高考经典物理模型:传送带模型一

合集下载

(完整版)高中物理传送带模型(解析版)

(完整版)高中物理传送带模型(解析版)

送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。

牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。

(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。

2023届高考物理二轮复习专题课件:传送带模型

2023届高考物理二轮复习专题课件:传送带模型
速度g=10 m/s2,
sin37°=0.6,cos37°=0.8,求:
(1)小包裹相对传送带滑动时加速度的大小a;
(2)小包裹通过传送带所需的时间t。
[思路导引]
①分析包裹刚滑上传送带时受到摩擦力的方向

②根据牛顿第二定律求刚滑上传送带时的加速度大小

③判断当包裹与传送带速度相等后是随传送带一起匀速运动的
道 AB 滑下,斜道倾角 37 ;离 B 点很近衔接一长 L=2m 的水平传送带,B 与 C 两点可认
为平滑衔接(速度大小不变),A 点距传送带垂直距离为 h=2.4m,冲关者经 C 点到 D 点后
水平抛出,落在水面上一点 E。已知:传送带末端距水面高度 H=0.8m,坐垫与 AB 斜道间
动摩擦因数为µ1=0.5,坐垫与传送带间动摩擦因数为µ2=0.2。( sin37 0.6 , cos37 0.8 )
C.0~t2时间内,小物块始终受到大小不变的摩擦力作用
D.0~t2时间内,小物块受到的摩擦力方向先向右后向左
2.下图是行李安检机示意图。行李箱由静止放上匀速运行的传送带,后沿着斜面滑到地面
上,不计行李箱在 MN 转折处的机械能损失和斜面的摩擦力。关于行李箱在传送带和斜面的
速度 v 或加速度 a 随时间 t 变化的图像,下列可能正确的是( C )
B重合。已知:传送带匀速运动的速度大小为v,方向如图,物品(可视为质点)由
A端无初速度释放,加速到传送带速度一半时恰好进入探测区域,最后匀速通
过B端进入平台并减速至0,各处的动摩擦因数均相同,空气阻力忽略不计,重力
加速度为g。求:
(1)物品与传送带间的动摩擦因数μ;
(2)物品运动的总时间t。

传送带模型--2024年高三物理二轮常见模型含参考答案

传送带模型--2024年高三物理二轮常见模型含参考答案

2024年高三物理二轮常见模型专题传送带模型特训目标特训内容目标1水平传送带模型(1T -5T )目标2倾斜传送带模型(6T -10T )目标3电磁场中的传送带模型(11T -15T )【特训典例】一、水平传送带模型1如图所示,足够长的水平传送带以v 0=2m/s 的速度沿逆时针方向匀速转动,在传送带的左端连接有一光滑的弧形轨道,轨道的下端水平且与传送带在同一水平面上,滑块与传送带间的动摩擦因数为μ=0.4。

现将一质量为m =1kg 的滑块(可视为质点)从弧形轨道上高为h =0.8m 的地方由静止释放,重力加速度大小取g =10m/s 2,则()A.滑块刚滑上传送带左端时的速度大小为4m/sB.滑块在传送带上向右滑行的最远距离为2.5mC.滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为2.5sD.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功为12J 2如图甲所示,一足够长的水平传送带以某一恒定速度顺时针转动,一根轻弹簧一端与竖直墙面连接,另一端与工件不拴接。

工件将弹簧压缩一段距离后置于传送带最左端无初速度释放,工件向右运动受到的摩擦力F f 随位移x 变化的关系如图乙所示,x 0、F f 0为已知量,则下列说法正确的是(工件与传送带间的动摩擦因数处处相等)()A.工件在传送带上先做加速运动,后做减速运动B.工件向右运动2x 0后与弹簧分离C.弹簧的劲度系数为F f 0x 0D.整个运动过程中摩擦力对工件做功为0.75F f 0x 03如图所示,水平传送带AB 长L =10m ,以恒定速率v 1=2m/s 运行。

初速度大小为v 2=4m/s 的小物块(可视为质点)从与传送带等高的光滑水平地面上经A 点滑上传送带。

小物块的质量m =1kg ,物块与传送带间的动摩擦因数μ=0.4,g取10m/s2,则()A.小物块离开传送带时的速度大小为2m/sB.小物体在传送带上的运动时间为2sC.小物块与传送带间的摩擦生热为16JD.小物块和传送带之间形成的划痕长为4.5m4如图甲所示,水平传送带在电机的作用下,t=0时刻由静止开始向右做匀加速直线运动,物块(视为质点)在t=0时刻以速度v0从左轮中心的正上方水平向右滑上传送带,t0时刻物块与传送带的速度相等均为0.4v0,物块和传送带运动的v-t图像如图乙所示,t0时刻前后物块的加速度大小变化量为53m/s2,物块从右轮中心正上方离开传送带时速度为0.8v0,整个过程中物块相对传送带的位移为1.5m。

高中物理-传送带模型

高中物理-传送带模型

传送带模型1.水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v,返回时速度为v;当v0<v,返回时速度为v02.倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速*情景3(1)可能一直加速(2)可能先加速后匀速(3)可能一直匀速(4)可能先以a1加速后以a2加速*情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速①水平传送带问题:求解的关键在于正确分析出物体所受摩擦力.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.②倾斜传送带问题:求解的关键在于正确分析物体与传送带的相对运动情况,从而判断其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.小结:分析处理传送带问题时需要特别注意两点:一是对物体在初态时(静止释放或有初速度的释放)所受滑动摩擦力的方向的分析;二是对物体与传送带共速时摩擦力的有无及方向的分析.对于传送带问题,一定要全面掌握上面提到的几类传送带模型,尤其注意要根据具体情况适时进行讨论,看一看受力与速度有没有转折点、突变点,做好运动过程的划分及相应动力学分析.3.传送带问题的解题思路模板[分析物体运动过程]例1:(多选)如图所示,足够长的传送带与水平面夹角为θ,在传送带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因素为μ,小木块速度随时间变化关系如图所示,v 0、t 0已知,则( )A .传送带一定逆时针转动B .00tan cos v gt μθθ=+C .传送带的速度大于v 0D .t 0后滑块的加速度为002sin v g t θ-[求相互运动时间,相互运动的位移] 例2:如图所示,水平传送带两端相距x =8 m ,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s ,设工件到达B 端时的速度为v B 。

高考经典物理模型:传送带 模型(一)

高考经典物理模型:传送带    模型(一)

传送带模型(一)——传送带与滑块滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。

其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。

因此这类命题,往往具有相当难度。

滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。

按滑块与传送带的初始状态,分以下几种情况讨论。

一、滑块初速为0,传送带匀速运动[例1]如图所示,长为L的传送带AB始终保持速度为v0的水平向右的速度运动。

今将一与皮带间动摩擦因数为μ的滑块C,轻放到A端,求C由A运动到B的时间t ABCAB解析:“轻放”的含意指初速为零,滑块C所受滑动摩擦力方向向右,在此力作用下C向右做匀加速运动,如果传送带够长,当C与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C可能由A一直加速到B。

滑块C的加速度为,设它能加速到为时向前运动的距离为。

若,C由A一直加速到B,由。

若,C由A加速到用时,前进的距离距离内以速度匀速运动C由A运动到B的时间。

[例2]如图所示,倾角为θ的传送带,以的恒定速度按图示方向匀速运动。

已知传送带上下两端相距L今将一与传送带间动摩擦因数为μ的滑块A轻放于传送带上端,求A从上端运动到下端的时间t。

Aθ解析:当A的速度达到时是运动过程的转折点。

A初始下滑的加速度若能加速到,下滑位移(对地)为。

(1)若。

A从上端一直加速到下端。

(2)若,A下滑到速度为用时之后距离内摩擦力方向变为沿斜面向上。

又可能有两种情况。

(a)若,A达到后相对传送带停止滑动,以速度匀速,总时间(b)若,A达到后相对传送带向下滑,,到达末端速度用时总时间二、滑块初速为0,传送带做匀变速运动[例3]将一个粉笔头轻放在以2m/s的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为4m的划线。

高三物理知识点传送带模型

高三物理知识点传送带模型

高三物理知识点传送带模型高三物理知识点:传送带模型传送带模型是物理学中对运动的描述和解释的一种简化模型。

它常被用来说明物体在平稳运动状态下的变化规律和相关的物理概念。

本文将介绍传送带模型的基本原理和应用,以及与高考物理相关的知识点。

一、传送带模型的基本原理传送带模型基于以下假设:1. 假设传送带平稳运行,即传送带的速度保持不变;2. 假设系统在相对运动中处于稳态,即不受到外力的干扰;3. 假设传送带的运动与物体的运动具有良好的耦合性。

在传送带模型中,我们可以将物体视作一个质点,其运动状态由位置、速度和加速度等因素决定。

通过对物体所受的驱动力和阻力进行分析,可以得到物体在传送带上的运动规律。

二、传送带模型的应用1. 平抛运动:传送带模型可以用来解释物体在水平平面上的平抛运动。

在这种情况下,传送带的速度影响了物体的水平速度,而垂直方向的运动受到重力的影响。

根据传送带模型,物体的横向速度与传送带速度相等,而垂直速度受到重力加速度的影响。

这样,我们可以推导出物体在水平平面上的轨迹、飞行时间和最大高度等参数。

2. 斜抛运动:传送带模型也可以应用于物体在斜面上的抛体运动。

在这种情况下,传送带的速度和斜面的倾角会对物体的运动产生影响。

根据传送带模型,物体的速度可以分解为沿斜面和垂直斜面的分量。

这样,我们可以得到物体在斜面上的运动规律,包括滑动距离、飞行时间和最大高度等参数。

三、与高考物理相关的知识点传送带模型是理解和应用以下高考物理知识点的基础:1. 运动规律:通过传送带模型,我们可以更深入地理解运动物体的速度、加速度和运动规律。

包括匀速直线运动、匀加速直线运动等。

2. 平衡力分析:传送带模型可以帮助我们分析物体所受的平衡力和非平衡力。

比如,在平抛运动中,物体的横向速度受到传送带的平衡力,而垂直速度受到重力的非平衡力。

3. 牛顿定律:传送带模型也可以用来解释和应用牛顿定律。

在斜抛运动中,我们可以分析物体受到的斜面作用力和重力作用力,并根据牛顿定律推导运动方程。

高中物理必考解析传送带模型课件 (共25张)

高中物理必考解析传送带模型课件 (共25张)
传送带模型是一类比较复杂的动力学问 题。它涉及到静摩擦力与滑动摩擦力、力与 运动、能量转化、摩擦生热等高中阶段重要 的物理基础知识。因其物理过程多,知识面 广,综合性强,灵活性大,能很好地反映学 生提取信息,分析问题,解决问题的能力而 倍受各地高考命题者的青睐。本课件通过对 传送带问题的几种常见模型的情景分析,力 图达到化繁为简,化难为易的目的。
Байду номын сангаас 传送带
物体模型 运动突变 三种常见情景
一、传送带的物体模型
如图1所示,水平传送带(亦可为长木板, 如图2所示)足够长,始速度V0水平向右。 现将质量为m的小煤块轻放在传送带上, 煤块与传送带间的动摩擦因数为μ,试求 煤块最终在传送带上留下的痕迹长度与由 于摩擦产生的热量。
A
B
C
V0
D V0
图1
图2
V
带 V0

O
t
图3
煤块在传送带上留下的痕迹长度即为煤块对
传送带相对位移的大小(亦即图3中阴影部分的
面积)。
令两者速度相等历时t则 V0=at
痕迹的长度
X相=X带-X煤=
V0t-
1 2
gt 2
① ②
由①②有 摩擦生热
X相=
v2 o
2g
Q=μmg X相=
1 2
m
v2 0
2、传送带水平向右做始速度为V0, 加速度为a0的匀加速直线运动。

V0 煤
O 图5
t
在图1中,令AB=L0,煤块自B点飞出历
时摩t擦0X则生相痕=热X迹带Q-长X=煤度μ=mVg0tX+相12=μa0mt0 2g-
1 X相2
gt0
2
=μmg(V0t+

高中物理传送带模型(最新)

高中物理传送带模型(最新)

高中物理传送带模型1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.功能关系分析(1)传送带克服摩擦力做的功:W=F f x传;(2)系统产生的内能:Q=F f x相对.(3)功能关系分析:W=ΔE k+ΔE p+Q.一、水平传送带:情景图示滑块可能的运动情况情景1⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景2 ⑴可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景3 ⑴可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速例1(多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是()A.建筑工人比建筑材料早到右端0.5 sB.建筑材料在运输带上一直做匀加速直线运动C.因运输建筑材料电动机多消耗的能量为1 JD.运输带对建筑材料做的功为1 J答案AD解析 建筑工人匀速运动到右端,所需时间t 1=Lv 0=2 s ,假设建筑材料先加速再匀速运动,加速时的加速度大小为a =μg =1 m/s 2,加速的时间为t 2=v 0a =1 s ,加速运动的位移为x 1=v 02t 2=0.5 m<L ,假设成立,因此建筑材料先加速运动再匀速运动,匀速运动的时间为t 3=L -x 1v 0=1.5 s ,因此建筑工人比建筑材料早到达右端的时间为Δt =t 3+t 2-t 1=0.5 s ,A 正确,B 错误;建筑材料与运输带在加速阶段摩擦生热,该过程中运输带的位移为x 2=v 0t 2=1 m ,则因摩擦而生成的热量为Q =μmg (x 2-x 1)=1 J ,由动能定理可知,运输带对建筑材料做的功为W =12m v 02=1 J ,则因运输建筑材料电动机多消耗的能量为2 J ,C 错误,D 正确.例2 如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可视为质点)轻轻放在传送带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 答案 (1)32(2)230 J 解析 (1)由题图可知,传送带长x =hsin θ=3 m 工件速度达到v 0前,做匀加速运动,有x 1=v 02t 1工件速度达到v 0后,做匀速运动, 有x -x 1=v 0(t -t 1)联立解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m 所以加速度大小a =v 0t 1=2.5 m/s 2由牛顿第二定律有μmg cos θ-mg sin θ=ma 解得μ=32. (2)由能量守恒定律知,电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,传送带运动的位移 x 传=v 0t 1=1.6 m在时间t 1内,工件相对传送带的位移 x 相=x 传-x 1=0.8 m在时间t 1内,摩擦产生的热量 Q =μmg cos θ·x 相=60 J最终工件获得的动能E k =12m v 02=20 J工件增加的势能E p =mgh =150 J 电动机多消耗的电能 E =Q +E k +E p =230 J.例3如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.答案:⑴工件先以2/5.2s m 的加速度匀加速运动0.8m ,之后匀速;⑵时间s t t t 4.221=+=例4如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用 答案:B例5如图所示,水平地面上有一长L =2 m 、质量M =1 kg 的长板,其右端上方有一固定挡板.质量m =2 kg 的小滑块从长板的左端以v 0=6 m/s 的初速度向右运动,同时长板在水平拉力F 作用下以v =2 m/s 的速度向右匀速运动,滑块与挡板相碰后速度为0,长板继续匀速运动,直到长板与滑块分离.已知长板与地面间的动摩擦因数μ1=0.4,滑块与长板间的动摩擦因数μ2=0.5,重力加速度g 取10 m/s 2.求:(1)滑块从长板的左端运动至挡板处的过程,长板的位移x ; (2)滑块碰到挡板前,水平拉力大小F ;(3)滑块从长板的左端运动至与长板分离的过程,系统因摩擦产生的热量Q . 答案 (1)0.8 m (2)2 N (3)48 J 解析 (1)滑块在板上做匀减速运动, a =μ2mg m =μ2g解得:a =5 m/s 2根据运动学公式得:L =v 0t -12at 2解得t =0.4 s (t =2.0 s 舍去)碰到挡板前滑块速度v 1=v 0-at =4 m/s>2 m/s ,说明滑块一直匀减速 板移动的位移x =v t =0.8 m (2)对板受力分析如图所示,有:F +F f2=F f1其中F f1=μ1(M +m )g =12 N ,F f2=μ2mg =10 N 解得:F =2 N(3)法一:滑块与挡板碰撞前,滑块与长板因摩擦产生的热量: Q 1=F f2·(L -x ) =μ2mg (L -x )=12 J滑块与挡板碰撞后,滑块与长板因摩擦产生的热量:Q 2=μ2mg (L -x )=12 J 整个过程中,长板与地面因摩擦产生的热量: Q 3=μ1(M +m )g ·L =24 J 所以,系统因摩擦产生的热量: Q =Q 1+Q 2+Q 3=48 J法二:滑块与挡板碰撞前,木板受到的拉力为F 1=2 N (第二问可知) F 1做功为W 1=F 1x =2×0.8=1.6 J 滑块与挡板碰撞后,木板受到的拉力为:F2=F f1+F f2=μ1(M+m)g+μ2mg=22 NF2做功为W2=F2(L-x)=22×1.2 J=26.4 J 碰到挡板前滑块速度v1=v0-at=4 m/s滑块动能变化:ΔE k=20 J所以系统因摩擦产生的热量:Q=W1+W2+ΔE k=48 J.。

高中物理必修一牛顿第二定律传送带模型

高中物理必修一牛顿第二定律传送带模型

f<mg sin θ时(f =μ mg cos θ)即:(μ< tanθ),滑块以a2=g sin θ - μg cos θ 做匀加速 运动(a与v0方向相同)
v
v0
v0
2倾斜传送带模型
情景3
v
v0 0
(3)v0>v传送带较短时, f>mg sin θ(f =μ mg cos θ)(μ > tanθ),滑块做匀 减速运动,a=g sin θ - μg cos θ(与v0方向相反);
f =mg sin θ(f =μ mg cos θ)(μ = tanθ),滑块做匀 速运动;
f<mg sin θ(f =μ mg cos θ)(μ< tanθ),滑块做匀 加速运动a=g sin θ - μg cos θ(与v0方向相同);
v0 v
t1
2倾斜传送带模型
情景3
v
v0 0
(3)v0>v传送带较长时, f>mg sin θ(f =μ mg cos θ)(μ > tanθ),滑块先 做匀减速运动,a=g sin θ - μg cos θ(与v0方向相 反);后做匀速运动
高中物理必修一牛顿第二 定律传送带模型
1水平传送带模型
情景2
v0
v
(1)v0=v,滑块一直做匀速运动
v0
1水平传送带模型
情景2
v0
v
v v0
(2)v0>v, 传送带较短时,滑块一直做匀加速 运动; 传送带较长时,滑块先做匀加速运 动后做匀速运动
v v0
t1
1水平传送带模型
情景2
v0
v
(3)v0<v, 传送带较短时,滑块一直做匀减速 运动;
v
v0ቤተ መጻሕፍቲ ባይዱ
t1

2025届高考物理复习:经典好题专项(“传送带”模型问题)练习(附答案)

2025届高考物理复习:经典好题专项(“传送带”模型问题)练习(附答案)

2025届高考物理复习:经典好题专项(“传送带”模型问题)练习1. (2023ꞏ广东省深圳中学阶段测试)如图所示,一水平的浅色长传送带上放置一质量为m 的煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。

初始时,传送带与煤块都是静止的。

现让传送带以恒定的加速度a 开始运行,当其速度达到v 后,便以此速度做匀速运行。

传送带速度达到v 时,煤块未与其共速,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,关于上述过程,以下判断正确的是(重力加速度为g )( )A .μ与a 之间一定满足关系μ>a gB .煤块从开始运动到相对于传送带静止经历的位移为v 2μgC .煤块从开始运动到相对于传送带静止经历的时间为v μgD .黑色痕迹的长度为v 22μg2. 如图所示,一绷紧的水平传送带以恒定的速率v =10 m/s 运行,某时刻将一滑块轻轻地放在传送带的左端,已知传送带与滑块间的动摩擦因数为0.2,传送带的水平部分A 、B 间的距离足够长,将滑块刚放上去2 s 时突然停电,传送带立即做加速度大小a =4 m/s 2的匀减速运动至停止(重力加速度取g =10 m/s 2)。

则滑块运动的位移为( )A .8 mB .13.5 mC .18 mD .23 m3. 如图所示,物块放在一与水平面夹角为θ的传送带上,且始终与传送带相对静止。

关于物块受到的静摩擦力F f ,下列说法正确的是( )A .当传送带加速向上运动时,F f 的方向一定沿传送带向上B .当传送带加速向上运动时,F f 的方向一定沿传送带向下C .当传送带加速向下运动时,F f 的方向一定沿传送带向下D .当传送带加速向下运动时,F f 的方向一定沿传送带向上4.(多选)为保障市民安全出行,有关部门规定:对乘坐轨道交通的乘客所携带的物品实施安全检查。

如图甲所示为乘客在进入地铁站乘车前,将携带的物品放到水平传送带上通过检测仪接受检查时的情景。

衡水中学物理最经典-“传送带模型”问题

衡水中学物理最经典-“传送带模型”问题

“传送带模型”问题1.模型特征(1)水平传送带模型(1)(2)(1)(2)(1)(2)中v(1)(2)(1)(2)(3)2.模型动力学分析(1)传送带模型问题的分析流程(2)判断方法①水平传送带情景1若v22μg≤l,物、带能共速;情景2若|v2-v20|2μg≤l,物、带能共速;情景3若v202μg≤l,物块能返回.②倾斜传送带情景1若v22a≤l,物、带能共速;情景2若v22a≤l,物、带能共速;若μ≥tan θ,物、带共速后匀速;若μ<tan θ,物体以a2加速(a2<a).[诊断小练](1)将一物体静止放在倾斜传送带的底端(如图1所示),物体一定沿传送带向上运动.()(2)将一物体静止放在倾斜传送带的底端(如图1所示),物体有可能静止.()图1图2(3)将一物体静止放在倾斜传送带的顶端,(如图2所示),物体一定先加速再与传送带共速到达底端.()(4)将一物体静止放在倾斜传送带的顶端,(如图2所示),物体可能一直加速到底端.()【答案】(1)×(2)√(3)×(4)√命题点1水平传送带模型6.(2018·山东临沂高三上学期期中)如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2(v1<v2)的小物块从与传送带等高的光滑水平地面上滑上传送带,从小物块滑上传送带开始计时,物块在传送带上运动的v-t图象可能是()A BC D【解析】 物块滑上传送带,由于速度大于传送带速度,物块做匀减速直线运动,可能会滑到另一端一直做匀减速直线运动,到达另一端时恰好与传送带速度相等,故C 正确.物块滑上传送带后,物块可能先做匀减速直线运动,当速度达到传送带速度后一起做匀速直线运动,速度的方向保持不变,故B 、D 错误,A 正确.【答案】 AC命题点2 倾斜向下的传送带模型7.如图所示为粮袋的传送装置,已知A 、B 两端间的距离为L ,传送带与水平方向的夹角为θ,工作时运行速度为 v ,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 端将粮袋放到运行中的传送带上.设最大静摩擦力与滑动摩擦力大小相等,重力加速度大小为g .关于粮袋从A 到B 的运动,以下说法正确的是( )A .粮袋到达B 端的速度与v 比较,可能大,可能小,也可能相等B .粮袋开始运动的加速度为g (sin θ-μcos θ),若L 足够大,则以后将以速度v 做匀速运动C .若μ≥tan θ,则粮袋从A 端到B 端一定是一直做加速运动D .不论μ大小如何,粮袋从A 到B 端一直做匀加速运动,且加速度a ≥g sin θ 【解析】 若传送带较短,粮袋在传送带上可能一直做匀加速运动,到达B 端时的速度小于v ;μ≥tan θ,则粮袋先做匀加速运动,当速度与传送带的速度相同后,做匀速运动,到达B 端时速度与v 相同;若μ<tan θ,则粮袋先做加速度为g (sin θ+μcos θ)的匀加速运动,当速度与传送带相同后做加速度为g (sin θ-μcos θ)的匀加速运动,到达B 端时的速度大于v ,选项A 正确;粮袋开始时速度小于传送带的速度,相对传送带的运动方向是沿传送带向上,所以受到沿传送带向下的滑动摩擦力,大小为μmg cos θ,根据牛顿第二定律得加速度a =mg sin θ+μmg cos θm =g (sin θ+μcos θ),选项B 错误;若μ≥tan θ,粮袋从A 到B 可能一直是做匀加速运动,也可能先匀加速运动,当速度与传送带的速度相同后,做匀速运动,选项C 、D 均错误.【答案】 A命题点3 倾斜向上的传送带模型8.如图所示为某工厂的货物传送装置,倾斜运输带AB (与水平面成α=37°)与一斜面BC (与水平面成θ=30°)平滑连接,B 点到C 点的距离为L =0.6 m ,运输带运行速度恒为v 0=5 m/s ,A 点到B 点的距离为x =4.5 m ,现将一质量为m =0.4 kg 的小物体轻轻放于A 点,物体恰好能到达最高点C 点,已知物体与斜面间的动摩擦因数μ1=36,求:(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,空气阻力不计)(1)小物体运动到B 点时的速度v 的大小; (2)小物体与运输带间的动摩擦因数μ; (3)小物体从A 点运动到C 点所经历的时间t . 【思路点拨】【解析】 (1)设小物体在斜面上的加速度为a 1,运动到B 点的速度为v ,由牛顿第二定律得mg sin θ+μmg cos θ=ma 1由运动学公式知v 2=2a 1L ,联立解得v =3 m/s.(2)因为v <v 0,所以小物体在运输带上一直做匀加速运动,设加速度为a 2,则由牛顿第二定律知μmg cos α-mg sin α=ma 2 又因为v 2=2a 2x ,联立解得μ=78.(3)小物体从A 点运动到B 点经历时间t 1=v a 2,从B 运动到C 经历时间t 2=v 1a 1联立并代入数据得小物体从A 点运动到C 点所经历的时间t =t 1+t 2=3.4 s. 【答案】 (1)3 m/s (2)78(3)3.4 s解答传送带问题三步曲(1)水平传送带上物体的运动情况取决于物体的受力情况,即物体所受摩擦力的情况;倾斜传送带上物体的运动情况取决于所受摩擦力与重力沿斜面的分力情况.(2)传送带上物体的运动情况可按下列思路判定:相对运动→摩擦力方向→加速度方向→速度变化情况→共速,并且明确摩擦力发生突变的时刻是v物=v传.(3)倾斜传送带问题,一定要比较斜面倾角与动摩擦因数的大小关系.考点四“滑块—木板模型”问题(高频14)1.模型特点涉及两个物体,并且物体间存在相对滑动.2.两种位移关系滑块由木板的一端运动到另一端的过程中,若滑块和木板同向运动,位移大小之差等于板长;反向运动时,位移大小之和等于板长.设板长为L,滑块位移大小为x1,木板位移大小为x2,同向运动时:如图1所示,L=x1-x2图1反向运动时:如图2所示,L=x1+x2图23.解题步骤审题建模→弄清题目情景,分析清楚每个物体的受力情况、运动情况,清楚题给条件和所求建立方程→根据牛顿运动定律准确求出各运动过程的加速度(两过程接连处的加速度可能突变)明确关系→错误!命题点1 水平面上的滑块—木板模型9.(2017·课标卷Ⅲ,25)如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.【解析】 (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1,在物块B 与木板达到共同速度前有f 1=μ1m Ag ① f 2=μ1m B g ②f 3=μ2(m +m A +m B )g ③ 由牛顿第二定律得 f 1=m A a A ④ f 2=m B a B ⑤ f 2-f 1-f 3=ma 1⑥设在t 1时刻,B 与木板达到共同速度,其大小为v 1,由运动学公式有 v 1=v 0-a B t 1⑦ v 1=a 1t 1⑧联立①②③④⑤⑥⑦⑧式,代入已知数据得 v 1=1 m/s ⑨(2)在t 1时间间隔内,B 相对于地面移动的距离为 s B =v 0t 1-12a B t 21⑩设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2, 对于B 与木板组成的体系,由牛顿第二定律有 f 1+f 3=(m B +m )a 2⑪由①②④⑤式知,a A =a B ;再由⑦⑧式知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2,设A 的速度大小从v 1变到v 2所用的时间为t 2,则由运动学公式,对木板有v 2=v 1-a 2t 2⑫ 对A 有v 2=-v 1+a A t 2⑬在t 2时间间隔内,B (以及木板)相对地面移动的距离为 s 1=v 1t 2-12a 2t 22⑭在(t 1+t 2)时间间隔内,A 相对地面移动的距离为 s A =v 0(t 1+t 2)-12a A (t 1+t 2)2⑮A 和B 相遇时,A 与木板的速度也恰好相同,因此A 和B 开始运动时,两者之间的距离为s 0=s A +s 1+s B ⑯联立以上各式,并代入数据得 s 0=1.9 m(也可用如图所示的速度—时间图线求解)【答案】 (1)1 m/s (2)1.9 m10.(2015·课标卷Ⅰ,25)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 m ,如图(a)所示.t =0时刻开始,小物块与木板一起以共同速度向右运动,直至t =1 s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s 时间内小物块的v t 图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10 m/s 2.求:(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;(3)木板右端离墙壁的最终距离.【解析】 (1)根据图(b)可以判定碰撞前小物块与木板共同速度为v =4 m/s 碰撞后木板速度水平向左,大小也是v =4 m/s小物块受到滑动摩擦力而向右做匀减速直线运动,加速度大小a 2=4-01m/s 2=4 m/s 2. 根据牛顿第二定律有μ2mg =ma 2,解得μ2=0.4木板与墙壁碰撞前,匀减速运动时间t =1 s ,位移x =4.5 m ,末速度v =4 m/s 其逆运动则为匀加速直线运动可得x =v t +12a 1t 2解得a 1=1 m/s 2对小物块和木板整体受力分析,滑动摩擦力提供合外力,由牛顿第二定律得: μ1(m +15m )g =(m +15m )a 1,即 μ1g =a 1 解得μ1=0.1.(2)碰撞后,木板向左做匀减速运动,依据牛顿第二定律有μ1(15m +m )g +μ2mg =15ma 3 可得a 3=43m/s 2对小物块,加速度大小为a 2=4 m/s 2由于a 2>a 3,所以小物块速度先减小到0,所用时间为t 1=1 s过程中,木板向左运动的位移为x 1=v t 1-12a 3t 21=103 m, 末速度v 1=83 m/s 小物块向右运动的位移x 2=v +02t 1=2 m 此后,小物块开始向左加速,加速度大小仍为a 2=4 m/s 2 木板继续减速,加速度大小仍为a 3=43 m/s 2假设又经历t 2二者速度相等,则有a 2t 2=v 1-a 3t 2 解得t 2=0.5 s此过程中,木板向左运动的位移x 3=v 1t 2-12a 3t 22=76 m ,末速度v 3=v 1-a 3t 2=2 m/s小物块向左运动的位移x 4=12a 2t 22=0.5 m此后小物块和木板一起匀减速运动,二者的相对位移最大, Δx =x 1+x 2+x 3-x 4=6.0 m小物块始终没有离开木板,所以木板最小的长度为6.0 m.(3)最后阶段滑块和木板一起匀减速直到停止,整体加速度大小为a 1=1 m/s 2向左运动的位移为x 5=v 232a 1=2 m所以木板右端离墙壁最远的距离为x =x 1+x 3+x 5=6.5 m. 【答案】 (1)0.1 0.4 (2)6.0 m (3)6.5 m 命题点2 斜面上的滑块—木板模型11.(2015·课标卷Ⅱ,25)下暴雨时,有时会发生山体滑坡或泥石流等地质灾害.某地有一倾角为θ=37°(sin 37°=35)的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示.假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为38,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第2 s 末,B 的上表面突然变为光滑,μ2保持不变.已知A 开始运动时,A 离B 下边缘的距离l =27 m ,C 足够长,设最大静摩擦力等于滑动摩擦力.取重力加速度大小g =10 m/s 2.求:(1)在0~2 s 时间内A 和B 加速度的大小; (2)A 在B 上总的运动时间.【解析】 (1)在0~2 s 时间内,A 和B 的受力如图所示,其中F f 1、F N1是A 与B 之间的摩擦力和正压力的大小,F f 2、F N2是B 与C 之间的摩擦力和正压力的大小,方向如图所示.由滑动摩擦力公式和力的平衡条件得F f 1=μ1F N1① F N1=mg cos θ② F f 2=μ2F N2③ F N2=F N1+mg cos θ④规定沿斜面向下为正.设A 和B 的加速度分别为a 1和a 2,由牛顿第二定律得 mg sin θ-F f 1=ma 1⑤mg sin θ-F f 2+F f 1=ma 2⑥联立①②③④⑤⑥式,并代入题给条件得 a 1=3 m/s 2⑦ a 2=1 m/s 2⑧(2)在t 1=2 s 时,设A 和B 的速度分别为v 1和v 2,则 v 1=a 1t 1=6 m/s ⑨ v 2=a 2t 1=2 m/s ⑩2 s 后,设A 和B 的加速度分别为a 1′和a 2′.此时A 与B 之间摩擦力为零,同理可得 a 1′=6 m/s 2⑪ a 2′=-2 m/s 2⑫由于a 2′<0,可知B 做减速运动.设经过时间t 2,B 的速度减为零,则有 v 2+a 2′t 2=0⑬ 联立⑩⑫⑬式得t 2=1 s在t 1+t 2时间内,A 相对于B 运动的距离为 x =⎝⎛⎭⎫12a 1t 21+v 1t 2+12a 1′t 22 -⎝⎛⎭⎫12a 2t 21+v 2t 2+12a 2′t 22=12 m <27 m 此后B 静止不动,A 继续在B 上滑动.设再经过时间t 3后A 离开B ,则有 l -x =(v 1+a 1′t 2)t 3+12a 1′t 23 可得t 3=1 s(另一解不合题意,舍去) 设A 在B 上总的运动时间t 总,有 t 总=t 1+t 2+t 3=4 s【答案】 (1)3 m/s 2 1 m/s 2 (2)4 s12.(2018·重庆八中一模)如图所示,质量M =1 kg 的木板静置于倾角为37°的足够长的固定斜面上的某个位置,质量m =1 kg 、可视为质点的小物块以初速度v 0=5 m/s 从木板的下端冲上木板,同时在木板上端施加一个沿斜面向上的外力F =14 N ,使木板从静止开始运动,当小物块与木板共速时,撤去该外力,最终小物块从木板的下端滑出.已知小物块与木板之间的动摩擦因数为0.25,木板与斜面之间的动摩擦因数为0.5,最大静摩擦力等于滑动摩擦力,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)物块和木板共速前,物块和木板的加速度;(2)木板的最小长度;(3)物块在木板上运动的总时间.【解析】 (1)物块与木板共速前,对物块分析有mg sin θ+μ1mg cos θ=ma 1,得a 1=8 m/s 2,方向沿斜面向下,物块减速上滑;对木板分析有F +μ1mg cos θ-Mg sin θ-μ2(m +M )g cos θ=Ma 2, 得a 2=2 m/s 2,方向沿斜面向上,木板加速上滑. (2)物块与木板共速时有v 共=v 0-a 1t 1,v 共=a 2t 1, 代入数据解得t 1=0.5 s ,v 共=1 m/s ,共速时物块与木板的相对位移Δx 1=v 0t 1-12a 1t 21-12a 2t 21=1.25 m ,撤掉F 后,物块相对于木板上滑,加速度大小仍为a 1=8 m/s 2,物块减速上滑, 对木板有Mg sin θ+μ2(M +m )g cos θ-μ1mg cos θ=Ma 2′, 则a 2′=12 m/s 2,方向沿斜面向下,木板减速上滑. 由于Mg sin θ+μ1mg cos θ=μ2(M +m )g cos θ,则木板速度减为零后,物块在木板上滑动时,木板保持静止,经过t 2=112 s ,木板停止,经过t 2′=18s ,物块速度减为零,此过程,物块和木板的相对位移Δx 2=v 共2t 2′-v 共2t 2=148 m ,故木板的最小长度L min =Δx 1+Δx 2=6148 m.(3)物块在木板上下滑时,木板静止不动, 物块的加速度a 1′=g sin θ-μ1g cos θ=4 m/s 2, L min =12a 1′t 23,得t 3=6196s , 物块在木板上运动的总时间t =t 1+t 2′+t 3=⎝⎛⎭⎫58+6196s. 【答案】 (1)8 m/s 2,方向沿斜面向下 2 m/s 2,方向沿斜面向上 (2)6148m (3)⎝⎛⎭⎫58+6196 s分析滑块—滑板模型时要抓住一个转折和两个关联思想方法系列(四)动力学中的图象问题分析思路与方法1.常见的动力学图象v-t图象、a-t图象、F-t图象、F-a图象等.2.图象问题的类型(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.(3)由已知条件确定某物理量的变化图象.3.解题策略(1)分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.(3)明确能从图象中获得哪些信息:把图象与具体的题意、情境结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.类型一与牛顿运动定律相关的v-t图象问题例1(2018·山东烟台高三上学期期中)如图甲所示,质量M=5 kg的木板A在水平向右F=30 N的拉力作用下在粗糙水平地面上向右运动,t=0时刻在其右端无初速度地放上一质量为m=1 kg的小物块B,放上物块后A、B的v-t图象如图乙所示.已知物块可看作质点,木板足够长,取g=10 m/s2.求:(1)物块与木板之间动摩擦因数μ1和木板与地面间的动摩擦因数μ2;(2)物块与木板之间摩擦产生的热量;(3)放上物块后,木板运动的总位移.【解析】(1)放上物块后,当A、B有相对运动时,分别对A、B受力分析,可知:μ1mg=ma Bμ1mg+μ2(M+m)g-F=Ma A结合图象可知:μ1=a Bg=Δv BgΔt=0.4a A=Δv AΔt=2 m/s2μ2=Ma A+F-μ1mg(M+m)g=0.6.(2)物块与木板相对运动过程中,相对位移为Δs相对=12×18×3 m=27 m物块与木板之间的摩擦热:Q=μ1mgΔs相对=108 J.(3)A、B共同运动时,μ2(M+m)g-F=(M+m)a a=1 m/s2A、B共同运动时间t=Δva=12 s放上物块后木板运动的总位移s木板=12×(12+18)×3 m+12×12×12 m=117 m.【答案】(1)0.40.6(2)108 J(3)117 m类型二与牛顿运动定律相关的F-t图象问题例2(2018·山东菏泽市高三上学期期中)一个物块放置在粗糙的水平面上,受到的水平拉力F随时间t变化的关系如图所示,速度v随时间t变化的关系如图所示(g=10 m/s2),下列说法正确的是()A.5 s末物块所受摩擦力的大小为15 NB.物块在前6 s内的位移大小为12 mC.物块与水平地面间的动摩擦因数为0.75D.物块的质量为5 kg【解析】 5 s末处于静止状态,根据平衡知,F f=F=10 N,故A错误;物块在前6 s 内的位移大小等于前4 s内的位移大小,根据图线的面积得:S=12×(2+4)×4 m=12 m,故B正确;在0~2内物块做匀速直线运动,滑动摩擦力f=15 N,物块匀减速运动的加速度大小为:a=42m/s2=2 m/s2,根据牛顿第二定律得:f-F=ma,解得m=15-52kg=5 kg,则动摩擦因数为:μ=fmg=1550=0.3,故C错误,D正确.【答案】BD根据F-t图象可得F合与时间t的关系,F合-t图象与a-t图象具有对应关系,根据对应关系列出关系式即可解决相关问题.类型三与牛顿运动定律相关的F-x图象问题例3如图甲所示,水平面上质量相等的两木块A、B用一轻弹簧相连,这个系统处于平衡状态,现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动(如图乙),研究从力F刚作用在木块A瞬间到木块B刚离开地面瞬间的这一过程,并选定该过程中木块A的起点位置为坐标原点,则下面图中能正确表示力F和木块A的位移x之间关系的是()【解析】初始状态弹簧被压缩,弹簧对A的弹力与A所受的重力平衡,设弹簧压缩长度为x0,末状态弹簧被拉长,由于B刚离开地面,弹簧对B的弹力与B所受的重力平衡,由于A、B所受重力相等,故弹簧伸长量也为x0.初始状态A处于平衡状态,则kx0=mg,当木块A的位移为x时,弹簧向上的弹力的减少量为kx,外力F减去弹力的减少量为系统的合外力,故F-kx=ma,则得到F=kx+ma,可见F与x是线性关系,当x=0时,ma >0.【答案】 A根据胡克定律F=kx得k=Fx=ΔFΔx,即弹簧弹力的变化量和形变量的变化量成正比.弹簧弹力随位移的变化而做线性变化,A做匀加速直线运动,因此作用力F也随位移的变化而做线性变化.[高考真题]1.(2016·上海卷,7)在今年上海的某活动中引入了全国首个户外风洞飞行体验装置,体验者在风力作用下漂浮在半空.若减小风力,体验者在加速下落过程中() A.失重且机械能增加B.失重且机械能减少C.超重且机械能增加D.超重且机械能减少【解析】据题意,体验者漂浮时受到的重力和风力平衡;在加速下降过程中,风力小于重力,即重力对体验者做正功,风力做负功,体验者的机械能减小;加速下降过程中,加速度方向向下,体验者处于失重状态,故选项B正确.【答案】 B2.(2016·海南卷,5)沿固定斜面下滑的物体受到与斜面平行向上的拉力F的作用,其下滑的速度—时间图线如图所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s,5~10 s,10~15 s内F的大小分别为F1、F2和F3,则()A.F1<F2B.F2>F3C.F1>F3D.F1=F3【解析】根据v-t图象可知,在0~5 s内加速度大小为a1=0.2 m/s2,方向沿斜面向下;在5~10 s内,加速度大小为a2=0;在10~15 s内加速度大小为a3=0.2 m/s2,方向沿斜面向上;受力分析如图:在0~5 s内,根据牛顿第二定律:mg sin θ-f-F1=ma1,则:F1=mg sin θ-f-0.2m;在5~10 s内,根据牛顿第二定律:mg sin θ-f-F2=ma2,则:F2=mg sin θ-f;在10~15 s内,根据牛顿第二定律:f+F3-mg sin θ=ma3,则:F3=mg sin θ-f+0.2m;故可以得到:F3>F2>F1,故选项A正确.【答案】 A3.(2013·课标卷Ⅱ,25)一长木板在水平地面上运动,在t=0时刻将一相对于地面静止的物块轻放到木板上,以后木板运动的速度—时间图象如图所示.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取重力加速度的大小g=10 m/s2,求:(1)物块与木板间、木板与地面间的动摩擦因数;(2)从t=0时刻到物块与木板均停止运动时,物块相对于木板的位移的大小.【解析】(1)从t=0时开始,木板与物块之间的摩擦力使物块加速,使木板减速,此过程一直持续到物块和木板具有共同速度为止.由图可知,在t1=0.5 s时,物块和木板的速度相同.设t=0到t=t1时间间隔内,物块和木板的加速度大小分别为a1和a2,则a1=v1 t1①a2=v0-v1t1②式中v0=5 m/s、v1=1 m/s分别为木板在t=0、t=t1时速度的大小.设物块和木板的质量均为m,物块和木板间、木板与地面间的动摩擦因数分别为μ1、μ2,由牛顿第二定律得μ1mg=ma1③(μ1+2μ2)mg=ma2④联立①②③④式得μ1=0.20⑤μ2=0.30.⑥(2)在t1时刻后,地面对木板的摩擦力阻碍木板运动,物块与木板之间的摩擦力改变方向.设物块与木板之间的摩擦力大小为f,物块和木板的加速度大小分别为a′1和a′2,则由牛顿第二定律得f=ma′1⑦2μ2mg-f=ma′2⑧假设f<μ1mg,则a′1=a′2;由⑤⑥⑦⑧式得f=μ2mg>μ1mg,与假设矛盾.故f=μ1mg ⑨由⑦⑨式知,物块加速度的大小a ′1等于a 1;物块的v -t 图象如图中点划线所示. 由运动学公式可推知,物块和木板相对于地面的运动距离分别为s 1=2×v 212a 1⑩s 2=v 0+v 12t 1+v 212a ′2⑪物块相对于木板的位移的大小为 s =s 2-s 1⑫联立①⑤⑥⑧⑨⑩⑪⑫式得 s =1.125 m.【答案】 (1)0.20 0.30 (2)1.125 m[名校模拟]4.(2018·山东师大附中模拟)图甲是某人站在力传感器上做下蹲、起跳动作的示意图,中间的·表示人的重心.图乙是根据传感器采集到的数据画出的力—时间图象.两图中a ~g 各点均对应,其中有几个点在图甲中没有画出.取重力加速度g =10 m/s 2.根据图象分析可知( )A .人的重力为1 500 NB .c 点位置人处于超重状态C .e 点位置人处于失重状态D .d 点的加速度小于f 点的加速度【解析】 由题图甲、乙可知,人的重力等于500 N ,质量m =50 kg ,b 点位置人处于失重状态,c 、d 、e 点位置人处于超重状态,选项A 、C 错误,B 正确;d 点位置传感器对人的支持力F 最大,为1 500 N ,由F -mg =ma 可知,d 点的加速度a d =20 m/s 2,f 点位置传感器对人的支持力为0 N ,由F -mg =ma 可知,f 点的加速度a f =-10 m/s 2,故d 点的加速度大于f 点的加速度,选项D 错误.【答案】 B5.(2018·潍坊中学高三上学期开学考试)如图甲所示,足够长的木板B 静置于光滑水平面上,其上放置小滑块A ,木板B 受到随时间t 变化的水平拉力F 作用,木板加速度a 随力F 变化的a -F 图象如图乙所示,g 取10 m/s 2,则( )A .滑块A 的质量为4 kgB .木板B 的质量为1 kgC .当F =10 N 时木板B 加速度为4 m/s 2D .当F =10 N 时滑块A 的加速度为2 m/s 2【解析】 当F 等于8 N 时,加速度为:a =2 m/s 2,对整体分析,由牛顿第二定律有:F =(M +m )a ,代入数据解得:M +m =4 kg ,当F 大于8 N 时,对B ,由牛顿第二定律得:a =F -μmg M =1M F -μmg M ,由图示图象可知,图线的斜率:k =1M =Δa ΔF =28-6=1,解得,木板B 的质量:M =1 kg ,滑块A 的质量为:m =3 kg ,故A 错误,B 正确;根据F 大于8 N 的图线知,F =6 N 时,a =0,由a =1M F -μmg M ,可知:0=11×6-μ×3×101,解得:μ=0.2,由图示图象可知,当F =10 N 时,滑块与木板相对滑动,B 的加速度为:a B =a =1M F -μmg M =11×10-0.2×3×101 m/s 2=4 m/s 2,故C 正确;当F =10 N 时,A 、B 相对滑动,木块A 的加速度:a A =μMgM =μg =2 m/s 2,故D 正确,故选BCD.【答案】 BCD6.(2018·江苏无锡高三质检)如图所示,在光滑的水平面上有一个质量为M 的木板B 处于静止状态,现有一个质量为m 的木块A 从B 的左端以初速度v 0=3 m/s 开始水平向右滑动,已知M >m .用①和②分别表示木块A 和木板B 的图象,在木块A 从B 的左端滑到右端的过程中,下面关于二者速度v 随时间t 的变化图象,其中可能正确的是( )【解析】木块滑上木板,A做匀减速直线运动,B做匀加速直线运动,根据牛顿第二定律得加速度大小a A=μmgm=μg,a B=μmgM,已知M>m,则a A>a B.图线①斜率的绝对值应大于图线②斜率的绝对值,故A、B错误;若A不能够滑下,则两者最终拥有共同的速度,若能够滑下,则A的速度较大,故C正确,D错误.【答案】 C课时作业(九)[基础小题练]1.电梯早已进入人们的日常生活,设某人乘坐电梯时的v-t图象如图所示,取向上为正方向,下列说法正确的是()A.0至t1时间内人处于失重状态B.t2至t4时间内人处于失重状态C.t2至t3时间内与t3至t4时间内电梯的加速度方向相反D.0至t1时间内和t3至t4时间内电梯的加速度方向相同【解析】由v-t图象可知,0至t1时间内向上匀加速运动,人处于超重状态,选项A 错误;t2至t4时间内,加速度向下,人处于失重状态,选项B正确;t2至t3时间内与t3至t4时间内电梯的加速度方向相同,0至t1时间内和t3至t4时间内电梯的加速度方向相反,选项C、D错误.【答案】 B2.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图所示,当此车减速上坡时(仅考虑乘客与水平面之间的作用),则关于乘客下列说法正确的是()A.不受摩擦力的作用B.受到水平向左的摩擦力作用C.处于超重状态D.所受合力竖直向上【解析】对乘客进行受力分析,乘客受重力,支持力,由于乘客加速度沿斜面向下,而静摩擦力必沿水平方向,又因为乘客有水平向左的分加速度,所以受到水平向左的摩擦力作用,故A错误,B正确.当此车减速上坡时,整体的加速度沿斜面向下,乘客具有向下的分加速度,所以根据牛顿运动定律可知乘客处于失重状态,故C错误.由于乘客加速度沿斜面向下,根据牛顿第二定律得所受合力沿斜面向下,故D错误.【答案】 B3.如图所示,是某同学站在压力传感器上,做下蹲—起立的动作时记录的力随时间变化的图线.由图线可知,该同学体重约为650 N,除此以外,还可得到的信息是()A.该同学做了两次下蹲—起立的动作B.该同学做了一次下蹲—起立的动作,且下蹲后约2 s起立C.下蹲过程中人一直处于失重状态D.下蹲过程中人先处于超重状态后处于失重状态【解析】人下蹲动作分别有失重和超重两个过程,先是加速下降处于失重状态,达到一个最大速度后再减速下降处于超重状态,同理起立对应先超重再失重,对应图象可知,该同学做了一次下蹲—起立的动作,A错误;由图象看出两次超重的时间间隔就是人蹲在地上持续的时间,约2 s,B正确;下蹲过程既有失重又有超重,且先失重后超重,C、D 均错误.【答案】 B4.(2018·河南南阳一中月考)如图甲所示,粗糙斜面与水平面的夹角为30°,质量为0.3 kg的小物块静止在A点,现有一沿斜面向上的恒定推力F作用在小物块上,作用一段时间后撤去推力F,小物块能达到的最高位置为C点,小物块从A到C的v-t图象如图乙所示,g取10 m/s2,则下列说法正确的是()A.小物块到C点后将沿斜面下滑B.小物块从A点沿斜面向上滑行的最大距离为1.8 mC.小物块与斜面间的动摩擦因数为3 3D.推力F的大小为4 N【解析】当撤去推力F后,物块在滑动摩擦力作用下做匀减速直线运动,由v-t图象。

高考传送带模型典型题

高考传送带模型典型题

高考传送带模型1,如图所示,一平直的传送带以速度v=2m/s 匀速运动, 传送带把A 处的工件运送到B 处, A ,B 相距L=10m 。

从A 处把工件无初速地放到传送带上,经过时间t=6s ,能传送到B 处,要用最短的时间把工件从A 处传送到B 处,求传送带的运行速度至少多大?2一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。

初始时,传送带与煤块都是静止的。

现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动。

经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。

求此黑色痕迹的长度。

3,如图示,传送带与水平面夹角为370 ,并以v=10m/s 运行,在传送带的A 端轻轻放一个小物体,物体与传送带之间的动摩擦因数μ=0.5, AB 长16米,求:以下两种情况下物体从A 到B 所用的时间. (1)传送带顺时针方向转动(2)传送带逆时针方向转动4.(15分)(2016江苏泰州联考)下图为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ=37°,C 、D 两端相距4.45m ,B 、C 相距很近。

水平部分AB 以5m/s 的速率顺时针转动。

将质量为10kg 的一袋大米放在A 端,到达B 端后,速度大小不变地传到倾斜的CD 部分,米袋与传送带间的动摩擦因数均为0.5。

试求:(1)若CD 部分传送带不运转,求米袋沿传送带所能上升的最大距离;(2)若要米袋能被送到D 端,求CD 部分顺时针运转的速度应满足的条件及米袋从C 端到D 端所用时间的取值范围。

【参照答案】(1)1.25m(2)4m/s 1.16s 2.1s t ≤≤A B v A B5(03年全国)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。

高中物理传送带模型总结

高中物理传送带模型总结

“传送带模型”1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.建模指导水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.水平传送带模型:1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2.(1)求旅行包经过多长时间到达传送带的右端;(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?2.如图所示,一质量为的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。

已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度,两端的传动轮半径为,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运,传送带下表面离地面的高度h不变。

如果物体开始沿曲面下滑时距传送带表面的高度为H,初速度为零,g取10m/s2.求:(1)当时,物体通过传送带过程中,电动机多消耗的电能。

(2)当时,物体通过传送带后,在传送带上留下的划痕的长度。

(3) H在什么范围内时,物体离开传送带后的落地点在同一位置。

3.如图所示,质量为m=1kg的物块,以速度v0=4m/s滑上正沿逆时针方向转动的水平传送带,此时记为时刻t=0,传送带上A、B两点间的距离L=6m,已知传送带的速度v=2m/s,物块与传送带间的动摩擦因数μ=0.2,重力加速度g取10m/s2.关于物块在传送带上的整个运动过程,下列表述正确的是()A.物块在传送带上运动的时间为4sB.传送带对物块做功为6JC.2s末传送带对物体做功的功率为0D.整个运动过程中由于摩擦产生的热量为18J4.如图10所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度v A=4m/s,到达B端的瞬时速度设为v B。

高考经典物理模型:传送带模型一

高考经典物理模型:传送带模型一

传送带模型(一)——传送带与滑块滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。

其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。

因此这类命题,往往具有相当难度。

滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。

按滑块与传送带的初始状态,分以下几种情况讨论。

一、滑块初速为0,传送带匀速运动[例1]如图所示,长为L 的传送带AB 始终保持速度为v 0的水平向右的速度运动。

今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。

滑块C 的加速度为,设它能加速到为时向前运动的距离为。

若,C 由A 一直加速到B ,由。

若,C 由A 加速到用时,前进的距离距离内以速度匀速运动C 由A 运动到B 的时间。

C ABAθ按图示方[例2]如图所示,倾角为θ的传送带,以的恒定速度向匀速运动。

已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上端,求A 从上端运动到下端的时间t 。

解析:当A 的速度达到时是运动过程的转折点。

A 初始下滑的加速度若能加速到,下滑位移(对地)为 。

(1)若。

A 从上端一直加速到下端。

(2)若,A 下滑到速度为用时之后距离内摩擦力方向变为沿斜面向上。

又可能有两种情况。

(a )若,A 达到后相对传送带停止滑动,以速度匀速,总时间(b )若,A 达到后相对传送带向下滑,,到达末端速度 用时总时间二、滑块初速为0,传送带做匀变速运动[例3]将一个粉笔头轻放在以2m/s 的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为4m 的划线。

高中物理传送带模型

高中物理传送带模型

端A 处无初速地释放一个质量为kg m 5.0=的物体,已知物体与传送带间的动摩擦因数5.0=μ,取2/10s m g =。

求(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间;(2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间;4、如图甲所示的水平传送带AB 逆时针匀速转动,一物体沿曲面从一定高度处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上传送带时为计时起点) .已知传送带的速度保持不变,取重力加速度2/10s m g . 关于物块与传送带间的动摩擦因数μ及物块在传送带上运动第一次回到传送带左端的时间t ,下列计算结果正确的是( )A. μ=0.4 B . μ=0.2 C . t =4.5s D . t =3s5、如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A.t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用6、如图,一水平放置的足够长浅色传送带以速度v 0匀速转动,现在其上无初速放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ。

经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。

求此黑色痕迹的长度。

(以g 表示重力加速度)7、(2004高考,20分)一小圆盘静止在桌布上,位于一方桌的水平桌面的中央。

桌布的一边与桌的AB 边重合,如图。

已知盘与桌布间的动摩擦因数为1μ,盘与桌面间的动摩擦因数为2μ。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考经典物理模型:传送带模型一
传送带模型是研究物理中的一种模式,它主要用于描述物体如何以连续不断的速度传送。

在这个模型中,一个物体被放入一个传送带上,这个物体可以被传送到一个距离特定距离的位置,而物体在传送带上的速度保持不变。

传送带模型可以用来帮助人们理解物体运动的物理模型,特别是物体的加速度、速度和位置的变化。

它能够帮助人们更好地理解运动的性质。

传送带模型还可以用来检验物体的动能定律、牛顿定律等物理定律的有效性。

另外,传送带模型也常用于传热系统研究中,用来模拟传统传热系统。

传送带可以模拟传统传热系统中的加热空间,以及循环传热器中的传热行为。

传送带模型也可以用于研究不同传热环境的传热效率。

传送带模型是高考物理中最常用的一种模型,它可以帮助学生更好地理解物理定律以及物体的运动性质。

这个模型的简单性和可视性能够很好地展示物理定律,这对于物理学习有重要的意义。

相关文档
最新文档