七年级下册数学整式的乘除 与因式分解知识点+习题

合集下载

苏教版七年级下册数学[《整式的乘除与因式分解》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学[《整式的乘除与因式分解》全章复习与巩固(基础)知识点整理及重点题型梳理]

苏教版七年级下册数学[《整式的乘除与因式分解》全章复习与巩固(基础)知识点整理及重点题型梳理]苏教版七年级下册数学重难点突破知识点梳理及重点题型巩固练习《整式的乘法与因式分解》全章复习与巩固(基础)【学习⽬标】1. 掌握整数幂的运算性质,并能运⽤它们熟练地进⾏运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运⽤它们进⾏运算;2. 会推导乘法公式(平⽅差公式和完全平⽅公式),了解公式的⼏何意义,能利⽤公式进⾏乘法运算;3. 掌握整式的加、减、乘、除、乘⽅的较简单的混合运算,并能灵活地运⽤运算律与乘法公式简化运算;4. 理解因式分解的意义,并感受分解因式与整式乘法是相反⽅向的运算,掌握提公因式法和公式法(直接运⽤公式不超过两次)这两种分解因式的基本⽅法,了解因式分解的⼀般步骤;能够熟练地运⽤这些⽅法进⾏多项式的因式分解.【知识⽹络】【要点梳理】要点⼀、幂的运算,为正整数);同底数幂相乘,底数不变,指数相加.1.同底数幂的乘法:(m n,为正整数);幂的乘⽅,底数不变,指数相乘.2.幂的乘⽅: (m n3.积的乘⽅:(n 为正整数);积的乘⽅,等于各因数乘⽅的积. 4.同底数幂的除法:(a ≠0, m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次⽅等于1. 6.负指数幂:1n n a a-=(0a ≠,n 为正整数).任何不等于0的数的-n 次幂,等于这个数的n 次幂的倒数.要点诠释:公式中的字母可以表⽰数,也可以表⽰单项式,还可以表⽰多项式;灵活地双向应⽤运算性质,使运算更加⽅便、简洁.要点⼆、整式的乘法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在⼀个单项式⾥含有的字母,则连同它的指数作为积的⼀个因式.2.单项式乘以多项式单项式与多项式相乘,就是⽤单项式去乘多项式的每⼀项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先⽤⼀个多项式的每⼀项乘另⼀个多项式的每⼀项,再把所得的积相加.即()()a b m n am an bm bn++=+++.要点诠释:运算时,要注意积的符号,多项式中的每⼀项前⾯的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要⽤“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出⼀个应⽤⽐较⼴泛的公式:()()()2x a x b x a b x ab ++=+++. 要点三、乘法公式1.平⽅差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平⽅差.要点诠释:在这⾥,a b ,既可以是具体数字,也可以是单项式或多项式.平⽅差公式的典型特征:既有相同项,⼜有“相反项”,⽽结果是“相同项”的平⽅减去“相反项”的平⽅.2. 完全平⽅公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和 (差)的平⽅等于这两数的平⽅和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平⽅,右边是⼆次三项式,是这两数的平⽅和加(或减)这两数之积的2倍.要点四、因式分解把⼀个多项式化成⼏个整式的积的形式,像这样的式⼦变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的⽅法主要有: 提公因式法, 公式法, 分组分解法, ⼗字相乘法, 添、拆项法等.要点诠释:落实好⽅法的综合运⽤:⾸先提取公因式,然后考虑⽤公式;两项平⽅或⽴⽅,三项完全或⼗字;四项以上想分组,分组分得要合适;⼏种⽅法反复试,最后须是连乘式;因式分解要彻底,⼀次⼀次⼜⼀次.【典型例题】类型⼀、幂的运算1、计算下列各题:(1)2334(310)(10)??- (2)2332[3()][2()]m n m n +-+(3)26243(2)(3)xy x y -+- (4)63223(2)(3)[(2)]a a a ---+- 【思路点拨】按顺序进⾏计算,先算积的乘⽅,再算幂的乘⽅,最后算同底数的幂相乘.【答案与解析】解:(1)2334(310)(10)??-323343(10)(10)=??18192710 2.710=?=?.(2)2332[3()][2()]m n m n +-+36263()(2)()m n m n =?+?-?+ 661227()4()108()m n m n m n =+?+=+.(3)26243(2)(3)xy x y -+- 6661233612(1)2(1)3x y x y =-??+-?612612612642737x y x y x y =-=.(4)63223(2)(3)[(2)]a a a ---+-6662232366(1)2(1)3()(1)(2)a a a =-?--??+-? 6666649649a a a a =--=-.【总结升华】在进⾏幂的运算时,应注意符号问题,尤其要注意系数为-1时“-”号、括号⾥的“-”号及其与括号外的“-”号的区别.举⼀反三:【变式】(2016春?⽾阳市校级⽉考)82009×0.1252009= .【答案】1.82009×0.1252009=(8×0.125)2009=12009=1.类型⼆、整式的乘除法运算2、解下列不等式.(1)2(1)(25)12x x x x ---<(2)3(7)18(315)x x x x -<--【答案与解析】解:(1)22222512x x x x --+<, 312x <,4x <.(2)2221318315x x x x -<-+,618x <,3x <.【总结升华】利⽤乘法法则进⾏去括号、合并同类项,按照解⼀元⼀次不等式的⽅法求解.3、已知312326834m n ax y x y x y ÷=,求(2)n m n a +-的值.【思路点拨】利⽤除法与乘法的互逆关系,通过计算⽐较系数和相同字母的指数得到m n a 、、的值即可代⼊求值.【答案与解析】解:由已知312326834m n ax y x y x y ÷=,得31268329284312m n n ax y x y x y x y +=?=,即12a =,39m =,2812n +=,解得12a =,3m =,2n =.所以22(2)(23212)(4)16n m n a +-=?+-=-=.【总结升华】也可以直接做除法,然后⽐较系数和相同字母的指数得到m n a 、、的值. 举⼀反三:【变式】(1)已知1227327m m -÷=,求m 的值.(2)已知1020a =,1105b =,求293a b ÷的值.(3)已知23m =,24n =,求322m n -的值.【答案】解:(1)由题意,知312(3)327m m -÷=.∴ 3(1)2333m m --=.∴ 3323m m --=,解得6m =.(2)由已知1020a =,得22(10)20a =,即210400a =.由已知1105b =,得211025b =.∴ 221101040025a b ÷=÷,即2241010a b -=.∴ 224a b -= ∴ 22222493333381a b a b a b -÷=÷===.(3)由已知23m =,得3227m =.由已知24n =,得2216n =.∴ 32322722216m n m n -=÷=.类型三、乘法公式4、对任意整数n ,整式(31)(31)(3)(3)n n n n +---+是否是10的倍数?为什么?【答案与解析】解:∵(31)(31)(3)(3)n n n n +---+22222(3)1(3)919n n n n =---=--+22101010(1)n n =-=-,210(1)n -是10的倍数,∴原式是10的倍数.【总结升华】要判断整式(31)(31)(3)(3)n n n n +---+是否是10的倍数,应⽤平⽅差公式化简后,看是否有因数10.举⼀反三:【变式】解下列⽅程(组):22(2)(4)()()32x y x y x y x y ?+-+=+-?-=-?【答案】解:原⽅程组化简得2332x y x y -=??-=-?,解得135x y =??=?.5、已知3a b +=,4ab =-,求: (1)22a b +;(2)33a b +【思路点拨】在公式()2222a b a ab b +=++中能找到22,,a b ab a b ++的关系. 【答案与解析】解:(1) 222222a b a ab b ab +=++- ()22a b ab =+-∵3a b +=,4ab =-,∴()22232417a b +=-?-= (2)333223a b a a b a b b +=+-+ ()()()2a a b b a b a b =+-+-()()22a b a ab b =+-+()()2[3]a b a b ab =++-∵3a b +=,4ab =-,∴()332333463a b ??+=-?-=??.【总结升华】在⽆法直接利⽤公式的情况下,我们采取“配凑法”进⾏,通过配凑向公式过渡,架起了已知与未知之间桥梁,顺利到达“彼岸”.在解题时,善于观察,捕捉习题特点,联想公式特征,便易于点燃思维的⽕花,找到最佳思路.类型四、因式分解6、(2015春?岱岳区期末)已知x 2﹣4y 2=20,x+2y=5,求x ,y 的值.【思路点拨】直接利⽤平⽅差公式分解因式,进⽽得出x ﹣2y=4,再利⽤⼆元⼀次⽅程组的解法得出x ,y 的值.【答案与解析】解:∵ x 2﹣4y 2=(x+2y )(x ﹣2y )=20,x+2y=5,∴ 5(x ﹣2y )=20,∴ x ﹣2y=4,∴,解得:.【总结升华】此题主要考查了公式法分解因式以及⼆元⼀次⽅程组的解法,正确分解因式是解题关键.举⼀反三:【整式的乘除与因式分解单元复习例7】【变式】分解因式:(1)()()222222x x ----(2)()2224420x xx x +--- (3)2244634a ab b a b -+-+-【答案】解:(1)原式()()()()()()2222212211x x x x x x =---+=+-+- (2)原式=()()()222224(4)204544x x x x x x x x +-+-=+-++ ()()()2512x x x =+-+(3)原式=()()()()223242421a b a b a b a b ----=---+。

七年级数学下册第9章《整式乘法与因式分解》考点总结和难题详解(含答案)

七年级数学下册第9章《整式乘法与因式分解》考点总结和难题详解(含答案)

第9章《整式乘法与因式分解》考点+易错知识梳理重难点分类解析考点1 运用整式乘法法则进行运算【考点解读】要根据算式的特点确定运算顺序,并正确运用运算法则进行计算. 例1 下列式子中,与2(21)(1)(2)x x x x +--+-的计算结果相同的是( ) A. 221x x -+ B. 223x x -- C. 23x x +- D. 23x - 分析:2222(21)(1)(2)(221)(2)21x x x x x x x x x x x +--+-=-+--+-=-+. 答案:A【规律·技法】本题考查了整式的混合运算,熟练掌握运算法则是解题的关健. 例2 (1)填空:()()a b a b -+= ; 22()()a b a ab b -++= ; 3223()()a b a a b ab b -+++= ;(2)猜想:1221()()n n n n a b a a b ab b -----++++=… (其中n 为正整数,且2n ≥) ;(3)利用(2)猜想的结论计算:98732222222-+-+-+….分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;(2)根据(1)中的规律可得结果;(3)原式变形后,利用(2)得出的规律计算即可得到结果. 解答:(1) 22a b - 33a b - 44a b - (2)nn a b -(3)令98732222222S =-+-+-+…,则9873212222221S -=-+-+-+-…98732[2(1)](2222221)3=--⨯-+-+-+-÷… 10(21)3=--÷(10241)3341=-÷=,所以342S =,即98732222222342-+-+-+=….【规律·技法】本题考查了多项式乘以多项式的运算,弄清题中的规律是解本题的关键. 【反馈练习】1.已知m n mn +=,则(1)(1)m n --= .点拨:先化简(1)(1)m n --,再将m n mn +=整体代入计算. 2.计算:(25)(32)b a b a a b ++-= .点拨:先利用乘法分配律计算,再合并同类项. 考点2 乘法公式的应用【考点解读】正确而熟练地掌握乘法公式,在记住公式的基础上强化对公式的具体运用,并在运用公式的过程中把握公式的特点.例3 先化简,再求值: 2(2)()()5()x y x y x y x x y ++-+--,其中5x ==,15y =-. 分析:本题主要考查了整式混合运算中的化简、求值问题,在解题时要注意先把原式进行化简,再把未知数的值代入求解.解答:2(2)()()5()x y x y x y x x y ++-+--222224455x xy y x y x xy =+++--+9xy =.当5x ==,15y =-时,原式1995()95xy ==⨯⨯-=-. 【规律·技法】本题考查整式的混合运算——化简求值,解题的关键是明确整式混合运算的法则.例4 已知250x x +-=,则代数式2(1)(3)(2)(2)x x x x x ---++-的值为 .分析:先利用乘法公式展开,再合并得到原式23x x =+-,然后利用整体代入的方法计算.原式2222134x x x x x =-+-++-23x x =+-.因为250x x +-=, 所以25x x +=,所以原式532=-=. 答案:2 【规律·技法】本题考查的是整式的混合运算——化简求值,在有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似. 【反馈练习】3.已知43x y =,求代数式22(2)()()2x y x y x y y ---+-的值.点拨:先化简,再将43x y =代入计算.4.先化简,再求值:2(32)(32)5(1)(21)x x x x x +-----,其中13x =-.点拨:先科用乘法公式化简,再将13x =-代入计算.考点3 因式分解及其应用【考点解读】根据所给多项式的特点确定因式分解的步骤与方法,一般来说,先提公因式,再运用公式法(平方差公式和完全平方公式),要注意最后必须分解到每一个多项式因式都不能再分解为止.例5 分解因式: 22(2)(2)y x x y +-+.分析:原式利用完全平方公式或平方差公式化简,合并同类项即可得到结果. 解答:解法一: 22(2)(2)y x x y +-+222244(44)y xy x x xy y =++-++ 223()x y =- 3()()x y x y =+-.解法二: 22(2)(2)y x x y +-+[(2)(2)][(2)(2)]y x x y y x x y =++++-+(33)()x y x y =+- 3()()x y x y =+-.【规律·技法】本题考查了公式法分解因式,熟练掌握乘法公式是解题关键. 例6 ()(4)a b a b ab --+分解因式的结果是 .分析:本题无法提取公因式,也无法直接套用公式因式分解,所以考虑先化简整理后再分解因式.()(4)a b a b ab --+ 2254a ab b ab =-++ 2244a ab b =-+ 2(2)a b =-答案: 2(2)a b -【规律·技法】本题主要考查了多项式的乘法运算以及公式法分解因式,体现了这二者间的联系.【反馈练习】5. (2018·连云港)分解因式: 216x -= . 点拨:利用平方差公式进行因式分解即可.6. (2018·成都)已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 . 点拨:先把原式因式分解,再将已知等式变形后代入计算求值. 7.如果221()x mx x n ++=+,且0m >,那么n 的值是 . 点拨:看清完全平方式三项的结构,注意0m >的条件,可知n 也大于0. 易错题辨析易错点1 运算中符号出错例1 (2018·无锡月考)计算: 23(4)x x x --+. 错误解答:原式326312x x x =---.错因分析:在进行单项式与多项式乘法运算时,应将单项式与多项式的每一项分别相乘,同时应注意多项式的“项”包括它前面的符号,错解忽略了第二项前面的符号. 正确解答:原式326312x x x =-+-.易错辨析:将多项式看作几个单项式的和直接参与运算. 易错点2 漏乘了多项式中的项“1”例2计算: 13(1)3(2)22x x x x +--.错误解答:原式2221964622x x x x x =-+=-+. 错因分析:单项式x 与多项式112x +相乘时,漏乘了多项式中的项“1”.正确解答:原式2221964722x x x x x x =+-+=-+.易错点3 运算法则理解错误易错辨析:单项式与多项式相乘的实质是乘法分配律的运用. 例3计算: (5)(7)x y x y +-. 错误解答:原式2235x y =-.错因分析:错解只把首项和首项相乘、尾项与尾项相乘,这是初学多项式乘法时最常见错误. 正确解答:原式22227535235x xy xy y x xy y =-+-=--. 易错辨析:进行多项式乘法运算时不要漏乘. 易错点4 运算结果没有化到最简例4计算: 222(3)(3)3(1)x x x x x x x ++----. 错误解答:原式3323233333x x x x x x x =++--++.错因分析:本题在运用法则运算时并没有错,问题在于其结果没有合并同类项,不是最简形式.正确解答:原式3323233333x x x x x x x =++--++36x x =-+. 易错辨析:去括号后,不要忘了合并同类项,将结果化为最简形式. 易错点5 乘法公式混淆导致计算错误 例5计算: 2(25)x y -.错误解答:错解一: 22222(25)(2)(5)425x y x y x y -=-=-.错解二: 22222(25)(2)225(5)2205x y x x y y x xy y -=-+=-+g g. 错因分析:错解一将完全平方公式与平方差公式混淆;错解二忘记了系数要平方.正确解答: 22222(25)(2)225(5)42025x y x x y y x xy y -=-+=-+g g. 易错辨析:正确使用乘法公式是解题的关键.222()2a b a ab b ±=±+.计算中要注意字母、系数都要平方,同时注意符号不要出错.易错点6 运用公式计算时,没有找准“a ”与“b ” 例6 计算: (23)(23)a b c a b c +---.错误解答:(23)(23)a b c a b c +---[(23)](23)a b c a b c =+--- 22(23)a b c =--2224129a b bc c =-+-.错因分析:错解在找平方差公式中的“a ”与“b ”时产生了错误.对于此类题型,只要将各括号内的符号相同项结合为一组,看作公式中的“a ”,再将符号相反项结合为一组,看作公式中的“b ”,就可避免出现上述错误. 正确解答: (23)(23)a b c a b c +--- [(3)2][(3)2]a c b a c b =-+-- 22(3)(2)a c b =-- 222694a ac c b =-+-.易错辨析:两个因式中符号相同的视为“a ”,符号相反的视为“b ”. 易错点7 分解因式不彻底例7 分解因式: 42228(2)x y x y --错误解答:原式42228(2)x y x y --222(4)x y =-4224816x x y y =-+.错因分析:运用完全平方公式是正确的,但分解不彻底,224x y -还可分解为(2)(2)x y x y +-.正确解答:原式4224816x x y y =-+222(4)x y =- 22(2)(2)x y x y =+-.易错辨析:分解因式要分解到不能再分解为止.反馈练习1.下面因式分解正确的是( )A. 221(2)1x x x x ++=++ B. 23(4)4x x x x -=- C. ()ax bx a b x +=+ D. 2222()m mn n m n -+=+ 点拨:因式分解的结果必须为几个因式积的形式. 2.下列运算中,正确的是( )A. 222()a b a b +=+B. 22(2)(2)2a b a b a b +-=- C. 22()()a b a b a b +--=- D. 22()()a b a b a b -+--=- 点拨:利用平方差或完全平方公式运算即可.3. (2018·常州月考)由完全平方公式可知22232355(35)64+⨯⨯+=+=,运用这一方法计算: 224.32108.6420.67900.6790+⨯+= . 点拨:把4.3210看作“a ”,把0.6790看作“b ”,用完全平方公式运算. 4.计算:(1) 234110()2x yz xy -g ; (2) 221(2)32ab ab ab -g ;(3) 2(21)(21)(21)t t t +-+-; (4) (21)(21)x y x y -+--.点拨:注意公式的运用和计算的顺序. 5. (1)已知2(23)4656x y x y --+-=-,求235x y-的值(2)已知230x -=,求代数式22()(5)9x x x x x -+--的值.点拨:把已知或结论中较为繁琐的式子先化简. 6.把下列各式分解因式:(1) 322x x x -+; (2) 2225()9m n n +-; (3) 2(1)(1)a b a -+-; (4) 5x x -点拨:有公因式先提取公因式,再考虑使用乘法公式,注意是否分解彻底. 探究与应用探究1 含字母系数的多项式中的存在问题例1已知22(3)(3)x nx x x m ++-+的展开式中不含2x 和3x 的项,求,m n 的值.点拨:先把原式展开,从中找出含2x 和3x 的项,再让它们的系数分别为0,从而得到关于,m n 的关系式,求解即可.解答:原式432(3)(33)(9)3x n x m n x mn x m =+-++-+-+.因为展开式中不含2x 和3x 的项,所以30330n m n -=⎧⎨+-=⎩,解得63m n =⎧⎨=⎩.故,m n 的值分别是6,3.规律·提示先进行多项式的乘法运算得到展开式,展开式中不含哪一项,则该项的系数为0. 【举一反三】1.已知多项式2x x a ++与2x b +的乘积中含2x 的项的系数为3,含x 的项的系数为2,求a b +=的值.探究2 多项式的乘法与图形面积之间的联系例2 利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性. (1)根据图①写出一个代数恒等式;(2)恒等式22(2)()23a b a b a ab b ++=++,也可以利用图②的面积解释,请用图②的面积说明: 22(2)()23a b a b a ab b ++=++;(3)已知正数,,a b c 和,,m n l 满足a m b n c l k +=+=+=,试构造边长为k 的正方形,利用面积来说明: 2al bm cn k ++<.点拨:(1)利用面积法,各部分面积用代数式表示即可;(2)利用图②的两种面积表示方法即可说明;(3)利用面积法构造正方形,使其边长为a m b n c l k +=+=+=(注意a b c ≠≠,m n l ≠≠),并且正方形里有长和宽分别是,a l a ;,b m ;,c n 的长方形,通过画成的图③可发现,2al bm cn k ++<.解答:(1)答案不唯一,如:224()()ab a b a b =+--.(2)因为图②的面积可表示为(2)()a b a b ++,也可表示为2223a ab b ++,所以22(2)()23a b a b a ab b ++=++.(3)如图③,构造一个边长为k 的正方形,显然a m b n c l k +=+=+=.根据图形可知正方形内部3个长方形的面积和小于正方形的面积,即2al bm cn k ++<.规律·提示要理解完全平方公式的几何背景及公式间的相互转化,利用几何图形推导代数恒等式时,要注意几何图形整体面积与各部分面积的关系.【举一反三】2.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,如图①可以得到22(2)()32a b a b a ab b ++=++.请解答下列问题:(1)写出图②中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知11a b c ++=,38ab bc ac ++=,求222a b c ++的值;(3)小明同学用3张边长为a 的正方形纸片,4张边长为b 的正方形纸片,7张长和宽分别为,a b 的长方形纸片拼出了一个大长方形,那么大长方形较长一边的边长为多少? (4)小明同学又用x 张边长为a 的正方形纸片,y 张边长为b 的正方形纸片,z 张长和宽分别为,a b 的长方形纸片拼出了一个面积为(257)(1845)b a b ++的大长方形,那么x y z ++= 。

七年级数学下册《整式乘法与因式分解》练习题及答案

七年级数学下册《整式乘法与因式分解》练习题及答案

七年级数学下册《整式乘法与因式分解》练习题及答案一、单选题1.计算a2(﹣a)3的结果是()A.a6B.﹣a5C.﹣a6D.a﹣62.下列各式,计算结果为a3的是()A.a2+a B.a4﹣a C.a•a2D.a6÷a23.﹣x3y﹣1•(﹣2x﹣1y)2=()A.﹣2xy B.2xy C.﹣2x2y D.2xy24.若x2﹣kx﹣12=(x+a)(x+b),则a+b的值不可能是()A.﹣11B.4C.8D.115.若(x+2)与(x﹣m)的乘积中不含x的一次项,则m的值为()A.﹣2B.0C.2D.46.下列运算正确的是()A.a3+a3=a6B.(a3)2=a6C.(ab)2=ab2D.2a5•3a5=5a57.若x2+ax+16是完全平方式,则|a﹣2|的值是()A.6B.6或10C.2D.2或68.如图,从边长为a的正方形中去掉一个边长为b的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)9.下列各式中,从左到右变形是因式分解的是()A.(x+3y)(x﹣3y)=x2﹣9y2B.9﹣x2=(3+x)(3﹣x)C.x2+6x+4=(x+2)2+2x D.x2﹣8=(x+4)(x﹣4)10.小明是一位密码编译爱好者,在他的密码手册中有这样一条信息:a﹣1,x﹣y,2,a2+1,x,a+1分别对应下列六个字:西,爱,我,数,学,定.现将2x(a2﹣1)﹣2y(a2﹣1)因式分解,结果呈现的密码信息可能是()A.我爱定西B.爱定西C.我爱学D.定西数学二、填空题11.分解因式:﹣m2n+6mn﹣9n=.12.全球新冠病毒仍在蔓延,新型冠状病毒直径约为80﹣120纳米,某种β属的新型冠状病毒直径为0.000000102米,将数据0.000000102用科学记数法表示为.13.计算:(18a3﹣9a2﹣3a)÷3a=.14.已知x2﹣6x+k是一个完全平方式,则k的值是.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n (n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,(a+b)n展开式的系数和为.三、解答题16.已知3m=a,3n=b,分别求:(1)3m+n.(2)32m+3n.(3)32m+33n的值.17.计算:(1)﹣32+(4﹣π)0++|2﹣5|;(2)(3a+b)(a﹣b)+2ab.18.先化简,再求值:[(﹣x3y4)3+(﹣xy2)2•3xy2]÷(﹣xy2)3,其中x=﹣2,y=.19.分解因式:(1)2x2y+4xy2+2y3;(2)9a2(x﹣y)+4b2(y﹣x).20.如图1,有A型、B型、C型三种不同形状的纸板,A型是边长为a的正方形,B型是边长为b的正方形,C型是长为b,宽为a的长方形.现用A型纸板一张,B型纸板一张,C型纸板两张拼成如图2的大正方形.(1)观察图2,请你用两种方法表示出图2的总面积.方法1:;方法2:;请利用图2的面积表示方法,写出一个关于a,b的等式:.(2)已知图2的总面积为49,一张A型纸板和一张B型纸板的面积之和为25,求ab的值.(3)用一张A型纸板和一张B型纸板,拼成图3所示的图形,若a+b=8,ab=15,求图3中阴影部分的面积.21.阅读与思考在因式分解中,有些多项式看似不能分解,如果添加某项,可以达到因式分解的效果,此类因式分解的方法称之为“添项法”.例如:a4+4=a4+4+4a2﹣4a2=(a4+4a2+4)﹣4a2=(a2+2)2﹣(2a)2=(a2+2a+2)(a2﹣2a+2).参照上述方法,我们可以对a3+b3因式分解,下面是因式分解的部分解答过程.a3+b3=a3+a2b﹣a2b+b3=(a3+a2b)﹣(a2b﹣b3)=(a+b)•a2﹣(a+b)•b(a﹣b)=…任务:(1)请根据以上阅读材料补充完整对a3+b3因式分解的过程.(2)已知a+b=2,ab=﹣4,求a3+b3的值.参考答案与解析一、单选题1.解:原式=a2•(﹣a)3=﹣a5,故选B.2.解:A、a2与a不是同类项,不能合并,故本选项错误;B、a4与a不是同类项,不能合并,故本选项错误;C、a•a2=a3,故本选项正确;D、a6÷a2=a4≠a3,故本选项错误.故选:C.3.解:﹣x3y﹣1•(﹣2x﹣1y)2=﹣x3y﹣1•4x﹣2y2=﹣2xy.故选:A.4.解:根据题意知a+b=﹣k、ab=﹣12若a=1、b=﹣12,则a+b=﹣11;若a=﹣1、b=12,则a+b=11;若a=﹣3、b=4,则a+b=1;若a=3、b=﹣4,则a+b=﹣1;若a=2、b=﹣6,则a+b=﹣4;若a=﹣2、b=6,则a+b=4.故选:C.5.解:(x+2)(x﹣m)=x2﹣mx+2x﹣2m=x2+(﹣m+2)x﹣2m∵不含x的一次项∴﹣m+2=0解得:m=2故选:C.6.解:A、a3+a3=2a3,故A不符合题意;B、(a3)2=a6,故B符合题意;C、(ab)2=a2b2,故C不符合题意;D、2a5•3a5=6a10,故D不符合题意;故选:B.7.解:∵(x±4)2=x2±8x+16∴a=±8当a=8时|a﹣2|=|6|=6当a=﹣8时|a﹣2|=|﹣10|=10故选:B.8.解:大正方形的面积﹣小正方形的面积=a2﹣b2矩形的面积=(a+b)(a﹣b)故(a+b)(a﹣b)=a2﹣b2故选:A.9.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于因式分解,故本选项符合题意;C.等式的右边不是几个整式的积的形式,不属于因式分解,故本选项不符合题意;D.,故本选项不符合题意;故选:B.10.解:2x(a2﹣1)﹣2y(a2﹣1)=2(a2﹣1)(x﹣y)=2(a﹣1)(a+1)(x﹣y)=2(x﹣y)(a+1)(a﹣1)结果呈现的密码信息可能是:我爱定西故选:A.二、填空题11.解:原式=﹣n(m2﹣6m+9)=﹣n(m﹣3)2.故答案为:﹣n(m﹣3)2.12.解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣713.解:(18a3﹣9a2﹣3a)÷3a=18a3÷3a﹣9a2÷3a﹣3a÷3a=6a2﹣3a﹣1.故答案为:6a2﹣3a﹣1.14.解:x2﹣6x+k=x2﹣2×3x+k∴k=32=9.故答案为:9.15.解:(a+b)0=1,系数为1,20=1(a+b)1=a+b,系数和为2,21=2(a+b)2=a2+2ab+b2,系数和为4,22=4(a+b)3=a3+3a2b+3ab2+b3,系数和为8,23=8...(a+b)n展开式的系数和为:2n故答案为:2n.三、解答题16.解:(1)由题可得,3m+n=3m•3n=ab;(2)由题可得,32m+3n=32m•33n=(3m)2•(3n)3=a2b3;(3)由题可得,32m+33n=(3m)2+(3n)3=a2+b3.17.解:(1)原式=﹣9+1+8+3=3;(2)原式=3a2﹣3ab+ab﹣b2+2ab=3a2﹣b2.18.解:原式=(﹣x9y12+x3y6)÷(﹣x3y6)=x6y6﹣当x=﹣2,y=时,原式=1﹣=.19.解:(1)2x2y+4xy2+2y3=2y(x2+2xy+y2)=2y(x+y)2;(2)9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).20.解:(1)用两种方法表示出图2的总面积为(a+b)2和a2+2ab+b2关于a,b的等式(a+b)2=a2+2ab+b2故答案为:(a+b)2,a2+2ab+b2,(a+b)2=a2+2ab+b2;(2)由题意得,(a+b)2=a2+2ab+b2=49,a2+b2=25∴ab====12;(3)由题意得图3中阴影部分的面积为:+a2﹣==∴当a+b=8,ab=15时图3中阴影部分的面积为:==.21.解:(1)a3+b3=a3+a2b﹣a2b+b3=(a3+a2b)﹣(a2b﹣b3)=a2(a+b)﹣b(a2﹣b2)=a2(a+b)﹣b(a+b)(a﹣b)=(a+b)(a2﹣ab+b2);(2)∵a+b=2,ab=﹣4∴(a+b)2=4∴a2+b2+2ab=4∴a2+b2=12∴a3+b3=(a+b)(a2﹣ab+b2)=2×[12﹣(﹣4)]=2×16=32.。

(完整版)整式的乘法与因式分解考点练习(含答案)

(完整版)整式的乘法与因式分解考点练习(含答案)

整式的乘法与因式分解复习考点1 幂的运算1.下列计算正确的是( )A .(a 2)3=a 5B .2a -a =2C .(2a)2=4aD .a·a 3=a 42.(铜仁中考)下列计算正确的是( )A .a 2+a 2=2a 4B .2a 2·a 3=2a 6C .3a -2a =1D .(a 2)3=a 63.计算:x 5·x 7+x 6·(-x 3)2+2(x 3)4.A. 124xB. 122xC. 12xD. 64x考点2 整式的乘法 4.下列运算正确的是( )A .3a 2·a 3=3a 6B .5x 4-x 2=4x 2C .(2a 2)3·(-ab)=-8a 7bD .2x 2÷2x 2=05.计算:(3x -1)(2x +1)=________.A. 162-+x xB. 162--x xC. 1562-+x xD. 1562-+x x6.计算:(1)(-3x 2y)3·(-2xy 3); (2)(34x 2y -12xy 2)(-4xy 2). A. 636y x , 422323y x y x +- B. -636y x , 423323y x y x +-C. 6754y x ,423323y x y x +-D. -6754y x , 422323y x y x +-考点3 整式的除法7.计算8a 3÷(-2a)的结果是( )A .4aB .-4aC .4a 2D .-4a 28.若5a 3b m ÷25a n b 2=252b 2,则m =____________,n =__________. 9.化简:(a 2b -2ab 2-b 3)÷b -(a -b)2.考点4 乘法公式10.下列关系式中,正确的是( )A .(a +b)2=a 2-2ab +b 2B .(a -b)2=a 2-b 2C .(a +b)(-a +b)=b 2-a 2D .(a +b)(-a -b)=a 2-b 211.已知(x +m)2=x 2+nx +36,则n 的值为( )A .±6B .±12C .±18D .±7212.计算:(1)(-2m +5)2; (2)(a +3)(a -3)(a 2+9); (3)(a -1)(a +1)-(a -1)2.考点5 因式分解13.(北海中考)下列因式分解正确的是( )A .x 2-4=(x +4)(x -4)B .x 2+2x +1=x(x +2)+1C .3mx -6my =3m(x -6y)D .2x +4=2(x +2)14.多项式mx 2-m 与多项式x 2-2x +1的公因式是( )A .x -1B .x +1C .x 2-1D .(x -1)215.(黔西南中考)分解因式:4x 2+8x +4=________.16.若x -2y =-5,xy =-2,则2x 2y -4xy 2=________.综合训练17.(威海中考)下列运算正确的是( )A .(-3mn)2=-6m 2n 2B .4x 4+2x 4+x 4=6x 4C .(xy)2÷(-xy)=-xyD .(a -b)(-a -b)=a 2-b 218.(毕节中考)下列因式分解正确的是( )A .a 4b -6a 3b +9a 2b =a 2b(a 2-6a +9)B .x 2-x +14=(x -12)2 C .x 2-2x +4=(x -2)2D .4x 2-y 2=(4x +y)(4x -y)19.(大连中考)若a =49,b =109,则ab -9a 的值为________.20.(宁波中考)一个大正方形和四个全等的小正方形按图1、2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是________(用a 、b 的代数式表示)[图1 图221.(绵阳中考)在实数范围内因式分解:x 2y -3y =________________.22.(崇左中考)4个数a ,b ,c ,d 排列成⎪⎪⎪⎪⎪⎪a b c d ,我们称之为二阶行列式.规定它的运算法则为:⎪⎪⎪⎪⎪⎪a b cd =ad -bc.若⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x =________. 23.计算:(1)5a 3b ·(-3b)2+(-ab)(-6ab)2;(2)x(x 2+3)+x 2(x -3)-3x(x 2-x -1).24.把下列各式因式分解:(1)2m(a-b)-3n(b-a);(2)16x2-64;(3)-4a2+24a-36.25先化简(a2b-2ab2-b3)÷b-(a+b)(a-b),然后对式子中a、b分别选择一个自己最喜欢的数代入求值.26.我们约定:a b=10a÷10b,如43=104÷103=10.(1)试求123和104的值;(2)试求(215)×102的值.参考答案1.D2.D3.原式=x 12+x 6·x 6+2x 12=x 12+x 12+2x 12=4x 12.4.C5.6x 2+x -16.(1)原式=-27x 6y 3×(-2xy 3)=54x 7y 6.(2)原式=34x 2y ·(-4xy 2)-12xy 2·(-4xy 2)=-3x 3y 3+2x 2y 4. 7.D8.4 39. 原式=a 2-2ab -b 2-a 2+2ab -b 2=-2b 2.10. C11. B12. (1)原式=4m 2-20m +25. (2)原式=(a 2-9)(a 2+9)=a 4-81. (3)原式=a 2-1-a 2+2a -1=2a -2.13. D14. A15.4(x +1)216.2017. C18. B19.4 90020.ab21.y(x -3)(x +3)22.123. (1)原式=5a 3b ·9b 2+(-ab)·36a 2b 2=45a 3b 3-36a 3b 3=9a 3b 3. (2)原式=x 3+3x +x 3-3x 2-3x 3+3x 2+3x =-x 3+6x.24.(1)原式=(a -b)(2m +3n). (2)原式=16(x +2)(x -2). (3)原式=-4(a -3)2.25.原式=a 2-2ab -b 2-(a 2-b 2)=a 2-2ab -b 2-a 2+b 2=-2ab.如选择一个喜欢的数为a =1,b =-1,则原式=2.26.(1)123=1012÷103=109,104=1010÷104=106. (2)(215)×102=(1021÷105)×102=1018.。

整式的乘除与因式分解知识点及题型汇编

整式的乘除与因式分解知识点及题型汇编

学习必备精品知识点整式的乘除与因式分解知识点及题型汇编同底数幂的乘法【知识盘点】若m、n均为正整数,则a m·a n=_______,即同底数幂相乘,底数______,指数_____.【应用拓展】1.计算:(1)64×(-6)5(2)-a4(-a)4(3)-x5·x3·(-x)4(4)(x-y)5·(x-y)6·(x-y)72.计算:(1)(-b)2·(-b)3+b·(-b)4(2)a·a6+a2·a5+a3·a4(3)x3m-n·x2m-3n·x n-m(4)(-2)·(-2)2·(-2)3·…·(-2)1007.已知a x=2,a y=3,求a x+y的值.8.已知4·2a·2a+1=29,且2a+b=8,求a b的值.积的乘方【知识盘点】积的乘方法则用字母表示就是:当n为正整数时,(ab)n=_______.【应用拓展】1.计算:(1)(-2×103)3(2)(x2)n·x m-n(3)a2·(-a)2·(-2a2)3(4)(-2a4)3+a6·a6(5)(2xy2)2-(-3xy2)22.先完成以下填空:(1)26×56=()6=10( )(2)410×2510=()10=10( )你能借鉴以上方法计算下列各题吗?(3)(-8)10×0.12510(4)0.252007×42006(5)(-9)5·(-23)5·(13)53.已知x n=2,y n=3,求(x2y)2n的值.4.一个立方体棱长为2×103厘米,求它的表面积(结果用科学记数法表示).【综合提高】10.观察下列等式:13=12;13+23=32;13+23+33=62;13+23+33+43=102;(1)请你写出第5个式子:______________(2)请你写出第10个式子:_____________(3)你能用字母表示所发现的规律吗?试一试!幂的乘方【知识盘点】若m、n均为正整数,则(a m)n=_____,即幂的乘方,底数_____,指数_______.【应用拓展】1.计算:(1)(y2a+1)2(2)[(-5)3] 4-(54)3(3)(a-b)[(a-b)2] 52.计算:(1)(-a2)5·a-a11(2)(x6)2+x10·x2+2[(-x)3] 48.用幂的形式表示结果:(1)(23)2=______;(22)3=________;(2)(35)7=______;(37)5=________;(3)(53)4=______;(54)3=________.你发现了什么规律?用式子表示出来.同底数幂的除法知识点:1.同底数幂相除,底数不变,指数相减:底数a可以是一个具体的数,也可以是单项式或多项式。

苏教版七年级下册数学整式的乘除与因式分解总复习知识点+习题

苏教版七年级下册数学整式的乘除与因式分解总复习知识点+习题
15、平方差公式 : ( a b)( a b) a 2 b 2 注意平方差公式展开只有两项
公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为 相反数。右边是相同项的平方减去相反项的平方。
如: ( x y z)( x y z) = 16、完全平方公式: (a b) 2 a 2 2ab b 2
字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2a 2bc 的 系数为
,次数为
,单独的一个非零数的次数是

2、多项式: 几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最
高项的次数叫多项式的次数。
a 2 2ab x 1,项有
,二次项为
,一次项为 ,
常数项为
这类式子在许多问题中经常出现,其特点是: (1) 二次项系数是 1; (2) 常数项是两个数之积; (3) 一次项系数是常数项的两个因数之 和.
x2 ( p q)x pq x2 px qx pq x( x p) q( x p) ( x p)( x q) 因此, x2 ( p q) x pq (x p)( x q)
5
苏教版七年级数学下册
运用这个公式,可以把某些二次项系数为
例 1.把下列各式因式分解:
(1) x2 7 x 6
1 的二次三项式分解因式.
(2) x2 13x 36
说明: 此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项
系数的符号相同.
例 2.把下列各式因式分解:
(1) x2 5x 24
7
苏教版七年级数学下册
10.求( 1-
1
2
)( 1-
1
2

《因式分解》整式的乘除与因式分解

《因式分解》整式的乘除与因式分解

《因式分解》整式的乘除与因式分解汇报人:日期:CATALOGUE目录•整式的乘除•因式分解的方法•因式分解的应用•因式分解的实践练习•因式分解的注意事项和易错点•因式分解的复习与巩固01整式的乘除单项式乘单项式系数乘法:将两个单项式的系数相乘作为积的系数。

相同字母的幂相乘:把一个单项式的字母因数与另一个单项式的相同字母的幂相乘作为积的一个因式,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

对于只在第二个单项式里含有的字母,则连同它的指数也作为积的一个因式:同样地处理其他的单项式。

系数相除将除式的系数与被除式的系数相除作为商的系数。

相同字母的幂相除把被除式的相同字母的幂与除式的相同字母的幂相除作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

单项式除以单项式•按整式乘法法则进行计算:用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。

多项式乘多项式•顺序:先乘方,再乘除,然后加减;有括号的先算括号里面的;同级运算按从左到右的顺序进行。

整式的混合运算02因式分解的方法总结词提公因式法是因式分解中最基本的方法之一,其核心是将多项式中的公因式提取出来,形成新的多项式。

详细描述提公因式法适用于有公因式的多项式。

通过将多项式中的公因式提取出来,放在多项式的最前面,然后除以公因式得到新的多项式。

这个方法可以简化多项式的计算和化简过程。

提公因式法公式法是因式分解中比较常用的方法之一,其核心是利用已知的公式或定理来进行因式分解。

总结词公式法适用于一些特定的多项式。

这些多项式往往有对应的公式或定理可以利用来进行因式分解。

通过将多项式代入公式或定理中,可以得到新的多项式,从而简化计算和化简过程。

详细描述公式法十字相乘法总结词十字相乘法是一种特殊的因式分解方法,其核心是将二次项和常数项分别用交叉相乘的方式进行因式分解。

详细描述十字相乘法适用于一些特定的二次多项式。

整式的乘除因式分解计算题精选1(含答案)

整式的乘除因式分解计算题精选1(含答案)

整式的乘除因式分解习题精选一.解答题(共12小题)1.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2③④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a ﹣b)2.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2 ⑧.3.计算:(1)6a5b6c4÷(﹣3a2b3c)÷(2a3b3c3).(2)(x﹣4y)(2x+3y)﹣(x+2y)(x﹣y).4.计算:(1)(x2)8•x4÷x10﹣2x5•(x3)2÷x.(2)3a3b2÷a2+b•(a2b﹣3ab﹣5a2b).(3)(x﹣3)(x+3)﹣(x+1)(x+3).(4)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2﹣xy).5.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3x n+1﹣6x n+3x n﹣1⑩x2﹣y2+2y﹣1;4a2﹣b2﹣4a+1;4(x﹣y)2﹣4x+4y+1;3ax2﹣6ax﹣9a;x4﹣6x2﹣27;(a2﹣2a)2﹣2(a2﹣2a)﹣3.6.因式分解:(1)4x3﹣4x2y+xy2.(2)a2(a﹣1)﹣4(1﹣a)2.7.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,其中a=﹣,b=2.9.当x=﹣1,y=﹣2时,求代数式[2x2﹣(x+y)(x﹣y)][(﹣x﹣y)(﹣x+y)+2y2]的值.10.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.11.先化简,再求值:(1)(x+2y)(2x+y)﹣(x+2y)(2y﹣x),其中,.(2)若x﹣y=1,xy=2,求x3y﹣2x2y2+xy3.12.解方程或不等式:(1)(x+3)2+2(x﹣1)2=3x2+13.(2)(2x﹣5)2+(3x+1)2>13(x2﹣10).整式的乘除因式分解习题精选参考答案与试题解析一.解答题(共12小题)1.计算:①;②[(﹣y5)2]3÷[(﹣y)3]5•y2④(a﹣b)6•[﹣4(b﹣a)3]•(b﹣a)2÷(a﹣b)考点:整式的混合运算.专题:计算题.分析:①原式先计算乘方运算,再计算乘除运算即可得到结果;②原式利用幂的乘方与积的乘方运算法则计算,即可得到结果;③原式利用多项式除以单项式法则计算即可得到结果;④余数利用同底数幂的乘除法则计算即可得到结果.解答:解:①原式=5a2b÷(﹣ab)•(4a2b4)=﹣60a3b4;②原式=y30÷(﹣y)15•y2=﹣y17;③原式=a2b﹣ab2﹣;④原式=4(a﹣b)10.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2.计算:①(2x﹣3y)2﹣8y2;②(m+3n)(m﹣3n)﹣(m﹣3n)2;③(a﹣b+c)(a﹣b﹣c);④(x+2y﹣3)(x﹣2y+3);⑤(a﹣2b+c)2;⑥[(x﹣2y)2+(x﹣2y)(2y﹣x)﹣2x(2x﹣y)]÷2x.⑦(m+2n)2(m﹣2n)2⑧.考点:整式的混合运算.专题:计算题.分析:①原式利用完全平方公式展开,去括号合并即可得到结果;②原式第一项利用平方差公式计算,第二项利用完全平方公式展开,去括号合并即可得到结果;③原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;④原式利用平方差公式化简,再利用完全平方公式展开即可得到结果;⑤原式利用完全平方公式展开,即可得到结果;⑥原式中括号中利用完全平方公式化简,去括号合并后利用多项式除以单项式法则计算即可得到结果;⑦原式逆用积的乘方运算法则变形,计算即可得到结果;⑧原式利用平方差公式计算即可得到结果.解答:解:①原式=4x2﹣12xy+9y2﹣8y2=4x2﹣12xy+y2;④原式=x2﹣(2y﹣3)2=x2﹣4y2+12y﹣9;⑤原式=(a﹣2b)2+2c(a﹣2b)+c2=a2﹣4ab+4b2+2ac﹣4bc+c2;⑥原式=(x2﹣4xy+4y2﹣x2+4xy﹣4y2﹣4x2+2xy)÷2x=(﹣4x2+2xy)÷2x=﹣2x+y;⑦原式=[(m+2n)(m﹣2n)]2=(m2﹣4n2)2=m4﹣8m2n2+16n4;⑧原式=a(﹣a+b+c)=﹣a2+ab+ac.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.3.计算:(1)6a5b6c4÷(﹣3a2b3c)÷(2a3b3c3).(2)(x﹣4y)(2x+3y)﹣(x+2y)(x﹣y).(3)[(﹣2x2y)2]3•3xy4.(4)(m﹣n)(m+n)+(m+n)2﹣2m2.考点:整式的混合运算.专题:计算题.分析:(1)原式利用单项式除以单项式法则计算即可得到结果;(2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果;(3)原式先利用积的乘方与幂的乘方运算法则计算,再利用单项式乘单项式法则计算即可得到结果;(4)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.解答:解:(1)原式=﹣2a3b3c3÷(2a3b3c3)=﹣1;(2)原式=2x2﹣5xy﹣12y2﹣x2﹣xy+2y2=x2﹣6xy﹣10y2;(3)原式=64x12y6•3xy4=192x13y10;(4)原式=m2﹣n2+m2+2mn+n2﹣2m2=2mn.点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.4.计算:(1)(x2)8•x4÷x10﹣2x5•(x3)2÷x.(2)3a3b2÷a2+b•(a2b﹣3ab﹣5a2b).(3)(x﹣3)(x+3)﹣(x+1)(x+3).(4)(2x+y)(2x﹣y)+(x+y)2﹣2(2x2﹣xy).考点:整式的混合运算.专题:计算题.分析:(1)原式先利用幂的乘方运算法则计算,再利用同底数幂的乘除法则计算,合并即可得到结果;(2)原式利用单项式除以单项式,以及单项式乘以多项式法则计算,去括号合并即可得到并即可得到结果;(4)原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并即可得到结果.解答:解:(1)原式=x16•x4÷x10﹣2x5•x6÷x=x10﹣2x10=﹣x10;(2)原式=3ab2+a2b2﹣3ab2﹣5a2b2=﹣4a2b2;(3)原式=x2﹣9﹣x2﹣4x﹣3=﹣4x﹣12;(4)原式=4x2﹣y2+x2+2xy+y2﹣4x2+2xy=x2+4xy.点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.5.因式分解:①6ab3﹣24a3b;②﹣2a2+4a﹣2;③4n2(m﹣2)﹣6(2﹣m);④2x2y﹣8xy+8y;⑤a2(x﹣y)+4b2(y﹣x);⑥4m2n2﹣(m2+n2)2;⑦;⑧(a2+1)2﹣4a2;⑨3x n+1﹣6x n+3x n﹣1⑩x2﹣y2+2y﹣1;⑪4a2﹣b2﹣4a+1;⑫4(x﹣y)2﹣4x+4y+1;⑬3ax2﹣6ax﹣9a;⑭x4﹣6x2﹣27;⑮(a2﹣2a)2﹣2(a2﹣2a)﹣3.考点:提公因式法与公式法的综合运用;因式分解-分组分解法;因式分解-十字相乘法等.分析:①直接提取公因式6ab,进而利用平方差公式进行分解即可;②直接提取公因式﹣2,进而利用完全平方公式分解即可;③直接提取公因式2(m﹣2)得出即可;④直接提取公因式2y,进而利用完全平方公式分解即可;⑤直接提取公因式(x﹣y),进而利用平方差公式进行分解即可;⑥直接利用平方差公式分解因式,进而利用完全平方公式分解即可;⑦首先提取公因式﹣,进而利用平方差公式进行分解即可;⑧首先利用平方差公式分解因式,进而利用完全平方公式分解即可;⑨直接提取公因式3x n﹣1,进而利用完全平方公式分解即可⑩将后三项分组利用完全平方公式分解因式,进而利用平方差公式分解即可;⑬首先提取公因式3a,进而利用十字相乘法分解因式得出;⑭首先利用十字相乘法分解因式进而利用平方差公式分解即可;⑮将a2﹣2a看作整体,进而利用十字相乘法分解因式得出即可.解答:解:①6ab3﹣24a3b=6ab(b2﹣4a2)=6ab(b+2a)(b﹣2a);②﹣2a2+4a﹣2=﹣2(a2﹣2a+1)=﹣2(a﹣1)2;③4n2(m﹣2)﹣6(2﹣m)=2(m﹣2)(2n2+3);④2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2;⑤a2(x﹣y)+4b2(y﹣x)=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b);⑥4m2n2﹣(m2+n2)2=(2mn+m2+n2)(2mn﹣m2﹣n2)=﹣(m+n)2(m﹣n)2;⑦=﹣(n2﹣4m2)=﹣(n+2m)(n﹣2m);⑧(a2+1)2﹣4a2=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2;⑨3x n+1﹣6x n+3x n﹣1=3x n﹣1(x2﹣2x+1)=3x n﹣1(x﹣1)2;⑩x2﹣y2+2y﹣1=x2﹣(y﹣1)2=(x+y﹣1)(x﹣y+1);⑪4a2﹣b2﹣4a+1=(4a2﹣4a+1)﹣b2=(2a﹣1)2﹣b2=(2a﹣1+b)(2a﹣1﹣b);⑫4(x﹣y)2﹣4x+4y+1=4(x﹣y)2﹣4(x﹣y)+1=[2(x﹣y)﹣1]2=(2x﹣2y﹣1)2;⑬3ax2﹣6ax﹣9a=3a(x2﹣2x﹣3)=3a(x﹣3)(x+1);⑮(a2﹣2a)2﹣2(a2﹣2a)﹣3=(a2﹣2a﹣3)(a2﹣2a+1)=(a﹣3)(a+1)(a﹣1)2.点评:此题主要考查了提取公因式法、公式法十字相乘法和分组分解法分解因式,熟练应用公式法以及分组分解法分解因式是解题关键.6.因式分解:(1)4x3﹣4x2y+xy2.(2)a2(a﹣1)﹣4(1﹣a)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取公因式x后,利用完全平方公式分解即可;(2)原式第二项变形后,提取公因式,再利用平方差公式分解即可.解答:解:(1)原式=x(4x2﹣4xy+y2)=x(2x﹣y)2;(2)原式=(a﹣1)(a2﹣4a+4)=(a﹣1)(a﹣2)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握公式是解本题的关键.7.(2009•漳州)给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.考点:提公因式法与公式法的综合运用;整式的加减.专题:开放型.分析:本题考查整式的加法运算,找出同类项,然后只要合并同类项就可以了.解答:解:情况一:x2+2x﹣1+x2+4x+1=x2+6x=x(x+6).情况二:x2+2x﹣1+x2﹣2x=x2﹣1=(x+1)(x﹣1).情况三:x2+4x+1+x2﹣2x=x2+2x+1=(x+1)2.点评:本题考查了提公因式法,公式法分解因式,整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.熟记公式结构是分解因式的关键.平方差公式:a2﹣b2=(a+b)(a﹣b);完全平方公式:a2±2ab+b2=(a±b)2.8.(2008•三明)先化简,再求值:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,其中a=﹣,b=2.考点:整式的混合运算—化简求值.专题:计算题.分析:根据平方差公式,单项式乘多项式,单项式除单项式的法则化简,再代入求值.解答:解:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,=4a2﹣b2+2ab+b2﹣4a2,=2ab,当a=﹣,b=2时,原式=2×(﹣)×2=﹣2.点评:考查了整式的混合运算,主要考查了整式的乘法、除法、合并同类项的知识点.注意运算顺序以及符号的处理.9.当x=﹣1,y=﹣2时,求代数式[2x2﹣(x+y)(x﹣y)][(﹣x﹣y)(﹣x+y)+2y2]的值.考点:整式的混合运算—化简求值.分析:先根据整式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.解答:解:原式=[2x2﹣x2+y2][(﹣x)2﹣y2+2y2]=(x2+y2)(x2+y2)=(x2+y2)2,当x=﹣1,y=﹣2时,原式=(1+4)2=25.点评:本题考查的是整式的混合运算﹣化简求值,熟知整式混合运算的法则是解答此题的关键.10.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.考点:整式的混合运算;解一元一次方程;解一元一次不等式.专题:计算题.分析:①方程去括号,移项合并,将x系数化为1,即可求出解;②不等式去括号,移项合并,将x系数化为1,即可求出解集.解答:解:①去括号得:x2﹣x﹣6﹣x2+7x﹣6=0,移项合并得:6x=12,解得:x=2;②去括号得:2x2+4x﹣30﹣2x2﹣13x+7≤4,移项合并得:﹣9x≤27,解得:x≥﹣3.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.(1)(x+2y)(2x+y)﹣(x+2y)(2y﹣x),其中,.(2)若x﹣y=1,xy=2,求x3y﹣2x2y2+xy3.考点:整式的混合运算—化简求值.分析:(1)先根据整式混合运算的法则把原式进行化简,再把x,y的值代入进行计算即可;(2)先根据整式混合运算的法则把原式进行化简,再把x﹣y=1,xy=2的值代入进行计算即可.解答:解:(1)原式=(x+2y)(2x+y﹣2y+x)=(x+2y)(3x﹣y)=3x2+5xy﹣2y2,当x=,y=时,原式=3×+5××﹣2×=;(2)原式=xy(x﹣y)2,当x﹣y=1,xy=2时,原式=2×1=2.点评:本题考查的是整式的混合运算﹣化简求值,熟知整式混合运算的法则是解答此题的关键.12.解方程或不等式:(1)(x+3)2+2(x﹣1)2=3x2+13.(2)(2x﹣5)2+(3x+1)2>13(x2﹣10).考点:整式的混合运算;解一元一次方程;解一元一次不等式.专题:计算题.分析:(1)方程左边两项利用完全平方公式展开,移项合并后,将x系数化为1,即可求出解;(2)不等式左边两项利用完全平方公式展开,移项合并后,将x系数化为1,即可求出范围.解答:解:(1)整理得:x2+6x+9+2x2﹣4x+2=3x2+13,移项合并得:2x=2,解得:x=1;(2)不等式整理得:4x2﹣20x+25+9x2+6x+1>13x2﹣130,移项合并得:﹣14x>﹣156,解得:x<11.点评:此题考查了整式的混合运算,涉及的整式有:完全平方公式,平方差公式,单项式乘除单项式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.。

整式的乘除与因式分解综合练习题含答案

整式的乘除与因式分解综合练习题含答案

整式的乘除与因式分解综合练习题一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10(2) (a+b)3=a 3+b 3(3) (-a+b)(-a-b)=a 2-b 2(4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.当a =-1时,代数式(a +1)2+ a (a +3)的值等于( )A.-4B.4C.-2D.23、下列各式中,能用平方差公式计算的是( )A 、B 、C 、D 、4.若x 2+2(m-3)x+16是完全平方式,则m 的值等于( )A.3B.-5C.7.D.7或-15.若,则的值为 ( ) A . B .5 C .D .26、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601))((b a b a +--))((b a b a ---))((c b a c b a +---+-))((b a b a -+-7、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=18.如果一个单项式与的积为,则这个单项式为( ) A. B. C. D.9、对于任何整数,多项式都能( )A 、被8整除B 、被整除C 、被-1整除D 、被(2-1)整除10.已知,,则与的值分别是 ( )A. 4,1B. 2,C.5,1D. 10,二、填空题11、(1)化简:a 3·a 2b=12、把边长为12.75cm 的正方形中,挖去一个边长为7.25cm 的小正方形,则剩下的面积为 。

13.已知31=-a a ,则221a a + 的值等于 。

14、有一串单项式:……,(1)第2006个单项式是 ;(2)第(n+1)个单项式是 .三、解答题。

m 9)54(2-+m m m m 234,2,3,4,x x x x --192019,20x x -15、化简(1)3x2y·(-2xy3); (2)2a2(3a2-5b);(3)(-2a2)(3a b2-5a b3). (4)(5x+2y)(3x-2y).1)2009 (5)(3y+2)(y-4)-3(y-2)(y-3);(6)(-3)2008·(316、因式分解(1)xy+a y-by; (2)3x(a-b)-2y(b-a);(3)m2-6m+9;(4) 4x2-9y2(5) x4-1; (6) x2-7x+10;17、先化简,再求值(a+b)(a-2b)-(a+2b)(a-b),其中a=2, b=-1 18.已知x-y=1,xy=3,求x3y-2x2y2+xy3的值.19、如图是L 形钢条截面,试写出它的面积公式。

整式的乘法与因式分解习题带答案精选全文完整版

整式的乘法与因式分解习题带答案精选全文完整版

可编辑修改精选全文完整版Array第十四章、整式乘除与因式分解14.1 整式的乘法(1)(-3x)2(x+1)(x+3)+4x(x-1)(x2+x+1),其中x=-1;解:原式=9x2(x2+3x+x+3)+4x(x3+x2+x-x2-x-1)=9x2(x2+4x+3)+4x(x3-1)=9x4+36x3+27x2+4x4-4x=13x4+36x3+27x2-4x当x=-1时原式=13×(-1)4+36×(-1)3+27×(-1)2-4×(-1)=13-36+27+4=8(2)y n(y n+3y-2)-3(3y n+1-4y n),其中y=-2,n=2.解:原式=y2n+3y n+1-2y n-9y n+1+12y n=y2n-6y n+1+10y n当y=-2,n=2时原式=(-2)2×2-6×(-2)2+1+10×(-2)2=16+48+40=10415、已知不论x、y为何值时(x+my)(x+ny)=x2+2xy-8y2恒成立.求(m+n)mn的值.解:x2+nxy+mxy+mny2=x2+2xy-8y2x2+(m+n)xy+mny2=x2+2xy-8y2∴m+n=2,mn=-8∴(m+n)mn=2×(-8)=-166、已知31=+a a,则221a a +=( B ) A .5 B .7 C .9 D .117、如果x 2+kx +81是一个完全平方式,则k 的值是( D )A .9B .-9C .±9D .±188、下列算式中不正确的有( C )①(3x 3-5)(3x 3+5)=9x 9-25②(a +b +c +d)(a +b -c -d)=(a +b)2-(c +d)2③22)31(5032493150-=⨯ ④2(2a -b)2·(4a +2b)2=(4a -2b)2(4a -2b)2=(16a 2-4b 2)2A .0个B .1个C .2个D .3个9、代数式2)(2y x +与代数式2)(2y x -的差是( A ) A .xy B .2xy C .2xy D .0 10、已知m 2+n 2-6m +10n +34=0,则m +n 的值是( A )A .-2B .2C .8D .-8二、解答题11、计算下列各题:(1)(2a +3b)(4a +5b)(2a -3b)(5b -4a)(2)(x +y)(x -y)+(y -z)(y +z)+(z -x)(z +x);(3)(3m 2+5)(-3m 2+5)-m 2(7m +8)(7m -8)-(8m)2(1) 解:原式=(2a +3b)(2a -3b)(4a +5b)(5b -4a)=(4a 2-9b 2)(25b 2-16a 2)=100a 2b 2-64a 4-225b 4+144a 2b 2=-64a 4+244a 2b 2-225b 4(2) 解:原式=x 2-y 2+y 2-z 2+z 2-x 2=0(3) 解:原式=25-9m 4-m 2(49m 2-64)-64m 2=-58m 4+2512、化简求值:(1)4x(x 2-2x -1)+x(2x +5)(5-2x),其中x =-1(2)(8x 2+4x +1)(8x 2+4x -1),其中x =21 (3)(3x +2y)(3x -2y)-(3x +2y)2+(3x -2y)2,其中x =31,y =-21 (1) 解:原式=4x 3-8x 2-4x +x(25-4x 2)=4x 3-8x 2-4x +25x -4x 3=-8x 2+21x当x =-1时原式=-8×(-1)2+21×(-1)=-8-21=-29(2) 解:原式=(8x 2+4x)2-1当x =时,原式=[8×()2+4×]2-1=(2+2)2-1=15(3) 解:原式=9x 2-4y 2-9x 2-12xy -4y 2+9x 2-12xy +4y 2=9x 2-24xy -4y 2当x =,y =-时原式=9×()2-24××(-)-4×(-)2=1+4-1=413、解下列方程:(1)(3x)2-(2x +1)2=5(x +2)(x -2)解:9x 2-4x 2-4x -1=5x 2-205x 2-4x -1=5x 2-204x =19∴x =419(2)6x +7(2x +3)(2x -3)-28(x -21)(x +21)=4解:6x +28x 2-63-28x 2+7=46x -56=46x =60∴x =1014、解不等式:(1-3x)2+(2x -1)2>13(x -1)(x +1)解:1-6x +9x 2+4x 2-4x +1>13x 2-1313x 2-10x +2>13x 2-13-10x>-15∴x<2315、若n 满足(n -2004)2+(2005-n)2=1,求(2005-n)(n -2004)的值.解:(n -2004)2+2·(n -2004)·(2005-n)+(2005-n)2=1+2(n -2004)(2005-n)(n -2004+2005-n)2=1+2(n -2004)(2005-n)1=1+2(2005-n)(n -2004)∴(2005-n)(n -2004)=014.3 因式分解一、选择题1、下列各式,从左到右的变形是因式分解的为( B )A .x 2-9+5x =(x +3)(x -3)+5xB .x 2-4x +4=(x -2)2C .(x -2)(x -3)=x 2-5x +6D .(x -5)(x +2)=(x +2)(x -5)2、把多项式x 2-mx -35分解因式为(x -5)(x +7),则m 的值是( B)A .2B .-2C .12D .-123、分解因式:x 2-2xy +y 2+x -y 的结果是( A )A .(x -y )(x -y +1)B .(x -y )(x -y -1)C .(x +y )(x -y +1)D .(x +y )(x -y -1)4、若9x 2-12xy +m 是一个完全平方公式,那么m 的值是( B )。

《整式的乘除与因式分解》培优训练及答案

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。

七年级数学下册_整式的乘除与因式分解的常见题型

七年级数学下册_整式的乘除与因式分解的常见题型

整式的乘除与因式分解的常见题型【题型一】、逆用幂的运算性质1.2005200440.25⨯= . 2.( 23)2002×(1.5)2003÷(-1)2004= . 3.若23n x =,则6n x = .4.已知:2,3==n m x x ,求n m x 23+、n m x 23-的值。

5.已知:a m =2,b n =32,则n m 1032+=________。

6、若6422=-a ,则a= ;若8)3(327-=⨯n ,则n= .7、若125512=+x ,求x x +-2009)2(的值。

8、设4x =8y-1,且9y =27x-1,则x-y 等于 。

【题型二】、式子变形求值1.若10m n +=,24mn =,则22m n += .2、设m+n=10,mn=24,求()222m n m n +-和的值。

3.已知9ab =,3a b -=-,求223a ab b ++的值.4.已知0132=+-x x ,求221x x +的值。

5、已知31=+a a ,则221aa +的值是 。

6.已知:()()212-=---y x x x ,则xy y x -+222= . 7.24(21)(21)(21)+++的结果为 .8.如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为_______________。

9.已知0258622=+--+b a b a ,则代数式ba ab -的值是_______________。

10.已知:0106222=+++-y y x x ,则=x _________,=y _________。

11、若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值.12、已知2x 5y 30+-=,求x y 432⋅的值.13、当2y —x=5时,()()6023252-+---y x y x = ; 14、若1003x y +=,2x y -=,则代数式22x y -的值是 .15、已知21,122=+-=-y x y x ,求y x -的值; 【题型三】、式子变形判断三角形的形状1.已知:a 、b 、c 是三角形的三边,且满足0222=---++ac bc ab c b a ,则该三角形的形状是_________________.2.若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是___________________。

七年级数学下册《整式乘法与因式分解》练习题附答案(苏科版)

七年级数学下册《整式乘法与因式分解》练习题附答案(苏科版)

七年级数学下册《整式乘法与因式分解》练习题附答案(苏科版)班级:___________姓名:___________考号:___________一、选择题1.计算:(2a)•(ab)=( )A.2abB.2a2bC.3abD.3a2b2.计算2a(1-a2)的值是()A.2a+2a3B.a-2a3C.2a3-2aD.2a-2a33.若(x+4)(x-2)=x2+mx+n,则m,n的值分别是()A.2,8B.-2,-8C.-2,8D.2,-84.图①是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分的面积是()mA.abB.(a+b)2C.(a-b)2D.a2-b25.下图是用4个相同的小矩形与1个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x,y表示小矩形的两边长(x>y),请观察图案,指出以下关系式中,不正确的是( ).A.x+y=7B.x-y=2C.4xy+4=49D.x2+y2=256.下列多项式中能用平方差公式因式分解的是( )A.a2+(﹣b)2B.5m2﹣20mnC.﹣x2﹣y2D.﹣x2+97.若a+b=3,a﹣b=7,则ab=( )A.﹣10B.﹣40C.10D.408.已知100x2+kx+49是完全平方式,则常数k可以取( )A.±70B.±140C.±14D.±49009.若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值是( )A.3B.2C.1D.﹣110.如果x2+x+1=0那么x2025+x2024+x2023+…+x3+x2+x=( )A.3B.2C.1D.0二、填空题11.计算:﹣3x2•2x=______12.多项式3a2b2﹣6a3b3﹣12a2b2c的公因式是.13.多项式9x2+1加上一个单项式后,成为一个整式的完全平方式,那么加上的单项式可以是.(填上一个你认为正确的即可)14.若(a+b)2=17,(a-b)2=11,则a2+b2= .15.已知a2﹣6a+9与|b﹣1|互为相反数,计算a3b3+2a2b2+ab的结果是 .16.如图,现有A,C两类正方形卡片和B类长方形卡片各若干张,用它们可以拼成一些新的长方形.如果要拼成一个长为(3a+b),宽为(a+2b)的长方形,那么需要B类长方形卡片__张.三、解答题17.化简:(2x﹣5)(3x+2);18.化简:(a+2b)(3a﹣b)﹣(2a﹣b)(a+6b)19.化简:(x+y)2﹣(x+y)(x﹣y)20.化简:4(a+2)2-7(a+3)(a-3)+3(a-1)2.21.已知x2+4x-1=0,先化简,再求值:(2x+1)2-(x+2)(x-2)-x(x-4).22.如图1是一个长为2a、宽为2b的长方形(其中a,b均为正数,且a>b),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.(1)你认为图2中大正方形的边长为;小正方形(阴影部分)的边长为.(用含a、b的代数式表示)(2)仔细观察图2,请你写出下列三个代数式:(a+b)2,(a﹣b)2,ab所表示的图形面积之间的相等关系,并选取适合a、b的数值加以验证.(3)已知a+b=7,ab=6.求代数式(a﹣b)的值.23.给出三个多项式:2a2+3ab+b2,3a2+3ab,a2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式.24.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay=(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)2xy+y2﹣1+x2=x2+2xy+y2﹣1=(x+y)2﹣1=(x+y+1)(x+y﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a2﹣b2+a﹣b;(2)分解因式:x2﹣6x﹣7;(3)分解因式:a2+4ab﹣5b2.25.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1.B2.D3.D4.C5.D6.D7.A8.B9.A10.D.11.答案为:﹣6x312.答案为:3a2b2.13.答案为:答案不唯一,例如6x,﹣6x.14.答案为:14.15.答案为:48.16.答案为:7.17.原式=6x2+4x﹣15x﹣10=6x2﹣11x﹣10.18.原式=4x2+4x+1﹣y219.原式=x2+2xy+y2﹣x2+y2=2xy+2y2.20.原式=10a+8221.解:原式=7.22.解:(1)大正方形的边长为a+b;小正方形(阴影部分)的边长为a﹣b;(2)(a+b)2=(a﹣b)2+4ab.例如:当a=5,b=2时(a+b)2=(5+2)2=49(a﹣b)2=(5﹣2)2=94ab=4×5×2=40因为49=40+9,所以(a+b)2=(a﹣b)2+4ab.(3)因为a+b=7,所以(a+b)2=49.因为(a+b)2=(a﹣b)2+4ab,且ab=6所以(a﹣b)2=(a+b)2﹣4ab=49﹣4×6=25所以a﹣b=5或a﹣b=﹣5因为a>b,所以只能取a﹣b=5.23.解:本题答案不唯一;选择加法运算有以下三种情况:(2a2+3ab+b2)+(3a2+3ab)=5a2+6ab+b2=(a+b)(5a+b);(2a2+3ab+b2)+(a2+ab)=3a2+4ab+b2=(a+b)(3a+b);(3a2+3ab)+(a2+ab)=4a2+4ab=4a(a+b).选择减法运算有六种情况,选三种供参考:(2a2+3ab+b2)-(3a2+3ab)=b2-a2=(b+a)(b-a);(2a2+3ab+b2)-(a2+ab)=a2+2ab+b2=(a+b)2;(3a2+3ab)-(a2+ab)=2a2+2ab=2a(a+b).24.解:(1)原式=(a+b)(a﹣b)+(a﹣b)=(a﹣b)(a+b+1);(2)原式=(x﹣7)(x+1);(3)原式=(a﹣b)(a+5b).25.解:(1)28和2012都是神秘数;(2)这两个连续偶数构造的神秘数是4的倍数;(3)两个连续奇数的平方差不是神秘数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整式的乘除与因式分解
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

的系数为,次数为,单独的一个非零数的次数是。

2、多项式:几个单项式的和叫做多项式。

多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。

,项有,二次项为,一次项为,常数项为,各项次数分别为,系数分别为,叫次项式。

3、整式:单项式和多项式统称整式。

注意:凡分母含有字母代数式都不是整式。

也不是单项式和多项式。

4、多项式按字母的升(降)幂排列:
按的升幂排列:按的升幂排列:
按的降幂排列:按的降幂排列:
5、同底数幂的乘法法则:(都是正整数)
同底数幂相乘,底数不变,指数相加。

注意底数可以是多项式或单项式。

例1.若,则a= ;若,则n= .
例2.若,则的值为。

例3 .设4x=8y-1,且9y=27x-1,则x-y等于。

6、幂的乘方法则:(都是正整数)
幂的乘方,底数不变,指数相乘。

如:
幂的乘方法则可以逆用:即
如:
7、积的乘方法则:(是正整数)积的乘方,等于各因数乘方的积。

(=
8、同底数幂的除法法则:(都是正整数,且
同底数幂相除,底数不变,指数相减。

如:
9、零指数和负指数;
,即任何不等于零的数的零次方等于1。

(是正整数),即一个不等于零的数的次方等于这个数的次方的倒数。

如:
10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。

②相同字母相乘,运用同底数幂的乘法法则。

③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式
④单项式乘法法则对于三个以上的单项式相乘同样适用。

⑤单项式乘以单项式,结果仍是一个单项式。

如:
11、单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,
即(都是单项式)
注意:①积是一个多项式,其项数与多项式的项数相同。

②运算时要注意积的符号,多项式的每一项都包括它前面的符号。

③在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。

如:=
12、多项式与多项式相乘的法则:
多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

如:
13、单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

如:=
14、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。

即:
例1.(a-b)(2a+b)(3a2+b2);例2.[(a-b)(a
+b)]2÷(a2-2ab+b2)-2ab.
例3.已知x2+x-1=0,求x3+2x2+3的值.
15、平方差公式:注意平方差公式展开只有两项
如:=
16、完全平方公式:
完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。

※17、三项式的完全平方公式:
例1.利用平方差公式计算:
例2.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?
例3.(1)求的值。

(2),求xy的值。

18、因式分解:常用方法:提公因式法、公式法、配方法、十字相乘法……
A.提公因式法:式子中有公因式时,先提公因式。

例1.把分解因式.
分析:把多项式的四项按前两项与后两项分成两组,并使两组的项按的降幂排列,然后从两组分别提出公因式与,这时另一个因式正好都是,这样可以继续提取公因式.
解:
说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试.
例2.把分解因式.
分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.
解:=
说明:由例2、例1可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用。

B. 公式法:根据平方差和完全平方公式
分解因式
C.配方法:分解因式
说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.
D.十字相乘法:
(1).型的因式分解
这类式子在许多问题中经常出现,其特点是:
(1) 二次项系数是1;(2) 常数项是两个数之积;(3) 一次项系数是常数项的两个因数之和.
因此,
运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.
例1.把下列各式因式分解:
(1) (2)
说明:此例可以看出,常数项为正数时,应分解为两个同号因数,它们的符号与一次项系数的符号相同.
例2.把下列各式因式分解:
(1) (2)
说明:此例可以看出,常数项为负数时,应分解为两个异号的因数,其中绝对值较大的因数与一次项系数的符号相同.
例3.把下列各式因式分解:
(1) (2)
分析:(1) 把看成的二次三项式,这时常数项是,一次项系数是,把分解成与的积,而,正好是一次项系数.
(2) 由换元思想,只要把整体看作一个字母,可不必写出,只当作分解二次三项式.
(2)一般二次三项式型的因式分解
大家知道,.
反过来,就得到:
我们发现,二次项系数分解成,常数项分解成,把写成,这里按斜线交叉相乘,再相加,就得到,如果它正好等于的一次项系数,那么就可以分解成,其中位于上一行,位于下一行.
这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.
例4.把下列各式因式分解:
(1) (2)
说明:用十字相乘法分解二次三项式很重要.当二次项系数不是1时较困难,具体分解时,为提高速度,可先对有关常数分解,交叉相乘后,若原常数为负数,用减法”凑”,看是否符合一次项系数,否则用加法”凑”,先”凑”绝对值,然后调整,添加正、负号.
提高练习
1.(2x2-4x-10xy)÷( )=x-1-y.
2.若x+y=8,x2y2=4,则x2+y2=_________.
3.代数式4x2+3mx+9是完全平方式,则m=___________.
4.___________
5.若,则= 。

6.(-a+1)(a+1)(a2+1)= 。

7.一个正方形的边长增加4cm ,面积就增加56cm2,原来正方形的边长为。

8.(3+1)(32+1)(34+1)…(32008+1)-= 。

9.(1)(+3y)2-(-3y)2(2)(x2-2x-1)(x2+2x-1);
10.求(1-)(1-)(1-)…(1-)(1-)的值.
11.已知x+=2,求x2+,x4+的值.
12.已知(a-1)(b-2)-a(b-3)=3,求代数式-ab的值.
13.若(x2+px+q)(x2-2x-3)展开后不含x2,x3项,求p、q的值.。

相关文档
最新文档