最新高中数学必修二平面解析几何知识点梳理优秀名师资料
高中数学中的解析几何知识点总结

高中数学中的解析几何知识点总结解析几何是数学中的一个重要分支,主要研究几何图形在坐标系中的性质和关系。
在高中数学中,解析几何是一个重要的学习内容。
本文将对高中数学中的解析几何知识点进行总结,帮助读者更好地理解和掌握相关知识。
一、平面直角坐标系平面直角坐标系是解析几何的基础,用来描述平面上的点和直线。
平面直角坐标系由x轴和y轴组成,它们相交于原点O。
在平面直角坐标系中,每个点都可以用有序数对(x, y)表示,其中x是该点在x轴上的坐标,y是该点在y轴上的坐标。
二、点的位置关系在平面直角坐标系中,可以根据点的坐标确定其位置关系。
1. 同一直线上的点:设A(x₁, y₁)、B(x₂, y₂)和C(x₃, y₃)是平面直角坐标系中的三个点,如果它们满足斜率相等的条件,即 (y₂ - y₁) / (x₂ - x₁) = (y₃ - y₁) / (x₃ - x₁)那么点A、B和C在同一直线上。
2. 垂直关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率互为负倒数,即(y₂ - y₁) / (x₂ - x₁) = -1 / ((y₄ - y₃) / (x₄ - x₃))那么直线AB和CD垂直。
3. 平行关系:设AB和CD是平面直角坐标系中两条直线,如果它们的斜率相等,即(y₂ - y₁) / (x₂ - x₁) = (y₄ - y₃) / (x₄ - x₃)那么直线AB和CD平行。
三、直线的方程在解析几何中,直线可以用不同的形式表示其方程。
常见的有点斜式、斜截式和一般式。
1. 点斜式:设直线L过坐标系中的点A(x₁, y₁)且斜率为k,那么直线L的点斜式方程为y - y₁ = k(x - x₁)2. 斜截式:设直线L与y轴相交于点B,且直线L的斜率为k,那么直线L的斜截式方程为y = kx + b3. 一般式:设直线L的方程为Ax + By + C = 0,其中A、B、C为常数且A和B不同时为0,那么该直线L的一般式方程为Ax + By + C = 0四、直线的性质在解析几何中,对于两条直线的位置关系,有以下几个重要的性质。
北师大版数学必修2第二章解析几何初步归纳总结课件

得xy′′==3-x-4x45-y5+3y4+,8.
把(x′,y′)代入方程 y=x-2 并整理,得:7x-y-14=0,
即直线 l2 的方程为 7x-y-14=0.
(3)设直线 l 关于点 A(1,1)的对称直线 l′,则直线 l 上任一 点 P(x1,y1)关于点 A 的对称点 P′(x,y)一定在直线 l′上,反 之也成立.
①当直线与圆相离时,圆上的点到直线的最大距离是 d+r, 最小距离是 d-r,其中 d 为圆心到直线的距离.
②当直线与圆相交时,设弦长为 l,弦心距为 d,半径为 r, 则有(2l )2+d2=r2.
③当直线与圆相交时,设弦为 AB,则 |AB|= 1+k2AB·|xA-xB|, |AB|= 1|k+ABk| 2AB·|yA-yB|.
ቤተ መጻሕፍቲ ባይዱ
(2)设 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0. ①l1 与 l2 相交⇔A1B2≠A2B1, 特别地 A1A2+B1B2=0 时⇔l1⊥l2; ②l1∥l2⇔A1B2=A2B1,且 A1C2≠A2C1; ③l1 与 l2 重合⇔A1B2=A2B1 且 A1C2=A2C1. 4.两条直线的交点
当|C1C2|=|r1-r2|时,两圆内切; 当|r1-r2|<|C1C2|<r1+r2 时,两圆相交; 当|C1C2|<|r1-r2|时,两圆内含. 10.空间直角坐标系 (1)右手直角坐标系 ∠xOy=∠xOz=135°,∠yOz=90°,x 轴、y 轴、z 轴的正 半轴分别指向右手拇指、食指、中指.
作点 P(x,y,z)的步骤与方法:从原点出发沿 x 轴正(x>0) 或负(x<0)方向移动|x|个单位,再沿 y 轴正(y>0)或负(y<0)方向移 动|y|个单位,最后沿 z 轴正(z>0)或负(z<0)方向移动|z|个单位.
人教B版高中数学必修2解析几何公式+知识点

人教B 版高中数学必修2解析几何公式+知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
tan k =当[90,0∈时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x (老师推荐!)注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。
高中数学必修二平面解析几何知识点梳理教学内容

高中数学必修二平面解析几何知识点梳理平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+by a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点.(2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点.(3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点.4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A C By Ax d +++=. 7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221B A C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程..② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x .(3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. (2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离2200()()d a x b y =-+-】13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA CBb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是 121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D .18.对称问题:(1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程.(2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.(3)点(a , b )关于x 轴对称:(a ,- b )、关于y 轴对称:(-a , b )、关于原点对称:(-a ,- b )、点(a , b )关于直线y=x 对称:(b , a )、关于y=- x 对称:(-b ,- a )、关于y = x +m 对称:(b -m 、a +m )、关于y=-x+m 对称:(-b+m 、-a+m ) .19.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,. 20.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α两条异面线所成的角︒0α︒90<≤。
高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。
下面我们来详细总结一下这部分的重要知识点。
一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。
当倾斜角为 90°时,直线的斜率不存在。
2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。
(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。
(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。
(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。
(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。
(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。
4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。
(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。
高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。
下面就让我们一起来详细梳理一下平面解析几何的相关知识点。
一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。
斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。
两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。
截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。
一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。
2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。
垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。
高中数学第二章平面解析几何2.2直线及其方程2.2.2直线的方程第2课时直线的两点式方程与一般式方程

提示由
7-2
=
-3
,整理得
4-3
5x-y-13=0.
.
)
3.两点式表示直线方程的条件是什么?两点式怎样变形就能适用于所有过
两点的直线了?
提示两点式除了不适用于斜率为0与斜率不存在的直线,其他情况均可表
-1
-1
示;只需将 - = - 变形为(x-x1)(y2-y1)=(y-y1)(x2-x1)的形式,就能适用
x
并化简为
a
+
y
=1 的形式,这一方程形式通常称为直线的截距式方程,其中 a 是
b
直线在 x 轴上的截距,b 是直线在 y 轴上的截距.
(2)若直线 l
x
的方程为a
+
y
=1,则
b
①直线与坐标轴围成的三角形的周长为|a|+|b|+ a2 + b 2 ;
②直线与坐标轴围成的三角形的面积为
1
S=2|ab|;
-5-0
所以得5x-3y-25=0.
=
-5
,
2-5
)
2.过点A(1,2)的直线在两坐标轴上的截距之和为0,则该直线方程为(
A.x-y+1=0
B.x+y-3=0
x-y=0或x+y-3=0
x-y=0或x-y+1=0
)
答案 D
解析 当直线过原点时,可得斜率为
2-0
k= =2,
1-0
所以直线方程为 y=2x,即 2x-y=0;
用两点式方程求直线方程.
2.由于减法的顺序性,一般用两点式方程求直线方程时常会将字母或数字
的顺序错位而导致错误,在记忆和使用两点式方程时,必须注意坐标的对应
人教B版高中数学必修二第二章《平面解析几何初步》章末归纳总结》ppt课件

设所求圆的方程为(x-a)2+(y-b)2=r2.
由题意,得00- -aa22+ +06- -bb22= =rr22 ,解得ab= =33
.
a-b=0
r=3 2
故所求圆的方程是(x-3)2+(y-3)2=18.
解法二:由题意,所求圆经过点(0,0)和(0,6),∴圆心一定 在直线 y=3 上,又由解法一,知圆心在直线 x-y=0 上,
第二章 平面解析几何初步
第二章 章末归纳总结
1 知识结构 2 学后反思
3 专题研究 4 课时作业
知识结构
学后反思
• 用坐标法研究几何问题使我们从抽象的推理中解脱 出来,用坐标的计算替代推理.为我们研究几何问 题开辟了一条全新的道路.
• 本章介绍了解析几何研究问题的基本思路:建立直 角坐标系,求出或设出点的坐标,通过坐标的运算, 对方程的研究来解释几何现象,表述几何问题.
• [例3] 设有直线l:y=kx+3与圆O:x2+y2=16, 求k为何值时,直线l被圆O所截得的弦最短?并求出 最短弦长;能否求得k的值,使直线l被圆O所截得的
弦最长?
[解析] 解法一:设所截得的弦长为 L,
则 L=2 16-k2+9 1.
显然,当 k=0 时,Lmin=2 7; 不论 k 取何值,L 均无最大值,故弦长取不到最大值.
• 判断直线与圆、圆与圆的位置关系可以从两个方 面入手:①直线与圆有无公共点,等价于它们的方程 组成的方程组有无实数解,方程组有几组实数解,直 线与圆就有几个公共点,方程组没有实数解,直线与 圆就没有公共点,判断圆与圆的位置关系时慎用此法; ②运用平面几何知识,把直线与圆、圆与圆位置关系 的几何结论转化为相应的代数结论.
21190,∴当
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面解析几何
1.直线的倾斜角与斜率:
(1)直线的倾斜角:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾斜角.
倾斜角,斜率不存在.
(2)直线的斜率:.(、). 2.直线方程的五种形式:
(1)点斜式: (直线过点,且斜率为).注:当直线斜率不存在时,不能用点斜式表示,此时方程为.(2)斜截式: (b为直线在y轴上的截距).
(3)两点式: (,).
注:①不能表示与轴和轴垂直的直线;
②方程形式为:时,方程可以表示任意直线.
(4)截距式:(分别为轴轴上的截距,且).
注:不能表示与轴垂直的直线,也不能表示与轴垂直的直线,特别是不能表示过原点的直线.
(5)一般式: (其中A、B不同时为0).
一般式化为斜截式:,即,直线的斜率:.注:(1)已知直线纵截距,常设其方程为或.
已知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或.
已知直线过点,常设其方程为或.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.
3.直线在坐标轴上的截矩可正,可负,也可为0.
(1)直线在两坐标轴上的截距相等直线的斜率为或直线过原点.
(2)直线两截距互为相反数直线的斜率为1或直线过原点.
(3)直线两截距绝对值相等直线的斜率为或直线过原点.
4.两条直线的平行和垂直:
(1)若,
①;②.
(2)若,,有
①.②.5.平面两点距离公式:
(、),.轴上两点间距离:
.
线段的中点是,则.
6.点到直线的距离公式:
点到直线的距离:.
7.两平行直线间的距离:
两条平行直线距离:.
8.直线系方程:
(1)平行直线系方程:
①直线中当斜率一定而变动时,表示平行直线系方程..
②与直线平行的直线可表示为.
③过点与直线平行的直线可表示为:
.
(2)垂直直线系方程:
①与直线垂直的直线可表示为.
②过点与直线垂直的直线可表示为:
.
(3)定点直线系方程:
①经过定点的直线系方程为(除直线),其中是待定的系数.
②经过定点的直线系方程为,其中是待定的系数.
(4)共点直线系方程:经过两直线
交点的直线系方程为 (除),其中λ是待定的系数.
9.曲线与的交点坐标方程组的解.10.圆的方程:
(1)圆的标准方程:().
(2)圆的一般方程:.
(3)圆的直径式方程:
若,以线段为直径的圆的方程是:
.
注:(1)在圆的一般方程中,圆心坐标和半径分别是,
.
(2)一般方程的特点:
①和的系数相同且不为零;②没有项;③
(3)二元二次方程表示圆的等价条件是:
①;②;③
.
11.圆的弦长的求法:
(1)几何法:当直线和圆相交时,设弦长为,弦心距为,半径为,
则:“半弦长+弦心距=半径”——;
(2)代数法:设的斜率为,与圆交点分别为,则
(其中的求法是将直线和圆的方程联立消去或,利用韦达定理求解)
12.点与圆的位置关系:点与圆的位置关系有三种
①在在圆外.
②在在圆内.
③在在圆上.【到圆心距离
】
13.直线与圆的位置关系:
直线与圆的位置关系有三种():
圆心到直线距离为,由直线和圆联立方程组消去(或)后,所得一元二次方程的判别式为.
;;.14.两圆位置关系:设两圆圆心分别为,半径分别为,
;;
;;
.
15.圆系方程:
(1)过直线与圆:的交点的圆系方程:,λ是待定的系数.
(2)过圆:与圆:的交点的圆系方程:
,λ是待定的系数.
特别地,当时,
就是
表示两圆的公共弦所在的直线方程,即过两圆交点的直线.
16.圆的切线方程:
(1)过圆上的点的切线方程为:.
(2)过圆上的点的切线方程
为:.
(3)当点在圆外时,可设切方程为,利用圆心到直线距离等于半径,
即,求出;或利用,求出.若求得只有一值,则还有一条斜率不存在的直线.
17.把两圆与方程相减
即得相交弦所在直线方程:.
18.对称问题:
(1)中心对称:
①点关于点对称:点关于的对称点.
②直线关于点对称:
法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.
法2:求出一个对称点,在利用由点斜式得出直线方程.
(2)轴对称:
①点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.
点关于直线对称.
②直线关于直线对称:(设关于对称)
法1:若相交,求出交点坐标,并在直线上任取一点,求该点关于直线的对称点.
若,则,且与的距离相等.
法2:求出上两个点关于的对称点,在由两点式求出直线的方程.
(3)点(a, b)关于x轴对称:(a,- b)、关于y轴对称:(-a, b)、关于原点对称:(-a,- b)、
点(a, b)关于直线y=x对称:(b, a)、关于y=- x对称:(-b,- a)、
关于y= x +m对称:(b -m、a+m)、关于y=-x+m对称:(-b+m、-a+m) .
19.若,则△ABC的重心G的坐标是
.
20.各种角的范围:
两条相交直线的夹角
两条异面线所成的角。