8541.10 半导体集成电路(包括微处理器和控制器)
8541.20 其他具有至少一个电子功能的半导体器件
8541.30 敏感半导体器件,包括光电转换器、光敏电阻和光敏晶体管等
8541.40 晶体管,包括硅晶体管、绝缘栅双极型晶体管(IGBT)和场效应晶体管(FET)等
8541.50 二极管,包括整流二极管、肖特基二极管和发光二极管(LED)等
8541.60 光电管和光电倍增管
8541.70 磁电子器件和磁传感器
8541.90 其他半导体器件,如电容器、电阻器和电感器等
请注意,具体的HS编码可能因国家/地区而异。
建议在使用时参考当地海关或贸易部门的最新编码标准以确保准确性。
1。
硕凯半导体放电管型号大全-改

硕凯半导体放电管型号大全硕凯电子(Sylvia)1、半导体放电管产品简述半导体过压保护器是根据可控硅原理采用离子注入技术生产的一种新型保护器件,具有精确导通、快速响应(响应时间ns级)、浪涌吸收能力较强、双向对称、可靠性高等特点。
由于其浪涌通流能力较同尺寸的TVS管强,可在无源电路中代替TVS管使用。
但它的导通特性接近于短路,不能直接用于有源电路中,在这样的电路中使用时必须加限流元件,使其续流小于最小维持电流。
半导体过压保护器有贴装式、直插式和轴向引线式三种封装形式。
2、半导体放电管型号大全(1)名称:P0080SA-P5000SA(DO-214AA)封装:DO-214AA产品系列:P0080SA-P5000SA规格:P0080SA、P0300SA、P0640SA、P0720SA、P0900SA、P1100SA、P1300SA、P1500SA、P1800SA、P2000 SA、P2300SA、P2600SA、P3100SA、P3500SA、P4000SA、P4500SA、P5000SA(2)名称:P0080SB-P5000SB(DO-214AA)封装:DO-214AA产品系列:P0080SB-P5000SB规格:P0080SB、P0300SB、P0640SB、P0720SB、P0900SB、P1100SB、P1300SB、P1500SB、P1800SB、P2000SB、P2300SB、P2600SB、P3100SB、P3500SB、P4000SB、P4500SB、P5000SB(3)名称:P0080SC-P5000SC(DO-214AA)封装:DO-214AA产品系列:P0080SC-P5000SC规格:P0080SC、P0300SC、P0640SC、P0720SC、P0900SC、P1100SC、P1300SC、P1500SC、P1800SC、P2000SC、P2300SC、P2600SC、P3100SC、P3500SC、P4000SC、P4500SC、P5000SC(4)名称:P0080TA-P5000TA(DO-214AC)封装:DO-214AC产品系列:P0080TA-P5000TA规格:P0080TA、P0300TA、P0640TA、P0720TA、P0900TA、P1100TA、P1300TA、P1500TA、P1800TA、P2000TA、P2300TA、P2600TA、P3100TA、P3500TA、P4000TA、P4500TA、P5000TA(5)名称:P0080EA-P5000EA(TO-92)封装:TO-92产品系列:P0080EA-P5000EA规格:P0080EA、P0300EA、P0640EA、P0720EA、P0900EA、P1100EA、P1300EA、P1500EA、P1800EA、P2000EA、P2300EA、P2600EA、P3100EA、P3500EA、P4000EA、P4500EA、P5000EA(6)名称:P0080EB-P5000EB(TO-92)封装:TO-92产品系列:P0080EB-P5000EB规格:P0080EB、P0300EB、P0640EB、P0720EB、P0900EB、P1100EB、P1300EB、P1500EB、P1800EB、P2000EB、P2300EB、P2600EB、P3100EB、P3500EB、P4000EB、P4500EB、P5000EB、(7)名称:P0080EC-P5000EC(TO-92)封装:TO-92产品系列:P0080EC-P5000EC规格:P0080EC、P0300EC、P0640EC、P0720EC、P0900EC、P1100EC、P1300EC、P1500EC、P1800EC、P2000 EC、P2300EC、P2600EC、P3100EC、P3500EC、P4000EC、P4500EC、P5000EC(8)名称:P0080LA-P5000LA(DO-41)封装:DO-41产品系列:P0080EC-P5000EC规格:P0080LA、P0300LA、P0640LA、P0720LA、P0900LA、P1100LA、P1300LA、P1500LA、P1800LA、、P200 0LA、P2300LA、P2600LA、P3100LA、P3500LA、P4000LA、P4500LA、P5000LA(9)名称:P0080LB-P5000LB(DO-15)封装:DO-15产品系列:P0080LB-P5000LB规格:P0080LB、P0300LB、P0640LB、P0720LB、P0900LB、P1100LB、P1300LB、P1500LB、P1800LB、P2000 LB、P2300LB、P2600LB、P3100LB、P3500LB、P4000LB、P4500LB、P5000LB(10)名称:P0080LC-P5000LC(DO-27)封装:DO-27产品系列:P0080LC-P5000LC规格:P0080LC、P0300LC、P0640LC、P0720LC、P0900LC、P1100LC、P1300LC、P1500LC、P1800LC、P2000 LC、P2300LC、P2600LC、P3100LC、P3500LC、P4000LC、P4500LC、P5000LC(11)名称:TISP61089封装:SOP-8产品系列:TISP61089规格:TISP61089、TISP61089A、TISP61089B3、小结有关硕凯半导体放电管的各种型号主要是以上这些系列,附上硕凯半导体放电管的命名规则,方便大家了解:谢谢您的查阅!。
维沙特半导体 SOT-23 型号的单线电静电保护设备说明书

J0014A
SEE DETAIL A 1
12X (.100 ) [2.54]
14X ( .039) [1]
EXAMPLE BOARD LAYOUT
CDIP - 5.08 mm max height
CERAMIC DUAL IN LINE PACKAGE
(.300 ) TYP [7.62]
NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150
TI’s products are provided subject to TI’s Terms of Sale (/legal/termsofsale.html) or other applicable terms available either on or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.
(R.002 ) TYP [0.05]
DETAIL A
SCALE: 15X
METAL
SOLDER MASK OPENING
半导体放电管TSS的概述以及选用方法

半导体放电管TSS的介绍以及应用领域概述:半导体放电管TSS是基于开关型晶闸管原理和结构的一种二端负阻器件,用于保护敏感易损的集成电路,使之免受瞬间雷电和过电压的冲击而造成的损坏。
高端的固体放电管产品采用了先进的离子注入技术和玻璃钝化工艺,产品具有准确导通、响应速度快、浪涌吸收能力强、可靠性高、稳定性强等特点。
应用领域:由于半导体放电管的开关特性和稳定性等产品优势,因此被广泛应用于交换机、电话机、传真机、配线架、XDSL、ADSL、G-PON、通讯接口、通讯发射设备等一切需要过电压保护的领域,以保护其后端的芯片免受瞬态过电压的冲击和破坏。
在当今世界微电子及通讯设备高速发展的今天,半导体放电管已经成为通讯和消费类电子行业过压保护的首选分立器件。
半导体放电管的正确选用方法:1、反向击穿电压VBR必须大于被保护电路的最大工作电压。
如在POTS应用中,最大振铃电压(150V)的峰值电压(150*1.41=212.2V)和直流偏压峰值(56.6V)之和为268.8V,所以应选择VBR大于268.8V的器件。
又如在ISDN应用中,最大DC电压(150V)和最大信号电压(3V)之和为153V,所以应选择VBR大于153V的器件。
2、转折电压VBO必须小于被保护电路所允许的最大瞬间峰值电压。
3、若要使半导体放电管通过大的浪涌电流后自复位,器件的维持电流IH必须大于系统所能能提供的电流值。
即:IH(系统电压/源阻抗)。
4、最大瞬间峰值电流IPP必须大于通讯设备标准的规定值。
如FCC Part68A类型的IPP应大于100A;Bellcore 1089的IPP应大于25A。
5、半导体放电管处于导通状态(导通)时,所损耗的功率P应小于其额定功率Pcm,Pcm=KVT*IPP,其中K由短路电流的波形决定。
对于指数波,方波,正弦波,三角波K值分别为1.00,1.4,2.2,2.8。
本文由深圳市瑞隆源电子有限公司提供,专业制造各种防雷器,避雷器,放电管,陶瓷气体放电管等。
IKSEMI漏电保护芯片M54123-奥伟斯

下面为您介绍IKSEMI IL54123DT IL54123N M54123接地故障断路器接地漏电流检测器IL54123描述IL54123N / D设计用于漏电断路器,可直接在交流线路断路器上运行。
它包含预调节器,主调节器,后稳压器,差分放大器,电平比较器,锁存电路。
差分放大器的输入锁存电路。
差分放大器中的输入连接到零电流变压器的次级节点。
当接地漏电流为时,电平比较器产生高电平超过一定程度。
IL54123特征•低功耗(PD = 5mW)100V / 200V•100V / 200V通用内置稳压器•高增益差分放大器•高输入灵敏度(VT = 6.1mV典型值)•最小外部零件•大浪涌保证金•宽工作温度范围(T = -30至80°C)•高抗噪性•符合U.L. 943标准IL54123N DIP8IL54123DT SOP8IL7101完全替代GL7101IL7101完全替代KA2803IL7101描述IL7101设计用于漏电断路器,可直接在交流线路断路器上运行。
它包含预调节器,主调节器,后稳压器,差分放大器,电平比较器,锁存电路。
差分放大器锁存电路中的输入。
差分放大器中的输入连接到零电流变压器的次级节点。
当漏电电流大于某个电平时,电平比较器产生高电平。
IL7101特征•低功耗(PD = 5mW)100V / 200V•100V / 200V通用内置稳压器•高增益差分放大器•高输入灵敏度•最小外部零件•大浪涌保证金•宽工作温度范围(T = -30至85°C)•高抗噪性•符合U.L. 943标准型号:IL7101SN DIP8IL7101AN DIP8IL7101SDT SOP8IL7101ADT SOP8深圳市奥伟斯科技有限公司是一家专注触摸芯片,单片机,电源管理芯片,语音芯片,场效应管,显示驱动芯片,网络接收芯片,运算放大器,红外线接收头及其它半导体产品的研发,代理销售推广的高新技术企业.奥伟斯科技自成立以来一直致力于新半导体产品在国内的推广与销售,年销售额超过壹亿人民币是一家具有综合竞争优势的专业电子元器件代理商.本公司代理推广的一系列优秀触摸芯片及语音芯片,现以大批量应用到智能电子锁、饮水机、电饭煲、LED台灯等控制器为顾客提供最佳解决方案,受到广大客户的一致赞誉。
gdt半导体放电管

gdt半导体放电管GDT半导体放电管(Gas Discharge Tube)是一种常见的气体放电保护元件,也称为气体放电管或气体放电保护器。
它具有放电电压低、响应速度快、寿命长等优点,被广泛应用于电子设备和电力系统中,起到保护电路和设备的作用。
GDT半导体放电管的结构相对简单,由两个电极和一个填充有特定气体的玻璃管组成。
常见的填充气体有氮气、氩气等。
当电路中的电压超过设定的阈值时,GDT放电管会发生气体放电现象,将过电压转移到地或其他接地点,从而保护电路中的其他元件不受损害。
GDT半导体放电管的特点之一是其放电电压低。
一般来说,GDT放电管的放电电压范围在几百伏特到几千伏特之间,不同型号的GDT 放电管具有不同的放电电压。
当电路中的电压超过GDT放电管的放电电压时,它会迅速导通,使过电压得到释放,起到保护作用。
这种低放电电压的特点使得GDT放电管在电子设备中广泛应用,如通信设备、计算机、电源系统等。
GDT半导体放电管的响应速度也是其重要特点之一。
由于GDT放电管的结构简单,其响应速度非常快,一般在纳秒级别。
这意味着当电路中出现过电压时,GDT放电管能够迅速响应并放电,以保护电路中的其他元件。
这种快速响应的特点对于电子设备的保护至关重要,可以有效防止过电压对设备造成损害。
GDT半导体放电管具有较长的寿命。
由于其工作原理是利用气体放电来保护电路,相对于其他电子元件来说,GDT放电管的寿命更长。
一般情况下,GDT放电管的寿命可达到数万次甚至更多。
这使得GDT放电管成为一种可靠的保护元件,能够在长时间内稳定工作,为电子设备提供持久的保护。
值得一提的是,GDT半导体放电管在保护电路时需要与其他保护元件(如熔断器、过压保护器等)配合使用,以构建完整的保护系统。
不同的保护元件在电路中发挥不同的作用,共同确保电路和设备的安全运行。
总结起来,GDT半导体放电管是一种常见的气体放电保护元件,具有放电电压低、响应速度快、寿命长等优点。
君耀电子半导体放电管产品选型指南说明书

TSS 半导体放电管产品选型指南T hyristor S urge S uppressors Selection Guide版权及最终解释权归君耀电子(BrightKing)所有V2,2018目录1TSS工作原理 (3)2TSS特点 (3)3TSS典型应用电路 (4)4TSS参数说明 (4)4.1.V DRM,I DRM (4)4.2.I H (5)4.3.V T,I T (6)4.4.V S,I S (6)4.5.V PP,I PP (6)5TSS选型注意事项 (7)5.1.反向截止电压(V DRM) (7)5.2.TSS的续流问题 (7)5.3.封装形式 (7)6TSS命名规则 (7)7君耀电子(BrightKing)TSS产品线 (8)1 TSS 工作原理TSS (Thyristor Surge Suppressors ),浪涌抑制晶闸管,也称半导体放电管,是采用半导体工艺制成的PNPN 结四层结构器件,其伏安特性(如图1)类似于晶闸管,具有典型的开关特性。
TSS 一般并联在电路中应用,正常工作状态下TSS 处于截止状态,当电路中由于感应雷、操作过电压等出现异常过电压时,TSS 快速导通泄放由异常过电压导致的异常过电流,保护后端设备免遭异常过电压的损坏,异常过电压消失后,TSS 又恢复至截止状态。
图2是TSS 第一象限放大图,TSS 的开关特性包含四个区域:断态区、击穿区、负电阻区和通态区。
断态区:是电压—电流特性的高电阻、低电流区。
该区域从原点延伸至击穿起始点。
断态电流是结反向电流和所有表面漏电流的综合,在该区可施加反向截止电压(V DRM )测量TSS 的漏电流(I DRM )。
击穿区:击穿区是电压—电流特性的低电阻、高电压区域。
该区域是从电压—电流特性的高动态电阻的低电流部分开始变化,至显著的低动态电阻区、电流剧增的区域。
最终当TSS 正反馈出现足以激活开通时,该区域终止。
负电阻区:负电阻区表示从击穿区开关点到通态状态的轨迹。
屹晶微电子 EG2125 芯片数据手册说明书

版本变更记录版本号日期描述V1.0 2020年11月11日EG2125用户手册初稿目录1. 特性 (1)2. 描述 (1)3. 应用领域 (1)4. 引脚 (2)4.1 引脚定义 (2)4.2 引脚描述 (3)5. 结构框图 (4)6. 典型应用电路 (5)7. 电气特性 (5)7.1 极限参数 (5)7.2 典型参数 (6)7.3 开关时间特性及死区时间波形图 (7)8. 应用设计 (7)8.1 Vcc端电源电压 (7)8.2 输入逻辑信号要求和输出驱动器特性 (8)8.3 自举电路 (9)9. 封装尺寸 (10)9.1 SSOP24封装尺寸 (10)EG2125芯片数据手册V1.01. 特性⏹高端悬浮自举电源设计,耐压可达600V⏹内部带两路比较器⏹适应5V、3.3V输入电压⏹最高频率支持500KHZ⏹VCC和VB端欠压关断输出⏹输出电流能力I O+/- 0.8A/1.3A⏹SD低电平关闭HO和LO输出⏹过流保护功能,高电平关闭HO、LO输出⏹外围器件少⏹封装形式:SSOP24⏹无铅无卤符合ROHS标准2. 描述EG2125是一款高性价比带两个路比较器功能的全桥驱动专用芯片,内部集成了逻辑信号输入处理电路、SD控制电路、欠压关断电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路。
EG2125高端的工作电压可达600V,低端VCC的电源电压范围宽10V~20V,静态功耗低。
该芯片具有闭锁功能防止输出功率管同时导通,输入通道HIN和LIN内建了250K下拉电阻,在输入悬空时使上、下功率MOS管处于关闭状态,输出电流能力I O+/- 0.8/1.3A,采用SSOP24封装。
3. 应用领域⏹逆变电源⏹电动车控制器⏹变频水泵控制器⏹开关电源⏹无刷电机驱动器⏹高压Class-D类功放4. 引脚4.1 引脚定义图4-1. EG2125管脚定义4.2 引脚描述5. 结构框图GND VCCVS1SD1HIN2GNDVCCVS2LIN2SD2CINP2LO1HO1VB1VB2HO2LO2图5-1. EG2125内部电路图6. 典型应用电路图6-1. EG2125典型应用电路图7. 电气特性7.1 极限参数无另外说明,在T A=25℃条件下注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。
半导体放电管

一半导体放电管的应用概述半导体放电管是一种微型化、高频化和高可靠性的特殊新型电力电子半导体器件,它的结构是一种五层双端对称双向晶闸管,导通与关断只由外加电压或dv/dt决定,因此在线路的在线保护方面有着优越的性能而广泛地应用于通信电路系统中作为雷电浪涌保护器。
目前,完全由它代替气体放电管,用来保护程控交换机、电话机等免遭雷电和交流电源线感应的强脉冲干扰,是理想的换代产品。
管子的漏电流极小,相当于断路;当外电压继续加大时,开始发生击穿(类似与二级管);外电压进一步加大后,管子两端变成通态,相当于短路,可泄放大的电流;当外电压撤去以后,管子可恢复断态,能重复使用且双向结构及电参数一致,可以泄放双向的过电压。
对称的伏安特性曲线如图一:图一半导体放电管的电路符号如图2:半导体吸收雷电浪涌示意如图3:图 2图 6对于低于200伏左右(振铃电路可能产生一百五六十伏的电压,在此正常工作电压下放电管应不动作)的电压,固体放电管不动作(对应参数:不动作电压),相当于断路(对应参数:绝缘电阻)外界引入的过电压经一级保护后,到达B点时最高只有两三百伏(对应固体放电管的最高限制电压),此电压经过二级保护区后到达D点后只有五六十伏,不会对用户接口卡造成损坏。
二级保护可以由低压放电管(标称58伏)构成,也可以由专用的二级保护电路来实现。
对电信终端的损害。
图7为二极管DO-15轴式封装的固体放电管示意图图8为外形图图8 图7二半导体放电管芯片的结构及原理半导体放电管的芯片结构如图8、平面图形如图9图8 图9 (表面金属EB短路)从结构可以分解如图10从上图可以看出,五层双端结构的半导体放电管芯片可以看作是两个无门极的晶闸管的组合,而每个晶闸管又可以看作是两个互相作用的三级管的组合。
在此,简要介绍一下晶闸管的导通条件如图10中的电路图所示:档门极施加触发电流IG时,经晶体管V2放大为电流IC2,又可将IC2视为V1管的基极电流,经V1管放大为电流IC1。
[说明]半导体放电管和气体放电管的基础知识
![[说明]半导体放电管和气体放电管的基础知识](https://img.taocdn.com/s3/m/d69b0747302b3169a45177232f60ddccda38e634.png)
半导体放电管和气体放电管的基础知识气体放电管的结构及特性开放型气体放电管放电通路的电气特性主要取决于环境参数,因而工作的稳定性得不到保证。
为了提高气体放电管的工作稳定性,目前的气体放电管大都采用金属化陶瓷绝缘体与电极进行焊接技术,从而保证了封接的外壳与放电间隙的气密性,这就为优化选择放电管中的气体种类和压力创造了条件,气体放电管内一般充电极有氖或氢气体。
气体放电管的各种电气特性,如直流击穿电压、冲击击穿电压、耐冲击电流、耐工频电流能力和使用寿命等,能根据使用系统的要求进行调整优化。
这种调整往往是通过改变放电管内的气体种类、压力、电极涂敷材料成分及电极间的距离来实现的。
气体放电管有二极放电管及三极放电管两种类型。
有的气体放电管带有电极引线,有的则没有电极引线。
从结构上讲,可将气体放电管看成一个具有很小电容的对称开关,在正常工作条件下它是关断的,其极间电阻达兆欧级以上。
当浪涌电压超过电路系统的耐压强度时,气体放电管被击穿而发生弧光放电现象,由于弧光电压低,仅为几十伏,从而可在短时间内限制了浪涌电压的进一步上升。
气体放电管就是利用上述原理来限制浪涌电压,对电路起过压保护作用的。
随着过电压的降低,通过气体放电管的电流也相应减少。
当电流降到维持弧光状态所需的最小电流值以下时,弧光放电停止,放电管的辉光熄灭。
气体放电管主要用来保护通信系统、交通信号系统、计算机数据系统以及各种电子设备的外部电缆、电子仪器的安全运行。
气体放电管也是电路防雷击及瞬时过压的保护元件。
气体放电管具有载流能力大、响应时间快、电容小、体积小、成本低、性能稳定及寿命长等特点;缺点是点燃电压高,在直流电压下不能恢复截止状态,不能用于保护低压电路,每次经瞬变电压作用后,性能还会下降。
半导体放电管也称固体放电管是一种PNPN元件,它可以被看作一个无门电极的自由电压控制的可控硅,当电压超过它的断态峰值电压或称作雪崩电压时,半导体放电管会将瞬态电压箝制到元件的开关电压或称转折电压值之内。
ABB半导体样本

High Power Semiconductors Product Catalogue 2013Power and productivityfor a better world™Product Catalogue 2013 EditionContentsPage IGBT and Diode Dies 2 – 3 HiPak Modules 4 – 6 StakPak Modules7 Integrated Gate-Commutated Thyristors8 – 9 Gate Turn-off Thyristors10 – 11 Fast Recovery Diodes12 – 13 Standard Recovery Diodes14 Avalanche Diodes15 Drawings for Fast & Standard Recovery Diodes and Avalanche Diodes16 Welding Diodes17 Phase Control Thyristors18 – 20 Bi-Directionally Controlled Thyristors21Fast Switching Thyristors22 Reverse Conducting Thyristors23 Silicon Surge Voltage Suppressors24 BiMOS Part Numbering Structure25 Bipolar Part Numbering Structure26 – 27 ABB – Polovodice Products Cross Reference List28 – 29 Symbols30 – 31 Worldwide Distributors32 – 33High Power Semiconductors Catalogue| Contents 01Part number Thickness μmTypeSize A x B mm V RRM (V)Diodes 1.2 kV5SLY 76E12005SLY 86E12005SLY 76F12005SLY 86F12005SLY 76G12005SLY 86G12005SLY 76J12005SLY 86J12001.7 kV5SLY 86E17005SLY 86F17005SLY 86G17005SLY 86J17005SLY 12J17005SLY 86M17005SLY 12M17002.5 kV5SLX 12L25153.3 kV5SLX 12M33015SLZ 12M33054.5 kV5SLY 12M45005SLY 12N45006.5 kV5SLX 12M6521SPT +SPT +SPT +SPT +SPT +SPT +SPT +SPT +SPT +SPT SPT SPT +SPT +SPT +SPT +6.3 x 6.37.4 x 7.48.4 x 8.410.0 x 10.06.3 x 6.37.7 x 7.78.6 x 8.610.2 x 10.213.6 x 13.612.4 x 12.413.6 x 13.613.6 x 13.613.6 x 13.614.3 x 14.313.6 x 13.6350350350350390390390390390310385385570570670I F (A)V F (V)typ. 125°C Max. Dies per Wafer (W)or Tray (T)361 (W)257 (W)198 (W)137 (W)326 (W)237 (W)188 (W)131 (W)36 (T)69 (W)25 (T)36 (T)25 (T)25 (T)25 (T)25 (T)25 (T)12001200120012001700170017001700170025003300330045004500650050751001505075100150300100100125100110501.851.851.851.852.12.12.12.12.12.02.352.253.13.53.402 IGBT and Diode Dies | High Power Semiconductors Catalogue-SPT, covering the SPT and SPT + technology,is a trademark of ABB IGBT and Diode BiMOS platform-State-of the-art planar IGBT and matching fast diode dies-High dynamic ruggedness, low switching losses, low on-state voltage-Positive temperature coefficient for easy paralleling-Passivation: Silicon Nitride plus PolyimideIGBT and Diode DiesPart number Thickness μmTypeSize A x B mm V CES (V)IGBTs 1.2 kV5SMX 76E12805SMX 86E12805SMX 76H12805SMX 86H12805SMX 76K12805SMX 86K12805SMX 76L12805SMX 86L12805SMY 76H12805SMY 86H12805SMY 76J12805SMY 86J12805SMY 76K12805SMY 86K12805SMY 76M12805SMY 86M12801.7 kV5SMY 86G17215SMY 86J17215SMY 12J17215SMY 86K17215SMY 12K17215SMY 86M17215SMY 12M17212.5 kV5SMX 12L25163.3 kV5SMX 12M33005SMY 12M33104.5 kV5SMY 12M45005SMY 12N45016.5 kV5SMX 12M65015SMY 12M6501SPT SPT SPT SPT SPT +SPT +SPT +SPT +SPT +SPT+SPT +SPT +SPT SPT SPT +SPT +SPT +SPT SPT +6.5 x 6.69.1 x 9.011.0 x 11.012.6 x 12.69.1 x 9.110.2 x 10.211.2 x 11.913.5 x 13.58.6 x 8.610.1 x 10.111.4 x 11.413.6 x 13.612.4 x 12.413.6 x 13.613.6 x 13.613.6 x 13.614.3 x 14.313.6 x 13.613.6 x 13.6140140140140140140140140209209209209310385380530530670670I C (A)I CM (A)Max. Dies per Wafer (W)or Tray (T)332 (W)166 (W)112 (W)82 (W)166 (W)130 (W)98 (W)71 (W)186 (W)132 (W)36 (T)102 (W)36 (T)69 (W)25 (T)36 (T)25 (T)25 (T)25 (T)25 (T)25 (T)25 (T)120012001200120012001200120012001700170017001700250033003300450045006500650025507510057751001505075100150505062.550552531501001502001141502003001001502003001001001251001105063V CEsat (V)typ. 125°C 2.352.22.22.22.12.12.12.23.03.03.03.02.73.83.13.553.505.44.0High Power Semiconductors Catalogue | IGBT and Diode Dies 03Please refer to page 25 for part numbering structure.1.7 kV5SND 0800M1701005SNE 0800M1701005SNA 1600N1701005SNA 1800E1701005SNA 2400E1701003.3 kV5SNE 0800E3301005SNA 0800N3301005SLD 1200J3301005SNA 1200E3301005SNA 1200G3301001.7 kV5SLA 2000J1703005SNA 2000J1703005SNA 2400E1703055SNA 3600E1703005SLA 3600E1703002.5 kV5SNA 1500E2503003.3 kV5SNG 0250P3303055SLD 1000N3303005SNA 1000N3303005SNA 1500E330305170017001700170017003300330033003300330017001700170017001700250033003300330033002 x 8008001600180024008008001200120012002000200024003600360015002 x 2502 x 100010001500(3) – Dual IGBT / M (2) – Chopper / M (1) – Single IGBT / N (1) – Single IGBT / E (1) – Single IGBT / E(2) – Chopper / E (1) – Single IGBT / N (4) – Dual Diode / J (1) – Single IGBT / E (1) – Single IGBT / G(6) – Single Diode / J (1) – Single IGBT / J (1) – Single IGBT / E (1) – Single IGBT / E (6) – Single Diode / E(1) – Single IGBT / E(5) – Half Bridge / P (4) – Dual Diode / N (1) – Single IGBT / N (1) – Single IGBT / E2.62.62.62.62.63.83.8-3.83.85-2.72.43.0-2.53.1-3.13.11.71.71.71.71.72.352.352.352.352.351.81.81.671.951.952.02.252.252.252.25Part number Configuration /Outline Voltage V CES (V )Current I C (A )V CEsat (V )typ. 125°C V F (V )typ. 125°CHiPak1HiPak1HiPak1HiPak2HiPak2HiPak2HiPak1HiPak1 HV HiPak2HiPak2 HVHiPak1 HV HiPak1 HV HiPak2HiPak2HiPak2HiPak2HiPak0 HV HiPak1HiPak1HiPak2HousingTvj(operational) up to 125°C Tvj(operational) up to 150°CPlease refer to page 25 for part numbering structure.04 HiPak Modules | High Power Semiconductors CatalogueHiPak:-High power, industry standard package -Designed for high reliability-Low inductance, high current terminals-Aluminium Silicon Carbide base plate for high thermal cycling capabilities-Aluminium Nitride substrates for low thermal resistance-Designed for very high SOA (Safe Operating Area)-Smooth switching characteristics for good EMC -SPT and SPT + chip technology-Insulation capabilities above 6 or 10 kV depending on housing type4.5 kV5SNG 0150P4503005SLD 0650J4503005SNA 0650J4503005SNA 0800J4503005SLD 1200J4503505SNA 1200G4503005SNA 1200G4503506.5 kV5SNA 0400J6501005SNA 0500J6503005SLD 0600J6501005SNA 0600G6501005SNA 0750G6503004500450045004500450045004500650065006500650065002 x 1502 x 6506508002 x 1200120012004005002 x 600600750(5) – Half Bridge / P (4) – Dual Diode / J (1) – Single IGBT / J (1) – Single IGBT / J (4) – Dual Diode / J (1) – Single IGBT / G (1) – Single IGBT / G(1) – Single IGBT / J (1) – Single IGBT / J (4) – Dual Diode / J (1) – Single IGBT / G (1) – Single IGBT / G3.5-3.73.55-3.553.555.43.9-5.43.93.453.43.43.53.53.53.53.43.43.43.43.4Part number Configuration /Outline Voltage V CES (V )Current I C (A )V CEsat (V )typ. 125°C V F (V )typ. 125°CHiPak0 HV HiPak1 HV HiPak1 HV HiPak1 HV HiPak1 HV HiPak2 HV HiPak2 HVHiPak1 HV HiPak1 HV HiPak1 HV HiPak2 HV HiPak2 HVHousingTvj(operational) up to 125°C Configurations(1)(2)(4)(3)(5)(6)High Power Semiconductors Catalogue | HiPak Modules 05Please refer to page 25 for part numbering structure.HiPak:-High power, industry standard package -Designed for high reliability-Aluminium Silicon Carbide base plate for high thermal cycling capabilities-Aluminium Nitride substrates for low thermal resistance-Designed for very high SOA (Safe Operating Area)-Smooth switching characteristics for good EMC -SPT and SPT + chip technology-Insulation capability up to and above 10 kVDimensions in mm06 HiPak Modules |High Power Semiconductors Catalogue5SNR 10H25015SNR 13H25015SNR 20H25015SNA 1300K4503005SNA 2000K4503005SNA 2000K4513002500250025004500450045001000130020001300200020002.72.72.73.43.43.51.91.91.92.32.43.0Part number Voltage V CES (V )Current I C (A )V CEsat (V )typ. 125°C V F (V )typ. 125°C H H H K K KHousingsConfigurationHKOutline DrawingsStakPak ModulesHigh Power Semiconductors Catalogue | StakPak Modules 07-Press-pack IGBT -High SOA-Stable shorted state in case of failure-High tolerance for uneven mounting pressure -Designed for series connection -Explosion resistant package237.326235.111.8531.51.728.75Collector (6x)GateEmitterAux.EmitterLabelunclamped clamped236.332582624.6150.3R 81.58.312GateEmitter261.51.74000A T VJM V Part number V DRM V5SHY 35L45205SHY 35L45215SHY 35L45225SHY 40L45115SHY 55L45005SHY 50L55005SHY 42L6500Fig. 1Fig. 1Fig. 1Fig. 1Fig. 1Fig. 1Fig. 1V DC VV RRM VI TGQM AI TAVMT C =85°C AI TSM3msT VJMkA10ms T VJM kA V T V T0 T VJM V r T m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN V GIN V OutlineI TGQM T VJM V Part number V DRM V5SHX 08F4510GCTDiode part5SHX 14H4510GCTDiode part5SHX 26L4520GCTDiode part5SHX 06F6010GCTDiode part5SHX 10H6010GCTDiode part5SHX 19L6020GCTDiode partFig. 2Fig. 3Fig. 1Fig. 2Fig. 3Fig. 1V DC V I TGQM A I TAVM / I FAVM T C =85°CA I TSM / I FSM 10ms T VJM kA V T / V F V T0 / V F0 T VJM V r T / r F m ΩI rr A T VJM °C R thJC K/kW F m kN V GIN VOutlinedi/dtmax.A/μsAsymmetric IGCTs 45004500450045004500550065002800280028002800280033004000171717171717174000400040003600500036003800170017002100143018601290129050505639504040323235283326262.702.702.003.502.354.104.101.401.401.151.701.301.661.880.330.330.210.450.260.620.561251251251251251251258.58.58.58.58.58.58.533333334040404040404028-4028-4028-4028-4028-4028-4028-4045004500450055005500550028002800280033003300330063011002200520900180025013042016010103902101103501708403405.06.18.89.417.010.63.52.57.57.618.07.73.005.703.006.652.955.403.506.303.456.403.456.401.802.801.653.151.802.702.303.301.652.531.902.702.004.601.203.200.531.242.305.802.004.300.902.2340046090032043078011511512511511512540532542132640532542132616204416204428-4028-4028-4028-4028-4028-40250425650190285510-optimized for snubberless turn-off -contact factory for series connection- monolithic integrated freewheeling diode optimized for snubberless turn-off -contact factory for symmetrical devicesReverse conducting IGCTs Integrated Gate-Commutated Thyristors08 IGCTs | High Power Semiconductors Catalogue-Patented free-floating silicon technology -Optical trigger input and status feedback -Patented low-inductance housing technology -Fast response and precise timing -AC square wave or DC supply input -Cosmic radiation resistance ratingPlease refer to page 26 for part numbering structure.Dimensions in mmFast Recovery Diode RecommendationFor all asymmetric and reverse conducting IGCTs, ABB offers matching freewheeling, neutral point (NPC) and clamp diodes. The actual choice of the diode depends on the specific application. Please see application note 5SYA 2064-01.High Power Semiconductors Catalogue| IGCTs 09** = VDRM /100VFine Pattern Type 5SGF 30J4502 5SGF 40L4502I TGQMTVJMVPart number VDRMV Asymmetric5SGA 15F2502 5SGA 20H2501 5SGA 25H2501 5SGA 30J25015SGA 06D4502 5SGA 20H4502 5SGA 30J4502 5SGA 40L4501FHHJDHJLJL VDCVVRRMVITGQMat CSAITAVMTC=85°CAITSM8.3msTVJMkA10msTVJMkAVTVT0TVJMVrTmΩTVJM°CRthJCK/kWRthCHK/kWFmkNHousing μF250025002500250045004500450045004500450014001400140014002800220028002800300028001717171717171717171715002000250030006002000300040003000400057083083013002107109301000960118010.617.017.031.03.114.025.026.025.026.010.016.016.030.03.013.024.025.024.025.02.802.803.102.504.003.504.004.403.903.801.451.661.661.501.901.802.202.101.801.200.900.570.570.333.500.850.600.580.700.65125125125125125125125125125125271717125017121112118553853333152020401120404033403465146636ITGQMTVJMVPart number VDRM, VRRMV Symmetric5SGS 08D2500 5SGS 12F2500 5SGS 16H2500 5SGS 08D4500 5SGS 12F4500 5SGS 16H4500D1F1H1D1F1H1 ITGQMat CSAITAVMTC=70°CAITSM8.3msTVJMkA10msTVJMkAVTVT0TVJMVrTmΩTVJM°CRthJCK/kWRthCHK/kWFmkNHousing μF25002500250045004500450080012001600800120016003956307602854426004.8010.6815.004.278.1012.804.510.014.04.07.612.03.203.203.784.334.504.451.631.491.811.772.282.301.901.381.183.101.791.3012512512511511511540.024.018.040.024.018.012.08.06.012.08.06.05101551015234234Asymmetric with Buffer LayerGate Turn-off Thyristors 10 Gate Turn-off Thyristors |High Power Semiconductors Catalogue -Excellent trade-off between on-state and switching losses-Cosmic radiation resistance ratingPlease refer to page 26 for part numbering structure.Fast Recovery Diode RecommendationFor all GTO types, ABB offers matching freewheeling and snubber diodes.The actual choice of the diode depends on the specific application. Please see application note 5SYA 2064-01.J LD F Dimensions in mmF1H1High Power Semiconductors Catalogue | Gate Turn-off Thyristors 11Ø67 max.Ø47Ø3.5Ø3.5Ø47Ø74.5 max.2226250Soldered connectorsCoaxial cable 3/3.5mm 2 ETFEAC - blackG - white Ø5.520°Ø4.3Ø90 max.Coaxial cable 3/3.5mm 2 ETFEAC - blackG - white20°Ø5.5Ø4.3Ø3.522Soldered connectors26Ø3.5Ø63Ø100 max.Ø63250D1Ø53 max.Ø3.5Ø34Soldered connectors225Ø4.3AC - blackG - whiteØ3.6Coaxial cable 2/1mm 2 ETFE2226Ø3.5Ø58.5 max.Ø34V Part number V RRM V5SDF 13H45015SDF 10H6004H HV DC V I FAVM T C =85°CA I FSM1ms T VJM kA 10ms T VJM kA V F0 T VJM r F m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing450060002800380012001100604425.018.01.301.500.480.601251251212334040Q rr μC 30006000I rrA 8001000di/dt=300 A/μsT VJMPlease refer to page 27 for part numbering structure.GTO Freewheeling Diodes V Part number ** = V RRM / 100VV RRM V5SDF 06D25045SDF 06T25045SDF 12F25055SDF 12T25055SDF 04D45045SDF 04T45045SDF 08F45055SDF 08T4505D T1F T2D T1F T2I FAVMT C =85°C A I FSM8.3ms T VJMkA 10msT VJM kA V F0 T VJM r F m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing250025002500250045004500450045006156151256125636136176776710.710.720.320.36.46.416.016.010.010.019.019.06.06.015.015.01.201.201.201.201.861.861.811.810.460.460.240.241.541.540.730.731251251251251251251251253232151532321515884488441010222210102222Q rr μC 400400700700400400700700I rrA 200200230230200200230230di/dt=80 A/μsT VJM12 Fast Recovery Diodes | High Power Semiconductors CatalogueFast Recovery Diodes-Optimized for fast and soft turn-off -Small reverse recovery charge -High di/dt capability at turn-off-Range optimally suited for GTO and IGCT applications-Cosmic radiation resistance ratingABB Semiconductors has a long history of producing high power fast recovery diodes for applications such as Voltage Source Converters (VSC), Current Source Converters (CSC) and DC Snubbers. The diodes are typically used in combination with IGCTs and GTOs as free-wheeling diodes, snubber diodes and clamp diodes. Fast Recovery Diode recommendations for various applications can be found in the ABB application note 5SYA 2064-01.V Part number V RRM V5SDF 03D45025SDF 05F45025SDF 10H45035SDF 11H45055SDF 20L45205SDF 28L45205SDF 02D60045SDF 04F60045SDF 08H6005D F H H1L2L2D F HV DC V I FAVM T C =70°CA I FSM1ms T VJM kA 10ms T VJM kA V F0 T VJM r F m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing4500450045004500450045005500550055002800280028002800280028003300330033002754351100157620102750175380585103247587070822405.016.020.023.030.040.03.010.018.02.152.421.752.431.861.353.352.704.502.802.100.880.650.710.387.202.801.3011511512514014014011511511540171286.56.54022128532.533853162040404040162040A/μs 300430600100012001000220340440I rrA 3556101520125024002800300600900di/dt max.IGCT Diodes V Part number V RRM V5SDF 05D25015SDF 03D45015SDF 07H45015SDF 02D6002D D H DV DC V I FAVM T C =85°CA I FSM1ms T VJM kA 10ms T VJM kA V F0 T VJM r F m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing2500450045006000110024002400300049032090025027124011.48.55.016.03.61.402.001.802.500.501.500.902.5012512512512540401240883811114011Q rr μC 900100017002000I rrA 250200260260di/dt=100 A/μsT VJMSnubber Diodes High Power Semiconductors Catalogue | Fast Recovery Diodes 13V Part number ** = V RRM / 100VV RSM V5SDD 10T18005SDD 38F20005SDD 51L28005SDD 60N28005SDD 60Q28005SDD 70H20005SDD 65H24005SDD 11D28005SDD 11T28005SDD 24F28005SDD 48H32005SDD 54N40005SDD 39K40005SDD 40H40005SDD 08D50005SDD 08T50005SDD 20F50005SDD 33L55005SDD 38H50005SDD 36K50005SDD 50N55005SDD 06D60005SDD 09D60005SDD 10F60005SDD 14F60005SDD 17F60005SDD 31H60005SDD 31K6000T1F L1N Q H H D T1F H N K H D T1F L1H K N D D F F F H KI FAVM T C =85°CA I FSM8.3ms T VJMkA 10ms T VJM kA V T0 T VJM R T m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing18002000280028002800200024003000280030003200400040004000500050005000550050005000550060006000600060006000600060001013373053806830738570306520128512852600471052003941384710281028197834803814363845706628451363136317043246309714.436.070.095.095.069.063.016.016.032.065.190.049.049.012.812.825.649.248.148.180.011.211.718.718.720.342.742.713.534.065.087.087.065.059.015.015.030.061.085.046.046.012.012.024.046.045.045.073.010.511.017.517.519.040.040.00.9340.9150.7700.8000.8000.8610.8700.9330.9330.9060.9920.8000.9050.9000.8940.8940.9400.9400.9030.9030.8001.0660.8931.0151.0150.8940.8940.8940.2570.0880.0820.0500.0500.0460.0570.2420.2420.1350.0670.0860.1090.1330.4870.4870.2840.1470.1360.1360.1070.7780.6470.4070.4070.3440.1660.16615019017516016019019016016016016015016016016016016015016016015015015015015015015015038.015.08.05.75.08.08.032.032.015.08.05.79.28.032.032.015.07.08.09.25.742.032.020.020.015.08.09.212.04.03.01.01.02.52.58.08.04.02.51.02.52.58.08.04.01.52.52.51.08.08.05.05.04.02.52.59227090905050101022509050501010227050509011102222225050V RRM V 180020002000200020002000240028002800280032003600400040005000500050005000500050005000600060006000600060006000600014 Standard Recovery Diodes | High Power Semiconductors CatalogueStandard Recovery Diodes-Optimised for line frequency -Low on-state losses-High current handling capabilitiesPlease refer to page 27 for part numbering structure.V Part number ** = V RRM / 100VV RRM V5SDA 11D17025SDA 27F20025SDA 10D23035SDA 24F23035SDA 09D26045SDA 08D32055SDA 21F32045SDA 07D38065SDA 16F38065SDA 06D50075SDA 14F5007D F D F D D F D F D FI FAVM T C =85°CA I FSM 8.3ms T VJM kA 10ms T VJM kA V F0T VJM r F m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing170020002300230026003200320038003800500050001310270011402350102091021107901620690141016.033.114.431.012.39.827.88.121.97.518.715.031.013.529.011.59.226.07.620.57.017.50.740.790.830.840.870.930.891.011.031.101.130.250.090.300.130.390.520.170.720.321.010.441601601601601601601601601601601604020402040402040204020105105101051051051122112211112211221122P RSM 20μs T VJMkW 50100507550507550505050Please refer to page 27 for part numbering structure.High Power Semiconductors Catalogue | Avalanche Diodes 15Avalanche Diodes-Self protected against transient over-voltages -Guaranteed maximum avalanche power dissipationDimensions in mm16 Drawings for Fast & Standard Recovery Diodes and Avalanche Diodes |High Power Semiconductors CataloguePlease refer to page 27 for part numbering structure.Part number V RRM V5SDD 71X02005SDD 71B02005SDD 71X04005SDD 71B04005SDD 0120C02005SDD 0120C04005SDD 92Z04005SDD 0105Z04005SDD 0135Z0400* at 8000 A, T VJM X B X B C C Z1Z2Z3V Fmin VI FAVMT C =85°C A I FSM8.3msT VJMkA 10ms T VJM kA T VJM V F0V T VJM °C R thJC K/kW R thCH K/kW F m kN Housing200200400400200400400400400--0.97--0.83*---71107110711071101100011350925010502135006060606092926475915555555585856070850.740.740.740.740.750.740.780.8120.75817017017017017017018018018010.010.010.010.06.06.05.65.03.95.05.05.05.03.03.03.62.52.6222222223636223035r F m Ω0.0260.0260.0260.0260.0200.0180.0310.0260.021T VJM V Fmax V1.051.051.021.050.92*0.88*1.03*1.01*0.92*T j =25°C,I F =5000 AStandard Part numberV RRMV5SDF 63B04005SDF 63X04005SDF 90Z04005SDF 0102C04005SDF 0103Z04005SDF 0131Z0400* at 8000 A B X Z1C Z2Z3V Fmax V I FAVM T C =85°C A I FSM8.3ms T VJM kA 10ms T VJM kA T VJM V F0V T VJM °C R thJC K/kW R thCH K/kW F m kN Housing4004004004004004001.141.141.131.14*1.20*1.14*4747517558754444487054700.960.960.980.981.000.9819019019019019019010.010.05.66.05.03.95.05.03.63.02.52.6222222353035r F m Ω0.0360.0360.0320.0220.0270.022T VJM 626662669041101591026613058T VJM I F =5000A High Frequency Q rr μC 180180200300230300T VJM Dimensions in mmBC Z1Z2Z3XHigh Power Semiconductors Catalogue | Welding Diodes 17Welding Diodes-Designed for medium and high frequency welding equipment and optimized for high current rectifiers-Proven high reliability in welding applications with very low on-state voltage and very low thermal resistanceV Part number ** = V RRM / 100VV DRM, V RRMV5STP 06T16005STP 10D16015STP 10T16005STP 20F16015STP 20T16005STP 34H16015STP 34T16005STP 07D18005STP 09D18015STP 18F18015STP 18T18005STP 30H18015STP 30T18005STP 50Q18005STP 09D22015STP 17F22015STP 17T22005STP 29H22015STP 29T22005STP 06D28005STP 08D28015STP 08T28005STP 15T28005STP 16F28015STP 27H28015STP 27T28005STP 33L2800T4D T1F T2H T3D D F T2H T3Q D F T2H T3D D T1T2F H T3LI TAVM T C =70°C A I TSM8.3ms T VJM kA 10ms T VJM kA V T0 T VJM r T m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing16001600160016001600160016001800180018001800180018001800220022002200220022002800280028002800280028002800280064196996919011956337033707309321825187031083108610086317021743285528556207927921589155426702670374010.616.016.029.229.252.352.39.514.628.028.050.250.2100.012.827.227.248.148.18.511.311.325.225.245.945.965.09.915.015.027.327.349.049.09.013.726.226.247.047.094.012.025.525.545.045.08.010.610.623.623.643.043.060.00.990.930.930.950.950.940.940.800.940.970.970.980.980.900.980.990.991.001.000.921.061.061.021.021.041.040.950.5030.3020.3020.1520.1520.0660.0660.5400.3410.1700.1700.0810.0810.0500.4140.2060.2060.1070.1070.7800.4920.4920.2650.2650.1270.1270.10012512512512512512512512512512512512512512512512512512512512512512512512512512512544.032.032.016.015.510.010.036.032.016.015.510.010.05.032.016.015.510.010.036.032.032.015.516.010.010.07.012.010.010.04.04.03.03.07.510.04.04.03.03.01.010.04.04.03.03.07.510.010.04.04.03.03.01.591010222250501010222250509010222250501010102222505070T VJM Please refer to page 26 for part numbering structure.Phase Control Power Thyristors-Designed for high power industrial and power transmission applications-Optimized for low on-state voltage drop-Matched Q rr and V T values available for series and/or parallel connections18 Phase Control Thyristors | High Power Semiconductors CatalogueV Part number ** = V RRM / 100VV DRM, V RRMV5STP 45N28005STP 45Q28005STP 04D42005STP 12F42005STP 21H42005STP 28L42005STP 38N42005STP 38Q42005STP 04D52005STP 17H52005STP 25L52005STP 25M52005STP 34N52005STP 34Q52005STP 52U52005STP 03D65005STP 03X65005STP 08F65005STP 08G65005STP 12K65005STP 18M65005STP 26N65005STP 42U65005STP 20N85005STP 20Q8500N Q D F H L N Q D H L M N Q U D X F G K M N U N QI TAVM T C =70°C A I TSM8.3ms T VJM kA 10ms T VJM kA V T0 T VJM r T m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing2800280042004200420042004200420052005200520052005200520052006500650065006500650065006500650080008000508054904701150219231703960427544019752760254036003875512038035083072013701800281042502000215079.079.07.016.034.255.665.065.05.431.0--60.060.090.34.84.812.812.823.435.0-76.138.038.075.075.06.415.032.052.060.060.05.029.055.055.055.055.085.24.54.511.811.821.932.065.071.435.035.00.860.861.000.951.250.970.950.951.201.021.001.001.031.031.041.201.201.241.241.181.201.121.241.251.250.0700.0701.5000.5750.1910.1580.1300.1301.6000.3200.2250.2250.1600.1600.1152.3002.3001.0151.0150.6320.4300.2900.1620.4800.4801251251251251251251251251251251251251251251251251251251251251251251251151155.75.036.017.010.07.05.75.036.010.07.09.05.75.04.036.045.017.022.011.09.05.74.05.75.01.01.07.54.03.01.51.01.07.52.01.51.51.01.00.87.57.54.04.02.01.51.00.81.01.09090102250709090105070709090135101022225070901359090T VJMDimensions in mm. Please refer to page 26 for part numbering structure.High Power Semiconductors Catalogue | Phase Control Thyristors 19Dimensions in mm20 Phase Control Thyristors |High Power Semiconductors CatalogueV Part number V RM V5STB 24N28005STB 24Q28005STB 18N42005STB 17N52005STB 25U52005STB 13N65005STB 18U6500N Q N N U N UI TAVM T C =70°C A I TSM8.3ms T VJM kA 10ms T VJM kA V T0 T VJM r T m ΩT VJM °C R thJC K/kW R thCH K/kW F m kN Housing28002800420052005200650065005400584042604000440031203510243026301920180019801405158046.046.035.031.045.024.031.843.043.032.029.042.022.029.70.850.850.961.021.061.201.200.1600.1600.2850.3200.2190.6000.45812512512512511012511011.410.011.411.48.511.48.52.02.02.02.01.62.01.69090909013590135T VJM I RMS *T C =70°C A * AC full-wavereplaces two replaces two replaces two replaces two replaces two replaces two replaces two5STB 24Q28005STB 24N28005STB 18N42005STB 17N52005STB 13N65005STB 25U52005STB 18U65005STP 24H28005STP 24H28005STP 18H42005STP 17H52005STP 12K65005STP 25L52005STP 18M6500Table of replacement of PCTs by BCTs N Q UDimensions in mmBi-Directionally Controlled ThyristorsPlease refer to page 26 for part numbering structure.-Two anti-parallel thyristors on one Si-wafer -Patented free-floating silicon technology-Designed for high power industrial and energy management applications-Matched Q rr values available for series connectionHigh Power Semiconductors Catalogue | BCTs 21。
tss半导体放电管的原理及应用

TSS半导体放电管的原理及应用1. 引言TSS(Thyratron silicon switch)半导体放电管是一种采用半导体材料制造的放电开关元件,具有高速开关速度和高可靠性的特点。
本文将介绍TSS半导体放电管的原理和应用。
2. TSS半导体放电管的原理TSS半导体放电管的工作原理与普通的电子管放电原理有所不同。
其主要原理如下:•半导体材料的导电特性:TSS半导体放电管采用的是半导体材料,半导体材料在特定条件下具有导电特性。
在正向电压施加时,半导体中的载流子被激活,电流流过材料。
而在反向电压施加时,半导体中的载流子被阻挡,电流无法通过。
这种正反向导电特性使得TSS半导体放电管能够控制电流的通断。
•放电触发器:TSS半导体放电管内部集成了放电触发器,它可以通过外部信号激活,从而引起半导体材料的导电和非导电状态之间的转变。
放电触发器可以使TSS半导体放电管迅速开关,实现半导体放电。
3. TSS半导体放电管的应用TSS半导体放电管具有高速开关速度、高可靠性和小尺寸等优点,因此在许多领域得到了广泛的应用。
以下是几个常见的应用场景:3.1 激光设备TSS半导体放电管可用于激光设备中的高压驱动电路,它可以实现高速开关,提供稳定的电流输出,适用于激光器的脉冲调制。
3.2 脉冲电源TSS半导体放电管在脉冲电源中起到关键作用。
通过控制TSS半导体放电管的导电和非导电状态,可以实现脉冲电源的稳定输出。
3.3 医疗设备TSS半导体放电管可以应用于医疗设备中的高压驱动电路,如医用激光器和高频电刀。
通过TSS半导体放电管的开关控制,可以实现高精度的功率调节和脉冲输出。
3.4 工业设备TSS半导体放电管可以用于工业设备中的电源开关和控制电路,如电焊机、高频设备等。
其高速开关和高可靠性的特点使得工业设备更加稳定和高效。
3.5 军事应用TSS半导体放电管在军事科技领域具有广泛的应用。
它可以用于脉冲激光器、雷达装置等电路中,提供稳定的脉冲输出和高速开关功能。
半导体名词解释

半导体名词解释1.何谓PIE? PIE的主要工作是什幺?答:ProcessIntegrationEngineer(工艺整合工程师),主要工作是整合各部门的资源,对工艺持续进行改善,确保产品的良率(yield)稳定良好。
2. 200mm,300mm Wafer代表何意义?答:8吋硅片(wafer)直径为200mm ,直径为300mm硅片即12吋.3.目前中芯国际现有的三个工厂采用多少mm的硅片(wafer)工艺?未来北京的Fab4(四厂)采用多少mm的wafer工艺?答:当前1~3厂为200mm(8英寸)的wafer,工艺水平已达0."13um工艺。
未来北京厂工艺wafer将使用300mm(12英寸)。
4.我们为何需要300mm?答:wafersize变大,单一wafer上的芯片数(chip)变多,单位成本降低200→300面积增加2."25倍,芯片数目约增加2."5倍5.所谓的0."13 um的工艺能力(technology)代表的是什幺意义?答:是指工厂的工艺能力可以达到0."13um的栅极线宽。
当栅极的线宽做的越小时,整个器件就可以变的越小,工作速度也越快。
6.从0."35um->0."25um->0."18um->0."15um->0."13um的technology改变又代表的是什幺意义?答:栅极线的宽(该尺寸的大小代表半导体工艺水平的高低)做的越小时,工艺的难度便相对提高。
从0."35um ->0."25um ->0."18um ->0."15um ->0.13um代表着每一个阶段工艺能力的提升。
7.一般的硅片(wafer)基材(substrate)可区分为N,P两种类型(type),何谓N,P-type wafer?答:N-typewafer是指掺杂negative元素(5价电荷元素,例如:P、As)的硅片, P-type的wafer是指掺杂positive元素(3价电荷元素,例如:B、In)的硅片。