什么是测量系统分析
msa概念
![msa概念](https://img.taocdn.com/s3/m/159781933086bceb19e8b8f67c1cfad6195fe9c6.png)
MSA是Measurement System Analysis(测量系统分析)的缩写,是一种用于评估测量系统性能的方法。
测量系统是指用于测量物理量的设备、仪器和技术,例如测量工具、测量仪器、计算机软件等。
MSA的主要目的是确定测量系统的精度、可重复性和可追溯性,并确定测量系统的误差来源和影响程度。
通过MSA分析,可以确定测量系统的误差来源和影响程度,并采取相应的措施来改进测量系统的性能。
MSA分析通常包括以下几个步骤:
1. 确定测量系统的类型和特性:根据测量系统的类型和特性,确定需要分析的参数和指标。
2. 收集和分析数据:收集测量数据,并进行统计分析,确定测量系统的精度、可重复性和可追溯性等性能指标。
3. 确定误差来源和影响程度:通过分析数据和统计方法,确定测量系统的误差来源和影响程度,并确定误差的大小和分布情况。
4. 制定改进计划:根据MSA分析结果,制定改进计划,包括改进测量系统的设备、仪器、技术和操作方法等。
MSA分析是一种重要的质量管理工具,可以帮助企业提高产品质量和生产效率,降低成本和风险。
在制造业、医疗保健、航空航天、汽车制造等领域广泛应用。
测量系统分析
![测量系统分析](https://img.taocdn.com/s3/m/63e0ba66caaedd3383c4d36e.png)
(四)重复性(EV)和再生性(AV)——R&R(目前客人的要求只 重复性( )和再生性( ) (
须做到这点,演示客人要求的格式) 须做到这点,演示客人要求的格式) 1、再现性(EV):同一测量仪器、同一测量人员、重复测量同一测量对象时 、再现性( ):同一测量仪器、同一测量人员、 ):同一测量仪器 所存在的差异。 所存在的差异。 如作业者测量21530压帽孔¢8.89尺寸,第一次测得¢8.89,第二次测得 压帽孔¢ 尺寸, 如作业者测量 压帽孔 尺寸 第一次测得¢ , ¢9.91 则其变异为0.02。它反映测量设备本身德随机变差。 。它反映测量设备本身德随机变差。 则其变异为
偏移
-0.2 -0.3 -0.1 -0.1 0.0 0.1 0.0 0.1 0.4 0.3 0.0 0.1 0.2 -0.4 0.0
此零件 的基准 值为 16.0
6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0
用MINITAB计算: MINITAB计算 计算:
4、偏倚的判读:详见《线性和偏倚分析报告》 偏倚的判读:详见《线性和偏倚分析报告》 (二)线性 1、线性:用以衡量量具预期的工作量程内偏移的变化。 线性:用以衡量量具预期的工作量程内偏移的变化。 即可视为偏倚对于量程大小不同时发生的变化。 即可视为偏倚对于量程大小不同时发生的变化。 测量 5㎝、10㎝ 、20㎝ 、50㎝ 时 偏移 △1、 10㎝ 20㎝ 50㎝ 不相等。 △2 、△3、△4不相等。
分析: 线性Linearity(%)是13.167,偏移 分析: 线性 是 ,偏移Bias(%)是0.367。 是 。 从图形显示,参考值4呈现两种模式 呈现两种模式。 从图形显示,参考值 呈现两种模式。Bias=0的直线不完全落入信 的直线不完全落入信 赖区内Confidence Interval),此部分可以参考回归分析,所以, 赖区内 ,此部分可以参考回归分析,所以, 图一 此量测系统可能存在线性问题。 此量测系统可能存在线性问题。
测量系统MSA分析
![测量系统MSA分析](https://img.taocdn.com/s3/m/be11008d2dc58bd63186bceb19e8b8f67c1cef91.png)
测量系统MSA分析1. 简介测量系统分析(Measurement System Analysis,简称MSA)是针对测量系统进行的一项评估,用于确定测量系统的准确性和稳定性。
MSA分析是质量管理中非常重要的一部分,可以帮助我们评估测量系统的可靠性,从而确保产品质量的准确性和可靠性。
2. MSA分析的目的MSA分析的主要目的是确保测量系统的有效性和稳定性。
它通过评估测量系统的各种组件,如测量设备、操作员和测量过程,来确定测量系统的可靠性和精确度。
具体来说,MSA分析有以下几个目标:•评估测量设备的准确性和稳定性•评估操作员的测量技能和一致性•评估测量过程的可重复性和再现性•识别并减少测量系统中的变异源3. MSA分析的方法在进行MSA分析时,通常可以采用以下几种方法:3.1 精度和偏差分析精度和偏差分析是一种常用的MSA分析方法,它通过比较测量系统的测量结果与参考值之间的差异来评估测量设备的准确性和稳定性。
通常可以采用直方图、散点图等方式来可视化表示测量结果与参考值之间的差异,进而确定测量设备的偏差情况。
3.2 重复性和再现性分析重复性和再现性分析是评估测量过程的可重复性和再现性的方法。
重复性指的是同一测量设备在同一测量条件下进行多次测量时产生的结果的一致性,而再现性指的是不同测量设备在相同测量条件下进行多次测量时产生的结果的一致性。
通过统计分析和可视化展示重复性和再现性的数据,可以评估测量过程的稳定性和可靠性。
3.3 线性度和偏移分析线性度和偏移分析是评估测量系统线性度和偏移情况的方法。
线性度指的是测量设备在不同测量范围内的测量结果是否存在线性关系,而偏移指的是测量设备的测量结果是否存在常数偏差。
通过对测量结果进行统计分析和可视化展示,可以确定测量系统的线性度和偏移情况。
4. MSA分析的应用MSA分析在实际应用中具有广泛的用途,特别是在制造业领域。
以下是一些常见的应用场景:•生产线上定期进行测量设备的校验和维护,以确保测量结果的准确性和稳定性。
关于测量系统分析的介绍
![关于测量系统分析的介绍](https://img.taocdn.com/s3/m/700fd061783e0912a2162a2e.png)
前言测量系统分析报告(Measurement System Analysis Report)功能/Function 研究测量系统的重复性和再现性/V ariable Gauge R&R Study二、常见的定义1.测量系统:是对测量单元进行量化或对被测的特性进行评估,其所用的仪器或量具、标准、操作、方法、夹具、软件、人员、环境及假设的集合;用来获得测量结果的整个过程2.宽度变差-重复性:一个评价人使用一件测量仪器中,对同一零件的某一特性进行多次测量下的变差-再现性:不同评价人使用相同的量具,测量一个零件的一个特性的测量平均值的变差-GRR或量具的重复性和再现性:量具的重复性和再现性:测量系统重复性和再现性联合估计值测量系统能力:取决于所用的方法,可能包括或不包括时间的影响-测量系统能力:测量系统变差的短期估计值-测量系统性能:测量系统变差的长期估计值3.系统变差测量系统的变差可分类为:-能力:短期内读数的变化量-性能:长期读数的变化量-不确定度:有关被测值的数值估计范围,相信真值都被包括在该范围内注:测量系统的总变差的所有特征是假设该系统稳定并且一致三、测量系统的统计特性1.一个理想的测量系统是每次使用时均能产生“正确的”测量结果;每个测量都会遵循某个标准。
能够产生这样的测量结果的测量系统被称为具有如下的统计特性:零变差、零偏倚,及对其所测量的产品被错误分析的可能性为零2.管理者有责任为最佳的数据应用,识别最为重要的统计特征;管理者也有责任确保使用这些特征作为选择测量系统的依据3.评估一个测量系统为“好”的测量系统,包括一些基本特性:1) 具有足够的分辨力和敏感度。
测量的增值应该小于测量目的相应的过程变差或规范限值。
通常被称为10比1原则,也就是说仪器的分辨力应该能将公差(或过程变差)划分成10等份或者更多。
这比例规则的意图是作为选择量具时的一个实际最先遵守的原则2) 测量系统应处于统计受控状态。
测量系统分析
![测量系统分析](https://img.taocdn.com/s3/m/b1a5047852ea551811a68734.png)
1.00
0.75
0.50
1
2
3ple
Range图M e应as u该r e显me n示t h一O个pe受ra t控o r 过
程。 1.00
0.75 如果有一点落在UCL上方, 操
0.50 作员在进行一致的测量时将
会有1问题。
2
3
Range图可以帮O p e助r a识t o r别不足的
A
A = 2.25
B = 2.00 B
1
2
3
第二个刻度的分辨率比两个被 测对象之间的差异要小,被测 对象将产生不同的测量结果, 分辨力为0.01。
测量仪器的分辨率必须小于或等于规范或过程变差的10%。
YOUR SITE HERE
准确性
测量的准确性(又称为偏倚)是测量所得的平均值与真实值 的差别。
基准值
9 10
0.75
0.50
1
2
3
Operator
Operator 乘 Sample 交互作用
1.00 0.75 0.50
Operator 1 2 3
平均
1 2 3 4 5 6 7 8 9 10 Sample
样本均值
YOUR SITE HERE
变异分量
% 贡献
Gage R&R X / R 图 200
% 研究变异
(TV )2 (PV )2 ( AV )2 (EV )2
YOUR SITE HERE
连续数据测量系统分析
数据收集原则
测量者
1
2
3
被测对象 1 2 ......
10
测量次数 1 2
12
2~3个测量者
测量系统分析(MSA)知识科普
![测量系统分析(MSA)知识科普](https://img.taocdn.com/s3/m/c3a439673d1ec5da50e2524de518964bcf84d28e.png)
测量系统分析(MSA)知识科普一、什么是MSA?测量系统分析,英文Measurement System Analysis,缩写MSA,简单地说测量系统分析就是“对测量系统所作的分析”。
为了理解MSA的含义,我们可以把它分解成两个部分,一个是“测量系统”,一个是“分析”。
01.什么是测量系统?我们知道测量就是一个对被测特性赋值的过程,测量系统其实就是这个赋值过程涉及到的仪器或量具、标准、操作、方法、夹具、软件、人员环境等要素的集合。
系统中各个要素对测量结果的影响可能是独立的,也可能是相互影响的。
02.什么是“分析”?其实,如果要较个真,我们可以说测量系统分析的根本对象不是零件,而是测量系统输出的变差。
“分析”代表了一系列的分析方法。
MSA要回答的问题是:我们测量出来的数据在多大程度上代表了真实的数据?尽管我们永远不能确保测量出绝对准确的数据,但如果采集的数据偏差过大,那么这些数据就没有分析意义,可见MSA是非常关键的。
二、MSA的目的MSA的目的就是通过测量系统输出变差的分析,判断测量系统是不是可接受的,如果不可接受,进而采取相应的对策。
需要注意的是,世界上没有绝对完美的测量系统,因此测量系统误差可以减少但不能绝对消除。
三、MSA方法论MSA涉及多种方法,每一种都跟统计有关。
对大多数人来说,这些方法往往难以被记住,包括我自己。
为了便于理解记忆,我们先对“变差”进行剥丝抽茧,即进行结构,看看那些指标可以用于表征测量系统的测量变差。
弄清楚了这些指标,MSA方法论也就清晰可见了。
第一层:测量观察到的总变差(Observed Variation)=零件间变差(Unit-to-unit variation)+ 测量系统误差(Measurement system Error)其中零件间变差是指不同零件间客观存在的真实差异,由零件本身决定;测量系统误差就是我们MSA的对象,即由测量系统能力决定的测量偏差。
第二层:测量系统误差(Measurement system Error)=精确度(precision) + 准确度(Accuracy)精确度研究的是测量变差的波动范围,没有考虑与真值的差异;准确度研究的是测量变差离真值(或参考值)的差异。
测量系统分析(MSA)
![测量系统分析(MSA)](https://img.taocdn.com/s3/m/ac82c638ae45b307e87101f69e3143323868f555.png)
稳定性好
真值 时间 1
时间 1
真值
稳定性差
时间 2
时间2
时间 3
时间3
Y的测量系统评价 对散布的评价
- 精密度 : 根据测量系统反复性和再现性的总变动
- 反复性 : 重新测量也有相同的结果吗 ?
- 再现性 : 用其他测量系统也有相同的结果吗 ?
Y的测量系统评价
精密度
- 测量系统中的总散布 术语: 随机误差( Random Error ), 分散( Spread ), 测试/再测试误差( Test/Retest error ) 重复性和再现性
据的信赖性,通过研究测量系统所发生的 Nhomakorabea动对工程散布的影响,从 而判断该测量系统的适合性
MSA 概要
测量系统评价的重要性
1.测量数据 1)作为分析判断的基本依据,有必要评价其信赖性; 2)依据测量系统进行观测和评价
2.测量系统的分析 是6SIGMA活动的最基本的工作和最重要的部分之一
3.测量系统分析被强调的原因 1)所有的产品通常都是由许多部件构成的; 2)产品的小型化趋势使产品的误差界限缩小; 3)部件更换或组装时通常要求有互换性; 4)为了能大量生产,通常有增大自动组装的必要性
计量型数据的 Gage R&R P/T 比
P / T = 5.15*s MS
Tolerance
一般用 %表现
说明有多少百分比的公差 由测量误差所占据
包括重复性和再现性
作为目标,我们追求 P/T < 30%
注意 : 5.15标准偏差占测量系统散布的 99%. 5.15是产业标准.
计量型数据的 Gage R&R
70
80
Process
MSA测试系统分析
![MSA测试系统分析](https://img.taocdn.com/s3/m/a301ff69492fb4daa58da0116c175f0e7cd119f4.png)
MSA测试系统分析概述MSA(Measurement System Analysis)是指测量系统分析,是用来评估和确认测量系统的可靠性和准确性的一种方法。
在各行各业的生产和质量控制过程中,测量系统都扮演着十分重要的角色,因此,对测量系统进行分析和评估是非常必要的。
本文将介绍MSA测试系统分析的背景、涉及的主要步骤和相关的统计方法。
背景在生产过程中,对产品的测量和检验是十分重要的环节。
通过测量,可以评估产品特性是否符合要求,从而提高生产过程的控制和产品质量。
然而,测量结果的准确性和可靠性受到许多因素的影响,包括测量设备、操作人员和环境等。
为此,需要对测量系统进行分析和评估,以确保测量结果的准确性和可靠性。
MSA测试系统分析通常包括以下几个主要步骤:确定测量系统的目的首先,需要明确测量系统的目的和应用情境。
例如,是用于产品的检验还是生产过程的控制,或者是用于供应商评估等。
不同的目的和应用情境可能需要使用不同的测量方法和统计方法。
选择适当的指标选择适当的指标是进行MSA测试系统分析的关键步骤。
常见的指标包括测量误差、重复性、稳定性等。
根据不同的情况,选择合适的指标进行分析。
收集数据是进行MSA测试系统分析的必要步骤。
根据所选择的指标,使用适当的方法进行数据的采集和记录。
通常可以使用测量仪器来收集数据,并记录在数据表中。
分析数据在收集到足够的数据后,可以对数据进行分析。
常用的统计方法包括统计描述、方差分析、回归分析等。
通过这些统计方法,可以评估测量系统的准确性、稳定性和重复性等指标。
结果解释和改进措施根据数据分析的结果,可以对测量系统进行评估和解释。
如果测量系统存在问题,可以采取相应的改进措施,如调整测量设备、培训操作人员或改善环境等。
通过对测量系统进行分析和评估,可以得出结论和建议。
根据分析结果,可以评估测量系统的可靠性和准确性,并提出改进建议,以提高测量系统的性能和效果。
结论MSA测试系统分析是一种重要的方法,用于评估和确认测量系统的可靠性和准确性。
测量系统分析
![测量系统分析](https://img.taocdn.com/s3/m/82629e6d4a73f242336c1eb91a37f111f1850d34.png)
测量系统分析测量系统分析是指通过对测量系统的性能和准确度进行评估和优化的过程。
测量系统是指用于测量和获取物理量的设备、传感器、仪器以及测量方法和技术。
测量系统分析的目的是确保测量系统能够提供准确、可重复和可靠的测量结果,并通过分析测量误差和不确定度来估计测量结果的可靠性和可信度。
测量系统分析通常包括以下几个方面的内容:测量系统的准确度、精确度、稳定性、灵敏度、线性度、重复性、回归性等参数的分析;测量系统误差和不确定度的评估;测量系统的校准和检验方法的验证;测量系统的故障和异常检测;测量系统的改进和优化等。
测量系统的准确度是指测量结果与真实值之间的偏差或误差,可以通过与已知标准物件进行比较来评估。
精确度是指测量结果的稳定性和重复性,可以通过多次重复测量同一物理量来评估。
稳定性则是指测量结果在长时间和不同环境条件下的变化程度。
测量系统的灵敏度是指测量系统对于输入信号的改变的响应程度,通常使用灵敏度系数来表示。
线性度是指测量系统输出与输入之间的线性关系的程度,可以通过线性回归分析来评估。
回归性是指测量系统的输出在不同输入变量条件下的一致性和稳定性。
测量系统误差和不确定度的评估是指通过测量数据的分析和处理来估计测量结果的误差和不确定度。
常见的方法包括使用统计学方法进行数据分析、建立数学模型进行数据处理和误差传递分析、进行多次测量来减小随机误差等。
测量系统的校准和检验方法的验证是指确定测量系统校准和检验方法的可信度和可靠性。
校准是指通过已知标准物件来调整和修正测量系统的偏差和误差,以提高测量结果的准确度和可靠性。
检验是指通过对已知物件的测量来验证测量系统的准确度和精确度。
测量系统的故障和异常检测是指通过对测量数据的监控和分析来检测测量系统中可能存在的故障和异常情况。
常见的方法包括使用控制图进行数据监控和故障诊断、进行实验和模拟来验证测量系统的可靠性和稳定性。
测量系统的改进和优化是指通过对测量系统进行分析和评估,找出问题和瓶颈,并采取相应的措施来改进和优化测量系统的性能和准确度。
测量系统分析
![测量系统分析](https://img.taocdn.com/s3/m/f706a5c233d4b14e8524689b.png)
4. 造成重复性的可能原因有: • 零件内部(抽样样本): 形状,位置,表面粗糙,锥度,样本的一 致性 • 仪器内部: 维修,磨损,设备或夹具的失效,质量或保养不好 • 标准内部: 质量,等级,磨损 • 方法内部: 作业准备,技巧,归零固定,夹持,点密度的变差 • 评价人内部: 技巧,位置,缺乏经验,操作技能或培训,意识,疲 劳 • 环境内部: 对温度,湿度,振动,清洁的小幅波动 • 错误的假设 — 稳定,适当的操作 • 仪器一致性不好 • 量具误用 • 失真( 量具或零件), 缺乏坚固性 • 应用 — 零件数量,位置,观测误差(易读性, 视差)
3.
计数型测量系统分析结果判别准则
决定测量系统 评价人可接受条件 评价人可接受条件 可能需要改进 评价人不可接受条件 需要改进 有效性 错误性 错误警报率
≥90% ≥80%
≤2% ≤5%
≤5% ≤10%
<80%
>5%
>10%
本例中,将已得到的所有信息进行汇总,得到以下结论: 评价人 A B 有效性 84% 90% 错误率 6.3% 6.3% 错误警报率 4.9% 2.0%
测量系统分析
MSA
测量系统分析(MSA)是汽车行业在采用质量管理体系 标准ISO/TS16949:2002时所涉及的五种核心工具之一。正 确地选用与运用测量系统,能保证较低的测量成本获得高质 量的测量数据。 几个重要概念 1. 测量:赋值(或数)给具体物以来表示它们之间关于特定 特性的关系。赋值过程定义为测量过程,而赋予的 值定义为测量值。 2. 量具:任何用来获得测量结果的装置,经常是特别用在工 厂现场的装置,包括通/止规。 3. 测量系统:是用来对被测量的仪器、夹具、软件、标准、 操作、方法、人员、环境及假设的集合。用来 获得测量结果的整个过程。
测量系统分析msa
![测量系统分析msa](https://img.taocdn.com/s3/m/aae723f59e3143323968939c.png)
8、参考标准:一般在给定位置可得到的最高计量质量标准,在这个位置进行的
测量,都是以此标准为最终参照。 9、测量和试验设备(M&TE):完成一次测量所必需的所有测量仪器,测量标准, 基准材料以及辅助设备。 10、校准标准:在进行定期校准中作为基准的标准,用来减轻按照试验室基准 标准来进行的校准工作负担。 11、传递标准:用于把一个独立的已知值的标准与正在校准的元件进行比较的
第五阶段 反馈、评定 和纠正措施 批量生产
8、“过程分析(乌龟图)”在测量系统分析(MSA )中的运用
过程分析(乌龟图)工作表
使用什么方式进行 ⑤
(材料/设备/装置)
填写机器(包括试验设备),材 料,计算机系统,过程中所使用 的软件等的详细说明
由谁进行? ⑥ (能力/技能/知识/培训) 填写资源要求,特别注意要 求的技能和能力准则,安全 设备等
填写相关的过程控制、支持过程、 管理过程、程序、作业指导书、 方法和技术等的详细说明
使用的关键准则是什么? (测量/评估) ⑦ 填写过程有效性的测量,比 如矩阵和指标
注:测量系统分析(MSA)的“过程分析(乌龟图)”表中之具体和详细内容的填写请见附件二。
9、测量系统分析(MSA )的目的 1)、对参加课程培训的人员:
主要是针对产品特性所使用到的测量系统。
■ 所用的测量分析方法及接收准则必须与顾客关于测量系统分析 的参考手册相一致。
■ 如经顾客批准,也可以采用其它方法及接收准则。
■ ISO/TS16949:2002 标准中的体系内部审核检查表强调要有证 据证明上述要求已达到。 ■ 生产件批准程序(PPAP)手册中明确规定:对新的或改进的量 具、测量和试验设备必须参考测量系统分析(MSA)手册进行 变差统计研究。 ■ 产品质量先期策划(APQP)手册中明确规定:测量系统分析
测量系统分析
![测量系统分析](https://img.taocdn.com/s3/m/ad37b63d0912a21614792953.png)
测量系统分析(Measurement Systems Analysis,MSA) 数据是通过测量获得的,对测量定义是:测量是赋值给具体事物以表示他们之间关于特殊特性的关系。
这个定义由C.Eisenhart首次给出。
赋值过程定义为测量过程,而赋予的值定义为测量值。
测量系统分析的基本内容[1]从测量的定义可以看出,除了具体事物外,参于测量过程还应有量具、使用量具的合格操作者和规定的操作程序,以及一些必要的设备和软件,再把它们组合起来完成赋值的功能,获得测量数据。
这样的测量过程可以看作为一个数据制造过程,它产生的数据就是该过程的输出。
这样的测量过程又称为测量系统。
它的完整叙述是:用来对被测特性定量测量或定性评价的仪器或量具、标准、操作、夹具、软件、人员、环境和假设的集合,用来获得测量结果的整个过程称为测量过程或测量系统。
众所周知,在影响产品质量特征值变异的六个基本质量因素(人、机器、材料、操作方法、测量和环境)中,测量是其中之一。
与其它五种基本质量因素所不同的是,测量因素对工序质量特征值的影响独立于五种基本质量因素综合作用的工序加工过程,这就使得单独对测量系统的研究成为可能。
而正确的测量,永远是质量改进的第一步。
如果没有科学的测量系统评价方法,缺少对测量系统的有效控制,质量改进就失去了基本的前提。
为此,进行测量系统分析就成了企业实现连续质量改进的必经之路。
近年来,测量系统分析已逐渐成为企业质量改进中的一项重要工作,企业界和学术界都对测量系统分析给予了足够的重视。
测量系统分析也已成为美国三大汽车公司质量体系QS9000的要素之一,是6σ质量计划的一项重要内容。
目前,以通用电气(GE)为代表的6σ连续质量改进计划模式即为:确认(Define)、测量(Measure)、分析(Analyze)、改进(Improve)和控制(Control),简称DMAIC。
从统计质量管理的角度来看,测量系统分析实质上属于变异分析的范畴,即分析测量系统所带来的变异相对于工序过程总变异的大小,以确保工序过程的主要变异源于工序过程本身,而非测量系统,并且测量系统能力可以满足工序要求。
测量系统分析的应用
![测量系统分析的应用](https://img.taocdn.com/s3/m/d930751cac02de80d4d8d15abe23482fb4da0296.png)
测量系统分析的应用引言测量系统分析是指通过对测量过程的系统性分析,评估和优化,以确保测量结果的准确性和可靠性。
在各行各业的生产过程中,测量系统都扮演着至关重要的角色。
无论是生产控制、质量检测还是产品开发,正确的测量结果都对生产过程的决策产生重要影响。
本文将介绍测量系统分析的应用,从而帮助读者更好地理解和运用测量系统分析。
测量系统的重要性测量系统在工业生产和科学研究中都起着重要作用。
它们用于测量和收集数据,并根据这些数据做出决策和控制过程。
正确的测量结果是合格产品的基础,也是改进产品和过程的关键。
如果测量系统存在偏差或误差,将会导致生产过程中出现问题,影响产品质量和客户满意度。
测量系统分析的目标测量系统分析的主要目标是评估和优化测量系统的能力,以确保测量结果的可靠性和准确性。
它可以帮助我们了解测量系统的强点和弱点,从而采取适当的措施来修正和改进测量过程。
以下是测量系统分析的主要目标:1.评估测量系统的重复性和再现性:重复性指同一操作员在相同条件下重复测量同一件物品时的结果一致性;再现性是不同操作员在相同条件下测量同一件物品时的结果一致性。
测量系统的重复性和再现性是测量系统能力的重要指标,也是测量结果的可靠性的保证。
2.评估测量系统的准确性和偏差:准确性是指测量结果与真实值之间的接近程度,偏差是指测量结果与真实值之间的差异。
准确性和偏差的评估可以帮助我们确定测量系统的准确程度,并采取措施来降低偏差,提高准确性。
3.评估测量系统的线性和稳定性:线性是指测量系统对不同范围内的变化是否有相同的响应;稳定性是指测量系统在一段时间内保持相同的性能和准确性。
线性和稳定性的评估可以帮助我们了解测量系统在不同条件下的性能表现,并找到改进的方向。
4.评估测量系统的故障和异常:测量系统可能会出现故障和异常情况,例如传感器失灵、仪器校准不准确等。
对测量系统的故障和异常进行分析可以帮助我们及时发现和处理问题,并确保测量系统的可靠性和稳定性。
测量系统分析范文
![测量系统分析范文](https://img.taocdn.com/s3/m/ec18837a30126edb6f1aff00bed5b9f3f90f7208.png)
测量系统分析范文测量系统分析是指通过对物理量进行测量和分析,以获得准确的测量结果和数据,进而进行科学研究和工程设计。
测量系统中包括测量对象、测量仪器、测量环境和测量人员等要素,对这些要素进行全面的分析和评估,以保证测量系统的准确性和可靠性。
首先,测量对象是测量系统的核心要素之一、测量对象的性质和特点直接影响测量结果的准确性和可靠性。
在测量系统分析过程中,需要对测量对象进行全面的分析和了解,包括测量对象的形状、大小、材料、表面状态等。
不同的测量对象可能需要采用不同的测量方法和仪器,因此需要针对具体的测量对象进行合理的选择和设计测量系统。
其次,测量仪器是测量系统中的重要组成部分。
测量仪器的选择和使用对测量结果的准确性和稳定性具有重要影响。
在测量系统分析中,需要对测量仪器的性能和功能进行评估,包括测量范围、测量精度、分辨率、稳定性、响应速度等。
同时还需要对测量仪器的校准和校正进行分析,以确保测量仪器的准确性和可靠性。
此外,还需要注意测量仪器的适用范围和限制条件,以充分发挥测量仪器的优势和避免误差。
测量环境也是测量系统分析中的重要因素之一、测量环境的条件和影响因素对测量结果的准确性和可靠性具有重要影响。
在测量系统分析中,需要对测量环境进行评估和控制,包括温度、湿度、气压、振动、干扰源等。
不同的测量对象和测量方法对测量环境的要求不同,因此需要针对具体的测量环境进行分析和设计对策,以保证测量结果的准确性和可靠性。
最后,测量人员是测量系统分析中的重要环节。
测量人员的专业水平和操作技能对测量结果的准确性和可靠性起着决定性作用。
在测量系统分析中,需要对测量人员的培训和素质进行评估和提升,包括测量理论知识、仪器使用方法、实验操作技巧等。
同时还需要对测量人员的操作规范和质量控制进行严格管理,以提高测量人员的工作效率和测量结果的准确性。
综上所述,测量系统分析是保证测量结果准确性和可靠性的重要手段。
通过对测量对象、测量仪器、测量环境和测量人员等要素进行全面的分析和评估,能够充分发挥测量仪器的优势,减小误差,提高测量结果的准确性和可靠性。
测量系统分析(MSA)
![测量系统分析(MSA)](https://img.taocdn.com/s3/m/b57797c58bd63186bcebbcb6.png)
测量系统分析(MSA)一、什么是测量系统分析?测量系统是指由测量仪器(设备)、测量软件、测量操作人员和被测量物所组成的三个整体。
MSA(Measurement System Analysis)是指检测测量系统以便更好地了解影响测量结果的变异来源及其分布的一种方法。
通过测量系统分析可把握当前所用的测量系统有无问题和主要问题出在哪里,以便及时纠正偏差,使测量精度满足要求。
重复性也叫设备变差。
用同一评价者在同一测量设备上多次测量同一部件,可评价测量设备的变差有多大。
再现性也叫人为变差。
用不同的评价者在同一测量设备上多次测量同一部件,可分析人为因素的影响有多大。
二、GRR评价方法(GRR变异等于系统内部和系统之间变异之和)1.首先界定此测量系统用于何处,如产品检验或工序控制2.选出10个可代表覆盖整个工序变化范围的样品3.从测试人员中选择2~3人对每个样品进行2~3次随机测量4.记录测量结果并用重复性和再现性表进行运算5.用判别标准进行判断,确定此系统是否合格6.对不合格之测量系统进行适当处理三、测量系统分析标准1.测量系统的精度(分辨率)需比被测量体要求精度高一个数量级,即如要求测量精度是0.001,测量仪器的精度要求须是0.0001。
2.如果GRR小于所测零件公差的10%,则此系统无问题。
3.如果GRR大于所测零件公差的10%而小于20%,那么此测量系统是可以接受的。
4.如果GRR大于所测零件公差的20%而小于30%,则接受的依据是数据测量系统的重要程度和商业成本。
5.如果GRR大于所测零件公差的30%,那么此测量系统不能接受,并且需要进行改善。
四、测量系统的控制测量系统控制需要注意以下几点:1.定期对测量系统进行评估,看GRR是否超出标准范围。
2.定期对仪器设备进行检定使其符合标准要求。
3.对测量系统要有规范的仪器校正标识卡和最后使用期限。
4.要有专人负责和管理仪器软硬件,并定期加以维护,确保其工作在正常状态。
测量系统分析
![测量系统分析](https://img.taocdn.com/s3/m/8ff8b4fa8ad63186bceb19e8b8f67c1cfad6ee2c.png)
与其他测量系统的比较
将两个或多个测量系统进行比较,可以评估它们之间的差异 和一致性。
比较的内容包括测量范围、误差大小、测量时间、稳定性、 可靠性等。
量具的效度分析
量具的效度是指测量系统在特定测量目的下反映被测对象 真实特性的准确程度。
量具的适用性
根据被测对象的特性,选择适用的 量具,以提高测量效率。
量具的校准和维护
定期对量具进行校准和维护,以保 证其测量准确性和稳定性。
量具的优化建议
根据实际应用中遇到的问题,对量 具进行改进和优化,提高其使用性 能和效率。
THANKS
感谢观看
03
误差的传递和合成会影响最终测量结果的不确定度,必须采取
措施进行控制和减小不确定度。
04
测量系统的可靠性分析
可靠性定义及评估方法
可靠性定义
测量系统的可靠性是指测量结果的一致性和稳定性,即测量系统在相同条件下重 复测量同一对象时,所得结果的一致程度和可信程度。
评估方法
评估测量系统的可靠性通常采用方差分析、稳定性分析、重复性和再现性分析等 方法。
它包括用于评估测量系统的精度、重复性、线性、稳定性等 特性的方法和工具。
测量系统分析的重要性
1
测量系统分析有助于确定测量系统的误差大小 和变异程度。
2
它有助于识别测量系统对产品质量和过程控制 的影响,并采取相应的改进措施。
3
测量系统分析是实现全面质量管理的重要环节 之一。
测量系统分析的流程
确定测量对象
根据产品或过程的要求,确定需要测量的 特性。
测量系统分析(MSA)..
![测量系统分析(MSA)..](https://img.taocdn.com/s3/m/ebb602e6aef8941ea76e05ca.png)
(Measurement System Analysis)
测量系统分析基本内容
一、测量系统的基本概念 二、测量系统误差的基本类型
三、计量型测量系统研究
四、计数型测量系统研究
一、测量系统的基本概念
什么是测量系统 为什么要研究测量系统 评定测量系统性能的指标
测量:赋值给具体事物以表示它们 之间关于特殊特性的关系
1)最小测量单位/容差≤10% (用于计量型合格判定) 2)最小测量单位/过程标准差≤10% (用于计量型过程控制)
影响分辨力的因素:
1)传感器的灵敏度 2)读出装臵的最小显示单位
分辨力举例
高分辨率体温数据
序号 1 2 x 36.2 36.4 0.2 R 序号 10 11 x 36.0 36.0 R 0.1 0 序号 19 20 x 36.0 36.2 R 0.1 0.2
36.2
35.8 36.3 35.9 36.5 36.1
0
0.4 0.5 0.4 0.6 0.296
I -M R C hart of 高分辨率
37.0
Individual Value
UCL=36.875
36.5 _ X=36.088
36.0
35.5 LCL=35.301 1 3 5 7 9 11 13 15 Observation 17 19 21 23 25
2.过程变差百分率
m % R & R R & R /(TV ) [ ] 100% t
% R & R 10%
10% % R & R 30% % R & R 30%
可以接受
模糊区域 不能使用
3.数据分级数
测量系统分析方法
![测量系统分析方法](https://img.taocdn.com/s3/m/b9b08085fc0a79563c1ec5da50e2524de518d0e0.png)
测量系统分析方法
测量系统分析方法是指对某个系统进行测量的相关分析方法。
测量系统可以是机械、电子、光学等各种系统,分析方法可以是数学模型、统计学方法等。
常用的测量系统分析方法有:
1. 不确定度分析:通过对测量系统的各种误差源进行分析,计算出测量结果的不确定度,评估测量结果的可靠性。
2. 误差来源分析:对测量系统中的各个组成部分进行辨识和分析,找出可能导致测量误差的因素,并采取相应的措施进行改进或校正。
3. 系统特性分析:对测量系统的灵敏度、稳定性、准确度等进行分析,确定系统的性能指标,评估系统的适用范围和可靠性。
4. 数据处理分析:对测量数据进行统计学分析,包括数据的平均值、标准偏差、相关系数等,以及数据的可靠性评估和拟合分析等。
5. 故障分析:对测量系统的故障模式进行分析,根据故障现象和数据进行诊断和定位,找出故障原因,并采取相应的修复措施。
6. 系统优化分析:通过对测量系统的各个方面进行分析和优化,提高系统的性
能指标,减少测量误差,提高测量效率。
以上是常用的测量系统分析方法,根据具体的应用领域和问题,还可以有其他的特定分析方法。
测量系统分析
![测量系统分析](https://img.taocdn.com/s3/m/2dcec0a1d1f34693daef3e2e.png)
4
8
执行MINITAB菜单下的“统计>质量工具>量具研究>量具线性和 偏倚研究”
武汉工程职业技术学院
10
5.4.3 测量系统的偏倚、线性 和稳定性
1.测量系统的偏倚 参考值的主要来源:多个准确测量设备所得重复测量值的平均值、 专业团队认可的值、当事方达成一致的值或法律规定的值。 例:(蓝书P346)一家公司的质检部门新购买一台测厚仪,在正式 使用之前,需要对此测量系统进行评估。根据实际需要的量程范围 ,挑选了5个具有代表性的标准部件,然后由质检员以随机方式对每 个部件测量6次。假设已知过程总波动PV(即6倍的过程标准差)为 12。试分析其偏倚和线性。(数据文件:QT_MSA偏倚与线性.MTW )。
武汉工程职业技术学院
11
5.4.3 测量系统的偏倚、线性 和稳定性
通常用线性度衡量某个量程的偏倚的总体变化程度。其量纲与Y量纲 相同。
Linearity = b × PV
代表过程总波动范围内测量值偏倚的波动范围。线性度也可以用百 分比的形式表示:
%Linearity = (Lineartiy) / PV ) ×100 =| b | ×100
武汉工程职业技术学院
2
5.4 测量系统分析
准确且精确:偏倚小,波动小 精确但不准确:偏倚大,波动小
准确但不精确:偏倚小,波动大 不精确且不准确:偏倚大,波动大
武汉工程职业技术学院
3
5.4.2 测量系统分辨力
测量系统的分辨力是指测量系统识别并显示被测量最微小变化的能 力。 分辨力往往可通过仪器仪表上的最小刻度来反映。对于连续型数据 ,一般称测量结果的最小间距Unit为分辨力。 测量系统分辨力最起码的要求应当使Unit同时不大于过程总波动PV (6倍过程标准差)的1/10和公差限(USL-LSL)的1/10。
测量系统分析(MSA)
![测量系统分析(MSA)](https://img.taocdn.com/s3/m/9ba7ae492b160b4e767fcff9.png)
MSA
测量系统分析
测量系统的规划(一)
• 由小组根据被测量特性的重要程度确定测量系 统。同时考量:
– 产品规范是什么?预期的过程变差是多少?需要什 么样的分辨率? – 量具需要怎样的操作方式?需要操作者具备哪些技 能?怎样培训? – 如何测量?是否人工测量?在哪里测量?零件的位 置和固定是否是可能的变差来源?接触测量还是非 接触测量? – 测量如何被校准?校准频率?谁来校准?
• 什么是测量仪器?
– 用来进行测量的任何仪器。
• 什么是检验员(或者鉴定人)?
– 使用测量仪器进行测量的个人
MSA
测量系统分析
有关测量数据的常见问题
• 测量系统:不仅指量具。
– 测量系统包括:人(及其培训)、过程(测量程 序)、设备(量具或测量工具)、系统、及所有这 些因素的相互作用。 – 测量总偏差:
MSA
测量系统分析
第2类要素:与测量系统制造有关的问题 (设备、标准、仪器)
• 是否已在系统设计中针对变差来源的识别?设计评审; 验证和确认。 • 校准和控制系统:推荐的校准计划和设备审核及其文 件。频率、内部或外部、参数、生产过程中的验证检 查。 • 输入要求:机械的、电子的、液压的、真空的、波动 抑制器、干燥器、滤清器、作业准备和操作问题、隔 离、解析度和灵敏度。 • 输出要求:类比或数位、文件和记录、档案、保存、 存取、备份。 • 成本:开发、采购、安装、操作和培训的预算要素。
MSA
测量系统分析
数据的质量
• 数据的质量取决于从处于稳定条件下进 行操作的测量系统中,多次测量的统计 特性,如:假设使用某一在稳定条件下 操作的测量系统对某一特定特性值进行 了几次测量,如果这些测量值均与该特 性的参考值(master value)“接近”), 那么,数据的质量被称为“高”;同样, 如果部份或所有的测量值与参考值相差 “很远”,则数据的质量很“低”