大学本科统计学计算题
统计学计算题例题(含答案)
1、某企业制定了销售额的五年计划, 该计划要求计划期的最后一年的年销售额应达到 1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、 计划完成相对数 =1410/1200*100%=117.5%该计划完成相对数指标为正指标, 计划完成相对数又大于 100% ,所以表示该计划超额完成。
从第 四年 5 月至第五年 4 月的一年的年销售额之和恰好为 1200 万元,所以该计划在第五年 4 月完成,提 前 8 个月完成。
2、 某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为 2000 万 亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、 计划完成程度相对数 =2100/2000*100%=105%计划完成相对数指标大于100%, 且该指标为正指标 , 所以该计划超额完成截止第五年第三季度累计完成 2000 万亩造林面积,所以提前 1 个 季 度 完 成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
3、某企业职工年龄情况如下表:X 二三于=4740/62=76.45 (分)Me=70+ (62/2-18) *10/20=76.5 (分)Mo=70+(20 J5)70/[(2CM5)+(2CM8)]=77 」4 (分)G-7(55-76.45f *3 +⋯⋯+ (95^76.45f *6/62=10.45 (分)4、某学校有5000 名学生,现从中按重复抽样方法抽取250 名同学,调查其每周观看电视的小时数的情况,获得资料如下表:请根据上述资料,以95% 的概率保证程度对全校学生每周平均收看电视时间进行区间估计。
4> 样本平均数X= Sxf/Sf-l250/250-5样 ______________ __________二>/ 刀(好予f/(工f—1 )二V 1136/249 二2. 14抽样平均误差U 二s/ Vn=0.14因为 F (t) =95%, 所以日.96抽样极限误差△ 二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在( 4.73,5.27) 小时之间,概率保证程度为95%5 、某企业对全自动生产线上的产品随机抽取1000 件进行检验,发现有45 件是不合格的,设定允许的极限误差为1.32% 。
统计学计算题
统计学习题答案三、计算题1、某班级40名学生,某门课程考试成绩如下:87 65 86 92 76 73 56 60 83 7980 91 95 88 71 77 68 70 96 6973 53 79 81 74 64 89 78 75 6672 93 69 70 87 76 82 79 65 84试根据以上资料编制组距为10的分配数列。
解:所编制的分配数列如下所示:某班学生某门课程考试成绩分组资料2、某工业局所属10个企业(工厂)计划利润和实际利润如下:单位:万元(1(2)按利润计划完成程度分组,分为三组。
①未完成计划者;②完成计划和超额完成计划10%以内者;③超额完成计划10%以上者。
(3)汇总各组企业数、实际利润和计划利润。
解:(1)根据资料,算得各厂利润计划完成程度指标如下(2)(3)某工业局所属企业利润计划完成情况统计表三、计算题1某企业产量计划完成程度为103%,实际比上年增长5%,试问计划规定比上年增长多少? 解:设计划规定比上年增长x%,则有15%103%100%1%x +=⨯+于是,有 15%%100%100% 1.94%103%x +=⨯-=2某企业计划生产某产品工时消耗较上期降低5%,实际较上期降低4.5%,试确定降低劳动量计划完成程度指标。
解:降低劳动量计划完成程度(%)=100% 4.5%100.5%100%5%-=-实际执行结果表明,降低劳动量还有0.5%没有完成。
3某公司所属甲、乙两分公司销售额资料如下: 金额单位:万元计算上表各空栏数字,并分别说明各是什么类型的指标。
解:表中各空栏数字计算结果如下:金额单位:万元本期计划、本期实际、上期实际三个指标为总量指标;实际比重(%)为结构相对指标;计划完成(%)为计划完成程度相对指标;本期实际为上期实际(%)为动态相对指标。
4某产品按五年计划规定最后一年产量应达到50万吨,计划执行情况如下表:试计算该产品计划完成程度及提前多少时间完成五年计划规定的指标。
统计学计算题整理
:典型计算题一1、某地区销售某种商品的价格和销售量资料如下:根据资料计算三种规格商品的平均销售价格。
解:36==∑∑ffxx (元)点评: 第一,此题给出销售单价和销售量资料,即给出了计算平均指标的分母资料,所以需采用算术平均数计算平均价格。
第二,所给资料是组距数列,因此需计算出组中值。
采用加权算术平均数计算平均价格。
第三,此题所给的是比重权数,因此需采用以比重形式表示的加权算术平均数公式计算。
2、某企业1992年产值计划是1991年的105%,1992年实际产值是1991的的116%,问1992年产值计划完成程度是多少?解:%110%105%116===计划相对数实际相对数计划完成程度。
即1992年计划完成程度为110%,超额完成计划10%。
点评:此题中的计划任务和实际完成都是“含基数”百分数,所以可以直接代入基本公式计算。
3、某企业1992年单位成本计划是1991年的95%,实际单位成本是1991年的90%,问1992年单位成本计划完成程度是多少?解: 计划完成程度%74.94%95%90==计划相对数实际相对数。
即92年单位成本计划完成程度是94.74%,超额完成计划5.26%。
点评:本题是“含基数”的相对数,直接套用公式计算计划完成程度。
4、某企业1992年产值计划比91年增长5%,实际增长16%,问1992年产值计划完成程度是多少?解:计划完成程度%110%51%161=++=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
5、某企业1992年单位成本计划比1991年降低5%,实际降低10%,问1992年单位成本降低计划完成程度是多少?解:计划完成程度%74.94%51%101=--=点评:这是“不含基数”的相对数计算计划完成程度,应先将“不含基数”的相对数还原成“含基数”的相对数,才能进行计算。
6、某企业产值计划完成103%,比上期增长5%,问产值计划规定比上期增加多少? 解:103%=105%÷(1+x ) x=1.9%即产值计划规定比上期增加1.9%.点评:计划完成程度=103%,实际完成相对数=105%,设产值计划规定比上期增加x ,则计划任务相对数=1+x ,根据基本关系推算出x.7、某煤矿某月计划任务为5400吨,各旬计划任务是均衡安排的,根据资料分析本月生产情况.解:从资料看,尽管超额完成了全期计划(5400=104%),但在节奏 性方面把握不好。
统计学计算题(54学时)之欧阳道创编
统计学习题集时间:2021.03.06 创作:欧阳道第三章数据分布特征的描述五、计算题1. 某企业两个车间的工人生产定额完成情况如下表:技术水平 A车间 B车间工人数完成定额工时人均完成工时工人数完成工时定额人均完成工时高 50 14000 280 20 6000 300中 30 7500 250 40 10400 260低 20 4000 200 40 8200 205合计 100 25500 255 100 24600 246从表中看,各个技术级别的工人劳动生产率(人均完成工时定额)都是A车间低于B车间,试问:为什么A车间的平均劳动生产率又会高于B车间呢?3. 根据某城市500户居民家计调查结果,将居民户按其食品开支占全部消费开支的比重(即恩格尔系数)分组后,得到如下的频数分布资料:恩格尔系数(%) 居民户数20以下 620~30 3830~40 10740~50 13750~60 11460~70 7470以上 24合计 500要求:(1)据资料估计该城市恩格尔系数的中位数和众数,并说明这两个平均数的具体分析意义。
(2)利用上表资料,按居民户数加权计算该城市恩格尔系数的算术平均数。
(3)试考虑,上面计算的算术平均数能否说明该城市恩格尔系数的一般水平?为什么?恩格尔系数(%)居民户数(户)f组中值x向上累积频数20以下615620~3038254430~401073515140~501374528850~601145540260~70746547670以上2475500合计500--答:(1)Me=47.226%,指处于中间位置的居民家庭恩格尔系数水平;Mo=45.661%,指居民家庭中出现最多的恩格尔系数水平;(2)均值=47.660%;4. 某学院二年级两个班的学生英语统考成绩如下表。
要求:(1)分别计算两个班的平均成绩;(2)试比较说明,哪个班的平均成绩更有代表性?哪个班的学生英语水平差距更大?你是用什么指标来说明这些问题的;为什么?英语统考成绩学生人数A班 B班60以下 4 660~70 12 1370~80 24 2880~90 6 890以上 4 5合计 50 605. 利用上题资料,试计算A班成绩分布的极差与平均差,并与标准差的计算结果进行比较,看看三者之间是何种数量关系。
[高等教育]统计学计算题
每包重量(克)
包数
148-149
10
149-150
20
150-151
50
151-152
20
——
100
要求:(1)以 99.73%的概率估计这批食品平均每包重量的范围,以便确定平均重量是否达到规格要求;
(2)以同样的概率保证估计这批食品合格率范围。
解:2)已知: n 100; F (t) 99.73%;t 3
x2
xf f
1518 25 39 35 31 4512 28.7 18 39 3112
x乙
2
152 18 252 39 352 31 452 12 18 39 31 12
907
σ 乙
1
x2
1
150.30 (克)
f 100
x
n
0.872 0.0872 100
x2 x 2 2259085 150.32 0.872(克) 100
x tx 3 0.0872 0.26
x x X x x
0.26 150.30 X 150.30 0.26
按工人劳动生产率分组(件/人)
生产班组
生产工人数
50-60
3
150
60-70
5
100
70-80
8
70
80-90
2
30
90 以上
2
50
试计算该企业工人平均劳动生产率。
解: x1 55, x2 65, x3 75, x4 85, x5 95 f 1 150, f 2 100, f 3 70, f 4 30, f 5 50
统计学练习题(计算题)
统计学练习题(计算题)第四章第一部分总量指标与相对指标4.1 : (1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少?(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%实际执行结果提高了12%劳动生产率计划完成程度是多少?4.2 :某市三个企业某年的下半年产值及计划执行情况如下:要求:[1] 试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2] 丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少?4.3 :我国2008年-2013年国内生产总值资料如下:根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
4.4 :某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少?比计划超额完成多少?(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少? 比计划超额完成多少?第四章-----第二部分平均指标与变异指标4.5 :已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1 )根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、4.6 :已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
统计学计算题例题(含答案)
1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。
实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。
1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。
从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。
2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。
实际执行情况如下:请对该长期计划的完成情况进行考核。
2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。
4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。
请对全部产品的合格率进行区间估计。
5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。
统计学计算题
统计学计算题要求:计算三种产品的成本总指数以及由于单位产品成本变动使总成本使总成本变动的绝=本使总成本变动的绝对额;(-)★标准答案:4. 某厂三个车间一季度生产情况如下:第一车间实际产量为200件,完成计划95%;第二件,完成计划105%,请车间实际产量280件,完成计划100%;第三车间实际产量650根据资料计算:(1)产量计划平均完成百分比;8. 某市场上某种蔬菜早市每斤0.25元,中午每斤0.2元,晚市每斤0.1元,现在早、中、9. 某商店出售某种商品第一季度价格为6.5元,第二季度价格为6.25元,第三季度为6元,第四季度为6.2元,已知第一季度销售额3150元,第二季度销售额3000元,第三季度销10. 某厂生产某种机床配件,要经过三道工序,各加工工序的合格率分别为95.74%,★标准答案:试根据上表已知数据计算空格中的数字(保留一位小数并分别说明⑵、⑹、⑻、⑼栏是何试计算:(1)三种商品的销售额总指数(2)三种商品的价格综合指数和销售量综合指数18. 某自行车车库4月1日有自行车320辆,4月6日调出70辆,4月18日进货120辆,419. 某厂开展增产节约运动后,1月份总成本为10000元,平均成本为10元,2月份总成本为3000元,平均成本为8元,3月份总成本为35000元,平均成本为7.2元,试问,第试计算该地区三种水果的价格指数及由于价格变动对居民开支的影响。
2003年年末定额流动资金占有额为320万元。
根据上表资料,分别计算该企业定额流动资24. 某市2002年社会商品零售额12000万元,2003年增加为15600万元。
物价指数提高要求:(1)计算并填列表中所缺数字。
(2)计算该地区1997—2001年间的平均国民生产总值。
要求:⑴填满表内空格31.★标准答案:3(1)计算平均每个小组的日产量;★标准答案:计算平均每个小组的日产量(产量。
要求:(1)分别计算2000年、2001年的进出口贸易差额;(2)计算2001年进出口总额比例相对数及出口总额增长速度;(3)分析我国进出口贸易状况。
统计学计算习题
第四章六、计算题资更具有代表性。
1、(1)(2)计算变异系数比较根据、大小判断,数值越大,代表性越小。
假定生产条件相同,试研究这两个品种的收获率,确定那一个品种具有稳定性和推广价值.2、(1)收获率(平均亩产)(2) 稳定性推广价值(求变异指标)求、,据此判断。
8.某地20个商店,1994年第四季度的统计资料如下表4-6。
表4-6试计算(1)该地20个商店平均完成销售计划指标(2)该地20个商店总的流通费用率(提示:流通费用率=流通费用/实际销售额)8、(1)(2) 据提示计算:13、提示:(2)平均一级品率。
14、(1) (2)15.某生产小组有36名工人,每人参加生产的时间相同,其中有4人每件产品耗时5分钟,20人每件耗时8分钟,12人每件耗时10分钟。
试计算该组工人平均每件产品耗时多少分钟?如果每人生产的产品数量相同,则平均每件产品耗时多少分钟?15、(1) 设时间为t ,(2) 设产品数量为a ,16.为了扩大国内居民需求,银行为此多次降低存款利润,近5年年利润率分别为7%、5%、4%、3%、2%,试计算在单利和复利情况下5年的平均年利率。
16、(1) 单利:(2) 复利(几何平均法): 第五章2。
某企业1—7月份工人人数及总产值资料如表8-4:计算:(1)上半年平均月劳动生产率。
(2)上半年劳动生产率。
2、(1) 上半年平均月劳动生产率:(2) 上半年劳动生产率: 3.某企业第二季度有关资料如表8-5:试计算第二季度月平均流转次数及第二季度流转次数。
3、(1) 第二季度月平均流转次数: (2) 第二季度流转次数=4.设某地区1980年国民生产总值为125亿元,人口5000万。
据过去五年国民生产总值的增长速度计算,平均每年递增7.5%,试推算2000年的国民生产总值;若人口增加到6000万人问平均每人能否达到1000元?4、 求 据计算。
7、 计算方法类同9. 某地区对外贸易总额,l994年是1990年的135。
统计学本科试题及答案
统计学本科试题及答案一、选择题(每题2分,共20分)1. 下列哪项不是描述数据集中趋势的统计量?A. 平均数B. 中位数C. 众数D. 标准差答案:D2. 在统计学中,一个总体是指:A. 研究中观察到的所有个体B. 研究中随机抽取的一部分个体C. 研究中感兴趣的所有个体D. 研究中感兴趣的一个样本答案:C3. 一个变量的方差是衡量该变量的:A. 中心趋势B. 分布形状C. 离散程度D. 偏斜程度答案:C4. 如果一个正态分布的均值为50,标准差为10,那么X=60的Z分数是:A. 1B. 0.5C. -1D. -0.5答案:B5. 相关系数的取值范围是:A. -1到1B. 0到1C. 1到无穷大D. -无穷大到1答案:A6. 一个样本的置信区间是用来:A. 估计总体均值的范围B. 估计样本均值的范围C. 确定总体均值的精确值D. 确定样本均值的精确值答案:A7. 在回归分析中,如果自变量X增加一个单位,而因变量Y预期的平均变化量称为:A. 回归系数B. 回归截距C. 相关系数D. 残差答案:A8. 一个统计学家想要检验一个新药物是否比安慰剂更有效,他应该使用:A. t检验B. 卡方检验C. 方差分析D. 相关性检验答案:A9. 在进行假设检验时,如果原假设被错误地拒绝,这称为:A. 第一型错误B. 第二型错误C. 正确拒绝D. 正确接受答案:A10. 下列哪项不是统计学中的抽样分布?A. 样本均值分布B. 样本方差分布C. 样本中位数分布D. 样本比例分布答案:C二、简答题(每题10分,共30分)1. 描述统计与推断统计有什么区别?答案:描述统计关注的是数据的收集、整理、图表展示和数值描述,其目的是用图表和数值来描述数据的特征。
而推断统计则是利用样本数据来对总体进行推断,包括估计总体参数和进行假设检验。
推断统计允许我们根据样本数据对总体做出概率性的陈述。
2. 什么是标准正态分布,它在统计学中有什么应用?答案:标准正态分布是一个均值为0,标准差为1的正态分布。
统计学计算题
四、计算分析题(凡要求计算的项目,均须列出计算过程;计算结果出现小数的,均保留小数点后两位小数。
)一、某车间有30个工人看管机器数量的资料如下:5 4 2 4 3 4 3 4 4 5 4 3 4 2 64 4 25 3 4 5 3 2 4 36 3 5 4以上资料编制变量分配数列。
二、某班40名学生统计学考试成绩分别为:68 89 88 84 86 87 75 73 72 6875 82 97 58 81 54 79 76 95 7671 60 90 65 76 72 76 85 89 9264 57 83 81 78 77 72 61 70 81学校规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90分为良,90─100分为优。
要求: 问:(1)将该班学生分为不及格、及格、中、良、优五组,编制一张次数分配表。
(2)指出分组标志及类型;分组方法的类型;分析本班学生考试情况。
分组标志:成绩分组类型:数量标志分组方法的类型:变量分组中的组距式分组,而且是开口式分组。
分析本班学生考试成绩:本班学生的考试成绩的分布呈两头小,中间大的“正态分布”的形态。
三、某企业10月份生产情况(单位:台):问:计算该企业各车间和全厂产量计划完成%。
第一车间=实际产量/计划产量*100%=440/400*100%=110%第二车间=400/440*100%= 90.91% 第三车间=650/700*100%=92.86%全厂产量计划完成=(440+400+650)/(400+440+700)*100%=1490/1540*100%=96.75%四、某工业集团公司工人工资情况问:计算该集团工人的平均工资。
五、某厂三个车间一季度生产情况如下:第一车间实际产量为190件,完成计划95%;第二车间实际产量250件,完成计划100%;第三车间实际产量609件,完成计划105%,三个车间产品产量的平均计划完成程度为:%1003%105%100%95=++另外,一车间产品单位成本为18元/件,二车间产品单位成本12元/件,三车间产品单位成本15元/件,则三个车间平均单位成本为:153151218=++元/件以上平均指标的计算是否正确?如不正确请说明理由并改正。
统计学计算题
第二章六、计算题.1.下面是某公司工人月收入水平分组情况和各组工人数情况:月收入(元)工人数(人)400-500 20500-600 30600-700 50700-800 10800-900 10指出这是什么组距数列,并计算各组的组中值和频率分布状况。
答:闭口等距组距数列,属于连续变量数列,组限重叠。
各组组中值及频率分布如下:2.抽样调查某省20户城镇居民平均每人全年可支配收入(单位:百元)如下:88 77 66 85 74 92 67 84 77 94 58 60 74 64 75 66 78 55 70 66⑴根据上述资料进行分组整理并编制频数分布数列⑵编制向上和向下累计频数、频率数列答:⑴⑵某省20户城镇居民平均每人全年可支配收入分布表第三章六、计算题.⒈某企业生产情况如下:要求:⑴填满表内空格.⑵对比全厂两年总产值计划完成程度的好坏。
解:⑴某企业生产情况如下:单位:(万元)⑵该企业2005年的计划完成程度相对数为110.90%,而2006年只有102.22%,所以2005年完成任务程度比2006好。
⒉某工厂2006年计划工业总产值为1080万吨,实际完成计划的110%,2006年计划总产值比2005年增长8%,试计算2006年实际总产值为2005年的百分比?解:118.8%3.某种工业产品单位成本,本期计划比上期下降5%,实际下降了9%,问该种产品成本计划执行结果?解:95.79%4.我国“十五”计划中规定,到“十五”计划的最后一年,钢产量规定为7200万吨,假设“八五”期最后两年钢产量情况如下:(万吨)根据上表资料计算:⑴钢产量“十五”计划完成程度;⑵钢产量“十五”计划提前完成的时间是多少?解:⑴102.08%;⑵提前三个月5.某城市2005年末和2006年末人口数和商业网点的有关资料如下:计算:⑴平均每个商业网点服务人数;⑵平均每个商业职工服务人数;⑶指出是什么相对指标。
解: 某城市商业情况⑶上述两个指标是强度相对指标。
统计学计算题
四、计算题(共50分。
其中1小题10分;2小题15分;3小题10分;4小题15分)1.根据以往生产数据,某种产品的废品率为2%。
如果要求95%的置信区间,估计误差不超过4%,应该抽取多大的样本?根据已知条件P=2%,96.12=αZ ;E=4%=⨯=⨯=-⋅=122584.30016.096.196.1)1(2222EP P Z n α4704试用指数体系法分析销售额的变动。
(1)销售额变动 %116750870011==∑=∑q p q p K pq )(1207508700011万元=-=∑-∑q p q p (2)销售量指数 %93.11075083200000010==∑∑=∑=∑q p q Kp q p q p K q)(827508320010万元=-=∑-∑q p q p(3)销售价格指数 %57.10483287000111011==∑∑=∑∑=q kp q p q p q p K p )(38832870101万元=-=∑-∑q p q p (4)指数体系绝对数 120万元=82万元+38万元 相对数 116%=110.93%×104.57%(5)文字说明:该商店三种商品销售额报告期比基期增长了16%,增加120万元。
这是由销量和价格两因素变动引起的。
其中,价格固定在每种商品各自的基期水平,由于销量的变动使得总销售额比基期提高了10.93%,增加82万元;把销量固定在每种商品各自的报告期水平,由于价格的变动使得总销售额比基期提高了4.57%,增加了38万元。
试计算该企业第二季度平均每月全员劳动生产率。
(10分)解:第二季度平均每月总产值)(12203137011201170万元=++=∑=n a a第二季度平均每月职工人数1421214321-+++=b b b b b)(8.631.7219.67.05.621千人=⨯+++⨯=该企业第二季度平均每月全员劳动生产率bac =()人元千人万元/12.17948.61220==(1)计算相关系数,判断其相关程度;(2)建立以总成本为因变量的回归直线方程,并预测当木材消耗量为2.5米3时,总成本将达到多少千元?4、①r=2222)()(∑∑∑∑∑∑∑-⋅--y y n x x n yx xy n =0.75 中度正相关②b==--∑∑∑∑∑22)(x x n y x xy n 0.758a=y -b x =1.265 x Y c 758.0265.1+=当x=2.5时,总成本16.35.2758.0265.1=⨯+=c y (千元)。
统计学练习题(计算题)
统计学练习题(计算题)第四章----第一部分总量指标与相对指标4.1:(1)某企业产值计划完成程度为105%,比上年增长7%,试计算计划规定比上年增长多少?(2)单位产品成本上年为420元,计划规定今年成本降低5%,实际降低6%,试确定今年单位成本的计划数字和实际数字,并计算出降低成本计划完成程度指标。
(3)按计划规定,劳动生产率比上年提高10%,实际执行结果提高了12%,劳动生产率计划完成程度是多少?4.2:某市三个企业某年的下半年产值及计划执行情况如下:要求:[1]试计算并填写上表空栏,并分别说明(3)、(5)、(6)、(7)是何种相对数;[2]丙企业若能完成计划,从相对数和绝对数两方面说明该市三个企业将超额完成计划多少?4.3:我国2008年-2013年国内生产总值资料如下:单位:亿元根据上述资料,自行设计表格:(1)计算各年的第一产业、第二产业、第三产业的结构相对指标和比例相对指标;(2)计算我国国内生产总值、第一产业、第二产业、第三产业与上年对比的增长率;(3)简要说明我国经济变动情况。
4.4:某公司下属四个企业的有关销售资料如下:根据上述资料:(1)完成上述表格中空栏数据的计算;(2)若A能完成计划,则公司的实际销售额将达到多少?比计划超额完成多少?(3)若每个企业的计划完成程度都达到B企业的水平,则公司的实际销售额将达到多少?比计划超额完成多少?第四章-----第二部分平均指标与变异指标4.5:已知某地区各工业企业产值计划完成情况以及计划产值资料如下:要求:(1)根据上述资料计算该地区各企业产值计划的平均完成程度。
(2)如果在上表中所给资料不是计划产值而是实际产值,试计算产值计划平均完成程度。
、4.6:已知某厂三个车间生产不同的产品,其废品率、产量和工时资料如下:计算:(1)三种产品的平均废品率;(2)假定三个车间生产的是同一产品,但独立完成,产品的平均废品率是多少;(3)假定三个车间是连续加工某一产品,产品的平均废品率是多少。
统计学计算题
统计学计算题27、【104199】(计算题)某班级30名学生统计学成绩被分为四个等级:A .优;B .良;C .中;D .差。
结果如下:B C B A B D B C C B C D B C A B B C B A B A B B D C C B C A BDAACDCABD(1)根据数据,计算分类频数,编制频数分布表;(2)按ABCD 顺序计算累积频数,编制向上累积频数分布表和向下累计频数分布表。
【答案】28、【104202】(计算题)某企业某班组工人日产量资料如下:根据上表指出:(1)上表变量数列属于哪一种变量数列;(2)上表中的变量、变量值、上限、下限、次数; (3)计算组距、组中值、频率。
【答案】(1)该数列是等距式变量数列。
(2)变量是日产量,变量值是50-100,下限是,、、、、9080706050上限是,、、、、10090807060次数是111625199、、、、; (3)组距是10,组中值分别是 9585756555、、、、,频率分别是13.75%31.25%.20%23.75%11.25% 、、。
29、【104203】(计算题) 甲乙两班各有30名学生,统计学考试成绩如下:(1)根据表中的数据,制作甲乙两班考试成绩分类的对比条形图; (2)比较两班考试成绩分布的特点。
【答案】乙班学生考试成绩为优和良的比重均比甲班学生高,而甲班学生考试成绩为中和差的比重比乙班学生高。
因此乙班学生考试成绩平均比乙班好。
两个班学生都呈现出"两头大,中间小"的特点,即考试成绩为良和中的占多数,而考试成绩为优和差的占少数。
30、【104205】(计算题)科学研究表明成年人的身高和体重之间存在着某种关系,根据下面一组体重身高数据绘制散点图,说明这种关系的特征。
体重(Kg )5053 57 60 66 70 76 75 80 85 身高(cm ) 150155160165168172178180182185【答案】散点图:可以看出,身高与体重近似呈现出线性关系。
统计学计算题
2004年1月1、从一批零件中抽取200件进行测验,其中合格品188件。
要求:(1)计算该批零件合格率的抽样平均误差;(2)以95.45%(t =2)的可靠程度对该批零件的合格率作出区间估计。
p=94% μp 20006.094.0)1(⨯=-=n p p =0.0168 Δp ==⨯pt μ0.0336 p ±Δp =0.94±0.0336 即90.64%---97.36%2、以95.45%的概率保证,该批零件合格率在90.64%---97.36%之间。
2、某商场三种商品的价格和销售量资料如下:商品 计量单位价格(元) 销售量基期 报告期 基期 报告期A B C个 双 公斤30 20 2335 22 25100 200 150120 160 150要求: (1)计算价格总指数; (2)分析价格变动对销售额的绝对影响额。
(1)价格总指数==∑∑0111p q p q ==⨯+⨯+⨯⨯+⨯+⨯1025011470231502016030120251502216035120111.90%(2)销售量对销售收入的影响额为 :=-∑∑0111pq p q 11470-10250=1220元即由于价格的增加,使销售额增加了1220元。
3、某地区1984年平均人口数为120万人.1995年人口变动情况如下: 月份 1 2 5 9 11 次年1月 月初人数 122 125 132 147 151 157计算: (1)1995年平均人口数 (2)1984年—1995年该地区人口的平均增长速度(3)假设从1995年起该地区人口以9‰的速度增长,到2008年该地区人口数量将达到什么水平?(1)1995年的人口=∑--++++++ff a a f a a f a a n n n 11232121222=224312215715122151147421471323213212512125122++++⨯++⨯++⨯++⨯++⨯+=139.42(万人)(2)1984—1995年人口平均增长速度:112042.139111-=-x =1.37%(3)到2008年的人口数量为:===130)009.1(42.139)(n n x a a 156.64(万人)4、甲、乙两班同时对《统计学原理》课程进行测试,甲班平均成绩为70分,标准差为9.0分;乙班的成绩分组资料如下:按成绩分组 学生人数(人)60以下 60-70 70-80 80-90 90-1002 6 25 12 5计算乙班学生的平均成绩,并比较甲、乙两班哪个班的平均成绩更有代表性? 据题意列计算表如下:组中值x 学生人数 f xf x 2f 55 2 110 6050 65 6 390 25350 75 25 1875 140625 85 12 1020 8670095 5 475 45125 合计 50 3870 303850∴ 乙班学生的平均成绩 503870==∑∑fxf x =77.4(分)乙班学生成绩的标准差==-=-∑∑∑∑222)4.77(50303850)(fxf ffx 9.29(分) 又因为 甲班标准差系数709==xv σ甲=0.1286; 乙班标准差系数4.7729.9==x v σ甲=0.120所以,乙班学生的平均成绩更具有代表性。
统计学资料计算题
计算题:100%11⨯±±=率)计划提高率(计划降低率)实际提高率(实际降低计划完成相对数P72例4.5:某企业本年度计划单位成本降低6%,实际降低7.6%,则:成本降低率计划完成相对数=(1-7.6%)/(1-6%)*100%=98.29% 根据计算结果,本年度单位成本降低率比计划完成了1.71%例4.6:某企业计划规定劳动生产率比上年提高10%,实际比上年提高15%,则:劳动生产率计划完成相对数=(1+15%)/(1+10%)*100%=104.5% 根据计算结果,劳动生产率超额4.5%完成计划任务。
P81例 4.14:某企业有三个工厂,已知其计划完成程度及计划增加值资料如表所示,计算该企业平均计划完成程度。
工厂 计划完成程度(%)X 计划增加值(万元)f 甲 92 130 乙 105 1280 丙 117 300 合计 —— 1710106.12%17101814.630012801303001.1712801.051300.92==++⨯+⨯+⨯=⨯==∑∑∑∑计划增加值计划增加值计划完成程度f xf x根据计算结果,该企业平均计划完成程度是106.12%,即超额6.12%完成计划。
例4.15:某企业有三个工厂,已知其计划完成程度及实际完成增加值资料如表,计算该企业平均计划完成程度。
工厂 计划完成程度(%)x 实际完成增加值(万元)m 甲 92 119.6 乙 105 1344.0 丙 117 351.0 合计 —— 1814.6106.12%17101814.6 1.173511.0513440.92119.63511344119.6x m m ==++++===∑∑∑∑计划完成程度实际完成增加值实际完成增加值平均计划完成程度根据计算结果,该企业平均计划完成程度是106.12%,即超额6.12%完成计划。
P84加权几何平均计算例4.18:投资银行某笔投资的年利率是按复利计算的,25年的年利率分配是:有1年为3%,有4年为5%,有8年为8%,有10年为10%,有2年为15%,求平均年利率。
统计学计算题94430
六、计算题1.某班40名学生统计学考试成绩分别为:68 89 88 84 86 87 75 73 72 68 75 82 97 58 81 54 79 76 95 76 71 60 90 65 76 72 76 85 89 9264 57 83 81 78 77 72 61 70 81学校规定:60分以下为不及格,60─70分为及格,70─80分为中, 80─90分为良,90─100分为优。
要求:(1)将该班学生分为不及格、及格、中、良、优五组, 编制一 张次数分配表。
(2)指出分组标志及类型;分组方法的类型;分析本班学生考试情况。
解:(1)学生成绩次数分布表:(2)分组标志为"成绩",其类型为"数量标志"; 分组方法为:变量分组中的组距式分组,而且是开口式分组; 本班学生的考试成绩的分布呈“两头小, 中间大的”正态分布的形态。
2、某商场出售某种商品的价格和销售资料如下表:试求该商品的平均销售价格。
解:平均商品销售价值8.16=∑∑=xM M x (元/公斤)3、某厂三个车间一季度生产情况如下: 第一车间实际产量为190件,完成计划95%;第二车间实际产量250件,完成计划100%;第三车间实际产量609件,完成计划105%,三个车间产品产量的平均计划完成程度为:%1003%105%100%95=++另外,一车间产品单位成本为18元/件,二车间产品单位成本12元/件,三车间产品单位成本15元/件,则三个车间平均单位成本为:153151218=++元/件 以上平均指标的计算是否正确?如不正确请说明理由并改正。
解:两种计算均不正确。
平均计划完成程度的计算,因各车间计划产值不同,不能对其进行简单平均,这样也不符合计划完成程度指标的特定涵义。
正确的计算方法是:()%84.1011030104905.160900.125095.0190609250190/==++++=∑∑=x m m X 平均计划完成程度平均单位成本的计算也因各车间的产量不同,不能简单相加,产量的多少对平均单位成本有直接影响。
大学统计学期末复习计算题(有答案)
1、对10名成年人和10名幼儿的身高(厘米)进行抽样调查,结果如下:成年组 166 169 172 177 180 170 172 174 168 173 幼儿组 68 69 68 70 71 73 72 73 74 75(1)要比较成年组和幼儿组的身高差异,你会采用什么样的指标测度值?为什么?(2)比较分析哪一组的身高差异大? 解:(1)采用标准差系数比较合适,因为各标志变动值的数值大小,不仅受离散程度的影响,而且还受到平均水平高低的影响。
标准差系数适合于比较不同组数据的相对波动程度。
(2)成年组的均值:1.17210101==∑=i ixX cm ,标准差为:202.4=s cm离散系数:024.01.172202.41≈==X s v 幼儿组的均值:3.7110101==∑=ii x X cm ,标准差为:497.2=s cm离散系数:035.03.71497.22≈==X s vv1<v2,幼儿组身高差异程度大。
2、某企业共生产三种不同的产品,有关的产量和单位成本资料如下(1)计算该企业的总成本指数;(2)对企业总成本的变化进行原因分析。
(计算相对数和绝对数) 解: (1)110050340800353301509450075.27%65270100032400190125550pq p q I p q⨯+⨯+⨯===≈⨯+⨯+⨯∑∑报告期与基期相比,该企业的总成本下降了24.73%。
(2)相对数分析1101110000016534010003540015094500125550653401000354001501171009450093.27%80.70%125550117100p q p q p q p qp q p q=⨯⨯+⨯+⨯=⨯⨯+⨯+⨯=⨯≈⨯∑∑∑∑∑∑绝对数分析()()()()()()11000100110194500125001171001255509450011710031050845022600p q p q p q p q p q p q -=-+--=-+--=-+-∑∑∑∑∑由于产量q 下降6.73%,使总成本下降8450元;由于单位成本p 下降19.30%,使总成本下降22600元。
统计学计算题和答案完整版
统计学计算题和答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】三个企业生产的同一型号空调在甲、乙两个专卖店销售,有关资料如下:企业型号 价格 (元/台) 甲专卖店销售额(万元) 乙专卖店销售量(台) A 2500 340 B 3400 260 C 4100 200 合计——答案:2某企业甲、乙两个生产车间,甲车间平均每个工人日加工零件数为65件,标准差为11件;乙车间工人日加工零件数资料如下表。
试计算乙车间工人加工零件的平均数和标准差,并比较甲、乙两个生产车间哪个车间的平均日加工零件数更有代表性?日加工零件数(件) 60以下 60—70 70—80 80—90 90—100 工人数(人)59121410三、某地区2009—2014年GDP 资料如下表,要求: 1、计算2009—2014年GDP 的年平均增长量; 2、计算2009—2014年GDP 的年平均发展水平;年份 2009 2010 2011 2012 2013 2014 GDP (亿元)87431062711653147941580818362年平均增长速度:5100%280%100%22.9%x -=-= 年份2010 2011 2012 2013 2014 销售额(万元)320332340356380水平?答案: 2010年—2014年的数据有5项,是奇数,所以取中间为0,以1递增。
设定x 为-2、-1、0、1、2、年份/销售额(y ) x xy x2 2010 320 -2 -640 4 2011 332 -1 -332 1 2012 340 0 0 0 2013 356 1 356 1 2014 380 2 760 4合计 1728 0 144 10b=∑xy/∑x2=144/10=a=∑y/n=1728/5=y=+预测2016年,按照设定的方法,到2016年应该是5y=+*5=元五、某企业生产三种产品,2013年三种产品的总生产成本分别为20万元,45万元,35万元,2014年同2013年相比,三种产品的总生产成本分别增长8%,10%,6%,产量分别增长12%,6%,4%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南商学院试题库计算题题卡课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡
课程名称:统计学适用专业:
课程名称:统计学适用专业:
课程名称:统计学适用专业:
课程名称:统计学适用专业:
课程名称:统计学适用专业:
湖南商学院试题库计算题题卡。