台州市2019年中考数学试题及答案(Word版)

合集下载

2019年浙江省台州市中考数学试卷含答案

2019年浙江省台州市中考数学试卷含答案
毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ------------
比为
()
A. 2 :1
B. 3: 2
C. 3 :1
二、填空题(本题有 6 小题,每小题 5 分,共 30 分)
11.分解因式: ax2 ay2

数学试卷 第 3 页(共 8 页)
D. 2 : 2
12.若一个数的平方等于 5,则这 个红球,1 个黑球,这些球除颜色外无其它差别.先随
16.如图,直线 l1∥l2∥l3 , A , B , C 分别为直线 l1 , l2 , l3 上的动点,连接 AB ,
BC , AC ,线段 AC 交直线 l2 于点 D .设直线 l1 , l2 之间的距离为 m,直线 l2 , l3
之间的距离为 n,若 ABC=90 ,BD=4 ,且 m 3 ,则 m n 的最大值为
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ------------

2019年浙江省台州市中考数学试卷-解析版

2019年浙江省台州市中考数学试卷-解析版

2019年浙江省台州市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.计算2a−3a,结果正确的是()A. −1B. 1C. −aD. a2.如图是某几何体的三视图,则该几何体是()A. 长方体B. 正方体C. 圆柱D.球3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A. 5.952×1011 B. 59.52×1010 C. 5.952×1012 D. 5952×1094.下列长度的三条线段,能组成三角形的是()A. 3,4,8B. 5,6,10C. 5,5,11D. 5,6,115.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=1n[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x n−5)2],其中“5”是这组数据的()A. 最小值B. 平均数C. 中位数D. 众数6.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数,,已经列出一个方程x3+y4=5460,则另一个方程正确的是()A. x4+y3=4260B. x5+y4=4260C. x4+y5=4260D. x3+y4=42607.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A. 2√3B. 3C. 4D. 4−√38.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A. 14B. 12C. 817D. 8159.已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x 的图象交于点(32,2);②点(12,−2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A. ①②B. ①③④C. ②③④D. ①②③④10.如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A. √2:1B. 3:2C. √3:1D. √2:2二、填空题(本大题共6小题,共30.0分)11.分解因式:ax2−ay2=______.12.若一个数的平方等于5,则这个数等于______.13.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是______.14.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上连接AE.若∠ABC=64°,则∠BAE的度数为____.15.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共______个.16.如图,直线l1//l2//l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn =23,则m+n的最大值为______.三、解答题(本大题共8小题,共80.0分)17.计算:√12+|1−√3|−(−1).18.先化简,再求值:3xx2−2x+1−3x2−2x+1,其中x=12.19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.22.我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(______)②若AD=BE=CF,则六边形ABCDEF是正六边形.(______)23.已知函数y=x2+bx+c(b,c为常数)的图象经过点(−2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当−5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AF的值;AP(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q′落在边AD上.请判断点B旋转后的对应点B′是否落在线段BN上,并说明理由.答案和解析1.【答案】C【解析】解:2a−3a=−a,故选:C.根据合并同类项法则合并即可.本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.2.【答案】C【解析】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3.【答案】A【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当小数点向左移动时,n是正数;当小数点向右移动时,n是负数.【解答】解:数字595200000000元科学记数法可表示为5.952×1011元.故选:A.4.【答案】B【解析】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10−5<6,两边之和大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.根据三角形的三边关系即可求此题主要考查三角形的三边关系,要掌握并熟记三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5.【答案】B【解析】解:方差s2=1n[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x n−5)2]中“5”是这组数据的平均数,故选:B.根据方差的定义可得答案.本题考查方差,解题的关键是掌握方差的定义:一组数据中各数据与它们的平均数的差的平方的平均数叫做这组数据的方差.6.【答案】B【解析】解:设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是:x 5+y4=4260.故选:B.直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.7.【答案】A【解析】【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=12∠BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.本题考查了切线的性质,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=12∠BAC=30。

2019年浙江省台州市中考数学试卷(含解析)完美打印版

2019年浙江省台州市中考数学试卷(含解析)完美打印版

2019年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1B.1C.﹣a D.a2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×1094.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,115.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数6.(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O 的半径为()A.2B.3C.4D.4﹣8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.9.(4分)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=.12.(5分)若一个数的平方等于5,则这个数等于.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共个.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD =4,且=,则m+n的最大值为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).18.(8分)先化简,再求值:﹣,其中x=.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD 于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB 绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN 上,并说明理由.2019年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1B.1C.﹣a D.a【分析】根据合并同类项法则合并即可.【解答】解:2a﹣3a=﹣a,故选:C.2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.4.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形,故选:B.5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数【分析】根据方差的定义可得答案.【解答】解:方差s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2]中“5”是这组数据的平均数,故选:B.6.(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O 的半径为()A.2B.3C.4D.4﹣【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=BAC=30°,∴∠AOC=90°,∴OC=AC=4,∵OE⊥AC,∴OE=OC=2,∴⊙O的半径为2,故选:A.8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.【分析】由“ASA”可证△CDM≌△HDN,可证MD=DN,即可证四边形DNKM是菱形,当点B与点E重合时,两张纸片交叉所成的角a最小,可求CM=,即可求tanα的值.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.9.(4分)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④【分析】函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象的交点;①正确;点(,﹣2)关于y=2对称的点为点(,6),在函数y=上,②正确;y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,可得4﹣y1=,4﹣y2=,当x1>x2>0或0>x1>x2,有y1>y2;④不正确;【解答】解:∵函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;∴①正确;点(,﹣2)关于y=2对称的点为点(,6),∵(,6)在函数y=上,∴点(,﹣2)在图象C上;∴②正确;∵y=中y≠0,x≠0,取y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,∴4﹣y1=,4﹣y2=,∵x1>x2>0或0>x1>x2,∴4﹣y1<4﹣y2,∴y1>y2;∴④不正确;故选:A.10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2【分析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.求出△DFN与△DNK的面积比即可.【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).12.(5分)若一个数的平方等于5,则这个数等于±.【分析】直接利用平方根的定义分析得出答案.【解答】解:若一个数的平方等于5,则这个数等于:±.故答案为:±.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.【分析】画出树状图然后根据概率公式列式即可得解.【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为;故答案为:.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为52°.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共3个.【分析】求出第一次编号中砸碎3的倍数的个数,得余下金蛋的个数,再求第二次编号中砸碎的3的倍数的个数,得余下金蛋的个数,依次推理便可得到操作过程中砸碎编号是“66”的“金蛋”总个数.【解答】解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,∵63<66,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.故答案为:3.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y=﹣x+10,由=,得到n=m,于是得到(m+n)最大=m,然后根据二次函数的性质即可得到结论.【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).【分析】分别根据二次根式的性质、绝对值的性质化简即可求解.【解答】解:原式=.18.(8分)先化简,再求值:﹣,其中x=.【分析】根据分式的加减运算法则把原式化简,代入计算即可.【解答】解:﹣==,当x=时,原式==﹣6.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【解答】解:(1)设y关于x的函数解析式是y=kx+b,,解得,,即y关于x的函数解析式是y=﹣x+6;(2)当h=0时,0=﹣x+6,得x=20,当y=0时,0=﹣x+6,得x=30,∵20<30,∴甲先到达地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY【分析】(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人);(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)【分析】(1)①由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;②由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA =∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE =∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;(2)①证明△AEF≌△CAB≌△ECD,如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,即可得出结论;②证明△BFE≌△FBC得出∠BFE=∠FBC,证出∠AFE=∠ABC,证明△F AE≌△BCA得出AE=CA,同理:AE=CE,得出AE=CA=CE,由①得:六边形ABCDEF不是正六边形.【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.【分析】(1)将点(﹣2,4)代入y=x2+bx+c,c=2b;(2)m=﹣,n=,得n=2b﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,最大值与最小值之差为25;当b>0时,c>0,函数不经过第三象限,则△≤0,得0≤b≤8当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;当最大值1+3b时,1+3b+﹣2b=16,b=6;当最大值25﹣3b时,b=2;【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2=﹣4m﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD 于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB 绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN 上,并说明理由.【分析】(1)设AP=FD=a,通过证明△AFP∽△DFC,可得,可求AP的值,即可求AF的值,则可求解;(2)在CD上截取DH=AF,由“SAS”可证△P AF≌△HDF,可得PF=FH,由勾股定理可求CE=EP=,可得CM=CH=﹣1,由“SAS”可证△FCM≌△FCH,可得FM=FH=PF;(3)以A原点,AB为y轴,AD为x轴建立平面直角坐标系,用待定系数法可求BN解析式,即可求B'坐标,计算B'Q'的长度,即可判断点B旋转后的对应点B'是否落在线段BN上.【解答】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a=﹣1∴AP=FD=﹣1,∴AF=AD﹣DF=3﹣∴=(2)在CD上截取DH=AF∵AF=DH,∠P AF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=﹣1∵点E是AB中点,∴BE=AE=1=EM∴PE=P A+AE=∵EC2=BE2+BC2=1+4=5,∴EC=∴EC=PE,CM=﹣1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=﹣1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=x﹣2设点B'(x,x﹣2)∴AB'==2∴x=∴点B'(,﹣)∵点Q'(﹣1,0)∴B'Q'=≠﹣1∴点B旋转后的对应点B'不落在线段BN上.。

2019年浙江省台州市中考数学测试试卷附解析

2019年浙江省台州市中考数学测试试卷附解析

2019年浙江省台州市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.根据下列条件,能判断△ABC是等腰三角形的是()A.∠A=50°,∠B=70°B.∠A=48°,∠B=84°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°2.小慧测得一根木棒的长度为2.8米,这根木棒的实际长度的范围()A.大于2米,小于3米 B.大于2.7米,小于2.9米C.大于2.75米,小于2.84米 D.大于或等于2.75米,小于2.85米3.一个底面为正方形的水池蓄水量为 4.86 m3. 如果水池深1.5m,那么这个水池底面的边长为()A. 3.24 m B. 1.8 m C.0.324 m D. 0.18 m4.多项式3223281624a b c a b ab c-+-分解因式时,应提取的公因式是()A.24ab c-B.38ab-C.32ab D.3324a b c5.在∠AOB的内部任取一点C,作射线0C,则一定存在()A.∠AOB>∠AOC B.∠AOC>∠BOC C.∠BCE<∠AOC D.∠AOC=∠BOC6.用科学记数法表示0.00038得()A.53810-⨯B.43.810-⨯C.43.810⨯D.30.3810-⨯7.下列运算结果为负值的是()A.(-7)×(-4)B.(-6)+(-5)C.82-⨯-D.O×(-2)×88.为迎接图书馆的标准化检查,某中学图书馆将添置图书,用250无购进一种科普书,同时用 140元购进一种文学书. 由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多6本,求文学书的单价. 设这种文学书的单价为x元,则根据题意,列方程正确的是()A.1.51402506x x⨯-= B.14025061.5x x-=C.25014061.5x x-=D.1.51402506x x⨯=+9.一个等腰梯形的两底之差为12,高为6,则等腰梯形的两底的一个锐角为()A.30°B.45°C.60°D.75°10.要组成一个等边三角形,三条线段的长度可取()A.1,2,3 B.4,6,11 C.1,1,5 D.3.5,3.5,3.5 11.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B C .D .12. 若a 是关于x 的方程20x bx a ++=的根,且0a ≠,则a b +的值为( ) A .1B . 1-C .12D .12-13.一元二次方程012=-x 的根为( ) A .x =1B .x =-1C .1,121-==x xD .x =214.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( ) A .10 B .11 C .10或11 D .3或1115.根据下列条件,不能判定四边形ABCD 是平行四边形的是( ) A .∠A :∠B :∠C :∠D=1:2:l :2 B .∠A+∠B=180°,∠B+∠C=180° C .∠A+∠C=180°,∠B+∠D=180° D .∠A=∠C=45°,∠B=∠D=135°16.下列特征中,等腰梯形具有而直角梯形没有的是 ( ) A .一组对边平行B .两腰不相等C .两角相等D .对角线相等17.已知a 、b 为有理数,要使分式ab的值为非负数,a 、b 应满足的条件是( ) A .a ≥0,b ≠0 B .a ≤0,b<0 C .a ≥0,b>0 D .a ≥0,b>0或a ≤0,b<0 18.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( ) A .11 cm B .8 cm C .3 cm D .2 cm二、填空题19.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .20. 已知抛物线y=x 2+bx +c 与y 轴交于点A ,与 x 轴的正半轴交于B 、C 两点,且BC =2,S△ABC= 3,那么b = .21.根据指令[s ,A]( s ≥0,0°<A<180°)机器人在平面上能完成下列动作:先原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现机器人在坐标原点,且面对x 轴正 方向.则给机器人下一个指令 ,使其能移动到点(-5,5).22.在一个不透明的箱子里放有除颜色外,其余都相同的4 个小球,其中红球3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件: . 23.命题“有三边对应相等的两个三角形全等”的题设是 ,结论是 .24.如果三角形的三个内角都相等,那么这个三角形是 三角形.三、解答题25.如图,已知⊙O 1与⊙O 2相交于A 、B ,若两圆半径分别为 17 和 10,O 1O 2 = 21,试求 AB 的长.26.如图,已知点 A .B 和直线l ,求作一圆,使它经过A 、B 两点,且圆心在直线l 上.27.根据四边形的不稳定性,如图,长方形ABCD 变形为四边形A ′BCD ′. (1)四边形A ′BCD ′是平行四边形吗?请说明理由;(2)我们可知变形过程中周长不变,而面积改变了,若四边形A ′BCD ′的面积是长方形ABCD 的面积的一半,求∠ABA ′的度数...lB A28.计算:(1)1031()( 3.14)(2)2π-----; (2)3123(3)(3)(3)---÷-÷-; (3)510()()()x y x y x y -÷-÷-;29.如图所示,在△ABC 中,∠ABC=60°,∠ACB=72°,BD ,CE 分别是AC ,AB 上的高,BD 交CE 于点0.求: (1)∠A 的度数; (2)∠ACE 的度数; (3)∠BOC 的度数.30.1公顷生长茂盛的树林每天大约可以吸收二氧化碳lt ,成人每小时平均呼出二氧化碳38g ,如果要吸收一万个人一天呼出的二氧化碳,那么至少需要多少公顷的树林?(结果保留2个有效数字)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.B5.A6.B7.B8.B9.B10.D11.D12.B13.C14.B15.C16.D17.D18.D二、填空题19.320.-421.[°]22.例如:“摸出2个红球”23.有三边对应相等的两个三角形,这两个三角形全等24.等边三、解答题25.连结AO1、AO2,设 O1C=x,则O2C= 21 –x,∵O1O2⊥AB,∴AC=BC,∵2222AC==,即 AB 的长为 16.-=--,∴x=15,∴8x x1710(21)26.画AB 的垂直平分线与直线l 的交点就是圆心,图略.27.(1)由A ′B=D ′C ,A ′D ′=BC ,可证四边形A ′BCD ′是平行四边形;(2)过A ′作A ′P ⊥BC 于P ,∠ABA ′=60°28.(1)9;(2)-9 ;(3)61()x y 29.(1)48°;(2)42°;(3)132°30.9.1 公顷。

2019年浙江省台州市中考数学试卷原卷附解析

2019年浙江省台州市中考数学试卷原卷附解析

2019年浙江省台州市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC△内一点P 到三边的距离都相等.则PC 为( ) A .1B .2C .322D .222.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A .6 B .16 C .18 D .24 3.二次函数y=x 2-2x +1与坐标轴轴的交点个数是( ) A . 0 B . 1 C . 2 D . 3 4.若x 是3和6的比例中项,则x 的值为( )A . 23B . 23-C . 23±D .32±5.线段 PQ 的黄金分割点是R (PR>RQ ),则下列各式中正确的是( ) A .PR RQPQ PQ=B .PR QRPQ PR=C .PQ RQPR PQ=D .PR PQPQ QR=6.二次函数2y ax bx c =++的图象如图所示,根据图象所给的信息,确定 a 、b 、c 的取值情况下列正确的是( )A . a<0,b<0,c>0B .a<0, b>0,c>0C .a<0,b>0,c<0D .a>0 ,b<0 ,c>07.将抛物线22y x =-平移,得到223y x =--的图象,正确的方法是( )A . 向上平移 3 个单位B .向下平移3个单位C . 向上平移2 个单位D . 向下平移 2 个单位8.如图,把一个正方形三次对折后沿虚线剪下,则展开所得图形是( )9.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( ) A .14B .16C .12D .3410.如图,CD 是Rt △ABC 斜边上的高,AC=12,BC=5,AB=13,则CD 等于( ) A .1360 B .1257 C .313 D . 4.811.用科学记数法表示0.000 302 5为( ) A .3.025×10-4B .3025×10-4C .3.025×10-5D .3.025×10-612.2006 年 8月超强台风登陆浙江苍南,苍南遭受严重的损失,各方积极投入抢险,抗洪救灾小组A 地段有 28 人,B 地段有 15 入,现又凋来 29 人,分配在 A ,B 两个地段,使A 地段的人是B 地段的 2倍,则调往A ,B 地段的人数分别是( ) A .l8 人, 11人B . 24 人,25 人C. 20人 ,9人D . 14 人,15 人13.A 、B 两家公司都准备招聘技术人才,两家公司其它条件类似,工资待遇如下:A 公司 年薪2 万元,每年加工龄工资 400 元;B 公司半年工资 1 万元,每半年加工龄工资 100 元,从经济收入来考虑,选择哪一家公司更 有利( ) A .A 公司B .B 公司C . 两家公司一样D . 不能确定14.如图,每个小正方形的边长都是1,图中A 、B 、C 、D 、E 五个点分别为小正方形的顶点,则下列说法不正确的是( ) A .△ABE 的面积为 3 B .△ABD 的面积是4. 5 C .线段 BE 与 DE 相等D .四边形 BCDE 不可能是正方形二、填空题15.求下列三角函数的值(精确到 0. 0001).(1)sin36°= ;sin53°16′= ;cos25°18′= . (2) cos36°= ;tan54°24′= ;sin26°18′24"= . (3)tan54°= ;cos48°6′36"= ;tan60°= . 16.如图,弦 AB 垂直平分半径 OC ,则 ∠AOB= 度.17.如果把一根l00cm 长的铁丝折成一个面积为525cm 2的长方形,那么长方形的长为 ,宽为 . 18.已知:251 ,251+=-=y x ,求2xyy x ++的值. 19.若(1)12m x x m ->+-的解为1x <-,则m 的取值范围是 .20.从1,2,3这三个数字中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是 .21.如图,校园里有一块边长为20米的正方形空地,准备在空地上种草坪,草坪上有横竖3条小路,每条小路的宽度都为2米,则草坪的面积为_______平方米.22.如图,平移线段AB 到A ′B ′的位置,则AB=_________,A ′B ′∥__________,•_______=BB ′.三、解答题23.求抛物线y =-2x (12 -x )+3的开口方向、对称轴和顶点坐标. 开口向上;直线x =14 ,顶点(14 ,238).24.已知直线32xy =+与x 轴、y 轴分别交于A 、B 两点,把二次函数24x y =-的图象先左右,后上下作两次平移后,使它通过点A 、B ,求平移后的图象的顶点坐标.25.写出命题“等腰三角形两腰上的高相等”的逆命题,并证明它是一个真命题.26.如图所示,是一个三棱柱的模型,其底面是边长为3 cm 的等边三角形,侧棱长为5 cm , 若给你一张长为12 cm ,宽为5 cm 的长方形纸片,能否糊出一个有底无盖符合条件的三棱柱模型?若能,按l :2的比例画出下料图;若不能,请说明理由.27.先化简)11(122xx x x -⋅-+,然后自选一个你喜欢的x 值,求原式的值.28.如图,四边形A ′B ′C ′D ′是由四边形ABCD 旋转得到的,请找出旋转中心,并量出旋 转角的度数.29.用简便方法计算:(1)12114()()(1)(1)(1)23435-⨯-⨯-⨯-⨯-(2 ) (-5.25 )×(-4.73 )-4.73 ×(-19.75)-25×(-5.27).30.如图,线段BC 是线段AD 经过向右平行移动l 格,再向下平行移动5格后得到的线段,线段AB向右平行移动3格,再向上平行移动l格后得到线段DC,将方格中的图形向右平行移动2格,再向上平行移动1格,在方格中画出平移后的图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.C4.C5.B6.B7.B8.A9.A10.A11.A12.C13.B14.D二、填空题 15.(3)1. 3764 , 0. 6677,1. 7320(1)0. 5878,0.8014, 0. 9041(2)0. 8090,1. 3968,0. 443216.12017.35 cm ,15 cm18.20.19.1m < 20.3121. 19622.A ′B ′,AB ,AA ’三、解答题 23. 24. 令y=0,即302x+=,x=—6. ∴A( -6 ,0) ,令x=0,得y=3,则 B(0,3). 设平移后的函数解析式21()4y x m h =-++. 由 x=0,y=3得2134m h =-+,由 x=-6,y=0得21(6)4o m h =--++,解得24m h =⎧⎨=⎩,∴21(2)44y x =-++,顶点坐标(—2,4).25.逆命题:两边上的高相等的三角形是等腰三角形,证略26.能,理由略27.化简得:2+x ,但x 不能取0和1.28.略29.(1)35(2)250 30.略。

2019年浙江省台州市中考数学试卷(附答案详解)

2019年浙江省台州市中考数学试卷(附答案详解)

2019年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.计算2a﹣3a,结果正确的是()A.﹣1B.1C.﹣a D.a2.如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×1094.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,115.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数6.一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=7.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A.2B.3C.4D.4﹣8.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.9.已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④10.如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=.12.(5分)若一个数的平方等于5,则这个数等于.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共个.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).18.(8分)先化简,再求值:﹣,其中x=.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.2019年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.计算2a﹣3a,结果正确的是()A.﹣1B.1C.﹣a D.a【分析】根据合并同类项法则合并即可.【解答】解:2a﹣3a=﹣a,故选:C.【点评】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.2.如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.【点评】此题主要考查三角形的三边关系,要掌握并熟记三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数【分析】根据方差的定义可得答案.【解答】解:方差s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2]中“5”是这组数据的平均数,故选:B.【点评】本题考查方差,解题的关键是掌握方差的定义:一组数据中各数据与它们的平均数的差的平方的平均数叫做这组数据的方差.6.一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.7.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A.2B.3C.4D.4﹣【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=BAC=30°,求得∠AOC =90°,解直角三角形即可得到结论.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,。

(完整版)2019浙江台州中考试卷-数学

(完整版)2019浙江台州中考试卷-数学

2019浙江台州中考试卷-数学注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!无论是单选、多选还是论述题,最重要的就是看清题意。

在论述题中,问题大多具有委婉性,尤其是历年真题部分,在给考生较大发挥空间的同时也大大增加了考试难度。

考生要认真阅读题目中提供的有限材料,明确考察要点,最大限度的挖掘材料中的有效信息,建议考生答题时用笔将重点勾画出来,方便反复细读。

只有经过仔细推敲,揣摩命题老师的意图,积极联想知识点,分析答题角度,才能够将考点锁定,明确题意。

【一】选择题〔共10小题〕 1.计算-1+1的结果是〔〕 A.1B.0C.-1D.-22.在以下四个汽车标志图案中,能用平移变换来分析其形成过程的图案是〔〕 A 、B 、C 、D 、3、如图是一个由3个相同的正方体组成的立体图形,那么它的主视图为〔〕A 、B 、C 、D 、4.如图,点D 、E 、F 分别为∠ABC 三边的中点,假设△DEF 的周长为10,那么△ABC 的周长为〔〕A 、5B 、10C 、20D 、40 5.计算〔-2a)3的结果是()A.6a 3B.-6a 3C.8a 3D.-8a 36.如图,点A 、B 、C 是⊙O 上三点,∠AOC=130°,那么∠ABC 等于〔〕 A 、 50° B 、60° C 、65° D 、70° 7.点〔﹣1,y 1〕,〔2,y 2〕,〔3,y 3〕均在函数的图象上,那么y 1,y 2,y 3的大小关系是〔〕A 、y3<y2<y1B 、y2<y3<y1C 、 y1<y2<y3D 、y1<y3<y28.为了解某公司员工的年工资情况,小王随机调查了10位员工,其年工资〔单位:万元〕如下:3,3,3,4,5,5,6,6,8,20,以下统计量中,能合理反映该公司年工资中等水平的是〔〕A 、方差B 、众数C 、中位数D 、平均数9.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时路上所花时间比去时节省了,设公共汽车的平均速度为x 千米/时,那么下面列出的方程中正确的选项是〔〕 A 、B 、C 、D 、10、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,那么PK+QK的最小值为〔〕A、 1B、C、 2D、+1二.填空题〔共6小题〕11.因式分解:m2-1=_________12、不透明的袋子里装有3个红球5个白球,它们除颜色外其它都相同,从中随机摸出一个球,那么摸到红球的概率是__________、13、计算的结果是_________、14、如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,那么∠BA′C=_________度、15、把球放在长方体纸盒内,球的一部分露出盒外,其截面如下图,EF=CD=16厘米,那么球的半径为厘米、16、请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得以下算式成立:1⊕2=2⊕1=3,〔﹣3〕⊕〔﹣4〕=〔﹣4〕⊕〔﹣3〕=﹣,〔﹣3〕⊕5=5⊕〔﹣3〕=﹣,…你规定的新运算a⊕b=______________〔用a,b的一个代数式表示〕、三.解答题〔共8小题〕17.计算:18、解不等式组,并把解集在数轴上表示出来、19、如图,正比例函数y=kx〔x≥0〕与反比例函数y=的图象交于点A〔2,3〕,〔1〕求k,m的值;〔2〕写出正比例函数值大于反比例函数值时自变量x的取值范围、20、如图,为测量江两岸码头B、D之间的距离,从山坡上高度为50米的A处测得码头B的仰角∠EAB为15°,码头D的仰角∠EAD为45°,点C在线段BD的延长线上,AC⊥BC,垂足为C,求码头B、D的距离〔结果保留整数〕、21、某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图〔每组数据包括右端点但不包括左端点〕,请你根据统计图解决以下问题:〔1〕此次调查抽取了多少用户的用水量数据?〔2〕补全频数分别直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;〔3〕如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?22、,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE、〔1〕求证:△ABD≌△CBE;〔2〕如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论、23、某汽车在刹车后行驶的距离s〔单位:米〕与时间t〔单位:秒〕之间的关系得部分数据如下表:时间t〔秒〕0 0.2 0.4 0.6 0.8 1.0 1.2 …行驶距离s〔米〕0 2.8 5.2 7.2 8.8 10 10.8 …〔1〕根据这些数据在给出的坐标系中画出相应的点;〔2〕选择适当的函数表示s与t之间的关系,求出相应的函数解析式;〔3〕①刹车后汽车行驶了多长距离才停止?②当t 分别为t 1,t 2〔t 1<t 2〕时,对应s 的值分别为s 1,s 2,请比较与的大小,并解释比较结果的实际意义、24.定义:P,Q 分别是两条线段a 和b 上任意一点,线段PQ 长度的最小值叫做线段与线段的距离.O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC 与线段OA 的距离是_____, 当m=5,n=2时,如图2,线段BC 与线段OA 的距离(即线段AB 的长)为______(2)如图3,假设点B 落在圆心为A,半径为2的圆上,线段BC 与线段OA 的距离记为d,求d 关于m 的函数解析式.(3)当m 的值变化时,动线段BC 与线段OA 的距离始终为2,线段BC 的中点为M. ①求出点M 随线段BC 运动所围成的封闭图形的周长;②点D 的坐标为(0,2),m ≥0,n ≥0,作MH ⊥x 轴,垂足为H,是否存在m 的值,使以A,M,H 为顶点的三角形与△AOD 相似,假设存在,求出m 的值,假设不存在,请说明理由.参考答案一.选择题1B2D3A4C5D6C7D8C9A10B一.填空题11.(m+1)(m-1)12.13.x214.67.515.1016.三.解答题17.解:原式=22118.解:解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,在数轴上表示为:19.解:〔1〕把〔2,3〕代入y=kx得:3=2k,∴k=把〔2,3〕代入y=得m=6;〔2〕由图象可知,当正比例函数值大于反比例函数值时,自变量x的取值范围是x>2、20.解:∵AE∥BC,∴∠ADC=∠EAD=45°又∵AC⊥CD,∴CD=AC=50∵AE∥BC∴∠ABC=∠EAB=15°又∵tan∠ABC=∴BC=∴BD=185.2﹣50≈135〔米〕答:码头B、D的距离约为135米、21.解:〔1〕10÷10%=100〔户〕;〔2〕100﹣10﹣36﹣25﹣9=100﹣80=20户,画直方图如图,〔画图正确没标记数字同样给分,算出“15﹣﹣20吨”部分的用户数是20但没画图给1分〕×360°=90°;〔3〕×20=13.2〔万户〕、答:该地20万用户中约有13.2万户居民的用水全部享受基本价格、22.〔1〕证明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABD=∠CBE,在△ABD与△CBE中,∵,又由点〔0.2,2.8〕,〔1,10〕可得:解得:a=﹣5,b=15;∴二次函数的解析式为:s=﹣5t2+15t;经检验,其余个点均在s=﹣5t2+15t上、〔3〕①汽车刹车后到停止时的距离即汽车滑行的最大距离,当t=﹣时,滑行距离最大,S=即刹车后汽车行驶了米才停止、②∵s=﹣5t2+15t,∴s1=﹣5t12+15t1,s2=﹣5t22+15t2∴=﹣5t1+15;同理=﹣5t2+15,∴t1<t2,∴>,其实际意义是刹车后到t2时间内的平均速到t1时间内的度小于刹车后平均速度、 24.1)2,5(2)4≤m ≤6时d=2 2≤m ≤4时d=1282-+-m m(3)①16+4π ②m=1m=3m=5.2。

2019年台州中考数学试卷(解析版)

2019年台州中考数学试卷(解析版)

2019年台州中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.计算2a﹣3a,结果正确的是()A.﹣1 B.1 C.﹣a D.a2.如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×1094.下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,115.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数6.一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=7.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A.2B.3 C.4 D.4﹣8.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.9.已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④10.如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1 B.3:2 C.:1 D.:2二、填空题(共6小题)11.分解因式:ax2﹣ay2=﹣.12.若一个数的平方等于5,则这个数等于.13.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.14.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为.15.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共个.16.如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.三、解答题(共8小题)17.计算:+|1﹣|﹣(﹣1).18.先化简,再求值:﹣,其中x=.19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY22.我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()23.已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB 绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN 上,并说明理由.2019年台州中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】根据合并同类项法则合并即可.【解答】解:2a﹣3a=﹣a,故选:C.【知识点】合并同类项2.【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.【知识点】由三视图判断几何体3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.【知识点】科学记数法—表示较大的数4.【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.【知识点】三角形三边关系5.【分析】根据方差的定义可得答案.【解答】解:方差s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2]中“5”是这组数据的平均数,故选:B.【知识点】众数、中位数、方差、算术平均数6.【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【知识点】二元一次方程组的应用7.【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=BAC=30°,∴∠AOC=90°,∴OC=AC=4,∵OE⊥AC,∴OE=OC=2,∴⊙O的半径为2,故选:A.【知识点】等边三角形的性质、切线的性质8.【分析】由“ASA”可证△CDM≌△HDN,可证MD=DN,即可证四边形DNKM是菱形,当点B与点E重合时,两张纸片交叉所成的角a最小,可求CM=,即可求tanα的值.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.【知识点】解直角三角形、矩形的性质、平行四边形的判定9.【分析】函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;①正确;点(,﹣2)关于y=2对称的点为点(,6),在函数y=上,②正确;y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,可得4﹣y1=,4﹣y2=,当x1>x2>0或0>x1>x2,有y1>y2;④不正确;【解答】解:∵函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;∴①正确;点(,﹣2)关于y=2对称的点为点(,6),∵(,6)在函数y=上,∴点(,﹣2)在图象C上;∴②正确;∵y=中y≠0,x≠0,取y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,∴4﹣y1=,4﹣y2=,∵x1>x2>0或0>x1>x2,∴4﹣y1<4﹣y2,∴y1>y2;∴④不正确;故选:A.【知识点】命题与定理10.【分析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.求出△DFN与△DNK的面积比即可.【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.【知识点】正方形的性质、图形的剪拼二、填空题(共6小题)11.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【知识点】提公因式法与公式法的综合运用12.【分析】直接利用平方根的定义分析得出答案.【解答】解:若一个数的平方等于5,则这个数等于:±.故答案为:±.【知识点】平方根13.【分析】画出树状图然后根据概率公式列式即可得解.【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为;故答案为:.【知识点】列表法与树状图法14.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.【知识点】圆内接四边形的性质、圆周角定理、轴对称的性质15.【分析】求出第一次编号中砸碎3的倍数的个数,得余下金蛋的个数,再求第二次编号中砸碎的3的倍数的个数,得余下金蛋的个数,依次推理便可得到操作过程中砸碎编号是“66”的“金蛋”总个数.【解答】解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3,…,140;∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3,…,94;∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,∵63<66,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.故答案为:3.【知识点】规律型:数字的变化类16.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y=﹣x+10,由=,得到n=m,于是得到(m+n)最大=m,然后根据二次函数的性质即可得到结论.【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.【知识点】平行线之间的距离三、解答题(共8小题)17.【分析】分别根据二次根式的性质、绝对值的性质化简即可求解.【解答】解:原式=.【知识点】实数的运算18.【分析】根据分式的加减运算法则把原式化简,代入计算即可.【解答】解:﹣==,当x=时,原式==﹣6.【知识点】分式的化简求值19.【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.【知识点】解直角三角形的应用20.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【解答】解:(1)设y关于x的函数解析式是y=kx+b,,解得,,即y关于x的函数解析式是y=﹣x+6;(2)当h=0时,0=﹣x+6,得x=20,当y=0时,0=﹣x+6,得x=30,∵20<30,∴甲先到达地面.【知识点】一次函数的应用21.【分析】(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人);(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【知识点】扇形统计图、用样本估计总体22.【分析】(1)①由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;②由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;(2)①证明△AEF≌△CAB≌△ECD,如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,即可得出结论;②证明△BFE≌△FBC得出∠BFE=∠FBC,证出∠AFE=∠ABC,证明△F AE≌△BCA得出AE=CA,同理:AE=CE,得出AE=CA=CE,由①得:六边形ABCDEF不是正六边形.【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.【知识点】四边形综合题23.【分析】(1)将点(﹣2,4)代入y=x2+bx+c,c=2b;(2)m=﹣,n=,得n=2b﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,最大值与最小值之差为25;当b>0时,c>0,函数不经过第三象限,则△≤0,得0≤b≤8当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;当最大值1+3b时,1+3b+﹣2b=16,b=6;当最大值25﹣3b时,b=2;【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;【知识点】二次函数图象上点的坐标特征、二次函数的性质、二次函数的最值24.【分析】(1)设AP=FD=a,通过证明△AFP∽△DFC,可得,可求AP的值,即可求AF的值,则可求解;(2)在CD上截取DH=AF,由“SAS”可证△P AF≌△HDF,可得PF=FH,由勾股定理可求CE=EP=,可得CM=CH=﹣1,由“SAS”可证△FCM≌△FCH,可得FM=FH=PF;(3)以A原点,AB为y轴,AD为x轴建立平面直角坐标系,用待定系数法可求BN解析式,即可求B'坐标,计算B'Q'的长度,即可判断点B旋转后的对应点B'是否落在线段BN上.【解答】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a=﹣1∴AP=FD=﹣1,∴AF=AD﹣DF=3﹣∴=(2)在CD上截取DH=AF∵AF=DH,∠P AF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=﹣1∵点E是AB中点,∴BE=AE=1=EM∴PE=P A+AE=∵EC2=BE2+BC2=1+4=5,∴EC=∴EC=PE,CM=﹣1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=﹣1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=x﹣2设点B'(x,x﹣2)∴AB'==2∴x=∴点B'(,﹣)∵点Q'(﹣1,0)∴B'Q'=≠﹣1∴点B旋转后的对应点B'不落在线段BN上.【知识点】相似形综合题。

2019年浙江省台州市中考数学试卷(含答案)

2019年浙江省台州市中考数学试卷(含答案)
解答:解:根据分析知,运动速度 v 先减小后增大, 故选:C.
点评:本题主要考查了动点问题的函数图象.分析小球的运动过程是解题的关键.
9.(4 分)(2019•台州)如图,F 是正方形 ABCD 的边 CD 上的一个动点,BF 的垂直平分线交对角线 AC 于点 E,连接 BE,FE,则∠EBF 的度数是( )
考点:概率的意义.
分析:根据概率的意义,可得答案.
解答:解;A、B、C、说法都非常绝对,故 A、B、C 错误; D、即使购买一个该品牌的电插座,也可能不合格,说法合理,故 D 正确; 故选:D.
点评:本题考查了概率的意义,本题解决的关键是理解概率的意义以及必然事件的概念.
7.(4 分)(2019•台州)将分式方程 1﹣
考点:提公因式法与公式法的综合运用
专题:计算题.
分析:原式提取 a 后,利用平方差公式分解即可.
解答: 解:原式=a(a2﹣4) =a(a+2)(a﹣2). 故答案为:a(a+2)(a﹣2).
点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的 关键.
14.(5 分)(2019•台州)抽屉里放着黑白两种颜色的袜子各 1 双(除颜色外其余都相同),在看不见的情 况下随机摸出两只袜子,它们恰好同色的概率是 .
A.25cm
B.50cm
C.75cm
D.100cm
考点:三角形中位线定理
专题:应用题.
分析:判断出 OD 是△ABC 的中位线,再根据三角形的中位线平行于第三边并且等于第三
边的一半可得 AC=2OD.
解答:解:∵O 是 AB 的中点,OD 垂直于地面,AC 垂直于地面,
∴OD 是△ABC 的中位线,

2019年浙江省台州市中考数学真题试卷(解析含考点分析)

2019年浙江省台州市中考数学真题试卷(解析含考点分析)

2019年浙江省台州市中考数学试卷考试时间:120分钟 满分:150分{题型:1-选择题} 一、选择题:本大题共 10小题,每小题4分,合计40分. (题目}1. (2019年台州)计算2a — 3a,结果正确的是()A. — 1B. 1C. —aD. a{答案}C{解析}本题考查了合并同类项,合并同类项的法则是系数相加减,字母及字母指数都不变,2-3=—1,故2 a — 3a = — a,因此本题选C. {分值}4{章节:[1-2-2]整式的加减} {考点:合并同类项} {类别:常考题} {难度:1-最简单}{题目}2. (2019年台州)如图是某几何体的三视图,则该几何体是({答案}C{解析}本题考查了三视图, 根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆判断出 这个几何体是圆柱,因此本题选C.{分值}4{章节:[1-29-2]三视图} {考点:由三视图判断几何体} {类别:常考题} {难度:1-最简单}{题目}3. (2019年台州)2019年台州市计划安排重点建设项目 用科学记数法可将595 200 000 000表示为()A. 5.952 1011B. 59.52 1010C. 5.952 1012D. 5952M09A.长方体B.正方体C.圆柱D.球344个,总投资 595 200 000 000元,{答案}A{解析}本题考查了科学记数法,科学记数法的表示形式为 ax10n的形式,其中1&a|〈10, n为整数,确定n的值时,要看小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数的绝对值> 1时,n是正数;当原数的绝对值V 1时,n是负数.595200000000 = 5.952 M011,因此本题选A. {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4. (2019年台州)下列长度的三条线段,能组成三角形的是( )A. 3, 4, 8B. 5, 6, 10C. 5, 5, 11D. 5, 6, 11{答案}B{解析}本题考查了三角形三边关系,根据三角形三边关系定理,两边之和大于第三边,两边之差小于第三边,只有B选项满足题意,因此本题选B.{分值}4{章节:[1-11-1]与三角形有关的线段}{考点:三角形三边关系}{类别:常考题}{难度:2-简单}{题目}5. (2019年台州)方差是刻画数据波动程度的量,对于一组数据X1, X2, X3……X n,可用如1 c c c c 、下算式计算万差:s2—[(X I5)2 (X2 5)2 (X3 5)2 L (X n 5)2],其中"5"是这组数据的n()A.最小值B,平均数 C.中位数 D.众数{答案}B{解析}本题考查了方差,方差的公式是S2= 1[(X1—x)2+(X2 —x)2+, , +(X n —X )2],根据公式可n知“5是平均数,因此本题选B.{分值}4{章节:[1-20-2-1]方差}{考点:方差}{类别:常考题}{难度:2-简单}{题目}6. ( 2019年台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min ,从乙地到甲地需42min ,甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x, y,已经列出一个方程-y 54 ,则另一个方程正确的是(3 4 60A. X v 424 3 60C x Y 424 5 60{答案}B{解析}本题考查了二元一次方程组的应用x y 425 4 60x y 423 4 60行程问题,首先根据已知方程确定x为上坡路程,y为平路路程,返回时平路还是V,而原来的上坡路程x变成了下坡路程x, 42分钟为下坡时间平路时间x y 42的总和,从而得到万程:一』一,因此本题选B. 5 4 60{分值}4{章节:[1-8-3]实际问题与一元一次方程组}{考点:简单的列二元一次方程组应用题}{类别:常考题}{难度:2-简单}{题目}7. (2019年台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB, AC相切,则。

2019年浙江省台州市中考数学测试试题附解析

2019年浙江省台州市中考数学测试试题附解析

2019年浙江省台州市中考数学测试试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,身高为1.6米的某学生想测学校旗杆的高度,当他站在C 处时,他头顶端的影子与学校旗杆的影子重合,并测得AC =2.0米,BC =8.0米,则旗杆的高度是( )A .6.4米B .7.0米C .8.0米D .9.0米 2.甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( )A .23B .12C .13D .163.如图所示,CD 是一个平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D .若AC=3,BD=6,CD=12,则tan α的值为( )A .34B .43C .54D .53 4.若反比例函数的图象x k y =经过点(-3,4),则此函数图象必定不经过点( ) A .(3,-4)B .(4,-3)C .(-4,3)D .(-3,-4) 5. 如图,当半径为30cm 的转动轮转过1200角时,传送带上的物体A 平移的距离为( ) A . 900лcm B .300лcm C . 60лcm D .20лcm6.关于x 的一元二次方程22(3)60a x x a a -++--=的一个根是 0,则a 的值为( )A .2-B .3C .-2 或 3D .-1或 6 7.如图所示,把直线1l 沿箭头方向平移2.5 cm ,得直线2l , 则这两条直线之间的距离是( )A .等于 2.5 cmB .小于2.5 cmC .大于2.5 cmD . 以上都不对8.下列事件中,属于随机事件的是( )A .掷一枚普通正六面体骰子所得点数不超过 6B .买一张体育彩票中奖C .太阳从西边落下D .口袋中只装有 10个红球,从中摸出一个白球9.某人在平面镜里看到的时间是,此时实际时间是( ) A . 12:01B . 10:51C . 10:21D . 15:10 10.如图1所示是一张画有小白兔的卡片,卡片正对一面镜子,这张卡片在镜子里的影像是下列各图中的( )图1 A . B . C . D .11.如图两个图形可以分别通过旋转( )度与自身重合?A .120°,45°B .60°,45°C .30°,60°D .45°,30° 12.下列计算中正确的是( ) A .2233546y yx x y ⋅= B .3213423(2)(4)8n n n n n x y x y x y +-+---=C . 22222()()n n n n x y xy x y -+--=-D .23226(7)(5)2a b ab c a b c =- 13.如图所示,已知AD=CB ,∠AD0=∠CB0,那么可用“SAS”全等识别法说明的是( ) A .△AD0≌△CB0 B .△AOB ≌△COD C .△ABC ≌△CDA D .△ADB ≌△CBD14. 张颖同学把自己一周的支出情况,用如图所示的统计图来表示.则从图中可以看出( )A .一周支出的总金额B .一周各项支出的金额C .一周内各项支出金额占总支出的百分比D .各项支出金额在一周中的变化情况15.不改变代数式22a a b c --+的值,下列添括号错误..的是( ) A .2(2)a a b c +--+B .2(2)a a b c -+-C .2(2)a a b c --+D .2(2)()a a b c -+-+二、填空题16.如图,数轴上两点A B ,,在线段AB 上任取一点,则点C 到表示1的点的距离不大于2的概率是 .解答题17.如图,已知⊙O 半径为5,弦AB 长为8,点P 为弦AB 上一动点,连结OP ,则线段OP 的最小长度是 .18.矩形的面积为 20 cm 2,则它的宽 y(cm)与长 x(cm)的函数关系式是 .19.某中学举行广播操比赛,六名评委对某班打分如下:7.5 ,7.8分,9.0分,8.1分,7.9分,去掉一个最高分和一个最低分后的平均分是.20.某市居民用水的价格是2.2元/m3,设小煜家用水量为卫(m3),所付的水费为y元,则y 关于x的函数解析式为;当x=15时,函数值y是,它的实际意义是.21.在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积。

2019年浙江省台州市中考数学试卷(word版,含答案解析)

2019年浙江省台州市中考数学试卷(word版,含答案解析)

2019年浙江省台州市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.计算2a−3a,结果正确的是()A. −1B. 1C. −aD. a2.如图是某几何体的三视图,则该几何体是()A. 长方体B. 正方体C. 圆柱D.球3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A. 5.952×1011 B. 59.52×1010 C. 5.952×1012 D. 5952×1094.下列长度的三条线段,能组成三角形的是()A. 3,4,8B. 5,6,10C. 5,5,11D. 5,6,115.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=1n[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x n−5)2],其中“5”是这组数据的()A. 最小值B. 平均数C. 中位数D. 众数6.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是()A. x4+y3=4260B. x5+y4=4260C. x4+y5=4260D. x3+y4=42607.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A. 2√3B. 3C. 4D. 4−√38.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A. 14B. 12C. 817D. 8159.已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x 的图象交于点(32,2);②点(12,−2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A. ①②B. ①③④C. ②③④D. ①②③④10.如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A. √2:1B. 3:2C. √3:1D. √2:2二、填空题(本大题共6小题,共30.0分)11.分解因式:ax2−ay2=______.12.若一个数的平方等于5,则这个数等于______.13.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是______.14.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上连接AE.若∠ABC=64°,则∠BAE的度数为____.15.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共______个.16.如图,直线l1//l2//l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn =23,则m+n的最大值为______.三、解答题(本大题共8小题,共80.0分)17.计算:√12+|1−√3|−(−1).18.先化简,再求值:3xx2−2x+1−3x2−2x+1,其中x=12.19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度ℎ(单位:m)x+6,乙离一楼地面的高度y(单与下行时间x(单位:s)之间具有函数关系ℎ=−310位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.22.我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(______)②若AD=BE=CF,则六边形ABCDEF是正六边形.(______)23.已知函数y=x2+bx+c(b,c为常数)的图象经过点(−2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当−5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AF的值;AP(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q′落在边AD上.请判断点B旋转后的对应点B′是否落在线段BN上,并说明理由.答案和解析1.【答案】C【解析】解:2a−3a=−a,故选:C.根据合并同类项法则合并即可.本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.2.【答案】C【解析】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3.【答案】A【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当小数点向左移动时,n是正数;当小数点向右移动时,n是负数.【解答】解:数字595200000000元科学记数法可表示为5.952×1011元.故选:A.4.【答案】B【解析】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10−5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.根据三角形的三边关系即可求此题主要考查三角形的三边关系,要掌握并熟记三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5.【答案】B【解析】解:方差s2=1n[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x n−5)2]中“5”是这组数据的平均数,故选:B.根据方差的定义可得答案.本题考查方差,解题的关键是掌握方差的定义:一组数据中各数据与它们的平均数的差的平方的平均数叫做这组数据的方差.6.【答案】B【解析】解:设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是:x 5+y4=4260.故选:B.直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.7.【答案】A【解析】【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=12∠BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.本题考查了切线的性质,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=12∠BAC=30。

2019年浙江省台州市中考数学试卷附解析

2019年浙江省台州市中考数学试卷附解析

2019年浙江省台州市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若如图所示的两个四边形相似,则α∠的度数是( )A .87B .60C .75D .120 2.如图,在⊙O 中,∠B=37°,则劣弧AB 的度数为( )A .106°B .126°C .74°D .53°3.如图,矩形ABCD 沿AE 折叠,使点 D 落在BC 边上的F 点处,如果∠BAF= 60°,那么∠DAE 等于( )A . 15°B .30°C .45°D .60°4.下列定理中无逆定理的是( )A .平行四边形的两组对边分别相等B .平行四边形的两组对角分别相等C .三角形的中位线平行于第三边D .四边形的内角和为360°5.若3+x 在实数范围内有意义,则x 的取值范围是( )A .x >-3B .x <-3C .x ≥-3D .x ≤-3 6. 12x -有意义的x 的取值范围是( ) A .2x ≠- B . 12x ≤且2x ≠- C .12x <且2x ≠- D . 12x ≥且2x ≠- 7.当x=2 时,下列不等式中成立的是( )A .20x -<B .5(2)0x ->C .20x +>D .2(2)9x +> 8.由四个大小相同的小立方体叠成的几何体的左视图如图所示.则这个几何体的叠法不可能是( )A .B .C .D . 9.已知一个三角形的周长为l5 cm ,且其中两边长都等于第三边的2倍,那么这个三角形的最短边为( )A .1cmB .2cmC .3 cmD .4 cm10.下列选项中的两个图形成轴对称的是 ( )11.如图,0A ⊥OC ,OB ⊥OD ,4位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD乙:∠BOCC+∠AOD=180°丙:∠AOB+∠COD=90°丁:图中小于平角的角有5个其中正确的结论有( )A .1个B .2个C .3个D .4个12.若1aa =,则a ( )A .是正数或负数B .是正数C .是有理数D .是正整数二、填空题13.小芳晚上到人民广场去玩,她发现有两人的影子一个向南,一个向北,于是她肯定的说:“广场上的大灯泡一定位于两人 ”.14.两圆的半径分别为 5 和 3,且两圆无公共点,则两圆的圆心距 d 的取值范围为 .15.一次函数21y x =-+的图象经过抛物线2+1(0)y x mx m =+≠的顶点,则 m= .16.在12x x --中,字母x 的取值范围是 . 17.在对100个数据进行整理分析的频数分布表中,各组的频数之和等于______,各组的频率之和等于_______.18.把棱长为 lcm的 14个立方体摆放成如图所示的几何体,然后在露出的表面上涂上颜色(不含底面),则该几何体涂上颜色部分的面积是 cm2.19.一个几何体的三视图如图所示,则该几何体是.20.一只口袋里共有 3个红球,2 个黑球,1个黄球,现在小明任意模出两个球,则摸出一个红球和一个黑球的概率是.三、解答题21.如图所示,有一四边形形状的铁皮ABCD, BC=CD,AB=2AD, ∠ABC=∠ADB=90°.(1)求∠C 的度教;(2)以 C 为圆心,CB为半径作圆弧⌒BD得一扇形CBD,剪下该扇形并用它围成一圆锥的侧面,若已知 BC=a,求该圆锥的底面半径.22.已知a,b,c在数轴上的位置如下:求代数式22||()||a abc a b c-++-++的值.a-23.某公司甲、乙两座仓库分别有运输车 12辆和6辆,要调往A 地 10辆,调往B地8辆.已知从甲仓库调运一辆到 A 地和 B地的费用分别为 40元与 80元;从乙仓库调运一辆到A 地和 B地的费用分别为 30元与 50元. 设从乙仓库调到入地x辆车.(1)用含x的式子表示调运车辆的总费用;(2)若要求总费用不超过 900 元,共有几种运方案?(3)求出总费用最低的方案,最低费用是多少元?24.画—个正方体的表面展开图.25.如图,已知∠1 是它的补角的3 倍,∠2 等于它的补角的13,那么 AB∥CD吗?请说明理由.26.如图,已知BE=CF,AB=CD,∠B=∠C,则AF=DE吗?请说明理由.27.如图,画出△ABO绕点O逆时针旋转90°后的图形.28.已请你分析分式||||x yx y的所有可能值.29.下表表示从l960~2003年非洲某地区的狮子数量:其中表示50头狮子.(1)该地区哪一年的狮子数量最多?约有多少头?(2)估计2003年该地区狮子的头数是l960年的百分之几(精确到1%)? 30.根据图中提供的信息,求出每副网球拍和每副乒乓球拍的单价.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.C5.C6.B7.C8.A9.C10.C11.B12.B二、填空题13.之间的上方14.d> 8或0≤d<215.416.1x ≥且2x ≠17.100,118.3319.直四棱柱20.25三、解答题21.(1) ∵∠ADS=90°,AB=2AD,∴∠ABD=30° ,∵∠ABC=90°,∴∠DBC=60°, ∵ BC=CD ,∴△BCD 为等边三角形,∴∠C=60°.(2)036060o r a ⋅=,∴6a r =. 22. a -23.(1)(20x+860)元.(2)根据题意,得20x+860≤900.解得2x ≤.∵x 为非负整数,∴x =0、1、2.∴共有三种调运方案:(方案一)从甲仓库分别调运10辆、2辆到A 、B 两地,从乙仓库调运6辆到B 地;(方案二)从甲仓库分别调运9辆、3辆到A 、B 两地,从乙仓库分别调运1辆、5辆到A 、B 两地;(方案三)从甲仓库分别调运8辆、4辆到A 、B 两地,从乙仓库分别调运2辆、4辆到A 、B 两地.(3)方案一的总费用最低,为860元.24.答案不唯一,如25.AB ∥CD ,说明∠1与它的同位角相等26.利用SAS 说明△ABF ≌△DCE27.略28.分类讨论(1)当0x >,0y >时,原式=2;(2)当0x >,0y <时,原式=0;(3)当0x <,0y >时,原式=0;(4)当0x <,0y <时,原式=-2.∴原式所有可能的值为 0、2,-229.(1)1960年,约600头 (2)67%30.网球拍每副 80 元,乒乓球拍每副 40元。

2019年浙江省台州市中考数学试卷和答案

2019年浙江省台州市中考数学试卷和答案

2019年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1B.1C.﹣a D.a2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109 4.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11 5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数6.(4分)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A.2B.3C.4D.4﹣8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.9.(4分)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1B.3:2C.:1D.:2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=.12.(5分)若一个数的平方等于5,则这个数等于.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D 关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共个.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC =90°,BD=4,且=,则m+n的最大值为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).18.(8分)先化简,再求值:﹣,其中x=.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y (单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE 是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P 是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.2019年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.【分析】根据合并同类项法则合并即可.【解答】解:2a﹣3a=﹣a,故选:C.2.【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.4.【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.5.【分析】根据方差的定义可得答案.【解答】解:方差s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2]中“5”是这组数据的平均数,故选:B.6.【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.7.【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=BAC=30°,∴∠AOC=90°,∴OC=AC=4,∵OE⊥AC,∴OE=OC=2,∴⊙O的半径为2,故选:A.8.【分析】由“ASA”可证△CDM≌△HDN,可证MD=DN,即可证四边形DNKM是菱形,当点B与点E重合时,两张纸片交叉所成的角a最小,可求CM=,即可求tanα的值.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.9.【分析】函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象的交点;①正确;点(,﹣2)关于y=2对称的点为点(,6),在函数y=上,②正确;y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,可得4﹣y1=,4﹣y2=,当x1>x2>0或0>x1>x2,有y1>y2;④不正确;【解答】解:∵函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;∴①正确;点(,﹣2)关于y=2对称的点为点(,6),∵(,6)在函数y=上,∴点(,﹣2)在图象C上;∴②正确;∵y=中y≠0,x≠0,取y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,∴4﹣y1=,4﹣y2=,∵x1>0>x2,∴y1>y2;∴④不正确;故选:A.10.【分析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.求出△DFN与△DNK的面积比即可.【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.二、填空题(本题有6小题,每小题5分,共30分)11.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).12.【分析】直接利用平方根的定义分析得出答案.【解答】解:若一个数的平方等于5,则这个数等于:±.故答案为:±.13.【分析】画出树状图然后根据概率公式列式即可得解.【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为;故答案为:.14.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.15.【分析】求出第一次编号中砸碎3的倍数的个数,得余下金蛋的个数,再求第二次编号中砸碎的3的倍数的个数,得余下金蛋的个数,依次推理便可得到操作过程中砸碎编号是“66”的“金蛋”总个数.【解答】解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,∵63<66,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.故答案为:3.16.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM =y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y=﹣x+10,由=,得到n=m,于是得到(m+n)m,然后根据二次函数的性质即可得到结论.最大=【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN ⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.【分析】分别根据二次根式的性质、绝对值的性质化简即可求解.【解答】解:原式=.18.【分析】根据分式的加减运算法则把原式化简,代入计算即可.【解答】解:﹣==,当x=时,原式==﹣6.19.【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.20.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【解答】解:(1)设y关于x的函数解析式是y=kx+b,,解得,,即y关于x的函数解析式是y=﹣x+6;(2)当h=0时,0=﹣x+6,得x=20,当y=0时,0=﹣x+6,得x=30,∵20<30,∴甲先到达地面.21.【分析】(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人);(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.22.【分析】(1)①由SSS证明△ABC≌△BCD≌△CDE≌△DEA ≌EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;②由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE =∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA =∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;(2)①证明△AEF≌△CAB≌△ECD,如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,即可得出结论;②证明△BFE≌△FBC得出∠BFE=∠FBC,证出∠AFE=∠ABC,证明△FAE≌△BCA得出AE=CA,同理:AE=CE,得出AE=CA=CE,由①得:六边形ABCDEF不是正六边形.【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA =∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=FA,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F =∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△FAE和△BCA中,,∴△FAE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.23.【分析】(1)将点(﹣2,4)代入y=x2+bx+c,c=2b;(2)m=﹣,n=,得n=2b﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,最大值与最小值之差为25;当b>0时,c>0,函数不经过第三象限,则△≤0,得0≤b≤8,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;当最大值1+3b时,1+3b+﹣2b=16,b=6;当最大值25﹣3b 时,b=2;【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2=﹣4m﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0<b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4<b≤10,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;24.【分析】(1)设AP=FD=a,通过证明△AFP∽△DFC,可得,可求AP的值,即可求AF的值,则可求解;(2)在CD上截取DH=AF,由“SAS”可证△PAF≌△HDF,可得PF=FH,由勾股定理可求CE=EP=,可得CM=CH=﹣1,由“SAS”可证△FCM≌△FCH,可得FM=FH=PF;(3)以A原点,AB为y轴,AD为x轴建立平面直角坐标系,用待定系数法可求BN解析式,即可求B'坐标,计算B'Q'的长度,即可判断点B旋转后的对应点B'是否落在线段BN上.【解答】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD∴△AFP∽△DFC∴即∴a=﹣1∴AP=FD=﹣1,∴AF=AD﹣DF=3﹣∴=(2)在CD上截取DH=AF∵AF=DH,∠PAF=∠D=90°,AP=FD,∴△PAF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=﹣1∵点E是AB中点,∴BE=AE=1=EM∴PE=PA+AE=∵EC2=BE2+BC2=1+4=5,∴EC=∴EC=PE,CM=﹣1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=﹣1,CF=CF ∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x 轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP=﹣1由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB =﹣1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=x﹣2设点B'(x,x﹣2)∴AB'==2∴x=∴点B'(,﹣)∵点Q'(﹣1,0)∴B'Q'=≠﹣1∴点B旋转后的对应点B'不落在线段BN上.。

2019年浙江省台州市中考数学试卷-答案

2019年浙江省台州市中考数学试卷-答案

2019年浙江省台州市中考试卷数学答案解析一、选择题 1.【答案】C【解析】解:23a a a -=-故选:C . 2.【答案】C【解析】解:∵几何体的主视图和俯视图都是宽度相等的长方形, 故该几何体是一个柱体. 又∵俯视图是一个圆, 故该几何体是一个圆柱. 故选:C . 3.【答案】A【解析】解:数字595 200 000 000科学记数法可表示为115.95210⨯元. 故选:A . 4.【答案】B 【解析】解:A 选项,3478+=<,两边之和小于第三边,故不能组成三角形B 选项,561110+=>,1056﹣<,两边之各大于第三边,两边之差小于第三边,故能组成三角形C 选项,551011+=<,两边之和小于第三边,故不能组成三角形D 选项,5611+=,两边之和不大于第三边,故不能组成三角形 故选:B . 5.【答案】B【解析】解:方差22232221[]5555n s x x x x +++⋯+=(﹣)(﹣)(﹣)(﹣)中“5”是这组数据的平均数 故选:B . 6.【答案】B【解析】解:设未知数x ,y ,已经列出一个方程543460x y +=,则另一个方程正确的是:425460x y +=.故选:B .7.【答案】A【解析】解:设⊙O 与AC 的切点为E , 连接AO ,OE ,∵等边三角形ABC 的边长为8, ∴860AC C BAC ∠∠︒=,==, ∵圆分别与边AB ,AC 相切,∴1302BAO CAO BAC ∠∠∠︒===,∴90AOC ∠︒=,∴142OC AC ==,∵OE AC ⊥,∴OE OC =∴⊙O 的半径为, 故选:A . 8.【答案】D 【解析】解:如图,∵90ADC HDF ∠∠︒==∴CDM NDH ∠∠=,且CD DH =,90H C ∠∠︒== ∴CDM HDN ASA ≌()∴MD =ND ,且四边形DNKM 是平行四边形 ∴四边形DNKM 是菱形 ∴KM =DM∵sin sin DMC α∠==CDMD∴当点B 与点E 重合时,两张纸片交叉所成的角a 最小,设MD a BM ==,则8CM a =﹣, ∵222MD CD MC +=,∴2248a a +=(﹣), ∴174a =∴154CM =∴tan tan DMC α∠==CD MC 815= 故选:D . 9.【答案】A【解析】解:∵函数3y x=的图象在第一、三象限,则关于直线y =2对称,点(32,2)是图象C 与函数3y x=的图象交于点;∴①正确;点(12,﹣2)关于2y =对称的点为点(12,6), ∵(12,6)在函数3y x =上,∴点(12,﹣2)在图象C 上;∴②正确;∵3y x =中00y x ≠≠,,取3y x=上任意一点为(x ,y ),则点(x ,y )与2y =对称点的纵坐标为34x-; ∴③错误;A (11x y ,),B (22x y ,)关于2y =对称点为(114x y ,﹣),B (224x y ,﹣)在函数3y x=上,∴1134y x ﹣=,2234y x ﹣=, ∵120x x >>或120x x >>,∴1244y y ﹣<﹣, ∴12y y >;∴④不正确; 故选:A . 10.【答案】A【解析】解:如图,作DC EF ⊥于C ,DK FH ⊥于K ,连接DF . 由题意:四边形DCFK 是正方形,CDM MDF FDN NDK ∠∠∠∠===, ∴90CDK DKF DK FK DF DK ∠∠︒==,=,=,∴DFN DNKS FN DFSNK DK===, ∴22A S DFN SDNKB S S==型型∴图案中A 型瓷砖的总面积与B , 故选:A .二、填空题11.【答案】()()a x y x y +﹣【解析】解:22ax ay ﹣, 22a x y =(﹣), ()()a x y x y +=﹣故答案为:()()ax y x y +﹣. 12.【答案】【解析】解:若一个数的平方等于5,则这个数等于:13.【答案】49【解析】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种, ∴两次摸出的小球颜色不同的概率为49;故答案为:49.14.【答案】52︒【解析】解:∵圆内接四边形ABCD , ∴180116D ABC ∠︒∠︒=﹣=,∵点D 关于AC 的对称点E 在边BC 上, ∴116D AEC ∠∠︒==, ∴1166452BAE ∠︒︒︒=﹣=. 故答案为:52︒. 15.【答案】3【解析】解:∵210370÷=,∴第一次砸碎3的倍数的金蛋个数为70个,剩下21070140﹣=个金蛋,重新编号为1,2,3, (140)∵1403462÷⋯=,∴第二次砸碎3的倍数的金蛋个数为46个,剩下1404694﹣=个金蛋,重新编号为1,2,3, (94)∵943311÷⋯=,∴第三次砸碎3的倍数的金蛋个数为31个,剩下943163﹣=个金蛋, ∵6366<,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个. 故答案为:3. 16.【答案】253【解析】解:过B 作1BE l ⊥于E ,延长EB 交l 3于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE x CF y BN x BM y =,=,=,=, ∵4BD =,∴44DM y DN x =﹣,=﹣,∵90ABC AEB BFC CMD AND ∠∠∠∠∠︒=====, ∴90EAB ABE ABE CBF ∠+∠∠+∠︒==, ∴EAB CBF ∠∠=, ∴ABE BFC ∽, ∴,AE BE x mBF CF n y==即, ∴xy mn =, ∵ADN CDM ∠∠=, ∴CMD AND ∽, ∴42,43AN DN m x CM DM n y -===-即, ∴3102y x +=﹣,∵23m n =, ∴32n m =,∴52m n m +最大()=, ∴当m 最大时,m n +最大()=52m , ∵22333(10)10222mn xy x x x x m +=-+===﹣,∴当1010332(-)2x =⨯=﹣时,mn 最大=250332m =, ∴m 最大=103,∴m +n 的最大值为51025=233⨯.故答案为:253.三、解答题17.【答案】【解析】解:原式= 18.【答案】36112=--【解析】解:22332121x x x x x --+-+ =23(1)(1)x x -- =31x -, 当x =12时,原式=36112=--19.【答案】92.5 cm【解析】解:过点A 作AD BC ⊥于点D ,延长AD 交地面于点E , ∵sin ADABD AB∠=, ∴920.9486.48AD ⨯≈=, ∵6DE =,∴92.5AE AD DE +==,∴把手A 离地面的高度为92.5 cm .20.【答案】(1)165y x +=﹣(2)甲先到达地面【解析】解:(1)设y 关于x 的函数解析式是y kx b +=,6153b k b =⎧⎨+=⎩,解得,156k b ⎧=-⎪⎨⎪=⎩,即y 关于x 的函数解析式是165y x +=﹣;(2)当0h =时,30610x +=﹣,得20x =,当0y =时,1065x +=﹣,得30x =,∵2030<, ∴甲先到达地面.21.【答案】(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51% (2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人 (3)见解析【解析】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多, 占抽取人数:510100%=51%1000⨯; 答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%, (2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:17730 5.311000⨯万=万(人), 答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:1788.9%8967022%24178⨯+++100=,活动前全市骑电瓶车“都不戴”安全帽的百分比:17717.7%1000%⨯100=,8.9%17.7%<,因此交警部门开展的宣传活动有效果.22.【答案】(1)①见解析 ②见解析 (2)①真 ②真【解析】(1)①证明:凸五边形ABCDE 的各条边都相等,AB BC CD DE EA ∴====,在ABC △、BCD △、CDE △、DEA △、EAB 中,AB BC CD DE EABC CD DE EA ABAC BD CE DA BE ====⎧⎪====⎨⎪====⎩,()ABC BCD CDE DEA EAB SSS ∴△≌△≌△≌△≌,ABC BCD CDE DEA EAB ∴∠=∠=∠=∠=∠,∴五边形ABCDE 是正五边形;②解:若AC BE CE ==,五边形ABCDE 是正五边形,理由如下:在ABE △、BCA △和DEC △中,AE BA DC AB BC DEBE AC CE ==⎧⎪==⎨⎪==⎩,()ABE BCA DEC SSS ∴△≌△≌△,BAE CBA EDC ∴∠=∠=∠,AEB ABE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠,在ACE △和BEC △中,AE BC CE BEAC CE =⎧⎪=⎨⎪=⎩,()ACE BEC SSS ∴△≌△,ACE CEB ∴∠=∠,CEA CAE EBC ECB ∠=∠=∠=∠,四边形ABCE 内角和为360︒,180ABC ECB ∴∠+∠=︒, //AB CE ∴,ABE BEC ∴∠=∠,BAC ACE ∠=∠, 2CAE CEA ABE ∴∠=∠=∠, 3BAE ABE ∴∠=∠,同理:3CBA D AED BCD ABE BAE ∠=∠=∠=∠=∠=∠, ∴五边形ABCDE 是正五边形;(2)解:①若AC CE EA ==,如图3所示: 则六边形ABCDEF 是正六边形;真命题;理由如下: 凸六边形ABCDEF 的各条边都相等,AB BC CD DE EF EA ∴=====,在AEF △、CAB △和ECD △中,EF AB CD AF CB EDAE CA EC ==⎧⎪==⎨⎪==⎩,()AEF CAB ECD SSS ∴△≌△≌△,F B D ∴∠=∠=∠,FEA FAE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠, AC CE EA ==,60EAC ECA AEC ∴∠=∠=∠=︒,设F B D y ∠=∠=∠=,FEA FAE BAC BCA DCE DEC x ∠=∠=∠=∠=∠=∠=, 则2180y x +=︒①,260y x -=︒②, ①+②得:2240y =︒,120y ∴=︒,30x =︒,120F B D ∴∠=∠=∠=︒,30FEA FAE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠=︒, 303060120BAF BCD DEF ∴∠=∠=∠=︒+︒+︒=︒, F B D BAF BCD DEF ∴∠=∠=∠=∠=∠=∠,∴六边形ABCDEF 是正六边形;故答案为:真;②若AD BE CF ==,则六边形ABCDEF 是正六边形;真命题;理由如下: 如图4所示:连接AE 、AC 、CE ,在BFE △和FBC △中,EF CB BE FCBF FB =⎧⎪=⎨⎪=⎩,()BFE FBC SSS ∴△≌△,BFE FBC ∴∠=∠,AB AF =, AFB ABF ∴∠=∠, AFE ABC ∴∠=∠,在FAE △和BCA △中,AF CB AFE CBAEF AB =⎧⎪∠=∠⎨⎪=⎩,()FAE BCA SAS ∴△≌△,AE CA ∴=,同理:AE CE =,AE CA CE ∴==,由①得:六边形ABCDEF 是正六边形; 故答案为:真.23.【答案】(1)见解析(2)22n b m ∴=-(3)2b =或6b =【解析】(1)将点(2,4)-代入2y x bx c =++,得20b c -+=,2c b ∴=;(2)2b m =-,244c b n -=, 284b b n -∴=, 22n b m ∴=-,(3)2222()224b b y x bx b x b =++=+-+, 对称轴2b x =-, 当0b ≤时,0c ≤,函数不经过第三象限,则0c =;此时2y x =,当51x -≤≤时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当0b >时,0c >,函数不经过第三象限,则△0≤,08b ∴≤≤,402b x ∴-=-≤≤, 当51x -≤≤时,函数有最小值224b b -+, 当522b --<-≤时,函数有最大值13b +, 当212b -<-≤时,函数有最大值253b -; 函数的最大值与最小值之差为16,当最大值13b +时,2132164b b b ++-=, 6b ∴=或10b =-,48b ≤≤,6b ∴=;当最大值253b -时,22532164b b b -+-=, 2b ∴=或18b =,24b ≤≤,2b ∴=;综上所述2b =或6b =;24.【答案】(1)AF AP =(2)见解析MF PF =;(3)【解析】解:(1)设AP FD a ==,2AF a ∴=-,四边形ABCD 是正方形//AB CD ∴AFP DFC ∴△∽△ ∴AP AFCD FD = 即22a aa -=1a ∴1AP FD ∴==,3AF AD DF ∴=-=∴AF AP (2)在CD 上截取DH AF =AF DH =,90PAF D ∠=∠=︒,AP FD =,()PAF HDF SAS ∴≅△△PF FH ∴=,AD CD =,AF DH =1FD CH AP ∴===点E 是AB 中点,1BE AE EM ∴===PE PA AE ∴=+222145EC BE BC =+=+=,EC ∴=EC PE ∴=,1CMP ECP ∴∠=∠//AP CDP PCD ∴∠=∠ECP PCD ∴∠=∠,且1CM CH ==,CF CF =()FCM FCH SAS ∴△≌△FM FH ∴=FM PF ∴=(3)若点B '在BN 上,如图,以A 原点,AB 为y 轴,AD 为x 轴建立平面直角坐标系,EN AB ⊥,AE BE =1AQ BQ AP ∴===由旋转的性质可得1AQ AQ '==,2AB AB '==,1Q B QB ''==,点(0,2)B -,点(2,1)N -∴直线BN 解析式为:122y x =- 设点1(,2)2B x x '-2AB '∴= 85x ∴=∴点8(5B ',6)5-点1Q ',0)1B Q ''∴= ∴点B 旋转后的对应点B '不落在线段BN 上.。

2019年浙江省台州市中考数学真题试卷附解析

2019年浙江省台州市中考数学真题试卷附解析

C A BD OEF 2019年浙江省台州市中考数学真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图是一束从教室窗户射入的平行的光线的平面示意图,光线与地面所成的∠AMC=30°,在教室地面的影长 MN=23m ,若窗户的下檐到教室地面的距离 BC=lm ,则窗户的上檐到教室地面的距离AC 为( )A .23mB . 3 mC . 3.2 mD . 332m2.如图,DEF △是由ABC △经过位似变换得到的,点O 是位似中心,D E F ,,分别是OA OB OC ,,的中点,则DEF △与ABC △的面积比是( )A .1:6B .1:5C .1:4D .1:23.为了了解一批数据在各个范围所占比例的大小,将这批数据分组,落在各小组里的数据个数叫做( ) A .频率 B .频数 C .众数 D .中位数4.关于等腰梯形下列结论错误的是 ( ) A .只有一组相等的对边 B .只有一对相等的内角 C .只有一条对称轴 D .两条对角线相等5.下列说法中正确的是( ) A .每个命题都有逆命题 B .每个定理都有逆定理C .真命题的逆命题是真命题D .假命题的逆命题是假命题 6.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,有如下结论:① △ACE ≌△DCB ; ② CM =CN ;③ AC =DN .其中正确结论的个数是( )A . 3个B .2个C . 1个D .0个7.与如图所示的三视图相对应的几何体是( )A .B .C .D . 8.不改变分式的23.015.0+-x x 的值,把它的分子和分母中的各项的系数都化为整数,则所得的结果为( )A . 2315+-x xB . 203105+-x xC . 2312+-x xD .2032+-x x 9.下列不是二元一次方程组的是( )A .⎪⎩⎪⎨⎧=-=+141y x y xB .⎩⎨⎧=+=+42634y x y xC . ⎩⎨⎧=-=+14y x y xD . ⎩⎨⎧=+=+25102553y x y x 10.下列选项中,正确的是( )A . 27的立方根是 3±B 164±C . 9的算术平方根是3D .带根号的数都是无理数11.设某数为x ,“比某数的12大3的数等于5的相反数”,列方程为 ( )A .1352x -+=-B .1352x +=-C .1(3)52x -+=D .1352x -=- 12.用加减法解方程组232(1)523(2)x y x y -=⎧⎨+=-⎩,若消去 y ,下列正确的是( ) A .①×3+②×2,得160x =B . ①×2+②×3,得195x =-C . ①×3+②×2,得161x =-D .①×2+②×3,得19 1.x =-二、填空题13.如图,汽车在向右行驶的过程中,对于楼B ,司机看到的部分如何变化 .14.一张正方形纸片与两张正三角形纸片的边长相同,放在盒子里搅匀后,任取两张出来能拼成菱形的概率是 .15.已知函数y =(m +2)x m(m+1)是二次函数,则m=______________.116.如果302xy -=,那么y 是x 的 函数,其比例系数是 . 17.如果一个多边形内角和为 900°,那么这多边形是 边形.18.如果菱形的边长是6的周长是 .19.2002年上海市二月下旬每日最高气温分别为(单位:℃):13,13,12,9,11,16,12,10.则二月下旬气温的极差为 ℃.20.P(必然事件)= ,P(不可能事件)= .21.在ABC △中,BC 边不动,点A 竖直向上运动,A ∠越来越小,B C ∠∠,越来越大.若A ∠减少α度,B ∠增加β度,C ∠增加γ度,则αβγ,,三者之间的等量关系是 .22.说出一个可以用252x +表示结果的实际问题: . 三、解答题23.如图,甲站在墙前,乙在墙后,为了不被甲看到,请你在图中画出乙的活动区域.如图所示,快下降到地面的某伞兵在灯光下的影子为AB .试确定灯源P 的位置,并画出竖立在地面上木桩的影子EF .(保留作图痕迹,不要求写作法)25.如图,△ABC 是正三角形,曲线CDEF ……叫做“正三角形的渐开线”,其中 ⌒CD .⌒DE .⌒EF ……的圆心依次按A 、B 、C 循环,并依次相连结. 如果 AB=1,求曲线CDEF 的长.26.如图,在△ABC 中,AB=AC ,E 是AB 的中点,以点E 为圆心,EB 为半径画弧交 BC 于点 D ,连结 ED ,并延长 ED 到点 F ,使 DF =DE ,连结 FC . 求证:∠F=∠A .27.已知抛物线y=12x2+x-52.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.28.如图所示,在等腰梯形ABCD中,AD∥BC,DE⊥BC于点E,BF⊥AE于点F,请你添加一个条件,使△ABF≌△CDE.(1)你添加的一个..条件是;(2)请写出证明过程.29.某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1 所有评委所给分的平均数.方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3 所有评委所给分的中位数.方案4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.30.计算下列各式,结果用幂的形式表示:(1)32-;(6)24(5)+⋅;(5)23a b[()]()[(3)](2);(2)54-;(3)352x x⋅;(4)3443()()a a【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.B5.A6.B7.A8.B9.A10.C11.B12.B二、填空题13.变小14.1315.16.反比例,6 17.七18.24°19.720.1,021.αβγ=+22.小明回家做数学作业用了x分钟,做语文作业用了25分钟,则252x+表示他这两门作业平均每门需要的时间答案不唯一,如:三、解答题23.如图中斜线区.24.略25.⌒CD 的长120211803ππ⨯=,⌒DE 的长120421803ππ⨯=,⌒EF 的长12032180ππ⨯= 曲线 CDEF 的长为4π26.∵以点 E 为圆心,EB 为半径画弧交 BC 于点D ,∴EB=DE ,∵E 点是AB 的中点,且 AB=AC ,∴ ED=12AC .∵ DE= DF ,∴ EF=AC ,∵AB=AC ,∴∠ABC=∠ACB , ∵∵EB=DE ,∴∠EBD=∠EDB ,∴∠EDB=∠ACB ,∴EF ∥AC ,∵ EF=AC ,∴四边形AEFC 是平行四边形,∴∠.A=∠F.27.(1)抛物线的顶点坐标为(-1,-3),对称轴是直线x=-1;(2)AB=26 ..28.(1)如AF=EC ;(2)证明略.(答案不惟一).29.解:(1)方案1最后得分:1(3.27.07.83838.49.8)7.710+++⨯+⨯+=; 方案2最后得分:1(7.07.83838.4)88++⨯+⨯=;方案3最后得分:8; 方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”, 所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.30.(1)62;(2)203;(3)16x ;(4)24a ;(5)65-;(6)8()a b +。

2019年浙江省台州市中考数学试卷【优质】.docx

2019年浙江省台州市中考数学试卷【优质】.docx

2019年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分) 1.(4分)计算2a ﹣3a ,结果正确的是( ) A .﹣1B .1C .﹣aD .a2.(4分)如图是某几何体的三视图,则该几何体是( )A .长方体B .正方体C .圆柱D .球3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( ) A .5.952×1011B .59.52×1010C .5.952×1012D .5952×1094.(4分)下列长度的三条线段,能组成三角形的是( ) A .3,4,8B .5,6,10C .5,5,11D .5,6,115.(4分)方差是刻画数据波动程度的量.对于一组数据x 1,x 2,x 3,…,x n ,可用如下算式计算方差:s 2=1n [(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2],其中“5”是这组数据的( ) A .最小值B .平均数C .中位数D .众数6.(4分)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min .甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x3+y 4=5460,则另一个方程正确的是( )A .x4+y 3=4260B .x 5+y 4=4260C .x 4+y 5=4260D .x 3+y 4=42607.(4分)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则⊙O 的半径为( )A .2√3B .3C .4D .4−√38.(4分)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( )A .14B .12C .817D .8159.(4分)已知某函数的图象C 与函数y =3x 的图象关于直线y =2对称.下列命题:①图象C 与函数y =3x的图象交于点(32,2);②点(12,﹣2)在图象C 上;③图象C 上的点的纵坐标都小于4;④A (x 1,y 1),B (x 2,y 2)是图象C 上任意两点,若x 1>x 2,则y 1>y 2.其中真命题是( ) A .①②B .①③④C .②③④D .①②③④10.(4分)如图是用8块A 型瓷砖(白色四边形)和8块B 型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比为( )A .√2:1B .3:2C .√3:1D .√2:2二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:ax 2﹣ay 2= .12.(5分)若一个数的平方等于5,则这个数等于 .13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 .14.(5分)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE .若∠ABC =64°,则∠BAE 的度数为 .15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 个. 16.(5分)如图,直线l 1∥l 2∥l 3,A ,B ,C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =4,且m n=23,则m +n 的最大值为 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:√12+|1−√3|﹣(﹣1). 18.(8分)先化简,再求值:3x x −2x+1−3x −2x+1,其中x =12.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB 长92cm ,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY 22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形. (1)已知凸五边形ABCDE 的各条边都相等.①如图1,若AC =AD =BE =BD =CE ,求证:五边形ABCDE 是正五边形; ②如图2,若AC =BE =CE ,请判断五边形ABCDE 是不是正五边形,并说明理由: (2)判断下列命题的真假.(在括号内填写“真”或“假”) 如图3,已知凸六边形ABCDEF 的各条边都相等.①若AC =CE =EA ,则六边形ABCDEF 是正六边形;( ) ②若AD =BE =CF ,则六边形ABCDEF 是正六边形. ( )23.(12分)已知函数y =x 2+bx +c (b ,c 为常数)的图象经过点(﹣2,4). (1)求b ,c 满足的关系式;(2)设该函数图象的顶点坐标是(m ,n ),当b 的值变化时,求n 关于m 的函数解析式; (3)若该函数的图象不经过第三象限,当﹣5≤x ≤1时,函数的最大值与最小值之差为16,求b 的值.24.(14分)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP =FD . (1)求AF AP的值;(2)如图1,连接EC ,在线段EC 上取一点M ,使EM =EB ,连接MF ,求证:MF =PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.2019年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1B.1C.﹣a D.a【解答】解:2a﹣3a=﹣a,故选:C.2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.4.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D 选项,5+6=11,两边之和不大于第三边,故不能组成三角形 故选:B .5.(4分)方差是刻画数据波动程度的量.对于一组数据x 1,x 2,x 3,…,x n ,可用如下算式计算方差:s 2=1n [(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2],其中“5”是这组数据的( ) A .最小值B .平均数C .中位数D .众数【解答】解:方差s 2=1n [(x 1﹣5)2+(x 2﹣5)2+(x 3﹣5)2+…+(x n ﹣5)2]中“5”是这组数据的平均数, 故选:B .6.(4分)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min .甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x3+y 4=5460,则另一个方程正确的是( )A .x4+y 3=4260B .x 5+y 4=4260C .x 4+y 5=4260D .x 3+y 4=4260【解答】解:设未知数x ,y ,已经列出一个方程x 3+y 4=5460,则另一个方程正确的是:x 5+y 4=4260.故选:B .7.(4分)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则⊙O 的半径为( )A .2√3B .3C .4D .4−√3【解答】解:设⊙O 与AC 的切点为E , 连接AO ,OE ,∵等边三角形ABC 的边长为8, ∴AC =8,∠C =∠BAC =60°, ∵圆分别与边AB ,AC 相切, ∴∠BAO =∠CAO =12∠BAC =30°, ∴∠AOC =90°, ∴OC =12AC =4, ∵OE ⊥AC , ∴OE =√32OC =2√3,∴⊙O 的半径为2√3, 故选:A .8.(4分)如图,有两张矩形纸片ABCD 和EFGH ,AB =EF =2cm ,BC =FG =8cm .把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角α最小时,tan α等于( )A .14B .12C .817D .815【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=CD MD∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=17 4∴CM=15 4∴tanα=tan∠DMC=CDMC=815故选:D.9.(4分)已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x的图象交于点(32,2);②点(12,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④【解答】解:∵函数y=3x的图象在第一、三象限,则关于直线y=2对称,点(32,2)是图象C与函数y=3x的图象交于点;∴①正确;点(12,﹣2)关于y =2对称的点为点(12,6),∵(12,6)在函数y =3x 上, ∴点(12,﹣2)在图象C 上;∴②正确;∵y =3x 中y ≠0,x ≠0, 取y =3x上任意一点为(x ,y ),则点(x ,y )与y =2对称点的纵坐标为4−3x; ∴③错误;A (x 1,y 1),B (x 2,y 2)关于y =2对称点为(x 1,4﹣y 1),B (x 2,4﹣y 2)在函数y =3x上, ∴4﹣y 1=3x 1,4﹣y 2=3x 2,∵x 1>x 2>0或0>x 1>x 2, ∴4﹣y 1<4﹣y 2, ∴y 1>y 2; ∴④不正确; 故选:A .10.(4分)如图是用8块A 型瓷砖(白色四边形)和8块B 型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比为( )A .√2:1B .3:2C .√3:1D .√2:2【解答】解:如图,作DC ⊥EF 于C ,DK ⊥FH 于K ,连接DF . 由题意:四边形DCFK 是正方形,∠CDM =∠MDF =∠FDN =∠NDK ,∴∠CDK =∠DKF =90°,DK =FK ,DF =√2DK , ∴S △DFN S △DNK =FN NK=DF DK=√2(角平分线的性质定理,可以用面积法证明), ∴S A 型S B 型=2S △DFN 2S △DNK=√2,∴图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比为√2:1, 故选:A .二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:ax 2﹣ay 2= a (x +y )(x ﹣y ) . 【解答】解:ax 2﹣ay 2, =a (x 2﹣y 2), =a (x +y )(x ﹣y ). 故答案为:a (x +y )(x ﹣y ).12.(5分)若一个数的平方等于5,则这个数等于 ±√5 . 【解答】解:若一个数的平方等于5,则这个数等于:±√5. 故答案为:±√5.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是49.【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种, ∴两次摸出的小球颜色不同的概率为49;故答案为:49.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为52°.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共3个.【解答】解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,∵63<66,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个. 故答案为:3.16.(5分)如图,直线l 1∥l 2∥l 3,A ,B ,C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =4,且m n=23,则m +n 的最大值为253.【解答】解:过B 作BE ⊥l 1于E ,延长EB 交l 3于F ,过A 作AN ⊥l 2于N ,过C 作CM ⊥l 2于M ,设AE =x ,CF =y ,BN =x ,BM =y , ∵BD =4,∴DM =y ﹣4,DN =4﹣x ,∵∠ABC =∠AEB =∠BFC =∠CMD =∠AND =90°, ∴∠EAB +∠ABE =∠ABE +∠CBF =90°, ∴∠EAB =∠CBF , ∴△ABE ∽△BFC , ∴AE BF=BE CF,即x n=m y,∴xy =mn ,∵∠ADN =∠CDM , ∴△CMD ∽△AND , ∴AN CM=DN DM,即m n=4−x y−4=23,∴y =−32x +10, ∵m n=23,∴n =32m ,∴(m +n )最大=52m ,∴当m 最大时,(m +n )最大=52m ,∵mn =xy =x (−32x +10)=−32x 2+10x =32m 2, ∴当x =−102×(−32)=103时,mn 最大=503=32m 2, ∴m 最大=103, ∴m +n 的最大值为52×103=253.故答案为:253.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:√12+|1−√3|﹣(﹣1). 【解答】解:原式=2√3+√3−1+1=3√3. 18.(8分)先化简,再求值:3x x 2−2x+1−3x 2−2x+1,其中x =12.【解答】解:3xx −2x+1−3x −2x+1=3(x−1)(x−1)2=3x−1,当x =12时,原式=312−1=−6. 19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB 长92cm ,车杆与脚踏板所成的角∠ABC =70°,前后轮子的半径均为6cm ,求把手A 离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=AD AB,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【解答】解:(1)设y关于x的函数解析式是y=kx+b,{b=615k+b=3,解得,{k=−15 b=6,即y关于x的函数解析式是y=−15x+6;(2)当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:5101000×100%=51%;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×1771000=5.31万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:178896+702+224+178×100%=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:1771000×100%=17.7%,8.9%<17.7%,因此交警部门开展的宣传活动有效果.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,{AB=BC=CD=DE=EABC=CD=DE=EA=ABAC=BD=CE=DA=BE,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,{AE=BA=DCAB=BC=DEBE=AC=CE,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,{AE=BCCE=BEAC=CE,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;假命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=F A,在△AEF、△CAB和△ECD中,{EF=AB=CDAF=CB=EDAE=CA=EC,∴△AEF≌△CAB≌△ECD(SSS),如果△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假;②若AD=BE=CF,则六边形ABCDEF是正六边形;假命题;理由如下:如图4所示:连接AE、AC、CE、BF,在△BFE和△FBC中,{EF=CBBE=FCBF=FB,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△F AE和△BCA中,{AF=CB∠AFE=∠CBAEF=AB,∴△F AE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:△AEF、△CAB、△ECD都为相同的等腰直角三角形,则∠F=∠D=∠B=90°,而正六边形的各个内角都为120°,∴六边形ABCDEF不是正六边形;故答案为:假.23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=−b2,n=4c−b24,∴n=8b−b2 4,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+b2)2−b24+2b,对称轴x=−b 2,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=−b2≤0,当﹣5≤x≤1时,函数有最小值−b24+2b,当﹣5≤−b2<−2时,函数有最大值1+3b,当﹣2<−b2≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+b24−2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+b24−2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b =2或b =6;24.(14分)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP =FD .(1)求AF AP 的值;(2)如图1,连接EC ,在线段EC 上取一点M ,使EM =EB ,连接MF ,求证:MF =PF ;(3)如图2,过点E 作EN ⊥CD 于点N ,在线段EN 上取一点Q ,使AQ =AP ,连接BQ ,BN .将△AQB 绕点A 旋转,使点Q 旋转后的对应点Q '落在边AD 上.请判断点B 旋转后的对应点B '是否落在线段BN 上,并说明理由.【解答】解:(1)设AP =FD =a ,∴AF =2﹣a ,∵四边形ABCD 是正方形∴AB ∥CD∴△AFP ∽△DFC∴AP CD=AF FD 即a 2=2−a a∴a =√5−1∴AP =FD =√5−1,∴AF =AD ﹣DF =3−√5∴AF AP =√5−12(2)在CD 上截取DH =AF∵AF=DH,∠P AF=∠D=90°,AP=FD,∴△P AF≌△HDF(SAS)∴PF=FH,∵AD=CD,AF=DH∴FD=CH=AP=√5−1∵点E是AB中点,∴BE=AE=1=EM∴PE=P A+AE=√5∵EC2=BE2+BC2=1+4=5,∴EC=√5∴EC=PE,CM=√5−1∴∠P=∠ECP∵AP∥CD∴∠P=∠PCD∴∠ECP=∠PCD,且CM=CH=√5−1,CF=CF∴△FCM≌△FCH(SAS)∴FM=FH∴FM=PF(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,∵EN⊥AB,AE=BE∴AQ=BQ=AP=√5−1由旋转的性质可得AQ=AQ'=√5−1,AB=AB'=2,Q'B'=QB=√5−1,∵点B(0,﹣2),点N(2,﹣1)∴直线BN解析式为:y=12x﹣2设点B'(x,12x﹣2)∴AB'=√x2+(12x−2)2=2∴x=8 5∴点B'(85,−65)∵点Q'(√5−1,0)∴B'Q'=√(√5−1−85)2+3625≠√5−1∴点B旋转后的对应点B'不落在线段BN上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年台州市中考数学卷一、选择题1.单项式2a 的系数是( )A.2B.2aC.1D.a 2.下列四个几何体中,左视图为圆的是( )A B C D 3.在下列调查中,适宜采用全面调查的是( )A.了解我省中学生视力情况B.了解九(1)班学生校服的尺码情况C.检测一批电灯泡的使用寿命D.调查台州《600全民新闻》栏目的收视率 4.若反比例函数ky x=的图象经过点(2,-1),则该反比例函数的图象在( ) A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 5.若一组数据3,x ,4,5,6.,则这组数据的中位数为( ) A. 3 B.4 C.5 D.6 6.把多项式228x -分解因式,结果正确的是( )A.22(8)x - B. 22(2)x - C. 2(2)(2)x x +- D. 42()x x x-7.设二次函数2(3)4y x =--图象的对称轴为直线L 上,则点M 的坐标可能是( ) A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)8.如果将长为6cm ,宽为5cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8cmB.C.5.5cmD.1cm9.如图,在菱形ABCD 中,AB =8,点E 、F 分别在AB 、AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O ,当四边形AEOF与四边形CGOH 的周长之差为12时,AE 的值为( ) A.6.5 B.6 C.5.5 D.510.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。

”乙说:“两项都参加的人数小于5人。

”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )A.若甲对,则乙对;B.若乙对,则甲对;C.若乙错,则甲错;D.若甲粗,则乙对 二.填空题11.不等式240x -≥的解集是12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率 是13.如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,DC =3,则点D 到AB 的距离是 14.如图,这是台州市地图的一部分,分别以正东、正北方向为x 轴、y 轴的正方向建立直角 坐标系,规定一个单位长度表示1km ,甲、乙两人对着地图如下描述路桥区A 处的位置 甲:路桥区A 处的坐标是(2,0)乙:路桥区A 处在椒江区B 处南偏西30°方向,相距16km 则椒江区B 处的坐标是15.关于x 的方程210mx x m +-+=,有以下三个结论:①当m =0时,方程只有一个实数解②当0m ≠时,方程有两个不等的实数解③无论m 取何值,方程都有一个负数解,其中正确的是 (填序号)16.如图,正方形ABCD 的边长为1,中心为点O ,有一边长大小不定的正六边形EFGHIJ 绕点O 可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD 内(包括正方形的边),当这个六边形的边长最大时,AE 的最小值为二、解答题17.计算:06(3)12015÷-+--18.先化简,再求值:211(1)aa a -++,其中1a =19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示(1)根据图2填表:(2)变量y是x的函数吗?为什么?(3)根据图中的信息,请写出摩天轮的直径21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数(2)求证:∠1=∠223.如图,在多边形ABCDE 中,∠A =∠AED =∠D =90°,AB =5,AE =2,ED =3,过点E 作EF ∥CB 交AB 于点F ,FB =1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP =x ,PO .OQ =y (1)①延长BC 交ED 于点M ,则MD = ,DC =②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围24.定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究AMF S ∆,BEN S ∆和MNHG S 四边形的数量关系,并说明理由2019年浙江省初中学业水平考试(台州卷)数学参考答案和评分细则一、选择题(本题有10小题,每小题4分,共40分)二、填空题(本题有6小题,每小题5分,共30分) 11.2≥x 12.2113.3 14.(10,38) 15.①,③ 16.212- 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)解:020151)3(6--+-÷=112-+- ……………………………………6分=2-. ……………………………………………………2分18.(8分)解:211(1)a a a -++=22)1()1(1+-++a a a a …………………………………3分 22)1(1)1(1+=+-+=a a a a ………………………………3分当1a =- 时,原式2)112(1+-=…………………………1分21)2(12==. …………………………1分19.(8分)解:如图,过点A '作OA H A ⊥'于点H ,由旋转可知,80=='OA A O , …………1分 在Rt △H A O '中,︒'=35cos A O OH …………3分6.6582.080=⨯≈. ………………2分∴4.146.6580=-=-=OH OA AH 14≈cm .…2分 答:调整后点'A 比调整前点A 的高度降低了14cm .20.(8分)解:(1)表格中分别填写:5,70,5,54,5. ……………………3分(2)变量y 是x 的函数. …………………………2分理由:因为在这个变化过程中,对于x 的每一个确定的值,y 都有唯一确定的值与其对应,所以变量y 是x 的函数. ………………………………1分(3)摩天轮的直径是65570=-m . ………………………………2分21.(10分)解:(1)补全频数分布直方图,如图所示. ……………………………4分(2)∵100%1010=÷,∴%4010040=÷,∴40=m . ……………1分 ∵%41004=÷, ………1分 ∴“E ”组对应的圆心角度数︒=︒⨯=4.14360%4.……1分(写成14.4,也给分)(3)870%)4%25(3000=+⨯人…………2分答:估计该校学生中每周的课外阅读时间不小于6小时的人数是870人.22.(12分)(1)解:∵DC BC =,∴BC DC =.∴CBD CAD BAC ∠=∠=∠. ……………4分 ∵︒=∠39CBD ,∴︒=∠=∠39CAD BAC . ……2分 ∴︒=∠+∠=∠78DAC BAC BAD . ……………1分 (2)证明:∵BC EC =,∴CEB CBE ∠=∠. …………………………………2分 ∵CBD CBE ∠+∠=∠1,BAC CEB ∠+∠=∠2,…………………1分 ∴BAC CBD ∠+∠=∠+∠21. ………………………………1分 又∵CBD BAC ∠=∠,(第22题)∴21∠=∠. …………………………………1分 (利用其他方法进行解答,酌情给分)23.(12分)解:(1)①2=MD , ……………………………………1分1=DC ; ………………………1分②∵x AP =,∴x EP -=2. 在Rt △AEF 中,224tan ===∠AE AF AEF , ∴tan 2(2)24PO PE AEF x x =∠=⨯-=-+. ………………………1分 ∵︒=∠=∠90AED A ,∴AB DE .∵PQAB ,∴PQ ED .当10≤<x 时,如图1所示, ∵EFCB ,PQ AB ,∴四边形OFBQ 是平行四边形.∴1==FB OQ . ∴(24)124y PO OQ x x ==-+⨯=-+. ………………………1分 当21≤<x 时,如图2所示, ∵︒=∠=∠90D AED ,∴AE CD .∵PQED ,∴四边形DEPQ 是矩形.∴12)42(3-=+--=x x OQ . ………………… 1分 ∴2(24)(21)4104y PO OQ x x x x ==-+⨯-=-+-. ……………1分∴⎩⎨⎧≤<-+-≤<+-=.21410410422x x x x x y ,,,(2)y 关于x 的函数图象如图3所示.当10≤<x 时,y 随着x 的增大而减小,所以⎩⎨⎧-==.246,39a b a ………………1分解得⎪⎪⎩⎪⎪⎨⎧==.95,31b a ………………………2分(第23题图1)M(第23题图2)(第23题图3)(3)45521+≤≤x . ……………………………………………………2分 24.(14分)(1)解:当MN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴54922=-=-=AM MN BN .当BN 为最大线段时,∵点M ,N 是线段AB 的勾股分割点, ∴134922=+=+=AM MN BN .综上,5=BN 或13. …………………………………3分(2)证明:∵FG 是△ABC 的中位线,∴FG BC ∥. ∴1===GCAG NE AN MD AM . ∴点M ,N 分别是AD ,AE 的中点.∴FM BD 2=,MN DE 2=,NG EC 2=. …………………………2分 ∵点D ,E 是线段BC 的勾股分割点,且EC >DE∴222DE BD EC +=.∴222)2()2()2(MN FM NG +=.∴222MN FM NG +=.∴点M ,N 是线段FG 的勾股分割点.…………………………2分 (3)用尺规画出图形,如图3所示. …………………………3分 (4)解:+AMF BEN MNHG S S S =△△四边形. …………………………………1分 理由:设a AM =,b BN =,c MN =, ∵H 是DN 的中点,∴c HN DH 21==. ∵△MND ,△BNE 均为等边三角形, ∴︒=∠=∠60DNE D . ∵NHE DHG ∠=∠, ∴△DGH ≌△NEH .∴b EN DG ==.∴b c MG -=. ∵GM EN ∥,∴△AGM ∽△AEN .(第24题图3)(第24题图2)(第24题图4)∴ca ab bc +=-. ∴bc ac ab c +-=22.∵点M ,N 是线段AB 的勾股分割点, ∴222b a c +=. ∴c a b b a )()(2-=-,又∵c a b ≠-.∴b a =. …………………………………1分 在△DGH 和△CAF 中,C D ∠=∠,CA DG =,CAF DGH ∠=∠, ∴△DGH ≌△CAF .∴DGH CAF S S =△△. ……………………………………1分 ∵222b a c +=,∴222434343b a c +=. ∴DMN ACM ENB S S S =+△△△.∵DMN DGH MNHG S S S =+△△四边形,ACM CAF AMF S S S =+△△△,∴+AMF BEN MNHG S S S =△△四边形. ……………………………………1分。

相关文档
最新文档