电子科大张先迪李正良图论及其应用习题解答
电子科技大学研究生试题《图论及其应用》(参考答案)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。
六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。
图论张先迪李正良课后习题答案
习题一作者---寒江独钓1.证明:在n 阶连通图中(1) 至少有n-1条边;(2) 如果边数大于n-1,则至少有一条闭迹;(3) 如果恰有n-1条边,则至少有一个奇度点。
证明: (1) 若G 中没有1度顶点,由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑若G 中有1度顶点u ,对G 的顶点数作数学归纳。
当n=2时,结论显然;设结论对n=k 时成立。
当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k.(2) 考虑G 中途径:121:n n W v v v v -→→→→L若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。
于是:1i i j i v v v v +→→→→L 为G 中一闭途径,于是也就存在闭迹。
(3) 若不然,G 中顶点度数至少为2,于是由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑这与G 中恰有n-1条边矛盾! 2.(1)2n −12n 2−12n −1 (2)2n−2−1(3) 2n−2。
证明:u 1的两个邻接点与v 1的两个邻接点状况不同。
所以,两图不同构。
4.证明下面两图同构。
u 1 v 1证明:作映射f : v i ↔ u i (i=1,2….10)容易证明,对∀v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b))(1≤ i ≤ 10, 1≤j ≤ 10 )由图的同构定义知,图(a)与(b)是同构的。
5.指出4个顶点的非同构的所有简单图。
分析:四个顶点的简单图最少边数为0,最多边数为6,所以可按边数进行枚举。
(a)v 2 v 3u 4u(b)6.证明:1)充分性:当G 是完全图时,每个顶点的度数都是n −1,共有n 个顶点,总的度数为n(n −1),因此总的边数是n(n−1)2=(n 2). 2)必要性:因为G 是简单图,所以当G 是完全图的时候每个顶点的度数才达到最大:n −1.若G 不是完全图,则至少有一个顶点的度数小于n −1,这样的话,总的度数就要小于n (n −1),因此总的边数小于(n 2),矛盾。
电子科技大学图论作业
图论作业3一、填空题1. 完全图K2n共有个不同的完美匹配。
2. 超方体Q6的最小覆盖包含的点数为。
3. 图K m,n (m≤n)的最小覆盖包含的点数为。
4. 完全图K60能分解为个边不重的一因子之并。
5. 完全图K61能分解为个边不重的二因子之并。
6. 假设G是具有n个点、m条边、k个连通分支的无圈图,则G的荫度为。
7. 图G是由3个连通分支K1, K2, K4组成的平面图,则其共有个面。
8. 设图G与K5同胚,则至少从G中删掉条边才可能使其成为可平面图。
9. 设连通平面图G具有5个顶点,9条边,则其面数为。
10. 若图G是10阶极大平面图,则其面数等于。
11. 若图G是10阶极大外平面图,其内部面共有个。
二、不定项选择题1. 关于非平凡树T,下面说法错误的是( )(A) T至少包含一个完美匹配;(B) T至多包含一个完美匹配;(C) T的荫度大于1;(D) T是只有一个面的平面图;(E) T的对偶图是简单图。
2. 下列说法正确的是( )(A) 三正则的偶图存在完美匹配;(B) 无割边的三正则图一定存在完美匹配;(C) 有割边的三正则图一定没有完美匹配;(D) 有完美匹配的三正则图一定没有割边;(E) 三正则哈密尔顿图存在完美匹配。
3. 下列说法正确的是( )(A) 在偶图中,最大匹配包含的边数等于最小覆盖包含的点数;(B) 任一非平凡正则偶图包含完美匹配;(C) 任一非平凡正则偶图可以1-因子分解;(D) 偶度正则偶图可以2-因子分解;(E) 非平凡偶图的最大匹配是唯一的。
4. 下列说法中错误的是( )(A) 完全图K101包含1-因子;(B) 完全图K101包含2-因子;(C) 完全图K102包含1-因子;(D) 完全图K102包含2-因子;(E) 图G的一个完美匹配实际上就是它的一个1因子;(F) 图G的一个2-因子实际上就是它的一个哈密尔顿圈。
5. 下列说法正确的是( )(A) 方体Q n可以1-因子分解;(B) 非平凡树可以1-因子分解;(C) 无割边的3正则图可以1-因子分解;(D) 有割边的3正则图一定不可以1-因子分解;(E) 可1-因子分解的3正则图一定是哈密尔顿图。
电子科技大学-图论第一次作业-
课本习题一:
4. 证明下面两图同构。
v1
u1
v2
v6
v10 v5
v7
v8 v9
v3
v4 (a)
u6 u5
u2
u8
u10
u3
u7
u9
u4
(b)
证明:作映射 f : vi ↔ ui (i=1,2….10)
容易证明,对vi v j E ((a)),有 f (v i vj,),,ui,uj,,E,((b))
中不
3.设 G 是阶大于 2 的连通图,证明下列命题等价:
(1)
G 是块
(2)
G 无环且任意一个点和任意一条边都位于同一
个圈上;
(3)
G 无环且任意三个不同点都位于同一条路上。
: 是块,任取 的一点 ,一边 ,在 边插入一点 ,使得 成为两条边,由此 得到新图 ,显然 的是阶数大于 的块,由定理 4, 中的 u,v 位于同一个 圈上,于是 中 u 与边 都位于同一个圈上。
件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图
有 11 个。
11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)
不是图序列。
证明:由于 7 个顶点的简单图的最大度不会超过 6,因此序列(7,6,5,4,3,3,2)不
是图序列;
(6,6,5,4,3,3,1)是图序列
(G1) 2 最小边割{(6,5),(8,5)} {(6,7),(8,7)}{(6,9),(8,9)}
1j 10 ) 由图的同构定义知,图(a)与(b)是同构的。
5.证明:四个顶点的非同构简单图有 11 个。
证明:设四个顶点中边的个数为 m,则有:
电子科技大学《图论及其应用》复习总结--第四章欧拉图与哈密尔顿图
电⼦科技⼤学《图论及其应⽤》复习总结--第四章欧拉图与哈密尔顿图第四章欧拉图与哈密尔顿图(⼀)、欧拉图及其性质(1)、问题背景---欧拉与哥尼斯堡七桥问题问题:对于图G,它在什么条件下满⾜从某点出发,经过每条边⼀次且仅⼀次,可以回到出发点?注:⼀笔画----中国古⽼的民间游戏(存在欧拉迹)要求:对于⼀个图G, 笔不离纸, ⼀笔画成.拓展:三笔画:在原图上添加三笔,可使其变为欧拉图。
定义1 对于连通图G,如果G中存在经过每条边的闭迹,则称G为欧拉图,简称G为E图。
欧拉闭迹⼜称为欧拉环游,或欧拉回路。
定理1 下列陈述对于⾮平凡连通图G是等价的:(1) G是欧拉图;(2) G的顶点度数为偶数;(3) G的边集合能划分为圈。
推论1 连通图G是欧拉图当且仅当G的顶点度数为偶。
推论2 连通⾮欧拉图G存在欧拉迹当且仅当G中只有两个顶点度数为奇数。
证明:若G和H是欧拉图,则G×H是欧拉图。
若G是⾮平凡的欧拉图,则G的每个块也是欧拉图。
(⼆)、Fleury算法(欧拉图中求出⼀条具体欧拉环游的⽅法)⽅法是尽可能避割边⾏⾛(三)、中国邮路问题(最优欧拉环游,管梅⾕)定理2 若W是包含图G的每条边⾄少⼀次的闭途径,则W具有最⼩权值当且仅当下列两个条件被满⾜:(1) G的每条边在W中最多重复⼀次;(2) 对于G的每个圈上的边来说,在W中重复的边的总权值不超过该圈⾮重复边总权值。
(四)、哈密尔顿图的概念定义1 :如果经过图G的每个顶点恰好⼀次后能够回到出发点,称这样的图为哈密尔顿图,简称H图。
所经过的闭途径是G的⼀个⽣成圈,称为G的哈密尔顿圈。
定义2: 如果存在经过G的每个顶点恰好⼀次的路,称该路为G的哈密尔顿路,简称H路。
(五)、哈密尔顿图性质与判定1、性质定理【必要条件】;定理1 (必要条件) 若G为H图,则对V(G)的任⼀⾮空顶点⼦集S,有:w(G−S)≤|S|注:不等式为G是H图的必要条件,即不等式不满⾜时,可断定对应图是⾮H、图。
图论(张先迪-李正良)课后习题答案(第一章)
习题一作者---寒江独钓1.证明:在n 阶连通图中(1) 至少有n-1条边;(2) 如果边数大于n-1,则至少有一条闭迹;(3) 如果恰有n-1条边,则至少有一个奇度点。
证明: (1) 若G 中没有1度顶点,由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑若G 中有1度顶点u ,对G 的顶点数作数学归纳。
当n=2时,结论显然;设结论对n=k 时成立。
当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k.(2) 考虑G 中途径:121:n n W v v v v -→→→→L若W 是路,则长为n-1;但由于G 的边数大于n-1,因此,存在v i 与v j ,它们相异,但邻接。
于是:1i i j i v v v v +→→→→L 为G 中一闭途径,于是也就存在闭迹。
(3) 若不然,G 中顶点度数至少为2,于是由握手定理:()2()21v V G m d v n m n m n ∈=≥⇒≥⇒>-∑这与G 中恰有n-1条边矛盾! 2.(1)2n −12n 2−12n −1 (2)2n−2−1(3) 2n−2。
证明:u 1的两个邻接点与v 1的两个邻接点状况不同。
所以,两图不同构。
4.证明下面两图同构。
u 1 v 1证明:作映射f : v i ↔ u i (i=1,2….10)容易证明,对∀v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b))(1≤ i ≤ 10, 1≤j ≤ 10 )由图的同构定义知,图(a)与(b)是同构的。
5.指出4个顶点的非同构的所有简单图。
分析:四个顶点的简单图最少边数为0,最多边数为6,所以可按边数进行枚举。
(a)v 2 v 3u 4u(b)6.证明:1)充分性:当G 是完全图时,每个顶点的度数都是n −1,共有n 个顶点,总的度数为n(n −1),因此总的边数是n(n−1)2=(n 2). 2)必要性:因为G 是简单图,所以当G 是完全图的时候每个顶点的度数才达到最大:n −1.若G 不是完全图,则至少有一个顶点的度数小于n −1,这样的话,总的度数就要小于n (n −1),因此总的边数小于(n 2),矛盾。
电子科技大学-图论第二次作业
习题四:3. (1)画一个有Euler闭迹和Hamilton圈的图;(2) 画一个有Euler闭迹但没有Hamilton圈的图;(3) 画一个有Hamilton圈但没有Euler闭迹的图;(4) 画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler闭迹和Hamilton圈的图;(2)—个有Euler闭迹但没有Hamilton圈的图;⑶一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.4. 设n阶无向简单图G有m条边,证明:若2 ) * ',则G是血加此"图。
证明:G是H图。
若不然,因为G是无向简单图,则n芝3,由定理%若G是n芝3的非单图,则G、一 ...C …度弱丁某个阵".于是有:- - 1 2 E(G)| E(C m,n ) - m (n 2m)(n m 1) m(m 1)1.这与条件矛盾!所以G 是H 图若G 有个奇点,则存在k 条边不重的迹Q1・Q 矿心,使得 E(G) = E(Q 】)U E(Q J U E(Q 3) U …U E(Q k ) 证明:不失一般性,只就 G 是连通图进行证明。
设 G=(n, m)是连通图。
令 虬 V 2,…,v,V k+1,…,v 是G 的所有奇度点。
在V i与v i+k 问连新边e i 得图G* (1三隹k). 则G*是欧拉图,因此,由Fleury 算法得欧拉环游C 在C 中删去e i (1m M k).得 k 条边不重的迹Qi (1 MiMk):E(G) E(Q1^E(Q2^^E(Qk)10. 证明:若:(1) G 不是二连通图,或者(2) G 是具有二分类|(X,Y)的偶图,这里|X” |Y|则G 是非Hamilton 图。
证明:(1) G|不是二连通图,则G 不连通或者存在割点v ,俨任-v) >2 ,由丁课本 上的相关定理:若G 是Hamilton 图,则对丁*勇)的任意非空顶点集S,有: w(G- S) <|S|,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则G 是非Hamilton 图(2)因为是具有二分类(XI)的偶图,乂因为|X|丰1丫1,在这里假设|X| < |Y|,则有 w(G-X) = |Y|>|X|,也就是说:对北(G)|的非空顶点集S,有:w(G-S)>||S|成 立,则可以得出则G 是非Hamilton 图。
图论及其应用 第一章答案
)2214(题后两个算法不作要求题,除第图的基本概念<1.>若G 是简单图,证明:()()2V G E G ⎛⎫≤ ⎪⎝⎭。
证明:()()1()()()1v Gd v V G d v V G V G ∈≤-∴≤-∑(当且仅当G 是完全图时取等号) 又11()()()()122v G E G d v V G V G ∈=≤-∑ ()()2V G E G ⎛⎫∴≤ ⎪⎝⎭。
<2.>设G 是(,)p q 简单图,且12p q -⎛⎫>⎪⎝⎭。
求证G 为连通图。
证明:反证法,假设G 为非连通图。
设G 有两个连通分支1G 和2G ,且112212()1,()1,V G p V G p p p p =≥=≥+= 则1212()()22p p E G E G q ⎛⎫⎛⎫+=≤+⎪ ⎪⎝⎭⎝⎭而1211221(1)(1)(1)(2)222222p p p p p p p p p -⎛⎫⎛⎫⎛⎫----+-=+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222221212121222()2()222p p p p p p p p p p +-+-+-+++-==12(1)(1)0p p =--≤(因为121,1p p ≥≥),矛盾。
<3.>超图H 是有序二元组((),())V H E H ,其中()V H 是顶点非空有限集合,()E H 是()V H 的非空子集簇,且()()i i E E H E V H ∈=。
其中,()E H 中的元素i E 称为超图的边,没有相同边的超图称为简单超图。
证明:若H 是简单超图,则21υε≤-,其中,υε分别是H 的顶点数和边数。
证明:()V H υ=,有一条边的子集个数为1υ⎛⎫ ⎪⎝⎭,有i 条边的子集个数为,1,,.i n i υ⎛⎫= ⎪⎝⎭又02,211i i υυυυυυυ=⎛⎫⎛⎫⎛⎫=∴++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 。
<4.>若G 是二部图,则2()()4V G E G ≤。
电子科大12年 图论 试卷(含答案)汇编
1电子科技大学研究生试卷(考试时间: 14:30 至 16:30 ,共__2_小时)课程名称 图论及其应用 教师 学时 60 学分教学方式 讲授 考核日期_2012__年__1_月_1___日 成绩 100 考核方式: 考查 (学生填写)一、填空题(填表题每空1分,其余每题2分,共30分)1.n 阶k 正则图G 的边数()m G =______2nk; 2.3个顶点的不同构的简单图共有___4___个;3.边数为m 的简单图G 的不同生成子图的个数有__2___m 个;4. 图111(,)G n m =与图222(,)G n m =的积图12G G ⨯的边数为1221____n m n m +;5. 在下图1G 中,点a 到点b 的最短路长度为__13__;6. 设简单图G 的邻接矩阵为A ,且23112012111113022102001202A ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭,则图G 的边数为 __6__;学 号 姓 名 学 院…………………… 密……………封……………线……………以……………内……………答…… ………题……………无……………效……………………61 7 2b G 127. 设G 是n 阶简单图,且不含完全子图3K ,则其边数一定不会超过2___4n ⎢⎥⎢⎥⎣⎦;8.3K 的生成树的棵数为__3__;9. 任意图G 的点连通度()k G 、边连通度()G λ、最小度()G δ之间的关系为 __()()()____k G G G λδ≤≤;10. 对下列图,试填下表(是⨯⨯类图的打〝√ 〞,否则打〝 ⨯〞)。
①③二、单项选择(每题2分,共10分)1.下面命题正确的是 ( B )对于序列(7,5,4,3,3,2),下列说法正确的是: (A) 是简单图的度序列;(B) 是非简单图的度序列; (C) 不是任意图的度序列; (D) 是图的唯一度序列.2.对于有向图,下列说法不正确的是 ( D )(A) 有向图D 中任意一顶点v 只能处于D 的某一个强连通分支中; (B) 有向图D 中顶点v 可能处于D 的不同的单向分支中;(C) 强连通图中的所有顶点必然处于强连通图的某一有向回路中; (D) 有向连通图中顶点间的单向连通关系是等价关系。
图论及其应用1-3章习题答案(电子科大) (1)
学号:201321010808 姓名:马涛习题14.证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。
6.设G 是具有m 条边的n 阶简单图。
证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。
证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫⎝⎛2n 。
9.证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。
(a)v 1v 2 v 3 v 4v 5 v 6v 7v 8 v 9v 10 u 1 u 2u 3u 4u 5 u 6 u 7 u 8 u 9 u 10 (b)证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。
12.证明:若δ≥2,则G 包含圈。
证明 只就连通图证明即可。
设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。
若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ⋯v in v ik 构成一个圈 。
17.证明:若G 不连通,则G 连通。
证明 对)(,_G V v u ∈∀,若u 与v 属于G 的不同连通分支,显然u 与v 在_G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_G 中连通,因此,u 与v 在_G 中连通。
电子科技大学《图论及其应用》-08年研究生试卷
电子科技大学研究生试卷一.填空题(每题2分,共20分)1.若n 阶单图G 的最大度是∆,则其补图的最小度()G δ=_n −1−∆_; 2.若图111(,)G n m =,222(,)G n m =,则它们的联图12G G G =∨的顶点数=_nn 1+nn 2;边数=mm 1+mm 2+nn 1nn 2;3.G 是一个完全l 部图,i n 是第i 部的的顶点数i=1,2,3,…,l 。
则它的边数为∑nn ii nn jj 1≤ii≤j≤l ;4.下边赋权图中,最小生成树的权值之和为5. 若n G K =,则G 的谱()spec G =�−1n −1n −116. 5个顶点的不同构的树的棵数为__4___;7. 5阶度极大非哈密尔顿图族是CC 1,5,CC 2,5;8. G 为具有二分类(X,Y)的偶图,则G 包含饱和X 的每个顶点的匹配的充分必要条件是|N (S )|≥|S |,对所有S ⊆X 成立9.3阶以上的极大平面图每个面的次数为 3 ;3阶以上的极大外平面图的每 个内部面的次数为__3__;10. n 方体的点色数为___2___;边色数为___n ___。
二.单项选择(每题3分,共12分)1.下面给出的序列中,不是某图的度序列的是( B ) (A) (33323); (B) (12222); (C) (5533); (D) (1333).2.设V(G)={}1,2,3,4,5,{}()(1,2),(2,3),(3,4),(4,5),(5,1)E G =则图(,)G V E =的补图是( B3.下列图中,既是欧拉图又是哈密尔顿图的是( B )4.下列说法中不正确的是( C ) (A)每个连通图至少包含一棵生成;(B) 2 3 5 (A) 2 35(B)23 5 (C) 234(D)(C)(D) (A)1(B)k 正则偶图(k>0)一定存在完美匹配; (C)平面图(*)*G G ≅,其中*G 表示G 的对偶图; (D)完全图2n K 可一因子分解。
电子科大图论-第二次作业
图论及其应用第二次作业要求:1、交电子档给助教【助教给每个班设置邮箱,助教设置提交回复】;2、第7章授课结束前均可以提交;3、希望能够独立完成。
1.判断图4-43所示的四个图是否可以一笔画。
上面四个图都是连通图,看是否能一笔画成问题本质上看图是否存在欧拉迹;连通图有欧垃迹当且仅当G 最多有两个奇点。
(a )不可以 有4个奇点(b )可以 一个奇点(c )可以 两个奇点(d )可以 没有奇点2.(1)画一个有欧拉闭迹和哈密尔顿圈的图;(2)画一个有欧拉闭迹但没有哈密尔顿圈的图;(3) 画一个有哈密尔顿圈但没有欧拉闭迹的图;(4)画一个既没有欧拉闭迹也没有哈密尔顿圈的图。
3. 设n 阶无向简单图G 有m 条边。
证明:若m ≥⎪⎪⎭⎫ ⎝⎛-21n +2,则G 是哈密尔顿图。
(b) (c) (d ) 图4-43证明:G 是H 图。
若不然,因为G 是无向简单图,则n ≥3,由定理1:若G 是n ≥3的非单图,则G 度弱于C m,n 。
于是有:2,1()()(2)(1)(1)21111(1)(2)(1)(21) 1.222m n E G E C m n m n m m n n n m m m n m ⎡⎤≤=+---+-⎣⎦--⎛⎫⎛⎫=+-------≤+ ⎪ ⎪⎝⎭⎝⎭ 这与条件矛盾!所以G 是H 图。
4. 在图4-45中,哪些图是哈密尔顿图?哪些图中有哈密尔顿路?(a)非哈密尔顿图,没有哈密尔顿路(b)哈密尔顿图 (abcdejhfiga)(c)哈密尔顿图 (kjdhbagciefk)(d)非哈密尔顿图 有哈密尔顿路(hjaidebcgf)(e)不是哈密尔顿图,因为有割点a ,有哈密尔顿路(jaibcedkgfh )5. 证明:若G 没有奇点,则存在边不重的圈C 1, C 2,…, C m ,使得,E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。
证明:将G 中孤立点除去后的图记为G 1,则G 1也没有奇点,且δ(G 1),则G 1含圈C 1,在去掉()11G E C -的孤立点后,得图G 2,显然G 2仍无奇度点,且δ(G 2)≥ 2,从而G 2含圈C 1,如此重复下去,直到圈C m ,且G m -E (C m )全为孤立点为止,于是得到E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。
电子科大研究生图论——第1,2章基本概念,树
精品课件
例
G1
G2
K1,3
四个图均为偶图;
K 3,3
K1,3 , K3,3为完全偶图
精品课件
例
偶图
不是偶图
简单图G 的补图: 设 G =(V, E),则图 H =(V,E1\E) 称为G 的补图,记为 H G , 其中集合
例1 设 V ={v1, v2, v3, v4},E ={v1v2 , v1v2, v2v3 },则 G = (V, E) 是一个4阶图。
v1
v4
若用小圆点代
表点,连线代表边
,则可将一个图用
“图形”来表示,
如例精品课件
v3
注: 也可记边 uv 为e ,即 e = uv。
例2 设V = {v1,v2,v3,v4},E = {e1,e2,e3,e4,e5},其中 e1= v1v2, e2 = v2v3, e3 = v2v3, e4 = v3v4, e5
2. Hamilton 周游世界问题
1859年 Hamilton 提出这样一个 问题:一个正十二面体有20个顶点,它 们代表世界上20个重要城市。正十二面 体的每个面均为五边形,若两个顶点之 间有边相连,则表示相应的城市之间有 航线相通。 Hamilton 提出 “能否从某 城市出发经过每个城市一次且仅一次然 后返回出发点?”
精品课件
定理5 设有非负整数组Π = (d1, d2,…, dn),且
n
di 2m
i 1
是一个偶数,n-1≥d1≥d2≥…≥dn, Π是可图的充要条件为
( d 2 1 , d 3 1 , , d d 1 1 1 , d d 1 2 , , d n )
电子科大研究生图论05-14年图论期末试题
波士顿:亚特兰大,芝加哥,纳什维尔
芝加哥:亚特兰大,波士顿,丹佛,路易维尔
丹佛:芝加哥,路易维尔,迈阿密,纳什维尔
路易维尔:芝加哥,丹佛,迈阿密
迈阿密:亚特兰大,丹佛,路易维尔,纳什维尔
纳什维尔:亚特兰大,波士顿,丹佛,迈阿密
(要求用图论方法求解)
九.(8分)求下图G的色多项式Pk(G).
由T8导出的树中a到b路 就是最短路。
2006研究生图论期末试题(120分钟)
一、填空题(15分,每空1分)
1、若两个图的顶点与顶点之间,边与边之间都存在 对应,而且它们的关联关系也保持其 关系,则这两个图同构。
2、完全图 的生成树的数目为 ;阶为6的不同构的树有 棵。
3、设无向图 有12条边,已知 中度为3的结点有6个,其余结点的度数均小于3,则
六.(10分)设 是赋权完全偶图G=(V,E)的可行顶点标号,若标号对应的相等子图 含完美匹配 ,则 是G的最优匹配。
七.(10分)求证:在n阶简单平面图G中有 ,这里 是G的面数。
八、(10分)来自亚特兰大,波士顿,芝加哥,丹佛,路易维尔,迈阿密,以及纳什维尔的7支垒球队受邀请参加比赛,其中每支队都被安排与一些其它队比赛(安排如下所示)。每支队同一天最多进行一场比赛。建立一个具有最少天数的比赛时间表。
2.设V(G)= , 则图 的补图是()
3.下列图中,既是欧拉图又是哈密尔顿图的是( )
4.下列说法中不正确的是( )
(A)每个连通图至少包含一棵生成树;
(B)k正则偶图(k>0)一定存在完美匹配;
(C)平面图 ,其中 表示G的对偶图;
(D)完全图 可一因子分解。
三、(10分)设图G的阶为14,边数为27,G中每个顶点的度只可能为3,4或5,且G有6个度为4的顶点。问G中有多少度为3的顶点?多少度为5的顶点?
图论及其应用(15)
超哈密尔顿图问题
(一)、超H图与超H迹 (二)、E图和H图的关系
1
(一)、超H图与超H迹
定义1 若图G是非H图,但对于G中任意点v,都有G-v是 H图,则称G是超H图。 定理1 彼得森图是超H图。
5 6 1 7 8 2 彼得森图 9 3 10
4
证明: (1) 证明彼得森图是非H图。
2
19
定理:每个3正则H图至少有3个生成圈。 我院张先迪、李正良教授曾经也研究过H图中H圈的计 数问题。90年在《系统科学与数学》学报上发表文章: “有限循环群上Cayley有向图的H回路”,得到了该类图 的H圈的计数公式。
(二)、E图和H图的关系
从表面上看,E图与H图间没有联系。因为我们可以不 费力地找到: (1) E图但非H图;(2) E图且H图;(3) H图但非 E图; (4) 非E图且非H图.
5 6 1 7 8 2 彼得森图 9 3 10
4
但这样得到圈:17(10)821。所以该情形不能存在。
4
情形2:假如23在C中,则86,8(10)在C中,从而39, 79在C 中.
5 6 1 1 7 8 9 3 彼得森图 2 彼得森图 9 3 10
5
6 4 10
4
7
8 2
但这样得到圈:123971。所以该情形也不能存在。 上面推理说明,G中不存在H圈,即彼得森图是非H图。
5
(2) 证明对任意点v,G-v是H图。 由对称性,只需考虑下面两种情形: (a) G-1,(b)G-6
5 6 5
4
1
4
7
8 2 G-1 9
10
7
8 9
10
3
2 G-6
3
电子科大图论课件——第6章
C
A B
A
C
A
K5不可嵌入平面,但能嵌入环面,也存在不可嵌入环面的图。
2. 可以证明对每个曲面S总存在不可嵌入S的图。另一方 面每个图又存在可以嵌入的某个可定向的曲面。
19
3. 一个图可嵌入平面当且仅当它可嵌入球面 简证 将球面S放在一个平面P上,设切点为O,过O点 作垂直于P的直线,此直线与S的交点设为z。作映射
第六章 平面图
电子科技大学应用数学 张先迪
1
问题:假定有三个仓库 x1,x2,x3 和三个车站 y1,y2,y3。 为了便于货物运输,准备在仓库与车站间修筑铁路,如图(a) 所示, 其中边代表铁路。问是否存在一种使铁路不交叉的路 线设计方案,以避免修建立交桥。
x1
x2
x3
x1
x2
x3
?
y1 y2 y3 y1 y2 y3
deg( f ) = 2m
f Y
(1.1)
证明 任取G 的一条边 e 。若 e 是两个面的公共 边,则在计算面的次数时,e 被计算两次。若 e 不 是公共边,则 e 是 G 的割边,由面的次数的定义, e 也被计算两次。所以所有面的次数之和是边数 的2倍,即(1.1)式成立。
8
定理2(Eulen公式) 设G 是具有 n 个点m 条边ф个 面的连通平面图,则有 n – m + ф =2 (1.2) 证明 对ф 用归纳法。
(1.9)
22
n = 4l(2l – lr+2r)-1
(1.9)
因n 和l 均为正,由(1.9)式得
2l – lr+2r>0
这样我们得到不等式组
2(l +r)>lr
(1.10)
2(l + r ) lr l 3 r 3
图论第一章课后习题解答
bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。