武汉理工 材料科学基础 课后答案 第十章
《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社
2-13 根据半径比关系,说明下列离子与O2—配位时的配位数各是多少?已 知rO2-=0.132nm,rSi4+=0.039nm,rK+=0.131nm,rAl3+=0.057nm,rMg2+=0.078nm。
2-14 为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?
2-15 有效离子半径可通过晶体结构测定算出。在下面NaCl型结构晶体中,测得MgS和MnS的晶胞参数均 为a=0.520nm(在这两种结构中,阴离子是相互接触的)。
为NaCl型结构时,体积变化的百分数是多少?已
知CN=6时,rMn
2+=0.08nm,rS2
-=0.184nm;CN
=4时,rMn
2+=0.073nm,r
2 S
-=0.167nm。
2-25 钛酸钡是一种重要的铁电陶瓷,其晶型是钙钛矿结构,试问:(1)属于什么点阵?(2)这个结构 中离子的配位数为若干?(3)这个结构遵守鲍林规则吗?请作充分讨论。
2-5 依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?
2-6 等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空 隙?
2-7 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积 的?
2-8 写出面心立方格子的单位平行六面体上所有结点的坐标。
2-14 为什么石英不同系列变体之间的转化温度比同系列变体之间的转化温度高得多?
答: 石英同一系列之间的转变是位移性转变,不涉及晶体结构中键的破裂和重建,仅是键长、键角的调 整、需要能量较低,且转变迅速可逆;而不同系列之间的转变属于重建性转变,都涉及到旧键的破裂和新键 的重建,因而需要较的能量,且转变速度缓慢;所以石英不同系列之间的转化温度比同系列变体之间转化的 温度要高的多。
武汉理工大学考研材料科学基础重点 第10章-烧结
第九章烧结烧结定义:1、传统定义:(宏观定义)一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体的过程。
2、微观定义:由于固态中分子(或原子)的相互吸引,通过加热,使粉末体产生颗粒粘结,经过物质迁移使粉末产生强度并导致致密化和再结晶的过程。
第一节概述烧结的目的是把粉状材料转变为块体材料,并赋予材料特有的性能。
烧结得到的块体材料是一种多晶材料,其显微结构由晶体、玻璃体和气孔组成。
烧结直接影响显微结构中晶粒尺寸和分布、气孔大小形状和分布及晶界的体积分数等。
从材料动力学角度看,烧结过程的进行,依赖于基本动力学过程—-扩散,因为所有传质过程都依赖于质点的迁移。
一、烧结的定义压制成型后的粉状物料在低于熔点的高温作用下、通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高、逐渐变成具有一定的几何形状和坚固整个的过程。
二、烧结分类固相烧结是指松散的粉末或经压制具有一定形状的粉末压坯被置于不超过其熔点的设定温度中,在一定的气氛保护下,保温一段时间的操作过程。
所设定的温度称为烧结温度,所用的气氛称为烧结气氛,所用的保温时间称为烧结时间。
液相烧结也是二元系或多元系粉末烧结过程,但烧结温度超过某一组元的熔点,因而形成液相。
活化烧结和液相烧结可以大大提高原子的扩散速率,加速烧结过程,因而出现了把它们统称为强化烧结的趋势。
对松散粉末或粉末压坯同时施以高温和外压,则是所谓的加压烧结。
热压是指对置于限定形状的石墨模具中的松散粉或对粉末压坯加热的同时对其施加单轴压力的烧结过程。
热等静压是指对装于包套之中的松散粉末加热的同时对其施加各向同性的等静压力的烧结过程。
1、烧结与烧成烧结:仅指粉料经加热而致密化的物理过程烧成:包括粉料在加热过程中发生的一切物理和化学变化,例如:气体排除、相变、熔融;氧化、分解、固相反应等2、烧结和熔融烧结是在远低于熔融温度下进行的,至少有一组元处于固态熔融则所有组元转变为液相3、烧结与固相反应固相反应:至少有两个组份参加,产物不同于任一反应物烧结:可单或多组分,不发生化学反应,表面能推动下实现致密化的过程第二节烧结过程及机理一、烧结过程(一)烧结温度对烧结体性质的影响图5是新鲜的电解铜粉(用氢还原的),经高压成型后,在氢气气氛中于不同温度下烧结2小时然后测其宏观性质:密度、比电导、抗拉强度,并对温度作图,以考察温度对烧结进程的影响。
《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社
2-30 石棉矿如透闪石Ca2Mg5[Si4O11](OH)2具有纤维状结晶习性,而滑石Mg3[Si4O10](OH)2却具 有片状结晶习性,试解释之。
2-21 (1)画出O2-作面心立方堆积时,各四面体空隙和八面体空隙的所在位置(以一个晶胞为结构基元 表示出来);(2)计算四面体空隙数、八而休空隙数与O2-数之比
2-22 根据电价规则,在下面情况下,空隙内各需填入何种价数的阳离子,并对每一种结构举出—个例子。 (1)所有四面体空隙位置均填满;(2)所有八面体空隙位置均填满;(3)填满—半四面体空隙位置; (4)填满—半八面体空隙位置。
2-3 在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[ ],(111)与[ 与[111],( )与[236],(257)与[ ],(123)与[ ],(102),[
2-4 定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?
答: 最紧密堆积原理是建立在质点的电子云分布呈球形对称以及无方向性的基础上的,故只适用于典型的 离子晶体和金属晶体,而不能用最密堆积原理来衡量原子晶体的稳定性。另外,金刚石的单键个数为4,即 每个原子周围有4个单键(或原子),由四面体以共顶方式共价结合形成三维空间结构,所以,虽然金刚石 结构的空间利用率很低(只有34.01%),但是它也很稳定。
答: 定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5 依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?
材料科学基础课后习题答案
材料科学基础课后习题答案第一篇:材料科学基础课后习题答案第1章习题1-10 纯铁点阵常数0.286nm,体心立方结构,求1cm3中有多少铁原子。
解:体心立方结构单胞拥有两个原子,单胞的体积为V=(0.286×10-8)3 cm3,所以1cm3中铁原子的数目为nFe= 122⨯2=8.55⨯10(2.86⨯10-8)31-11 一个位错环能否各部分都是螺型位错,能否各部分都是刃型位错?为什么?解:螺型位错的柏氏矢量与位错线平行,一根位错只有一个柏氏矢量,而一个位错环不可能与一个方向处处平行,所以一个位错环不能各部分都是螺型位错。
刃位错的柏氏矢量与位错线垂直,如果柏氏矢量垂直位错环所在的平面,则位错环处处都是刃型位错。
这种位错的滑移面是位错环与柏氏矢量方向组成的棱柱面,这种位错又称棱柱位错。
1-15 有一正方形位错线,其柏氏矢量及位错线的方向如图1-51所示。
试指出图中各段位错线的性质,并指出刃型位错额外串原子面所处的位置。
D CA B解:由柏氏矢量与位错线的关系可以知道,DC是右螺型位错,BA是左螺型位错。
由右手法则,CB为正刃型位错,多余半原子面在纸面上方。
AD为负刃型位错,多余半原子面在纸面下方。
第二篇:会计学基础课后习题答案《会计学基础》(第五版)课后练习题答案第四章习题一1、借:银行存款400 000贷:实收资本——A企业400 0002、借:固定资产400 000贷:实收资本——B企业304 000资本公积——资本溢价0003、借:银行存款000贷:短期借款0004、借:短期借款000应付利息(不是财务费用,财务费用之前已经记过)000贷:银行存款0005、借:银行存款400 000贷:长期借款400 0006、借:长期借款000应付利息000贷:银行存款000习题二1、4月5日购入A材料的实际单位成本=(53 000+900)/980=55(元/公斤)4月10日购入A材料的实际单位成本=(89 000+1 000)/1 500=60(元)2、本月发出A材料的实际成本=(600×50+600×55)+(380×55+1 020×60)=63 000+82 100=145 100(元)3、月末结存A材料的实际成本=(600×50)+[(53 000+900)+(89 000+1 000)]-145 100=28 800(元)习题三1、借:生产成本——A产品000——B产品000贷:原材料——甲材料000——乙材料0002、借:生产成本——A产品000 ——B产品000制造费用000贷:应付职工薪酬0003、借:制造费用500贷:原材料——丙材料5004、借:制造费用000贷:银行存款0005、借:制造费用000贷:累计折旧0006、本月发生的制造费用总额=5 000+500+2 000+1 000=8 500(元)制造费用分配率=8 500/(20 000+10 000)×100%=28.33%A产品应负担的制造费用=20 000×28.33%=5 666(元)B产品应负担的制造费用=8 500-5 666=2 834(元)借:生产成本——A产品——B产品贷:制造费用7、借:库存商品——A产品贷:生产成本——A产品习题四1、借:银行存款贷:主营业务收入2、借:应收账款——Z公司贷:主营业务收入银行存款3、借:主营业务成本贷:库存商品——A产品——B产品4、借:营业税金及附加贷:应交税费——应交消费税5、借:营业税金及附加贷:应交税费6、借:销售费用贷:银行存款7、借:销售费用贷:银行存款8、借:银行存款贷:其他业务收入借:其他业务成本贷:原材料——乙材料9、借:管理费用贷:应付职工薪酬10、借:管理费用贷:累计折旧11、借:管理费用贷:库存现金12、借:财务费用贷:银行存款13、借:银行存款贷:营业外收入14、借:主营业务收入其他业务收入营业外收入666 2 834 500 47 666 47 666 80 000 80 000 201 000200 000 000 142 680 42 680000 14 000 14 000 1 400 400 3 000 000 1 000 000 4 000 000 3 000 000 4 560 560 2 000 000300300400400 3 000 000 280 000 4 000 3 000贷:本年利润287 000借:本年利润172 340贷:主营业务成本680其他业务成本000营业税金及附加400销售费用000管理费用860财务费用400 本月实现的利润总额=287 000-172 340=114 660(元)本月应交所得税=114 660×25%=28 665(元)本月实现净利润=114 660-28 665=85 995(元)习题五1、借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用2、2007的净利润=6 000 000-1 500 000=4 500 000(元)借:本年利润贷:利润分配——未分配利润3、借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积4、借:利润分配——应付现金股利贷:应付股利第五章习题一1、借:银行存款固定资产贷:实收资本——M公司——N公司2、借:原材料——A材料——B材料贷:银行存款3、借:应付账款——丙公司贷:银行存款4、借:银行存款贷:短期借款5、借:固定资产贷:银行存款6、借:生产成本——甲产品——乙产品贷:原材料——A材料——B材料 500 000500 000 1 500 000500 000 4 500 000 4 500 000450 000450 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 1 000 000 50 000 50 000000 50 000 50 000500 000500 000200 000200 000000 80 000000 80 0007、借:其他应收款——王军000贷:库存现金0008、借:制造费用000管理费用贷:原材料——A材料0009、借:管理费用500贷:库存现金50010、借:原材料——A材料000贷:应付账款00011、借:应付职工薪酬200 000贷:银行存款200 00012、借:银行存款320 000贷:主营业务收入——甲产品320 00013、借:应收账款250 000贷:主营业务收入——乙产品250 00014、借:短期借款200 000应付利息000财务费用000贷:银行存款209 00015、借:销售费用贷:银行存款00016、借:管理费用300贷:其他应收款——王军000库存现金30017、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬200 00018、借:制造费用000管理费用000贷:累计折旧00019、借:生产成本——甲产品000——乙产品000制造费用000管理费用000贷:应付职工薪酬000 20、借:主营业务成本381 000贷:库存商品——甲产品196 000——乙产品185 00021、制造费用总额=5 000+10 000+35 000+1 000=51 000(元)制造费用分配率=51 000/(90 000+70 000)×100%=31.875% 甲产品应分配的制造费用=90 000×31.875%=28 687.5(元)乙产品应分配的制造费用=70 000×31.875%=22 312.5(元)借:生产成本——甲产品687.5——乙产品312.5贷:制造费用00022、甲产品的实际成本=120 000+150 000+90 000+9 000+28 687.5=397 687.5(元)借:库存商品——甲产品397 687.5贷:生产成本——甲产品397 687.523、借:主营业务收入——甲产品320 000——乙产品250 000贷:本年利润借:本年利润贷:主营业务成本管理费用销售费用财务费用24、本月利润总额=570 000-487 800=82 200(元)本月应交所得税=82 200×25%=20 550(元)借:所得税费用贷:应交税费——应交所得税借:本年利润贷:所得税费用25、本月净利润=82 200-20 550=61 650(元)提取法定盈余公积=61 650×10%=6 165(元)借:利润分配——提取法定盈余公积贷:盈余公积——法定盈余公积26、借:利润分配——应付现金股利贷:应付股利570 000 487 800381 000 53 800 50 000 000 20 550 20 550 20 550 20 550 6 165 165 30 825 30 825第三篇:《机械设计基础》课后习题答案模块八一、填空1、带传动的失效形式有打滑和疲劳破坏。
材料科学基础(武汉理工陆佩文)课后习题答案大全
1-10临界半径比的定义是:紧密堆积的阴离子恰好互相接触,并与中心的阳离子也恰好接触的条件下,阳离子半径与阴离子半径之比。
即每种配位体的阳、阴离子半径比的下限。
计算下列配位的临界半径比:(a)立方体配位;(b)八面体配位;(c)四面体配位;(d)三角形配位。
解:(1)立方体配位在立方体的对角线上正、负离子相互接触,在立方体的棱上两个负离子相互接触。
因此:(2)八面体配位在八面体中,中心对称的一对阴离子中心连线上正、负离子相互接触,棱上两个负离子相互接触。
因此:(3)四面体配位在四面体中中心正离子与四个负离子直接接触,四个负离子之间相互接触(中心角)。
因此:底面上对角中心线长为:(4)三角体配位在三角体中,在同一个平面上中心正离子与三个负离子直接接触,三个负离子之间相互接触。
因此:2-10ZnO是六方晶系,a=0.3242nm,c=0.5195nm,每个晶胞中含2个ZnO分子,测得晶体密度分别为5.74,5.606g/cm3,求这两种情况下各产生什么型式的固溶体?解:六方晶系的晶胞体积V===4.73cm3在两种密度下晶胞的重量分别为W1=d1v=5.74×4.73×10-23=2.72×10-22(g)W2=d2v=5.606×4.73×10-23=2.65×10-22(g)理论上单位晶胞重W==2.69(g)∴密度是d1时为间隙型固溶体,是d2时为置换型固溶体。
2-11非化学计量化合物Fe x O中,Fe3+/Fe2+=0.1,求Fe x O中的空位浓度及x值。
解:非化学计量化合物Fe x O,可认为是α(mol)的Fe2O3溶入FeO中,缺陷反应式为:Fe2O32Fe+V+3O Oα2αα此非化学计量化合物的组成为:Fe Fe O已知:Fe3+/Fe2+=0.1则:∴α=0.044∴x=2α+(1-3α)=1-α=0.956又:∵[V3+]=α=0.044正常格点数N=1+x=1+0.956=1.956∴空位浓度为3-5玻璃的组成是13wt%Na2O、13wt%CaO、74wt%SiO2,计算桥氧分数?解:Na2O CaO SiO2wt%131374mol0.210.23 1.23mol%12.613.873.6R=(12.6+13.8+73.6×2)/73.6=2.39∵Z=4∴X=2R﹣Z=2.39×2﹣4=0.72Y=Z﹣X=4﹣0.72=3.28氧桥%=3.28/(3.28×0.5+0.72)=69.5%3-9在SiO2中应加入多少Na2O,使玻璃的O/Si=2.5,此时析晶能力是增强还是削弱?解:设加入x mol的Na2O,而SiO2的量为y mol。
材料科学基础-武汉理工出版(部分习题答案)[1]
材料科学基础-武汉理工出版(部分习题答案)[1]第一章结晶学基础第二章晶体结构与晶体中的缺陷1名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。
晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.答:配位数:晶体结构中与一个离子直接相邻的异号离子数。
配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。
配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1MgO晶体中不同晶面的氧离子排布示意图2面排列密度的定义为:在平面上球体所占的面积分数。
(a)画出MgO(NaCl型)晶体(111)、(110)和(100)晶面上的原子排布图;(b)计算这三个晶面的面排列密度。
解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。
(a)(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。
(b)在面心立方紧密堆积的单位晶胞中,a022r(111)面:面排列密度=2r2/4r23/2/2/230.907(110)面:面排列密度=2r2/4r22r/420.555(100)面:面排列密度=2r2+22/22r/40.7853、已知Mg半径为0.072nm,O半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
材料科学基础(武汉理工大学,张联盟版)课后习题及答案 - 副本
第二章答案2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
《材料科学基础》课后答案(1-7章)
《材料科学基础》课后答案(1-7章)第一章8.计算下列晶体的离于键与共价键的相对比例(1)NaF(2)CaO(3)ZnS解:1、查表得:X Na =0.93,X F =3.98根据鲍林公式可得NaF 中离子键比例为:21(0.93 3.98)4[1]100%90.2%e---?= 共价键比例为:1-90.2%=9.8%2、同理,CaO 中离子键比例为:21(1.003.44)4[1]100%77.4%e---?=共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:21/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
第二章1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(132)与[123],(322)与[236](2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。
(3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。
解:1、2.有一正交点阵的a=b, c=a/2。
武汉理工大学材料科学基础各章节例题及答案
第二章晶体结构【例2-1】计算MgO和GaAs晶体中离子键成分的多少。
【解】查元素电负性数据得,则,,,MgO离子键%=GaAs离子键%=由此可见,MgO晶体的化学键以离子键为主,而GaAs则是典型的共价键晶体。
【提示】除了以离子键、共价键结合为主的混合键晶体外,还有以共价键、分子间键结合为主的混合键晶体。
且两种类型的键独立地存在。
如,大多数气体分子以共价键结合,在低温下形成的晶体则依靠分子间键结合在一起。
石墨的层状单元内共价结合,层间则类似于分子间键。
正是由于结合键的性质不同,才形成了材料结构和性质等方面的差异。
从而也满足了工程方面的不同需要。
【例2-2】 NaCl和MgO晶体同属于NaCl型结构,但MgO的熔点为2800℃, NaC1仅为80l℃,请通过晶格能计算说明这种差别的原因。
【解】根据:晶格能(1)NaCl晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=1,e=1.6×10-19 库仑,,r0===0.110+0.172=0.282nm=2.82×10-10 m,m/F,计算,得:EL=752.48 kJ/mol (2)MgO晶体:N0=6.023×1023 个/mol,A=1.7476,z1=z2=2,e=1.6×10-19库仑,r0==0.080+0.132=0.212 nm=2.12×10-10 m,m/F,计算,得:EL=3922.06 kJ/mol则:MgO晶体的晶格能远大于NaC1晶体的晶格能,即相应MgO的熔点也远高于NaC1的熔点。
【例2-3】根据最紧密堆积原理,空间利用率越高,结构越稳定,但是金刚石的空间利用率很低,只有34.01%,为什么它也很稳定?【解】最紧密堆积的原理只适用于离子晶体,而金刚石为原子晶体,由于C-C共价键很强,且晶体是在高温和极大的静压力下结晶形成,因而熔点高,硬度达,很稳定。
武汉理工大学材料科学基础(第2版)课后习题和答案
武汉理工大学材料科学基础(第2版)课后习题和答案第一章绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?第二章晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:与[210],与[112],与[111],与[236],与[111],与[121],,,,[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为,O2-半径为,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
8、根据最密堆积原理,空间利用率越高,结构越稳定,金钢石结构的空间利用率很低(只有%),为什么它也很稳定? 9、证明等径圆球面心立方最密堆积的空隙率为25.9%;10、金属镁原子作六方密堆积,测得它的密度为克/厘米3,求它的晶胞体积。
武汉理工大学材料科学基础(第2版)课后习题和答案
武汉理工大学材料科学基础(第2版)课后习题和答案第一章绪论1、仔细观察一下白炽灯泡,会发现有多少种不同的材料?每种材料需要何种热学、电学性质?2、为什么金属具有良好的导电性和导热性?3、为什么陶瓷、聚合物通常是绝缘体?4、铝原子的质量是多少?若铝的密度为2.7g/cm3,计算1mm3中有多少原子?5、为了防止碰撞造成纽折,汽车的挡板可有装甲制造,但实际应用中为何不如此设计?说出至少三种理由。
6、描述不同材料常用的加工方法。
7、叙述金属材料的类型及其分类依据。
8、试将下列材料按金属、陶瓷、聚合物或复合材料进行分类:黄铜钢筋混凝土橡胶氯化钠铅-锡焊料沥青环氧树脂镁合金碳化硅混凝土石墨玻璃钢9、Al2O3陶瓷既牢固又坚硬且耐磨,为什么不用Al2O3制造铁锤?第二章晶体结构1、解释下列概念晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、配位数、离子极化、同质多晶与类质同晶、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.2、(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求出该晶面的米勒指数;(2)一晶面在x、y、z 轴上的截距分别为a/3、b/2、c,求出该晶面的米勒指数。
3、在立方晶系的晶胞中画出下列米勒指数的晶面和晶向:(001)与[210],(111)与[112],(110)与[111],(322)与[236],(257)与[111],(123)与[121],(102),(112),(213),[110],[111],[120],[321]4、写出面心立方格子的单位平行六面体上所有结点的坐标。
5、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
6、计算体心立方、面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
7、从理论计算公式计算NaC1与MgO的晶格能。
MgO的熔点为2800℃,NaC1为80l℃, 请说明这种差别的原因。
材料科学基础 第二版(张联盟 著)课后习题答案武汉理工大学出版
材料科学基础第二版(张联盟著)课后习题答案武汉理工大学出版材料科学基础第二版(张联盟著)课后习题大家找到答案了吗?下面是为大家推荐一些材料科学基础第二版(张联盟著)课后习题答案和下载地址,希望大家有用哦。
2-1名词解释晶系晶胞晶胞参数空间点阵晶面指数晶格能原子半径与离子半径配位数离子极化同质多晶与类质同晶正尖晶石与反正尖晶石反萤石结构铁电效应压电效应热释电效应电光效应2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[,[],[]2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
2-9计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
2-10根据最密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只有34.01%),为什么它也很稳定?2-11证明等径圆球六方最密堆积的空隙率为25.9%。
2-12金属镁原子作六方密堆积,测得它的密度为1.74g/cm3,求它的晶胞体积。
2-13根据半径比关系,说明下列离子与O2—配位时的配位数各是多少?已知rO2-=0.132nm,rSi4+=0.039nm,rK+=0.131nm,rAl3+=0.057nm,rMg2+=0.078nm。
武汉理工 材料科学基础 课后答案 第十章
第十章答案10-1名词解释:烧结烧结温度泰曼温度液相烧结固相烧结初次再结晶晶粒长大二次再结晶(1)烧结:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。
(2)烧结温度:坯体在高温作用下,发生一系列物理化学反应,最后显气孔率接近于零,达到致密程度最大值时,工艺上称此种状态为"烧结",达到烧结时相应的温度,称为"烧结温度"。
(3)泰曼温度:固体晶格开始明显流动的温度,一般在固体熔点(绝对温度)的2/3处的温度。
在煅烧时,固体粒子在塔曼温度之前主要是离子或分子沿晶体表面迁移,在晶格内部空间扩散(容积扩散)和再结晶。
而在塔曼温度以上,主要为烧结,结晶黏结长大。
(4)液相烧结:烧结温度高于被烧结体中熔点低的组分从而有液相出现的烧结。
(5)固相烧结:在固态状态下进行的烧结。
(6)初次再结晶:初次再结晶是在已发生塑性变形的基质中出现新生的无应变晶粒的成核和长大过程。
(7)晶粒长大:是指多晶体材料在高温保温过程中系统平均晶粒尺寸逐步上升的现象. (8)二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。
10-2烧结推动力是什么?它可凭哪些方式推动物质的迁移,各适用于何种烧结机理?解:推动力有:(1)粉状物料的表面能与多晶烧结体的晶界能的差值,烧结推动力与相变和化学反应的能量相比很小,因而不能自发进行,必须加热!!(2)颗粒堆积后,有很多细小气孔弯曲表面由于表面张力而产生压力差,(3)表面能与颗粒之间形成的毛细管力。
传质方式:(1)扩散(表面扩散、界面扩散、体积扩散);(2)蒸发与凝聚;(3)溶解与沉淀;(4)黏滞流动和塑性流动等,一般烧结过程中各不同阶段有不同的传质机理,即烧结过程中往往有几种传质机理在起作用。
10-3下列过程中,哪一个能使烧结体强度增大,而不产生坯体宏观上的收缩?试说明理由。
(1)蒸发-冷凝;(2)体积扩散;(3)粘性流动;(4)晶界扩散;(5)表面扩散;(6)溶解-沉淀解:蒸发-凝聚机理(凝聚速率=颈部体积增加)烧结时颈部扩大,气孔形状改变,但双球之间中心距不变,因此坯体不发生收缩,密度不变。
【2024版】武汉理工大学材料科学基础真题
解:(1)几何条件满足,b12+b22=3a2/2,b32=a2满足能量 条件,反应可以进行 (2)几何条件满足,b12=a2/2,b22+b32=a2/3满足能量条 件,反应可以进行
3. 假设某面心立方晶体可以开动的滑移系为(11`1)、 [011] ,请回答: 1) 给出滑移位错的单位位错柏氏矢量; 2)若滑移位错为纯刃位错,请指出其位错线方向;若滑 移位错为纯螺位错,其位错线方向又如何?
答:( 1 )单位位错的柏氏矢量 ( 2 )纯刃位错的位错线方向与 b 垂直,且位于滑 移面上, 为[`21`1] ;纯螺位错的位错线与 b 平行, 为 [011]。
4. 试计算 BCC 晶体最密排面的堆积密度。(2006)
答: BCC 密排面为{ 110 }面,其面积为: { 110 } 面上被原子占据的面积为(两个原子):
(2) % 57 50 100% 66.7%
57 46.5
10、在Al单晶中,(111)面上有一位错b1=a/2[10`1] , (11`1)面上另一位错b2=a/2[011] 。若两位错发生反 应,请绘出新位错,并判断其性质。
解:新位错为b3=a/2[110] ,位错线为 (111)面与 (11`1) 面的交线[`110] 。两者垂直,因此是刃型位 错。
5.70g
• cm3
8、一个FCC晶体在[`123]方向在2MPa正应力下屈服,已 测得开动的滑移系是(111)[`101],请确定使该滑移系开动 的分切应力τ。
解:
s cos cos
cos
[123] [111]
| [123] | | [111] |
4 14
0.617 3
cos
1、在面心立方晶体中,分别画出(101) 、[10`1] 、(`1`1`1)、 [`110]和(111)、[0`11],指出哪些是滑移面、滑移方向,并 就图中情况分析它们能否构成滑移系?若外力方向为
武汉理工大学材料科学基础答案
试题一答案一、1:4;2:O2-离子做面心立方密堆积,Na+填全部四面体空隙;3:=4CN O2-=8 [NaO4][ONa8];4:O2-电价饱和,因为O2-的电价=(Na+的电价/Na+的配位数)×O2的配位数;5:二、1:Al4[Si4O10](OH)8;2:单网层状结构;3:一层硅氧层一层水铝石层且沿C轴方向堆积;4:层内是共价键,层间是氢键;5:片状微晶解理。
三、1:点缺陷,线缺陷,面缺陷;2:由低浓度向高浓度的扩散;3:坯体间颗粒重排,接触处产生键合,大气孔消失,但固-气总表面积变化不大;4:按硅氧比值分类或按硅氧聚和体的大小分类;5:表面能的降低,流动传质、扩散传质、气相传质和溶解-沉淀传质;6:随自由能的变化而发生的相的结构的变化,一级相变、二级相变和三级相变。
四、 1:O←→VNa ′+VCl˙2:AgAg→Agi˙+VAg′3:3TiO23TiNb˙+VNb˙+6OO2TiO22TiNb˙+Oi′′+3ONb2-x Ti3xO3可能成立Nb2-2xTi2xO3+x4:NaCl NaCa′+ClCl+VCl˙五、一是通过表面质点的极化、变形、重排来降低表面能,二是通过吸附来降低表面能。
1:t=195h2:t=68h七、当O/Si由2→4时,熔体中负离子团的堆积形式由三维架状转化为孤立的岛状,负离子团的聚合度相应的降至最低。
一般情况下,熔体中负离子团的聚合度越高,特别是形成三维架状的空间网络时,这些大的聚合离子团位移、转动、重排都比较困难,故质点不易调整成规则排列的晶体结构,易形成玻璃。
熔体中负离子团的对称性越好,转变成晶体越容易,则形成玻璃愈难,反之亦然。
八、晶界上质点排列结构不同于内部,较晶体内疏松,原子排列混乱,存在着许多空位、位错、键变形等缺陷,使之处于应力畸变状态,具有较高能量,质点在晶界迁移所需活化能较晶内为小,扩散系数为大。
九、二次再结晶出现后,由于个别晶粒异常长大,使气孔不能排除,坯体不在致密,加之大晶粒的晶界上有应力存在,使其内部易出现隐裂纹,继续烧结时坯体易膨胀而开裂,使烧结体的机械、电学性能下降。
《材料科学基础》第二版 (张联盟 著)课后习题答案 武汉理工大学出版社
2-26 硅酸盐晶体结构有何特点?怎样表征其化学式?
2-27 硅酸盐晶体的分类依据是什么?可分为那几类,每类的结构特点是什么? 2
2-28 下列硅酸盐矿物各属何种结构类 型:Mg2[SiO4],K[AlSi3O8],CaMg[Si2O6],Mg3[Si4O10](OH)2,Ca2Al [AlSiO7]。
2-9 计算面心立方、密排六方晶胞中的原子数、配位数、堆积系数。
2-10 根据最密堆积原理,空间利用率越高,结构越稳定,金刚石结构的空间利用率很低(只 有34.01%),为什么它也很稳定?
2-11 证明等径圆球六方最密堆积的空隙率为25.9%。
2-12 金属镁原子作六方密堆积,测得它的密度为 1.74g/cm3,求它的晶胞体积。
1
若CaS (a=0.567nm)、CaO(a=0.480nm)和MgO(a=0.420nm)为一般阳离子-阴离子接触,试求 这些晶体中各离子的半径。
2-16 氟化锂(LiF)为NaCl型结构,测得其密度为 2.6g/cm3,根据此数据计算晶胞参数,并将此值与你从 离子半径计算得到数值进行比较。
2-17 Li2O的结构是O2-作面心立方堆积,Li+占据所有四面体空隙位置,氧离子半径为0.132nm。求: (1)计算负离子彼此接触时,四面体空隙所能容纳的最大阳离子半径,并与书末附表Li+半径比较,说明此 时O2-能否互相接触;(2)根据离子半径数据求晶胞参数;(3)求Li2O的密度。
2-1 名词解释
第二章 晶体结构
晶系 晶胞 晶胞参数 空间点阵 晶面指数 晶格能 原子半径与离子半径 配位数 离子极化 同质多晶与类质同晶 正尖晶石与反正尖晶石 反萤石结构 铁电效应 压电效应 热释电效应 电光效应
2-2 (1)一晶面在x、y、z轴上的截距分别为 2a、3b、 6c,求该晶面的晶面指数;(2)一晶面 在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
材料科学基础课后习题及答案
第二章答案2-1略。
2-2〔1〕一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;〔2〕一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:〔1〕h:k:l==3:2:1,∴该晶面的晶面指数为〔321〕;〔2〕h:k:l=3:2:1,∴该晶面的晶面指数为〔321〕。
2-3在立方晶系晶胞中画出以下晶面指数和晶向指数:〔001〕与[],〔111〕与[],〔〕与[111],〔〕与[236],〔257〕与[],〔123〕与[],〔102〕,〔〕,〔〕,[110],[],[]答:2-4定性描述晶体构造的参量有哪些.定量描述晶体构造的参量又有哪些.答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类.其特点是什么.答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最严密堆积的空隙有哪两种.一个球的周围有多少个四面体空隙、多少个八面体空隙.答:等径球最严密堆积有六方和面心立方严密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最严密堆积时可形成多少个四面体空隙、多少个八面体空隙.不等径球是如何进展堆积的.答:n个等径球作最严密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进展严密堆积时,可以看成由大球按等径球体严密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体严密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:〔000〕、〔001〕〔100〕〔101〕〔110〕〔010〕〔011〕〔111〕〔0〕〔0〕〔0〕〔1〕〔1〕〔1〕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章答案10-1名词解释:烧结烧结温度泰曼温度液相烧结固相烧结初次再结晶晶粒长大二次再结晶(1)烧结:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的冶金结合以提高其强度。
(2)烧结温度:坯体在高温作用下,发生一系列物理化学反应,最后显气孔率接近于零,达到致密程度最大值时,工艺上称此种状态为"烧结",达到烧结时相应的温度,称为"烧结温度"。
(3)泰曼温度:固体晶格开始明显流动的温度,一般在固体熔点(绝对温度)的2/3处的温度。
在煅烧时,固体粒子在塔曼温度之前主要是离子或分子沿晶体表面迁移,在晶格内部空间扩散(容积扩散)和再结晶。
而在塔曼温度以上,主要为烧结,结晶黏结长大。
(4)液相烧结:烧结温度高于被烧结体中熔点低的组分从而有液相出现的烧结。
(5)固相烧结:在固态状态下进行的烧结。
(6)初次再结晶:初次再结晶是在已发生塑性变形的基质中出现新生的无应变晶粒的成核和长大过程。
(7)晶粒长大:是指多晶体材料在高温保温过程中系统平均晶粒尺寸逐步上升的现象. (8)二次再结晶:再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。
10-2烧结推动力是什么?它可凭哪些方式推动物质的迁移,各适用于何种烧结机理?解:推动力有:(1)粉状物料的表面能与多晶烧结体的晶界能的差值,烧结推动力与相变和化学反应的能量相比很小,因而不能自发进行,必须加热!!(2)颗粒堆积后,有很多细小气孔弯曲表面由于表面张力而产生压力差,(3)表面能与颗粒之间形成的毛细管力。
传质方式:(1)扩散(表面扩散、界面扩散、体积扩散);(2)蒸发与凝聚;(3)溶解与沉淀;(4)黏滞流动和塑性流动等,一般烧结过程中各不同阶段有不同的传质机理,即烧结过程中往往有几种传质机理在起作用。
10-3下列过程中,哪一个能使烧结体强度增大,而不产生坯体宏观上的收缩?试说明理由。
(1)蒸发-冷凝;(2)体积扩散;(3)粘性流动;(4)晶界扩散;(5)表面扩散;(6)溶解-沉淀解:蒸发-凝聚机理(凝聚速率=颈部体积增加)烧结时颈部扩大,气孔形状改变,但双球之间中心距不变,因此坯体不发生收缩,密度不变。
10-4什么是烧结过程?烧结过程分为哪三个阶段?各有何特点?解:烧结过程:粉末或压坯在低于主要组分熔点的温度下的热处理,目的在于通过颗粒间的粘结结合以提高其强度。
烧结过程大致可以分为三个界线不十分明显的阶段。
(1)液相流动与颗粒重排阶段:温度升高,出现足够量液相,固相颗粒在DP作用下重新排列,颗粒堆积更紧密;(2)固相溶解与再析出:接触点处高的局部应力®塑性变形和蠕变®颗粒进一步重排;(3)固相的的烧结:小颗粒接触点处被溶解较大颗粒或自由表面沉积晶粒长大形状变化不断重排而致密化。
10-5烧结的模型有哪几种?各适用于哪些典型传质过程?解:粉体压块:蒸发-凝聚双球模型:有液相参与的粘性蠕变扩散Kingery和LSW:溶解-沉淀10-6某氧化物粉末的表面能是1000erg/cm2,烧结后晶界能是550erg/cm2,若用粒径为1μm 的粉料(假定为方体)压成1cm3的压块进行烧结,试计算烧结时的推动力。
解:2x(1000/1x10-4-550/1x10-2)=1.99x107erg/cm310-7有粉粒粒度为5μm,若经2h烧结后,x/r=0.1。
如果不考虑晶粒生长,若烧结至x/r =0.2。
并分别通过蒸发-凝聚、体积扩散、粘性流动、溶解-沉淀传质,各需多少时间?若烧结8h,各个传质过程的颈部增长x/r又是多少?解:根据查得各传质方式公式可得:时间分别为16h,64h,8h,128h,若只烧结8h,则X/R 分别为0.1×41/3,0.1×41/5,0.2,0.1×41/6。
10-8如上题粉料粒度改为16μm,烧结至x/r=0.2,各个传质需多少时间?若烧结时间为8h,各个过程的x/r又是多少?从两题计算结果,讨论粒度与烧结时间对四种传质过程的影响程度?解:蒸发-凝聚:颗粒粒度愈小烧结速率愈大。
初期x/r增大很快,但时间延长,很快停止;体积扩散:烧结时间延长,推动力减小。
在扩散传质烧结过程中,控制起始粒度很重要;粘性流动:粒度小为达到致密烧结所需时间短,烧结时间延长,流变性增强;溶解-沉淀:粒度小,传质推动力大。
烧结时间延长,晶粒致密程度增加。
10-9试就(1)推动力来源;(2)推动力大小;(3)在陶瓷系统的重要性来区别初次再结晶、晶粒长大和二次再结晶。
解:晶粒生长——材料热处理时,平均晶粒连续增大的过程。
推动力:基质塑性变形所增加的能量提供了使晶界移动和晶粒长大的足够能量。
晶粒生长取决于晶界移动的速率。
二次再结晶——(晶粒异常生长或晶粒不连续生长)少数巨大晶体在细晶消耗时成核-长大过程。
推动力:大、小晶粒表面能的不同。
二次再结晶晶粒长大不均匀生长均匀生长不符合Dl=d/f符合Dl=d/f气孔被晶粒包裹气孔排除界面上有应力界面无应力10-10有人试图用延长烧结时间来提高产品致密度,你以为此法是否可行,为什么?解:不可行。
蒸发-凝聚机理(凝聚速率=颈部体积增加)此类传质不能靠延长时间达到烧结。
高温短时间烧结是制造致密陶瓷材料的好方法。
10-11假如直径为5μm的气孔封闭在表而张力为280dayn/cm2的玻璃内,气孔内氮气压力是0.8atm,当气体压力与表面张力产生的负压平衡时,气孔尺寸是多少?解:2x280x0.001/r=0.8x101325r=6.9μm10-12在1500℃,MgO正常的晶粒长大期间,观察到晶体在1h内从直径从1μm长大到10μm,在此条件下,要得到直径20μm的晶粒,需烧结多长时间?如已知晶界扩散活化能为60kcal/mol,试计算在1600℃下4h后晶粒的大小,为抑制晶粒长大,加入少量杂质,在1600℃下保温4h,晶粒大小又是多少?解:烧结数率常数和温度关系服从阿累尼乌斯方程:即 (1)其中:为常数,Q为晶界扩散活化能,在正常的晶粒长大期间,晶粒直径与时间关系为:……………………(2)其中为时晶粒的平均尺寸。
在加入少量杂质时,晶粒直径与时间关系为: (3)在1500℃时,MgO正常生长时,由(2)有99再由(1)有=5789.5则在1500℃正常生长条件下,达到所需时间为:在1600℃时=122.83由(2)=22.2加入杂质后由(3)有=7.910-13假定NiCr2O4的表面能为600erg/cm2,由半径0.5μm的NiO和Cr2O3粉末合成尖晶石。
在1200℃和1400℃时Ni2+和Cr3+离子的扩散系数分别为:Ni2+在NiO中D1473=1×10-11;D1673=3×10-10cm2/s;Cr3+在Cr2O3中D1473=7×10-11cm2/s,D1673=10-9cm2/s;求在1200℃和1400℃烧结时,开始1h的线收缩率是多少?(假定扩散粒子的半径为0.059nm)解:线收缩率:1200℃,对NiO和Cr2O3粉末,其则可求出K1473,同理,可求出K1673,代入上式,即可求出式中g=600erg/cm2,ó=0.59ÅT=1473K,1673K,r=0.5µm10-14在制造透明Al2O3材料时,原始粉料粒度为2μm,烧结至最高温度保温0.5h,测得晶粒尺寸10μm,试问若保温时间为2h,晶粒尺寸多大?为抑制晶粒生长加入0.1%MgO,此时若保温时间为2h,晶粒又有尺寸多大?解:由在此条件下保温,设直径为则有:即求加入少量的MgO时:由10-15 在1500℃Al2O3正常晶粒生长期间,观察到晶体在1h内从0.5μm直径长大到10μm。
如已知晶界扩散活化能为335kJ/mol,试预测在1700℃下保温时间为4h后,晶粒尺寸是多少?你估计加入0.5%MgO杂质对Al2O3晶粒生长速度会有什么影响?在与上面相同条件下烧结,会有什么结果,为什么?解:由由在1700℃时,由,有加入0.5%MgO时,会抑制Al2O3晶粒生长,抑制现象会更加明显,原因是由于晶界移动时遇到的杂质(MgO)更多,限制了晶粒的生长。
10-16材料的许多性能如强度、光学性能等要求其晶粒尺寸微小且分布均匀,工艺上应如何控制烧结过程以达到此目的?解:(1)晶粒的大小取决于起始晶粒的大小,烧结温度和烧结时间。
(2)防止二次再结晶引起的晶粒异常长大。
10-17晶界移动通遇到夹杂物时会出现哪几种情况?从实现致密化目的考虑,晶界应如何移动?怎样控制?解:晶粒正常长大时,如果晶界受到第二相杂质的阻碍,其移动可能出现三种情况。
(1)晶界能量较小,晶界移动被杂质或气孔所阻挡,晶粒正常长大停止。
(2)晶界具有一定的能量,晶界带动杂质或气孔继续移动,这时气孔利用晶界的快速通道排除,坯体不断致密。
(3)晶界能量大,晶界越过杂质或气孔,把气孔包裹在晶粒内部。
由于气孔脱离晶界,再不能利用晶界这样的快速通道排除,使烧结停止,致密度不再增加,这将出现二次再结晶现象。
从实现致密化目的考虑,晶界应按第二种情况移动,控制晶界的能量以增加致密度。
10-18在烧结时,晶粒生长能促进坯体致密化吗?晶粒生长会影响烧结速率吗?试说明之。
解:在烧结时,晶粒生长能促进坯体的致密化。
在烧结中、后期,细小晶粒逐渐长大,而晶粒的长大过程是另一部分晶粒的缩小或消失过程,其结果是平均晶粒尺寸增大。
晶粒长大不是晶粒的相互粘接,而是晶界移动的结果。
推动晶粒长大的是晶界的自由能,随着晶粒的长大,使界面面积减小,从而促进坯体致密化。
10-19试分析二次再结晶过程对材料性能有何种效应?解:二次再结晶发生后,由于个别晶粒异常长大,气孔进入晶粒内部,成为孤立闭气孔,不易排除,使烧结速率降低甚至停止,肧体不再致密;加之大晶粒的晶界上有应力存在,使其内部易出现隐裂纹,继续烧结时肧体易膨胀而开裂,使烧结体的机械,电学性能下降。
10-20特种烧结和常规烧结有什么区别?试举例说明。
解:常规烧结过程主要是基于颗粒间的接触与键合,以及在表面张力推动下物质的传递过程。
其总体的推动力由系统表面能提供。
这就决定了其致密化是有一定限度的。
常规条件下坯体密度很难达到理论密度值。
对于特种烧结,它是为了适应特种材料对性能的要求而产生的。
这些烧结过程除了常规烧结中由系统表面能提供的驱动力之外,还由特殊工艺条件增加了系统烧结的驱动力,因此提高了坯体的烧结速率,大大增加了坯体的致密化程度。
例如热压烧结,它是加压成型与加压烧结同时进行的一种烧结工艺。
由于同时加温加压,有利于粉末颗粒的接触、扩散和流动等传质过程,降低了烧结温度和烧结时间,抑制了晶粒的长大。