数学高三理科知识点总结归纳

合集下载

高三理数知识点归纳总结

高三理数知识点归纳总结

高三理数知识点归纳总结一、集合与逻辑1. 集合的概念与表示方法集合是由若干个确定的元素所组成的整体。

集合通常用大写字母表示,元素用小写字母表示,并用大括号{}表示集合的结构。

例如,集合A={1,2,3,4,5}表示A是由1、2、3、4、5这几个元素组成的集合。

2. 集合运算(1)并集:若A和B是两个集合,则A和B的并集表示为A∪B,它包括A和B的所有元素。

(2)交集:若A和B是两个集合,则A和B的交集表示为A∩B,它包括A和B共有的元素。

(3)差集:若A和B是两个集合,则A和B的差集表示为A-B,它包括属于A但不属于B的元素。

3. 命题与命题的逻辑连接命题是陈述句,其真假可以确定。

逻辑连接包括合取(命题p且命题q)、析取(命题p 或命题q)、非命题(非p)和蕴含(若p则q)。

4. 命题的等价式(1)合取式的等价式:p∨q≡¬(¬p∧¬q)(2)析取式的等价式:p∧q≡¬(¬p∨¬q)(3)非命题的等价式:¬(p∧q)≡¬p∨¬q(4)蕴含式的等价式:p→q≡¬p∨q5. 命题的推理命题的推理包括假言推理、三段论、析状前提、假言三段论等。

二、整式与多项式1. 整式整式是由自然数、整数、有理数字和字母(代表数)及它们相乘、相除、相加后所得的代数式。

2. 多项式多项式是由有理数字及字母的幂相乘相加而得到的代数式。

多项式的幂必须为自然数。

3. 多项式的运算(1)多项式的加法与减法多项式的加法就是将同类项相加,减法就是将同类项相减。

(2)多项式的乘法多项式的乘法是用分配律和乘法结合律进行的。

(3)多项式的除法多项式的除法是用多项式除以单项式或多项式的长除法进行的。

4. 多项式的因式分解多项式的因式分解就是把一个多项式表示成几个因式相乘的形式。

5. 多项式方程多项式方程就是含有未知数的多项式等式。

三、函数1. 函数的概念设A、B是非空集合,如果按照某种确定的对应关系f,对于集合A中的每一个元素x,都对应唯一确定的一个元素y∈B,那么称f为从A到B的一个函数,记作y=f(x)。

理科高三数学知识点总结(最新)

理科高三数学知识点总结(最新)

理科高三数学知识点总结等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。

不等式基本性质有:(1)a>bb(2)a>b,b>ca>c(传递性)(3)a>ba+c>b+c(c∈R)(4)c>0时,a>bac>bcc<0时,a>bac运算性质有:(1)a>b,c>da+c>b+d。

(2)a>b>0,c>d>0ac>bd。

(3)a>b>0an>bn(n∈N,n>1)。

(4)a>b>0>(n∈N,n>1)。

应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。

一般地,证明不等式就是从条件出发施行一系列的推出变换。

解不等式就是施行一系列的等价变换。

因此,要正确理解和应用不等式性质。

②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。

(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。

(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高中数学集合复习知识点任一A,B,记做ABAB,BA,A=BAB={|A|,且|B|}AB={|A|,或|B|}Card(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有①确定性;②互异性;③无序性2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2高中数学集合知识点归纳1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。

高三理数知识点归纳总结

高三理数知识点归纳总结

高三理数知识点归纳总结高三阶段是学生备战高考的关键期,而理数科目则是其中的重点。

理数科目包含了数学和物理两个部分,对于学生而言,掌握好理数知识点至关重要。

在这篇文章中,我将对高三理数知识点进行归纳总结,以帮助同学们更好地备考。

1. 数学知识点1.1 代数代数是数学中的重要分支,它包含了方程、函数、不等式等多个知识点。

在高三阶段,以下几个知识点尤为重要:1.1.1 一次函数与二次函数一次函数和二次函数都是常见的函数类型,其中一次函数的图像为一条直线,而二次函数的图像则为一条抛物线。

在学习这两个函数时,需要掌握它们的性质、图像和应用。

1.1.2 高次方程与不等式高次方程和不等式是代数中的难点,需要使用特定的解法和技巧。

包括多项式的因式分解、根与系数的关系、复根的性质等等。

1.2 几何几何是数学中研究形状、大小、相似性质的学科,其中的平面几何和立体几何是高中数学的核心内容。

1.2.1 平面几何平面几何主要包括平面图形的性质和计算。

例如,学生需要掌握各种图形的面积、周长计算公式,以及相关定理如角平分线定理、垂直定理等。

1.2.2 立体几何立体几何包括了三维图形的性质和计算。

例如,学生需要了解各种立体图形的体积、表面积计算公式,以及相关定理如勾股定理、正弦定理、余弦定理等。

2. 物理知识点物理是自然科学的一门学科,研究物质的运动、相互作用和能量转换。

在高三阶段,以下几个物理知识点需要着重掌握:2.1 力学力学是物理学的基础,包括力的作用、物体的运动、力的合成与分解等。

学生需要掌握牛顿定律、动量守恒定律、能量守恒定律等基本定律,以及与之相关的计算方法。

2.2 热学热学是研究热现象和热能转化的学科,包括温度、热量、热平衡等知识点。

学生需了解热力学定律、热传导、热辐射等热学基本概念,并能应用于实际问题中。

3. 知识点归纳总结在高三理数科目的备考中,需要将每个知识点进行系统归纳总结。

以下是几个备考建议:3.1 理清知识点框架将每个知识点按照章节和重要性进行归类,建立起知识点之间的逻辑关系,形成一张完整的知识框架。

高中数学知识清单(理科)最终

高中数学知识清单(理科)最终

高 考 数 学 常 用 公 式 及 结 论整理人:余河洛特别说明:(49—52和57—62为理科内容,文科生不作要求) 1.U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆I U2.若{}n a a a a A ,,,,321⋅⋅⋅=,则A的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个..3.函数的的单调性: (1)设[]2121,,x x b a x x ≠∈,那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数; 如果0)(<'x f ,则)(x f 为减函数.4.函数()y f x =的图象的对称性:①()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=;②()y f x =的图象关于直线2a bx +=对称()()f a x f b x ⇔+=-()()f a b x f x ⇔+-=;③()y f x =的图象关于点(,0)a 对称()()()()02=-++⇔--=⇔x a f x a f x a f x f ,()y f x =的图象关于点(,)a b 对称⇔()()()()b x a f x a f x a f b x f 222=-++⇔--=.5.两个函数的图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称; ②函数()y f x a =-与函数()y f a x =-的图象关于直线x a =对称; ③函数()y f x =的图象关于直线x a =对称的解析式为(2)y f a x =-; ④函数()y f x =的图象关于点(,0)a 对称的解析式为(2)y f a x =--;⑤函数)(x f y =和函数)(1x fy -=的图象关于直线x y =对称.6.几个常见的函数方程 (1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+ 7.(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=++a x f x f ,或)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠, T=2a ; (3))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(4))()()-(a x f x f a x f +-=,则)(x f 的周期T=6a. 8.①b N N a a b=⇔=log ; ②()N M MN a a a log log log +=;③N M N M a a alog log log -=; ④log log m n a a nb b m=.(a>0,a ≠1) 9.对数的换底公式:log log log m a m N N a=. (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a Na N =.10.①等差数列{}n a 的通项公式:()d n a a n 11-+=,或d m n a a m n )(-+=mn a a d mn --=⇔.②前n 项和公式: 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 11.对于等差数列{}n a ,若q p m n +=+(m 、n 、p 、q 为正整数),则q p m n a a a a +=+.12.若数列{}n a 是等差数列,n S 是其前n 项和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列,其公差d k D 2=,如下图所示:44444444444844444444444764434421Λ4434421Λ444344421Λk kk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++. 13.数列{}n a 是等差数列⇔n a kn b =+;数列{}n a 是等差数列⇔n S =2An Bn +.14.若等差数列{}n a 和{}n b 的前12-n 项的和分别为12-n S 和 12-n T ,则1212--=n n n n T S b a . 15.①等比数列{}n a 的通项公式:nn n q qa qa a ⋅==-111;或m n m n m n m n a a q q a a =⇔=--.②前n 项和公式:11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩,或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.16.(1)对于等比数列{}n a ,若v u m n +=+(n 、m 、u 、v 为正整数),则v u m n a a a a ⋅=⋅.(2)数列{}n a 是等比数列,n S 是其前n 项的和且q ≠-1,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列,其公比为kq Q =.. 17.裂项法:①()11111+-=+n n n n ; ②()()⎪⎭⎫ ⎝⎛+--⋅=+-1211212112121n n n n ;③()11b a ba b a --=+ ;④()()! 11! 1! 1+-=+n n n n .18.(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤|sin ||cos |1x x +≥.19.①22sin cos 1θθ+=,②tan θ=θθcos sin (Z k k ∈+≠,2ππθ);②22sin()sin()sin sin αβαβαβ+-=-;22cos()cos()cos sin αβαβαβ+-=-.③sin cos a b αα+)αϕ+(其中,辅助角ϕ所在象限由点(,)a b 所在的象限决定,tan baϕ= ).20.①αααcos sin 22sin =.②2222cos 2cos sin 2cos 112sin ααααα=-=-=-(升幂公式).(3)221cos 21cos 2cos ,sin 22αααα+-==(降幂公式). 21.万能公式:22tan sin 21tan ααα=+;221tan cos 21tan ααα-=+;22tan tan 21tan ααα=-(正切倍角公式).22.半角公式:sin 1cos tan 21cos sin ααααα-==+.23.①函数sin()y A x ωϕ=+及cos()y A x ωϕ=+的周期ωπ2=T (A 、ω、ϕ为常数,且A ≠0).②函数()φω+=x A y tan 的周期ωπ=T (A 、ω、ϕ为常数,且A ≠0).24.tan y x =的单调递增区间为,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对称中心为⎪⎭⎫⎝⎛0,2πk ()Z k ∈.. 25.三角形面积公式:①111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高);②111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=(4)2,2a b c S r r a b c ∆∆∆+==++斜边内切圆直角内切圆- 26.在△ABC 中,有①()222C A BA B C C A B πππ+++=⇔=-+⇔=-222()C A B π⇔=-+;②B A b a sin sin >⇔>(注意是在ABC ∆中).27.向量的平行与垂直: 设=11(,)x y ,=22(,)x y ,且≠,则①∥⇔=λ12210x y x y ⇔-=;② ⊥ (≠)⇔·=012120x x y y ⇔+=.28.若OA xOB yOB =+u u u r u u u r u u u r,则A 、B 、C 共线的充要条件是1=+y x .29.三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则其重心的坐标是123123(,)33x x x y y y G ++++. 30. 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==u u u r u u u r u u u r .(2)O 为ABC ∆的重心0OA OB OC ⇔++=u u u r u u u r u u u r r .(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r .(4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=u u u r u u u r u u u r r.31.常用不等式:(1),a b R ∈⇒222a b ab +≥222b a ab +≤⇔(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b +≥22⎪⎭⎫ ⎝⎛+≤⇔b a ab (当且仅当a =b 时取“=”号).(3) abc c b a 3333≥++⇔33abc c b a ≥++(当且仅当c b a ==时取“=”号).(4)b a b a b a +≤±≤-,(注意等号成立的条件).(5)22ab a b a b +≤≤≤+当且仅当a =b 时取“=”号)。

高中数学必修5全册知识点总结(理科)

高中数学必修5全册知识点总结(理科)

高中数学必修5知识点第一章解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c RC ===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c abc+-A =第二章数列1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。

2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n≥2,n∈N +),那么这个数列就叫做等差数列。

⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔=⑶通项公式:1(1)()n m a a n d a n m d=+-=+-或(n a pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb +(k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。

高三数学理科知识点归纳

高三数学理科知识点归纳

高三数学理科知识点归纳仰望天空时,什么都比你高,你会自卑;俯视大地时,什么都比你低,你会自负;只有放宽视野,把天空和大地尽收眼底,才能在苍穹泛土之间找到你真正的位置。

无须自卑,不要自负,坚持自信。

努力学习,冲刺高考,小编带来的高三数学理科知识点归纳,祝你金榜题名高三数学理科知识点归纳1一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

_直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高三数学理科知识点归纳21.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

高三数理化知识点大全

高三数理化知识点大全

高三数理化知识点大全数学知识点:
1. 代数:
- 一元一次方程与不等式
- 一元二次方程与不等式
- 二元一次方程组
- 函数与方程
- 矩阵与行列式
2. 几何:
- 图形的基本性质
- 平面与空间几何体
- 三角形
- 圆与圆锥曲线
- 三维几何与向量
3. 概率与统计:
- 随机事件及概率
- 统计与抽样
- 相关与回归分析
- 概率分布与期望
物理知识点:
1. 力学:
- 牛顿运动定律
- 力的合成与分解
- 物体平衡与静力学
- 动量与能量守恒
- 物体运动的分析
2. 热学:
- 物质的热传递
- 理想气体的性质与过程- 热力学第一与二定律
- 理想气体的状态方程- 热力学过程的分析
3. 光学:
- 光与光的传播
- 光的反射与折射
- 光的干涉与衍射
- 光的波动性与粒子性- 光的成像与光学仪器
化学知识点:
1. 物质的组成与结构:- 原子与原子结构
- 元素与化合物
- 分子与离子
- 化学键与化合价
- 物质的宏、微观特性
2. 化学变化与相互转化:
- 化学方程式与相对原子质量
- 化学反应速率
- 酸碱反应与溶液的中和反应
- 氧化还原反应与电解质溶液
- 燃烧与火焰
3. 化学反应的能量变化:
- 化学反应的热效应
- 化学反应的速率与化学平衡
- 化学反应的动力学与化学平衡常数
- 溶液平衡与溶解度积
- 氧化还原反应与电化学电池
以上是高三数理化学科的知识点大全,希望对你复习备考有所帮助。

记得多做题,多总结,加油!。

高考数学公式理科总结

高考数学公式理科总结

高考数学公式理科总结高考数学公式理科总结数学作为高考的一门科目,深受大多数理科生的青睐。

因为无论是数学的思维锻炼还是需要掌握的数学公式,都是高考备考不可或缺的一部分。

今天,我们就来总结一下理科数学中常用的数学公式及其应用。

一、代数部分1.一元二次方程公式:ax²+bx+c=0,求根公式为x=(-b±√b²-4ac)/2a。

应用:用于求解一元二次方程,例如求解公路修建所需要的材料和成本等。

2.等比数列公式:an=a1q^(n-1)(其中a1为首项,q为公比,an为第n项)。

应用:用于解决各种与成长或增长相关的问题,如人口增长、利润的增长等。

3.排列组合公式:排列公式为A(n,m)=n!/(n-m)!,组合公式为C(n,m)=n!/m!(n-m)!。

应用:用于处理不同的复杂问题,例如排列组合问题、选择问题、不重复随机抽样问题等。

二、几何部分1.三角函数公式:sinθ=对边/斜边,cosθ=邻边/斜边,tanθ=对边/邻边。

应用:用于三角函数问题,例如角度求解、三角函数值等。

2.圆公式:圆的面积公式为A=πr²,圆的周长公式为C=2πr。

应用:用于解决圆形问题,例如圆周运动、圆的切线、圆的切点等。

3.立体几何公式:三棱锥表面积公式为S=ab+a√(a²+b²+c²-2abcosA),三棱锥体积公式为V=1/3abh。

应用:用于解决空间几何问题,例如三棱锥表面积和体积的计算等。

三、概率统计部分1.样本调查公式:样本调查中常用的统计量有平均数、中位数、众数、方差、标准差、相关系数、回归方程等。

应用:用于处理随机事件、样本调查、统计数据等问题。

2.基本概率公式:P(A)=m/n,其中m表示事件A的样本点个数,n表示整个样本点个数。

应用:用于基本的统计概率问题,例如计算事件发生的概率等。

3.正态分布公式:正态分布的概率密度函数为f(x)=1/σ√2πexp(-(x-μ)²/(2σ²))。

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

高三理科数学总结

高三理科数学总结

高三理科数学总结前言高三理科数学是高中阶段数学学习的最后一年,也是同学们备战高考的关键时期。

在这一年里,我们需要对之前几年学习的数学知识进行综合和巩固,掌握高考所需的数学技能和解题方法。

本文将对高三理科数学学习的重点进行总结,希望能帮助大家更好地准备高考。

一、知识要点高三理科数学主要包括代数、函数、几何和数学思维等内容。

下面将对其中的一些重要知识点进行梳理和总结。

1. 代数代数是高中数学的基础,也是高考中的重要考点。

在高三阶段,我们应该重点复习和掌握以下知识点:•因式分解和分式方程•二次函数和二次方程•不等式与绝对值•数列与数列极限2. 函数函数是高中数学的核心概念之一,也是高考中的重要考点。

在高三阶段,我们应该重点复习和掌握以下知识点:•一次函数和一次方程•二次函数和二次方程•指数函数和对数函数•三角函数和三角方程3. 几何几何是高中数学的重要部分,也是高考中的必考内容。

在高三阶段,我们应该重点复习和掌握以下知识点:•点、线、面和空间几何基本概念•各种几何图形的性质和计算•几何变换和相似性•三角形和三角形的面积4. 数学思维数学思维是解决数学问题的关键能力,也是高考中的重要考察内容。

在高三阶段,我们应该培养和提高以下数学思维能力:•分析问题和解决问题的能力•探索和发现问题的能力•推理和证明问题的能力•模型建立和应用问题的能力二、解题方法除了扎实的数学知识外,解题方法也是高考数学中的关键。

下面将介绍一些高考数学解题的常用方法和技巧。

1. 代数解题在代数题中,要善于运用因式分解、配方法和分式通分等技巧。

同时,要注意将复杂的代数题转化为简单的代数问题,通过将题目中的条件用代数式表示,建立方程或不等式,进行求解。

2. 函数解题在函数题中,要善于利用函数的性质和图像来进行解题。

同时,要注意将问题转化为数学函数的形式,通过函数的增减性、奇偶性、周期性等特性,简化并解决问题。

3. 几何解题在几何题中,要善于利用几何图形的性质和定理。

理科高考知识点归纳

理科高考知识点归纳

理科高考知识点归纳一、数学1. 数与式1.1 自然数与整数1.2 有理数1.3 实数1.4 数的运算1.5 数的性质与运算法则2. 代数式与方程2.1 代数式2.2 简单方程与方程解法2.3 一元二次方程2.4 二次函数3. 坐标系与函数3.1 直角坐标系3.2 函数及其图象3.3 幂函数、指数函数与对数函数4. 图形的性质与变换4.1 基本图形的性质4.2 三角形与四边形4.3 平面向量4.4 图形的平移、旋转和对称5. 平面几何与立体几何5.1 平面几何的基本概念与定理5.2 立体几何的基本概念与定理6. 概率与统计6.1 概率的基本概念与性质6.2 统计的基本概念与方法二、物理1. 力学1.1 运动的描述与研究方法1.2 物体的力学性质1.3 牛顿运动定律与万有引力定律1.4 动量与能量2. 热学2.1 热现象与内能2.2 理想气体状态方程2.3 热力学第一定律与第二定律3. 光学3.1 光的传播与光现象3.2 镜子与透镜3.3 光的衍射与干涉4. 电学4.1 电荷与电场4.2 电流与电路4.3 电磁感应与电磁波5. 声学5.1 声的传播与声源5.2 声的特性与听觉三、化学1. 物质的组成与性质1.1 原子结构和元素周期表1.2 化学键与化合物1.3 溶液与氧化还原反应2. 化学反应与化学方程式2.1 反应速率与平衡常数2.2 酸、碱与盐2.3 酸碱中和与滴定3. 金属与非金属3.1 金属与合金3.2 非金属元素与化合物3.3 化学能与化学电池4. 有机化学基础4.1 有机化合物与石油化学4.2 有机物的常见性质和反应以上是理科高考知识点的归纳,不同科目有着各自的重点和难点,学生在备考过程中需要合理安排时间,深入理解和掌握这些知识点。

同时,多做真题、模拟题和练习题,加强对知识的运用和理解能力。

通过系统复习和巩固,提高解决问题的能力,取得理科高考的优异成绩。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。

高考数学必考知识点归纳全

高考数学必考知识点归纳全

高考数学必考知识点归纳全高考数学是高中阶段学生面临的一次重要考试,它涵盖了多个数学领域的基础知识点。

以下是高考数学必考知识点的归纳:一、集合与函数- 集合的概念:集合的表示、子集、并集、交集、补集。

- 函数的概念:函数的定义、值域、定义域、单调性、奇偶性。

- 函数的表示:函数的图象、函数的解析式。

二、代数基础- 指数与对数:指数函数、对数函数、对数运算法则。

- 幂运算:幂的运算法则、根式。

- 代数方程:一元一次方程、一元二次方程、高次方程、方程组的解法。

三、不等式与不等式组- 不等式的基本性质:不等式的基本解法、不等式组的解集。

- 绝对值不等式:绝对值的定义、绝对值不等式的解法。

四、数列- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、极限的运算。

五、三角函数与解三角形- 三角函数:正弦、余弦、正切等基本三角函数的性质和图像。

- 解三角形:正弦定理、余弦定理、三角形的面积公式。

六、解析几何- 直线:直线的方程、直线的位置关系。

- 圆:圆的方程、圆与直线的位置关系。

- 椭圆、双曲线、抛物线:圆锥曲线的性质和方程。

七、立体几何- 空间直线与平面:空间直线的方程、平面的方程、线面关系。

- 多面体与旋转体:多面体的体积、旋转体的表面积和体积。

八、概率与统计初步- 随机事件的概率:概率的定义、概率的计算方法。

- 统计初步:数据的收集、整理、描述。

九、导数与微分- 导数的概念:导数的定义、几何意义。

- 基本导数公式:常见函数的导数公式。

- 微分的概念:微分的定义、微分的应用。

十、积分与应用- 不定积分:不定积分的概念、基本积分公式。

- 定积分:定积分的概念、定积分的计算方法。

- 积分的应用:面积、体积、物理量等的计算。

十一、复数- 复数的概念:复数的定义、复数的运算。

- 复数的几何表示:复平面、复数的模和辐角。

十二、逻辑推理与证明方法- 逻辑推理:命题逻辑、逻辑运算。

2023高考_高考理科数学必考考点及高频考点

2023高考_高考理科数学必考考点及高频考点

2023高考理科数学必考考点及高频考点高考理科数学必考考点必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考理科数学高频考点1.【数列】【解三角形】数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来,、大题第一题考查的是数列,大题第一题考查的是解三角形,故预计大题第一题较大可能仍然考查解三角形。

数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。

解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。

2.【立体几何】高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。

高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)

高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)
-1},若B⊆A,则实数m的取值范围为________. [解析] ∵B⊆A,∴①若B=∅, 则2m-1<m+1,此时m<2.
②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.

2x

3>0


x>
3 2


B

3 xx>2
.

A∩B

{x|1<x<3}∩xx>32 =32,3. [答案] D

高三数学理科知识点总结

高三数学理科知识点总结

高三数学理科知识点总结数学作为理科中的一门重要学科,在高中阶段具有重要的地位。

高三是学生备战高考的关键阶段,全面掌握数学知识点十分关键。

本文将对高三数学理科的知识点进行总结,帮助同学们更好地复习和应对考试。

一、函数与方程1. 函数函数是数学中的重要概念,掌握函数的性质和图像特点对于解题非常重要。

关于函数,需要重点掌握的内容包括:定义域、值域、奇偶性、单调性、极值等。

2. 一次函数和二次函数一次函数是一种线性函数,其表达式为y=ax+b。

二次函数是一种抛物线函数,其标准形式为y=ax²+bx+c。

掌握一次函数和二次函数的图像特点、性质以及相关的解题方法是必须的。

3. 指数与对数指数与对数是高中数学中的重点内容,涉及到指数函数和对数函数的性质与运算法则。

要熟练运用指数与对数的公式,并能解决包括方程、不等式等在内的相关问题。

二、数列与数列极限1. 等差数列与等差数列极限等差数列是数学中最基础的数列之一,其通项公式为aₙ=a₁+(n-1)d。

掌握等差数列的求和公式、前n项和以及极限的相关知识,能够灵活应用于实际问题的解答。

2. 等比数列与等比数列极限等比数列是数学中另一个重要的数列类型,其通项公式为aₙ=a₁*qⁿ⁻¹。

掌握等比数列的求和公式、前n项和以及极限的相关知识,对于数学题目的解决非常有帮助。

三、平面解析几何1. 直线与曲线直线和曲线是平面解析几何的重要内容。

掌握直线的一般方程、点斜式方程、两点式等等,能够灵活应用于直线的求交、判定等问题。

对于曲线,需要熟悉圆的方程以及其他常见曲线的特点和性质。

2. 圆锥曲线圆锥曲线包括椭圆、双曲线和抛物线,是高中数学中比较难的部分。

掌握圆锥曲线的方程、焦点、准线等概念,了解其图像特点和性质,能够正确解答与圆锥曲线相关的题目。

四、微积分1. 导数与微分导数是微积分的基本概念,导数表示了函数在某一点的变化率。

掌握导数的定义、性质、求导法则,能够应用导数解决实际问题,如求函数的极值、最优化问题等。

高三的重要知识点总结

高三的重要知识点总结

高三的重要知识点总结高三是每个学生都非常重要的一年,不仅是学习的压力巨大,同时也是决定大学和未来方向的关键时期。

因此,掌握高三的重要知识点至关重要。

本文将对高三各科的知识点进行总结,以帮助学生们更好地备考。

一、数学高三数学作为理科生的重要科目,主要内容包括数列与数学归纳法、函数与极限、导数与微分、积分与不定积分等。

以下是该科目的重要知识点总结:1. 数列与数学归纳法:等差数列、等比数列、通项公式、求和公式、数学归纳法的应用等。

2. 函数与极限:函数的定义与性质、初等函数的性质、函数的极限与连续性、极限运算法则、函数的单调性与极值等。

3. 导数与微分:导数的定义与计算、导数的应用、微分的定义与计算、微分的应用等。

4. 积分与不定积分:不定积分的定义与计算、定积分的定义与计算、积分的应用等。

二、物理高三物理的重要知识点主要包括力学、热学、光学、电学和现代物理等。

以下是该科目的重要知识点总结:1. 力学:牛顿三定律、力的合成与分解、平衡与滑动摩擦力、动量定理与动量守恒、功与机械能、万有引力等。

2. 热学:热力学基本定律、热量传递与传导、理想气体状态方程、理想气体定律等。

3. 光学:光的反射与折射、光的干涉与衍射、凸透镜与凹透镜、光的波粒二象性等。

4. 电学:电荷、电场与电势、电流与电路、电磁感应与电磁波、电磁感应与电磁场等。

5. 现代物理:相对论、量子物理、原子结构与核物理、半导体与光电子学等。

三、化学高三化学的重要知识点主要包括无机化学、有机化学和化学反应动力学等。

以下是该科目的重要知识点总结:1. 无机化学:元素周期表与元素化学性质、离子反应与酸碱中和、氧化还原反应、溶液中的离子平衡等。

2. 有机化学:烃类、醇酚醚、醛酮、羧酸衍生物等有机化合物的分类与性质、有机反应机理、合成反应与重要有机反应等。

3. 化学反应动力学:化学反应速率、影响化学反应速率的因素、反应速率与化学平衡等。

四、生物高三生物学的重要知识点主要包括细胞与遗传、生物种群与生态、生命的调节与繁殖、进化与动物植物分类等。

高考数学知识点归纳总结2023

高考数学知识点归纳总结2023

高考数学知识点归纳总结2023高考数学知识点归纳总结一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。

6.求解与函数有关的问题易忽略定义域优先的原则。

7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。

例如:。

10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式1.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.2.绝对值不等式的解法及其几何意义是什么?3.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?4.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.5. 在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示。

高考理科数学知识点归纳

高考理科数学知识点归纳

高考理科数学知识点归纳各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。

下面是作者给大家整理的一些高考理科数学的知识点,期望对大家有所帮助。

高考理科数学重要知识点总结1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以显现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个肯定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)依照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是肯定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式情势上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在情势上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能肯定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要根据数列的构成规律,多视察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的知道注意以下几点:(1)数列的通项公式实际上是一个以正整数集N.或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么顺次用1,2,3,…去替换公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判定某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,情势上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映照.因此,从映照、函数的观点看,数列可以看作是一个定义域为正整集N.(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大顺次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特别的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情形,但不精确.高考理科数学备考知识点二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan2α=2tanα/[1-tan^2(α)]半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).......,(由于cos^2(α)+sin^2(α)=1)再把.分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))然后用α/2代替α即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学高三理科知识点总结归纳
轨迹方程就是与几何轨迹对应的代数描述。

一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P 的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高考数学知识点精华
高考数学知识点总结精华一
一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节
主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数
对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

高考数学知识点总结精华二
三、数列
数列这个板块,重点考两个方面:一个通项;一个是求和。

四、空间向量和立体几何
在里面重点考察两个方面:一个是证明;一个是计算。

五、概率和统计
概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。

高考数学知识点总结精华三
六、解析几何
这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题
同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

高考数学直线方程知识点:什么是直线方程
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。

求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。

常用直线向上方向与 X 轴正向的夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。

可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。

直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。

直线在平面上的位置,由它的斜率和一个截距完全确定。

在空间,两个平面相交时,交线为一条直线。

因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。

数学高三理科知识点总结。

相关文档
最新文档