小学六年级奥数杯赛试题
小学六年级奥林匹克数学竞赛试题
小学六年级奥林匹克数学竞赛试题通过奥林匹克数学竞赛试题,可以有效地检测小学生的数学能力和解决问题的能力。
以下是一些典型的小学六年级奥林匹克数学竞赛试题。
题目一:计算题已知 a = 120,b = 80,c = 50,请计算下列各式的值:1) a + b = ?2) a - b = ?3) a × c = ?4) a ÷ c = ?题目二:面积计算题一个长方形的宽度为 5cm,周长为 32cm,求该长方形的面积是多少?题目三:几何问题在平面坐标系中,已知点 A(2,3),B(-4,5),C(-1,-2),求该三角形的面积。
题目四:逻辑推理题阿明有 20 枚硬币,其中 2 枚是假币,通过一次天平平衡的测试,阿明可以找出假币是重的还是轻的。
请问,阿明最少需要做几次天平平衡测试才能准确找出两枚假币?题目五:应用题小明身上有 50 元,他要买一本价值 28 元的书,还要买一支价值 15 元的笔,请问小明还需要多少钱?题目六:代数问题设 x + y = 5,2x + 3y = 12,请求出 x 和 y 的值。
题目七:时间计算母亲花了 2 小时 20 分钟做饭,父亲花了 1 小时 50 分钟扫地,请问两人一共花了多少时间?题目八:比例问题某地盖房子,一个工人一天盖 5 块砖,已知 6 个工人工作 n 天,共盖了 180 块砖,请求 n 的值。
题目九:排列组合现有字母 A、B、C、D、E,任选 3 个字母排成一个三位数,有多少种不同的排列方式?题目十:图表分析某班级共有 40 名学生,其中男生和女生的比例为 2:3。
请问这个班级中男生有多少人?这些题目涵盖了小学六年级奥林匹克数学竞赛的不同类型,包括基本运算、图形计算、逻辑推理、代数问题、应用题等。
希望同学们通过解答这些试题,提高他们的数学思维能力和解决问题的能力。
相信通过奥林匹克数学竞赛的训练,同学们的数学水平会有明显的提高。
六年级奥数竞赛试题(通用20篇)
六年级奥数竞赛试题(通用20篇)六年级奥数竞赛试题(通用20篇)六年级的数学有着一定的难度,更别说是奥数了,以下是小编整理的六年级奥数竞赛试题,欢迎参考阅读!六年级奥数竞赛试题篇1一、填空(第8题4分,其他每小题均为2分共20分)1、75公顷= 平方千米 100分钟=( )天2、把一根3米长的钢材,从一头到另一头截成每段长米的小段要截( )次,每段占全( )3、1天的和( )小时的一样长。
4、六年(1)班女生占男生的,则男生占全班的( )。
5、甲比乙多,乙比丙少25%,则甲是丙的( )%。
6、一个半圆的直径是10厘米,它的周长是( )7、把360本书按4∶5∶6分给四、五、六、年级,分得最多的年级比分得最少的年级多( )本。
8、在一张长12厘米,宽8厘米的长方形纸上,剪下两个最大的圆,那么每个圆的周长是( ),剩下部分占这张纸面积的( )。
9、两个质数倒数相加,和的分子是25,分母是( )。
二、判断题:(10分)1、1米的25%是25%米。
( )2、一个数的倒数,有可能与这个数相等。
( )3、如果ab=1,则a是倒数。
( )4、直径是4分米的圆,它的周长和面积相等。
( )5、生产101个零件,101个合格,合格100%。
( )三、选择题。
(10分)1、如果a、b、c都为自然数,并都不为零,若a÷ >a,则b( )c。
A> B= C< D不能比较2、一个数和它的倒数之和一定( )1。
A> B= C< D无法比较3、两件衣服都按80元出售,其中一件赚了25%,另一件亏了25%,那么两件衣服合算在一起,结果是( )。
A赚了 B亏了 C不赚不亏 D无法比较4、一个三角形的三个内角度数比是4∶1∶1,这个三角形是( )三角形。
A直角 B等边 C等腰 D直角等腰5、甲乙两数的和是2 ,甲减去乙的差为1,则乙数是( )。
A1 B2 C8 D0四、计算:1、直接写出的得数:(8分)45÷4 = ( 256+14 )×12=152 ÷ 12=2、能简算的要简算。
小学六年级数学奥数竞赛试卷及答案
小学六年级数学奥数竞赛试卷及答案一、选择题(每题3分,共30分)1. 一个三位数,它的百位数字是4,十位数字是3,个位数字是2,这个数写作()。
A. 432B. 342C. 234D. 423答案:A2. 小华从家走到学校需要30分钟,他每分钟走50米,小华家到学校的距离是()米。
A. 1500B. 1200C. 1000D. 1800答案:A3. 如果3x=9,那么x等于()。
A. 2B. 3C. 6D. 9答案:B4. 下列哪个数既不是3的倍数,也不是4的倍数?()A. 12B. 15C. 18D. 21答案:D5. 一个长方体的长是8厘米,宽是4厘米,高是5厘米,它的体积是()立方厘米。
A. 120B. 160C. 200答案:D6. 下列哪个图形不是轴对称图形?()A. 正方形B. 矩形C. 梯形D. 圆形答案:C7. 小明把一个正方体切成了27个小正方体,那么每个小正方体的体积是原正方体体积的()倍。
A. 1/3B. 1/9C. 1/27D. 3答案:C8. 一个分数的分子和分母都乘以4,这个分数()。
A. 不变C. 变小D. 无法确定答案:A9. 下列哪个比例是正确的?()A. 3 : 4 = 6 : 8B. 5 : 6 = 10 : 12C. 8 : 9 = 16 : 18D. 4 : 5 = 8 : 10答案:A10. 一个两位数的十位数字是6,个位数字是3,这个数减去它的个位数字后等于()。
A. 60B. 63C. 56D. 59答案:C二、填空题(每题3分,共30分)11. 2.5 × 0.4 = ()答案:112. 8 ÷ 0.2 = ()答案:4013. 一个等边三角形的周长是15厘米,它的每条边长是()厘米。
答案:514. 1千克等于()克。
答案:100015. 一个正方形的边长是10厘米,它的面积是()平方厘米。
答案:10016. 2.4 ÷ 0.6 = ()答案:417. 5的立方是()。
山东六年级奥数竞赛试题
山东六年级奥数竞赛试题山东六年级奥数竞赛试题涵盖了多个数学领域,包括但不限于代数、几何、数论、组合等。
以下是一些可能的题目类型和示例题目:1. 代数问题:- 题目:如果一个数的平方比它本身大9,求这个数。
2. 几何问题:- 题目:在一个直角三角形中,如果一个角是30度,求另一个非直角的角。
3. 数论问题:- 题目:找出100以内的所有质数。
4. 组合问题:- 题目:有5个不同的球和3个不同的盒子,有多少种不同的放球方式,使得每个盒子至少有一个球?5. 逻辑推理:- 题目:有5个同学参加数学竞赛,已知第一名不是A,第二名不是B,第三名不是C,如果D是第二名,那么E是第几名?6. 序列和级数:- 题目:一个数列的前三项是1, 1, 2,每一项都是前两项的和。
求这个数列的第10项。
7. 概率问题:- 题目:一个袋子里有5个红球和3个蓝球,随机抽取2个球,求抽到2个红球的概率。
8. 数学游戏:- 题目:两个玩家轮流从1到7选择一个数字,每次选择后,数字会加到总和上。
如果某个玩家使得总和达到或超过20,那么他就输了。
假设两个玩家都采取最优策略,先手玩家有赢的可能吗?9. 图形分割:- 题目:一个正方形被分割成若干个小正方形,求至少需要多少个小正方形才能完成分割。
10. 数学谜题:- 题目:一个钟表在12点整时,时针和分针重合。
求下一个时针和分针重合的时间。
这些题目只是示例,实际的竞赛题目可能会更加复杂和具有挑战性。
解决这些问题需要学生具备扎实的数学基础,逻辑思维能力,以及解决问题的创造性思维。
奥数小学六年级数学竞赛试题及详细答案
小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ _厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得__ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。
六年级奥数竞赛试题及答案
六年级奥数竞赛试题一.计算:⑴.=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211⑵.13471711613122374⨯+⨯+⨯= ⑶.222345567566345567+⨯⨯+=⑷.4513612812111511016131+++++++= 二.填空:⑴.甲、乙两数是自然数;如果甲数的65恰好是乙数的41.那么甲、乙两数之和的最小值是.⑵.某班学生参加一次考试;成绩分优、良、及格、不及格四等.已知该班有21的学生得优;有31的学生得良;有71的学生得及格.如果该班学生人数不超过60人;则该班不及格的学生有人.⑶.一条公路;甲队独修24天完成;乙队独修30天完成.甲乙两队合修若干天后;乙队停工休息;甲队继续修了6天完成;乙队修了天.⑷.用0;1;2;3;4;5;6;7;8;9十个数字;能够组成个没有重复数字的三位数. ⑸.“IMO ”是国际数学奥林匹克的缩写;把这三个字母写成三种不同颜色;现有五种不同颜色的笔;按上述要求能写出_______种不同颜色搭配的“IMO ”. ⑹不定方程172112=+y x 的整数解是.⑺一个正方体的表面积是384平方分米;体积是512立方分米;这个正方体棱长的总和是.⑻.把19个边长为2厘米的正方体重叠起来堆成如右图所示的立方体;这个立方体的表面积是平方厘米.⑼.两车同时从甲乙两地相对开出;甲每小时行48千米;乙车每小时行54千米;相遇时两车离中点36千米;甲乙两地相距千米.⑽.六一班有学生46人;其中会骑自行车的17人;会游泳的14人;既会骑车又会游泳的4人;问两样都不会的有_人.⑾.从学校到少年宫有4条东西的马路和3条南北的马路相通如图;李楠从学校出发;步行到少年宫只许向东或向南行进;最多有种走法.⑿.算出圆内正方形的面积为.⒀.;圆的周长是16.4厘米;圆的面积与长方形的面积正好相等.图中阴影部分的周长是厘米.)14.3(=π⒁.一付扑克牌共有54张包括大王、小王;至少从中取张牌;才能保证其中必有3种花色.⒂.规定:6※2=6+66=72;2※3=2+22+222=246;1※4=1+11+111+1111=1234.7※5=.⒃.甲、乙、丙、丁四位学生在广场上踢足球;打碎了玻璃窗;有人问他们时;他们这样说:甲:“玻璃是丙也可能是丁打碎的”;乙:“是丁打碎的”;北 少年学校6厘丙:“我没有打坏玻璃”;丁:“我才不干这种事”;深深了解学生的老师说:“他们中有三位决不会说谎话”..那么;到底是谁打碎了玻璃答:是打碎了玻璃..六年级奥数竞赛试题答案一.计算:⑴.10099.⑵.原式162874131413122374=⨯=⎪⎭⎫ ⎝⎛++⨯= ⑶.原式()2223455663455663455672223451566566345567++⨯⨯+=+⨯+⨯+=1567566345566345567=+⨯⨯+= ⑷.原式1092542432322⨯+⋅⋅⋅+⨯+⨯+⨯= ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=10191514141313121254101212=⎪⎭⎫ ⎝⎛-=. 二.填空:⑴.甲数是乙数的1036541=÷;甲乙两数之和是乙数的10131031=+;要使甲乙两数之和最小;乙只能是10;从而甲数是3;和为13.⑵.不及格人数占4217131211=---;因该班学生人数不超过60人.故不及格人数是142142=⨯人. ⑶.1030124162411=⎪⎭⎫ ⎝⎛+÷⎪⎭⎫ ⎝⎛⨯-天. ⑷.第一步;排百位数字;有9种方法0不能作首位;第二步;排十位数字;有9种方法;第三步;排个位数字;有8种方法.根据乘法原理;一共有9×9×8=648个没有重复数字的三位数.⑸.先写I ;有5种方法;再写M ;有4种方法;最后写O ;有3种方法.一共有5×4×3=60种方法.⑹.没有整数解.若方程有整数解;则x 123;y 213;因此y x 21123+;且3|17;产生矛盾;因此原方程没有整数解.⑺.正方体的底面积为384÷6=64平方分米.故棱长为512÷64=8分米;棱长总和为8×12=96分米.⑻.这个立方体的表面由3×3×2+8×2+10×2=54个小正方形组成;故表面积为4×54=216平方厘米.⑼.乙每小时比甲多行54-48=6千米;而乙相遇时比甲多行36 2=72千米;故相遇时的时间为72 6=12小时;从而甲乙两地相距12 48+54=1224千米.⑽.所求人数=全班人数-会骑车人数+会游泳人数-既会骑车又会游泳人数=46-17+14-4=19人⑾.如图;用标数法累加得;共有10条路线.⑿.18⒀.设圆的半径为2r π;故长方形的长为r DC π=. 阴影部分周长r r r r r r AD BA BC DC ππππ245241)(⨯=⨯+-++=+++=5.204.1645=⨯=厘米. ⒁.将4种花色看作4个抽屉;为了保证取出3张同色花;那么应取尽2个抽屉由的2 13张牌及大、小王与一张另一种花色牌.计共取2 13+2+1=29张才行. ⒂.86415.7※5=7+77+777+7777+77777=86415.⒃.丁 1 ⌒。
【经典】小学六年级奥数竞赛数学竞赛试卷及答案图文百度文库
【经典】小学六年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.2.分子与分母的和是2013的最简真分数有个.3.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要秒.4.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.5.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.6.图中的三角形的个数是.7.早晨7点10分,妈妈叫醒小明,让他起床,可小明从镜子中看到的时刻还没有到起床的时刻,他对妈妈说:“还早呢!”小明误以为当时是点分.8.从五枚面值为1元的邮票和四枚面值为 1.60元的邮票中任取一枚或若干枚,可组成不同的邮资种.9.若质数a,b满足5a+b=2027,则a+b=.10.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.11.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.12.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.13.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.14.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.15.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.【参考答案】一、拓展提优试题1.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.2.解:分子与分母的和是2013的真分数有,,…,共1006个,2013=3×11×61,只要分子是2013质因数的倍数时,这个分数就不是最简分数,因数分子与分母相加为2013,若分子是3,11,61的倍数,则分母一定也是3,11或61的倍数.[1006÷3]=335,[1006÷11]=91,[1006÷61]=16,[1006÷3÷11]=30,[1006÷3÷61]=5,[1006÷11÷61]=1,1006﹣335﹣91﹣16+30+5+1=600.故答案为:600.3.解:(125+115)÷(22+18)=240÷40=6(秒);答:从两车头相遇到车尾分开需要6秒钟.故答案为:6.4.解:设B、C间的距离为x千米,由题意,得+=10,解得x=180.答:B、C间的距离为180千米.5.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.6.解:根据题干分析可得:10+10+10+5=35(个),答:一共有35个三角形.故答案为:35.7.解:早晨7点10分,分针指向2,时针指7、8之间,根据对称性可得:与4点50分时的指针指向成轴对称,故小明误以为是4点50分.故答案为:4,50.8.解:根据分析可得:6×5﹣1=29(种);答:可组成不同的邮资29种.故答案为:29.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.11.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.12.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.13.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.14.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.15.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.。
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)一、填空题。
1.(3分)使得以下不等式成立的自然数有很多,所有满足题目要求的自然数之和是。
÷>2.(3分)计算:=.3.(3分)某种计算机病毒会“吃掉”硬盘空间。
第一天吃掉硬盘空间的二分之一,第二天吃掉剩下的三分之一,第三天吃掉剩下的四分之一,第四天吃掉剩下的五分之一,第五天吃掉剩下的六分之一。
此时,硬盘还剩下160G(G是硬盘大小的单位)。
这个硬盘本来一共有G。
4.(3分)=。
5.(3分)两圆公共部分的面积是大圆面积的九分之一,是小圆面积的十五分之四。
大圆面积比小圆面积大56平方厘米。
大圆面积是平方厘米?6.(3分)一个长方形的长与宽之比为13:8,在这个长方形中剪掉一个最大的正方形。
剩下的长方形长与宽的比值是。
7.(3分)今年是2021年,健康、幸福、爱情、和睦、勤奋、逐梦、富贵、崛起,这八个词每个词刚好是21划。
那么8个2021相乘的积有个因数。
8.(3分)如图,在正方形ABCD中,红色、绿色正方形的面积分别是125平方厘米和20平方厘米,且红、绿两个正方形有一个公共顶点。
黄色正方形的一个顶点位于红色正方形的中心,一个顶点位于绿色正方形的中心。
那么黄色正方形的面积是平方厘米。
9.(3分)在如图中,正方形ABCD的面积是196平方厘米,E、F分别是AB、AD的中点,2FG=5CG。
则阴影部分面积是平方厘米。
10.(3分)有一辆自行车,前轮和后轮都是新的,并且可以互换。
1个新轮胎在前轮位置可以行驶4000千米,在后轮位置可以行驶2400千米。
使用2个新轮胎,这辆自行车最多可行驶千米。
11.(3分)一个自然数分别除以3、4、6、7,所得余数分别为2、1、5、6,并且四个商的和为859。
这个自然数是。
12.(3分)如图,用一个斜边长43厘米的红色直角三角形,一个斜边长94厘米的蓝色直角三角形与一个黄色正方形正好拼成一个大的直角三角形。
红色三角形与蓝色三角形的面积之和是平方厘米?13.(3分)在如图中,正方形ABCD的面积是36平方米,AE=3EB,BF=4FC,CG:GD=4:11,DH:HA=1:5,阴影部分面积是平方分米。
小学六年级数学奥林匹克竞赛题(含答案)
小学六年级数学奥林匹克竞赛题(含答案)某市举行小学数学竞赛.结果不低于80分的人数比80分以下的人数的4倍还多2人.及格的人数比不低于80分的人数多22人.恰是不及格人数的6倍.求参赛的总人数?解:设不低于80分的为A人.则80分以下的人数是(A-2)/4.及格的就是A+22.不及格的就是A+(A-2)/4-(A+22)=(A-90)/4.而6*(A-90)/4=A+22.则A=314.80分以下的人数是(A-2)/4.也即是78.参赛的总人数314+78=392电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思.为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1.则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1.则原来应收入1x元.而现在增加了原来的五分之一.就应该再*(1+5/1).减缩后得到(1+1/5x)}如此计算后得到总收入.使方程左右相等甲乙在银行存款共9600元.如果两人分别取出自己存款的40%.再从甲存款中提120元给乙。
这时两人钱相等.求乙的存款答案取40%后.存款有9600×(1-40%)=5760(元)这时.乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)由奶糖和巧克力糖混合成一堆糖.如果增加10颗奶糖后.巧克力糖占总数的60%。
再增加30颗巧克力糖后.巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖.巧克力占总数的60%.说明此时奶糖占40%.巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力.巧克力占75%.奶糖占25%.巧克力是奶糖的3倍增加了3-1.5=1.5倍.说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球.小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6.我就比你多2个了。
奥数比赛六年级试题及答案
奥数比赛六年级试题及答案1. 计算题问题:计算 \((2^3 + 3^2) \times 5\) 的值。
答案:首先计算括号内的值,\(2^3 = 8\),\(3^2 = 9\),然后将它们相加得到 \(8 + 9 = 17\)。
最后,将结果乘以5,即 \(17\times 5 = 85\)。
2. 应用题问题:一个班级有48名学生,其中男生人数是女生人数的两倍。
问这个班级有多少男生和女生?答案:设女生人数为 \(x\),则男生人数为 \(2x\)。
根据题意,\(x + 2x = 48\),解得 \(3x = 48\),所以 \(x = 16\)。
因此,女生有16人,男生有 \(2 \times 16 = 32\) 人。
3. 几何题问题:一个直角三角形,两条直角边分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,斜边的长度 \(c\) 可以通过公式 \(c =\sqrt{a^2 + b^2}\) 计算,其中 \(a\) 和 \(b\) 分别是两条直角边的长度。
将3厘米和4厘米代入公式,得到 \(c = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5\) 厘米。
4. 逻辑推理题问题:如果一个数的个位数是6,那么这个数的两倍的个位数是什么?答案:设这个数为 \(10a + 6\),其中 \(a\) 是十位数。
那么这个数的两倍就是 \(2(10a + 6) = 20a + 12\)。
个位数是2,因为\(20a\) 是10的倍数,不影响个位数。
5. 组合计数题问题:有5个不同的球和3个不同的盒子,将球放入盒子中,每个盒子至少有一个球,有多少种不同的放法?答案:首先,从5个球中选择2个球放入一个盒子,有 \(C_5^2 = 10\) 种选择方式。
剩下的3个球分别放入另外两个盒子,有 \(3! = 6\) 种排列方式。
但是,由于盒子是不同的,所以需要考虑盒子的排列,因此总的放法是 \(10 \times 6 = 60\) 种。
小学数学六年级奥数竞赛综合试题(含答案)
小学数学六年级奥数竞赛综合试题(含答案)(时间:90分钟)姓名:成绩一、填空题:1.11111111 1357911131517612203042567290++++++++=()2.“趣味数学”表示四个不同的数字:则“趣味数学”为()3.某钢厂四月份产钢8400吨,五月份比四月份多产17,两个月产量和正好是第二季度计划产量的75%,则第二季度计划产钢()吨.4.把17化为小数,则小数点后的第100个数字是(),小数点后100个数字的和是()5.水结成冰的时候,体积增加了原来的111,那么,冰再化成水时,体积会减少()6.两只同样大的量杯,甲杯装着半杯纯酒精,乙杯装半杯水.从甲杯倒出一些酒精到乙杯内.混合均匀后,再从乙杯倒同样的体积混合液到甲杯中,则这时甲杯中含水和乙杯中含酒精的体积()大7.加工一批零件,甲、乙二人合作需12天完成;现由甲先工作3天,然后由乙工作2天还剩这批零件的45没完成.已知甲每天比乙少加工4个则这批零件共有()个8.一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图所示.它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米,瓶子倒放时,空余部分的高为2厘米,则瓶内酒精体积是()立方厘米.9.有一个算式,上边方格里都是整数,右边答案只写出了四舍五入后 1.16357++≈的近似值.则算式上边三个方格中的数依次分别是()10.一个四位数xxyy,使它恰好等于两个相同自然数的乘积,则这个四位数是()二、解答题:11.如图,阴影部分是正方形,则最大长方形的周长是多少厘米?9厘米12.如图为两互相咬合的齿轮.大的是主动轮,小的是从动轮.大轮半径为105,小轮半径为90,现两轮标志线在同一直线上,问大轮至少转了多少圈后,两条标志线又在同一直线上?13.请你用1,2,3,4,5,6,7,8,9这九个数字,每个只能用一次,拼凑出五个自然数.让第二个是第一个的2倍,第3个是第一个的3倍,第四个是第一个的4倍,第五个是第一个的5倍.求这五个自然数分别为多少?14.有一列数2,9,8,2,6,…从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9×8=72的个位数字2.问这一列数第1997个数是几?15.甲、乙两个工程队分别负责两项工程.晴天,甲完成工程需要10天,乙完成工程需要16天;雨天,甲和乙的工作效率分别是晴天时的30%和80%.实际情况是两队同时开工、同时完工.那么在施工期间,下雨的天数是多少天?小学数学六年级奥数竞赛综合试题答案一、填空题: 1. 答案:81.4解析:原式()111111111357911131517612203042567290⎛⎫=++++++++++++++++ ⎪⎝⎭111111118123344556677889910⎛⎫=++++++++ ⎪⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11111111111111118123344556677889910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1181210=+- 81.4= 2. 答案:3201解析:根据算式进位乘积前两位数字是1和0.“趣味数学”ד趣”的千位数字是9,就有“趣”=3,显然,“数”=0.而味“味”ד趣”不能有进位,“味”ד趣”+ “味”ד趣”向百万位进1,所以“味”=2,同理,“学”=1.所以答案为32013. 答案:24000解析:四、五月产量和1840011180007⎛⎫⨯++= ⎪⎝⎭(吨),第二季度产量18000÷75%=24000(吨). 4. 答案:8,447解析:讲17化成小数,得到10.1428577••=,由周期性可得:(1)100=16×6+4,所以小数点后第100个数字与小数点后第4个数字一样即为8; (2)小数点后前100个数字的和是:16×(1+4+2+8+5+7)+1+4+2+8=447.5. 答案:112解析:设水为11升,结成冰有12升,化成水当然是11升,但此时问题是:冰化成水时比并减少的量,因此减少了()112111212-÷=. 6. 答案:一样大解析:甲、乙两杯中液体的体积,最后与开始一样多,所以有多大体积纯酒精从甲杯转到乙杯,就有多大体积的水从乙杯转入了甲杯,即甲杯中含水和乙杯中含酒精体积相同.7. 答案:240个解析:甲每天完成这批零件的:()11123251230⎛⎫-⨯÷-= ⎪⎝⎭,乙每天完成这批零件的:111123020-=,这批零件共有:1142402030⎛⎫÷-= ⎪⎝⎭(个). 8. 答案:62.172,取π=3.14)解析:液体体积不变,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的6÷2=3倍,()3326.462.172cm 31π⨯=+.9. 答案:1,2,3解析:利用估值的办法,得1.155 1.164357≤++≤,通分得:3521151.155 1.164105⨯+⨯+⨯≤≤扩大105倍得:121.275352115122.22≤⨯+⨯+⨯≤由每个方格中是一个整数,所以352115122⨯+⨯+⨯=,由奇偶性可以看出三个方格中数是2奇1偶.试验得35×1+21×2+15×3=122.10. 答案:7744解析:利用筛选法()xxyy 1000x 100x 10y y 11100x y =+++=+,可知所求数是11的倍数,又因为它是两相同自然数乘积,从而xxyy 必为211121=的倍数.先从11到9999中找出121的倍数,共73个,即121×10,121×11,121×12,…,121×81,121×82,再由xxyy 121k =⨯是完成平方数,k 也为两相同自然数乘积,只能取16,25,36,49,64,81经验算所求四位数为7744=121×64.二、解答题: 11. 答案:30解析:由图可知正方形的边长等于长方形的宽边,这样长方形的周长应等于长方形的长边与正方形的边长之和的两倍.(9+6)×2=30(cm ).12. 答案:3圈解析:设大轮转n 圈,则有n 210590⨯π⨯π是整数,(为什么不除以290π⨯,因为标志线在同一直线上,小圆可以转半圈)约分后得n 21057n903⨯π⨯=π,说明n 至少取3,有7n3是整数.13. 答案:9,18,27,36,45解析:第一个数一定是一位数,其余为两位数,为使它的2倍是两位数,这个数必须大于4;由于给出九数中只有四个偶数,所以第一个数只能是奇数;由于没有0,所以这个数不是5,又7×2=14,7×3=21有重复数字1,所以不能是7,由此第一位数是9.其余四个自然数:18,27,36,4514. 答案:6解析:找规律计算,知道这列数为:2,9,8,2,6,2,2,4,8,2,6,2,2,4,8,2…除去前两个数2,9外,后面8,2,6,2,2,4六数一个循环.()1997263323-÷=,余3说明周期中的第三个数即为所求,答案为6.15. 答案:12解析:在晴天,甲、乙两队的工作效率分别为110和116,甲队比乙队的工作效率高113101680-=; 在雨天,甲队、乙队的工作效率分别为1330%10100⨯=和1180%1620⨯=,乙队的工作效率比甲队高1312010050-=.由于两队同时开工、同时完工,完成工程所用的时间相同,所以整个施工期间,晴天与雨天的天数比为13:8:155080=.如果有8个晴天,则甲共完成工程的13815 1.2510100⨯+⨯=而实际的工程量为1,所以在施工期间,共有8 1.25 6.4÷=个晴天,15 1.2512÷=个雨天。
【精选】小学六年级奥数竞赛数学竞赛试卷及答案图文百度文库
20XX【精选】小学六年级奥数竞赛数学竞赛试卷及答案图文百度文库一、拓展提优试题1.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.2.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.5.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是,体积是.(π取3)6.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.7.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.8.快车和慢车同时从甲、乙两地相对开出,快车每小时行33千米,相遇行了全程的,已知慢车行完全程需要8小时,则甲、乙两地相距千米.9.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.10.根据图中的信息可知,这本故事书有页页.11.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款元.12.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)13.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.14.已知A是B的,B是C的,若A+C=55,则A=.15.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?【参考答案】一、拓展提优试题1.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.2.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.5.解:10×10×6﹣3×22×2+2×3×2×10,=600﹣24+120=696;10×10×10﹣3×22×10,=1000﹣120=880;答:得到的几何体的表面积是696,体积是880.故答案为:696,880.6.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),丙最多:20﹣1=19(块)此时甲乙至少有:200﹣19=181(块),181÷(2+1)=60(块)…1(块),乙最多60块,甲至少:60×2+1=121(块).故答案为:121,19.7.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.8.解:1﹣=×8=(小时)×33=(千米)÷=198(千米)答:甲、乙两地相距198千米.故答案为:198.9.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.10.解:(10+5)÷(1﹣×2)=15÷=25(页)答:这本故事书有25页;故答案为:25.11.解:捐50元人数的分率为:1﹣=,(200×+100×+50×)÷1=(20+75+7.5)÷1=102.5(元)答:该公司人均捐款102.5元.故答案为:102.5.12.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.13.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.14.解:A是C的×=,即A=C,A+C=55,则:C+C=55C=55C=55÷C=40A=40×=15故答案为:15.15.解:大正方体表面积:6×6×6=216,体积是:6×6×6=216,切割后小正方体表面积总和是:216×=720,假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,则解得:(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,化简:由上式可得:b=9c+24,a=,当c=0时,b24=,a=24,当c=1时,b=33,a=19.5,(不合题意舍去)当c=2时,b=42,a=15,当c=3时,b=51,a=10.5,(不合题意舍去)当c=4时,b=60,a=6,当c=5时,b=69,a=28.5,(不合题意舍去)当c=6时,b=78,a=﹣3,(不合题意舍去)当c=7时,a=负数,(不合题意舍去)所以,棱长为1的小正方体的个数只能是:56或24或42或60个.答:棱长为1的小正方体的个数只能是:56或24或42或60个.。
六年级奥林匹克数学竞赛试题卷及答案_小学六年级数学竞赛试卷附答案
六年级奥林匹克数学竞赛试题卷及答案_小学六年级数学竞赛试卷附答案一、请你填一填。
19分1. + + + = × 。
2.画一个直径6厘米的圆,圆规两脚尖的距离是厘米,面积是平方厘米。
3. =0.4= : 20 = %。
4.把3:1.25化成最简单的整数比是,比值是。
5.40千克的20%是千克,20吨比吨少。
6. 六1班今天出勤48人,有2人请假,今天六1班学生的出勤率是。
7.油菜籽的出油率是40%,500千克油菜籽可出油千克;要出油500千克需要千克油菜籽。
8.一个长方形的周长是30厘米,长与宽的比是3:2,这个长方形的面积是平方厘米。
9.一个钟面的分针长4厘米,时针走了1大格,分针扫过的面积是平方厘米,分针的尖端所走过的路程是厘米。
10.六1班女生人数是男生人数的,女生人数与全班人数的比是,男生人数占全班的 ,男生比女生多。
二、请你来判断。
6分1.1的倒数是1,0的倒数是0。
2.用110粒种子做发芽试验,有100粒发芽,发芽率是100%3.走完一段路,甲需要8时,乙需要10时,甲、乙速度比是4:5。
4.1吨煤用去吨,还剩20%吨。
5.5比4多25%,4比5少20%。
6.大牛和小牛的头数比是4:5,表示大牛比小牛少。
三、请你来选择。
16分1.两根3米长的铁丝,第一根用去全长的,第二根用去米,剩下的铁丝。
A第一根长 B第二根长 C 两根一样长2.一台电视机降价40%后售价是660元,原价是元。
A 1100B 396C 3303.小圆的直径是2厘米,大圆的半径是2厘米,小圆的面积是大圆面积的。
4.一个正方形的边长和圆的半径相等,已知正方形的面积是20平方米,圆的面积是平方米。
A 62.8B 12.56C 15.75.一种MP3原来的售价是820元,降低10%,再提高10%,现在的价格和原来相比。
A没变 B提高了 C降低了6. - ÷ ﹦×36- ×36 ,是应用了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级奥数杯赛试题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷(9/80-1/10)=35表示还要35小时注满答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效>甲的工效>乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天5.师徒俩人加工同样多的零件。
当师傅完成了1/2时,徒弟完成了120个。
当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。
单份给男生栽,平均每人栽几棵?答案是15棵算式:1÷(1/6-1/10)=15棵7.一个池上装有3根水管。
甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。
现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?答案45分钟。
1÷(1/20+1/30)=12 表示乙丙合作将满池水放完需要的分钟数。
1/12*(18-12)=1/12*6=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。
1/2÷18=1/36 表示甲每分钟进水最后就是1÷(1/20-1/36)=45分钟。
8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。
解:设停电了x分钟根据题意列方程1-1/120*x=(1-1/60*x)*2解得x=40二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?解:4*100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。
400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么?4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+2=6只(也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6)372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005从1000~1999千位上一共999个“1”的和是999,也能整除;200020012002200320042005的各位数字之和是27,也刚好整除。
最后答案为余数为0。
2.A和B是小于100的两个非零的不同自然数。
求A+B分之A-B 的最小值...解:(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)前面的1 不会变了,只需求后面的最小值,此时(A-B)/(A+B) 最大。
对于B / (A+B) 取最小时,(A+B)/B 取最大,问题转化为求(A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是A/B = 99/1(A+B)/B = 100(A-B)/(A+B) 的最大值是:98 / 1003.已知A.B.C都是非0自然数,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少?答案为6.375或6.4375因为A/2 + B/4 + C/16=8A+4B+C/16≈6.4,所以8A+4B+C≈102.4,由于A、B、C为非0自然数,因此8A+4B+C 为一个整数,可能是102,也有可能是103。
当是102时,102/16=6.375当是103时,103/16=6.43754.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.答案为476解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-100(16-2a)-10a-a=198解得a=6,则a+1=7 16-2a=4答:原数为476。
5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.答案为24解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24。
6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少?答案为121解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a=11(a+b)因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们的和为121。
7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.答案为85714解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数)再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x根据题意得,(200000+x)×3=10x+2解得x=85714所以原数就是857142答:原数为8571428.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。