金属基复合材料

合集下载

[材料科学]金属基复合材料

[材料科学]金属基复合材料

33
三种热等静压工艺
• 先升压后升温:其特点是无需将工作压力 开到最高压力,随着温度升高,气体膨胀, 压力不断升高,直至达到需要压力,适用 于金属包套的工艺制备;
• 先升温后升压:适用于玻璃包套制备复合 材料;
• 同时升温升压:适合于低压成形、装入量 大、保温时间长的工件制备。
34
热等静压工艺优缺点
混合
热压 冷压-烧结
坯或零件
封装除氧
挤压
粉末冶金法的工艺流程
23
粉末冶金法的优缺点
• 粉末冶金复合法的工艺主要优点是:基体金属或合金 的成分可自由选择,基体金属与强化颗粒之间不易发 生反应;可自由选择强化颗粒的种类、尺寸,还可多 种颗粒强化;强化颗粒添加量的范围大;较容易实现 颗粒均匀化。
• 但材料的成本较高,制备大尺寸的零件和坯料有一定 困难,而且粉末混合和防止氧化是工艺的关键,必须 采取有效措施加以控制,以及微细强化颗粒的均匀分 散困难;颗粒与基体的界面不如铸造复合材料等。
密封袋材的设计较困难
(HIP)
温下,高压气体加压烧结
超高压烧结 用超高压装置在高温下加压 可不用烧结助剂
制品尺寸不能过大
(UHP)
烧结
冲击加压烧结 置粉末于容器中,利用机械 短时间内可以烧结
不易控制
(Dina-Pac) 或炸药产生瞬时高温高压
液相烧结 烧结助剂发挥烧结作用
较低温度下可以进行高密度 若液相以玻化状态残留,
19
不连续增强相复合材料的制备工艺
颗粒 晶须 短纤维
铝合金—固态、液态、原位生长、喷射成型法 镁合金—液态法 钛合金—固态、液态法、原位生长法 高温合金—原位生长法 金属间化合物—粉末冶金、原位生长法

金属基复合材料

金属基复合材料

四、挤压铸造法
挤压铸造法是制造金属基复合材料较理 想的途径,此工艺先将增强体制成预成型 体,放入固定模型内预热至一定温度,浇 人金属熔体,将模具压下并加压,迅速冷 却得到所需的复合材料。
挤压铸造法特点:可以制备出增强相非常 高体积分数(40 %~50 %)的金属基复合 材料,由于在高压下凝固,既改善了金属 熔体的浸润性,又消除了气孔等缺陷,因 此,挤压铸造法是制造金属基复合材料质 量较好,可以一次成型。
六、熔体浸渗法
熔体浸渗工艺包括压力浸渗和无压浸渗。 当前是利用惰性气体和机械装置作为压力 媒体将金属熔体浸渗进多气孔的陶瓷预制 块中,可制备体积分数高达50 %的复合材 料,随后采用稀释的方法降低体积分数。
三、原位生成法
原位生成法指增强材料在复合材料制造 过程中,并在基体中自己生成和生长的方 法,增强材料以共晶的形式从基体中凝固 析出,也可与加入的相应元素发生反应、 或者合金熔体中的某种组分与加入的元素 或化合物之间的反应生成。前者得到定向 凝固共晶复合材料,后者得到反应自生成 复合材料。

原位生成复合材料的特点:增强体是 从金属基体中原位形核、长大的热力学稳 定相,因此,增强体表面无污染,界面结 合强度高。而且,原位反应产生的增强相 颗粒尺寸细小、分布均匀,基体与增强材 料间相容性好,界面润湿性好,不生成有 害的反应物,不须对增强体进行合成、预 处理和加入等工序,因此,采用该技术制 备的复合材料的综合性能比较高,生产工 艺简单,成本较低。
一、搅拌铸造法
搅拌铸造法制备金属基复合材料起源于 1968年,由S.Ray在熔化的铝液中加入氧化 铝,并通过搅拌含有陶瓷粉末的熔化状态 的铝合金而来的。


搅拌铸造法的特点是:工艺简单,操作 方便,可以生产大体积的复合材料(可到 达500 kg),设备投入少,生产成本低, 适宜大规模生产。但加入的增强相体积分 数受到制,一般不超过20 %,并且搅拌后 产生的负压使复合材料很容易吸气而形成 气孔,同时增强颗粒与基体合金的密度不 同易造成颗粒沉积和微细颗粒的团聚等现 象。

金属基复合材料

金属基复合材料

现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。

传统的单一材料已经很难满足这种需要。

因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。

其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。

作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。

现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。

金属基复合材料正是为了满足上述要求而诞生的。

1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。

金属基复合材料分为宏观组合型和微观强化型两大类。

前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。

根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。

用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。

(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。

强调具有电、热、磁等功能特性。

(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。

根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。

按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。

2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。

金属基复合材料应用举例

金属基复合材料应用举例

金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。

金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。

以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。

在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。

2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。

例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。

3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。

在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。

4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。

在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。

5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。

在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。

6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。

在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。

7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。

在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。

8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。

金属基复合材料

金属基复合材料

压铸成型法的具体工艺
将包含有增强材料的金属 熔体倒入预热摸具中后,迅 速加压,压力约为70-100MPa, 使液态金属基复合材料在压 力下凝固。 复合材料完全固化后顶出, 制得所需形状及尺寸的复合 材料的坯料或压铸件。
31
压铸成型法的特点
压铸工艺中,影响金属基复合材料性能的工艺因素主要 有四个:①熔融金属的温度、 ②模具预热温度、 ③使用的 最大压力、 ④加压速度。 在采用预制增强材料块时,为了获得无孔隙的复合材料, 一般压力不低于50MPa,加压速度以使预制件不变形为宜, 一般为1-3cm/s。 对于铝基复合材料,熔融金属温度一般为700-800℃,预 制件和模具预热温度一般可控制在500-800℃,并可相互补 偿,如前者高些,后者可以低些,反之亦然。 采用压铸法生产的铝基复合材料的零部件,其组织细化、 无气孔,可以获得比一般金属模铸件性能优良的压铸件。 与其他金属基复合材料制备方法相比,压铸工艺设备简 单,成本低,材料的质量高且稳定,易于工业化生产。 32
20
粉末冶金法的优点
① 热等静压或烧结温度低于金属熔点,由于高温引起的增 强材料与金属基体的界面反应少,减小了界面反应对复合材 料性能的不利影响。同时可以通过热等静压或烧结时的温度、 压力和时间等工艺参数来控制界面反应。 ② 可根据性能要求,使增强材料(纤维、颗粒或晶须)与 基体金属粉末以任何比例混合,纤维含量最高可达75%,颗粒 含量可达50%以上,这是液态法无法达到的。 ③ 降低增强材料与基体互相湿润及密度差的要求,使颗粒 或晶须均匀分布在金属基复合材料的基体中。 ④ 采用热等静压工艺时,其组织细化、致密、均匀,一般 不会产生偏析、偏聚等缺陷,可使孔隙和其他内部缺陷得到 明显改善,提高复合材料的性能。 ⑤ 金属基复合材料可通过传统的金属加工方法进行二次加 21 工,得到所需形状的复合材料构件毛坯。

金属基复合材料

金属基复合材料
பைடு நூலகம்
金属基复合材料的制备
(一)粉末冶金复合法 粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法、烧结制坯加塑法加工成形法等适合于分散强化型复合 材料(颗粒强化或纤维强化型复合材料)的制备与成型。 粉末冶金复合法的工艺主要优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;可自由选 择强化颗粒的种类、尺寸,还可多种颗粒强化;强化颗粒添加量的范围大;较容易实现颗粒均匀化。 缺点是:工艺复杂,成本高;制品形状、尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如铸造复合材料 等。

(二)铸造凝固成型法 铸造凝固成型法是在基体金属处于熔融状态下进行复合。主要方法有搅拌铸造法、液相渗和法和共喷射 沉积法等。铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。
1、原生铸造复合法 原生铸造复合法(也称液相接触反应合成技术Liquid Contact Reaction:LCR)是将生产强化颗粒的原料 加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。这种工艺的特点是颗粒与基体材料之间的结合状态良 好,颗粒细小(0.25~1.5μm),均匀弥散,含量可高达40%,故能获得高性能复合材料。常用的元素粉末有钛、碳、硼等,化 合物粉末有Al2O3、TiO2、B2O3等。该方法可用于制备A1基、Mg基、Cu基、Ti基、Fe基、Ni基复合材料,强化相可以是硼化 物、碳化物、氮化物等。 2、搅拌铸造法 搅拌铸造法也称掺和铸造法等,是在熔化金属中加入陶瓷颗粒,经均匀搅拌后浇入铸模中获得制品或二次加工 坯料,此法易于实现能大批量生成,成本较低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗 粒的组合受限制。原因有两方面:①强化颗粒与熔体基本金属之间容易产生化学反应;②强化颗粒不易均匀分散在铝合金一类的 合金熔体中,这是由于陶瓷颗粒与铝合金的润滑性较差,另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。 3、半固态复合铸造法 半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶以枝晶方式长大,固相率达 0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网 络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中,这种颗粒状非枝晶的微组织在固相率达 0.5%~0.6%仍具有一 定的流变性。液固相共存的半固态合金因具有流变性,可以进行流变铸造;半固态浆液同时具有触变性,可将流变铸锭重新加热 到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强 烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液 中均匀分布,改善了润湿性并促进界面的结合。 4、含浸凝固法(MI技术) 含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体 金属浸透预成型体后,使其凝固以制备复合材料的方法。有加压含浸和非加压含浸两种方法。含浸法适合于强化相与熔融基体金 属之间润湿性很差的复合材料的制备。强化相含量可高达30%~80%;强化相与熔融金属之间的反应得到抑止,不易产生偏折。 但用颗粒作强化相时,预成形体的制备较困难,通常采用晶须、短纤维制备预成形体。熔体金属不易浸透至预成形体的内部,大 尺寸复合材料的制备较困难。

金属基复合材料

金属基复合材料

金属基复合材料颗粒增强前言金属基复合材料(MMC)是多功能复合材料的一种。

它是一类以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物,其共同点是具有连续的金属基体[1]。

金属基复合材料集高比模量、高比强度、良好的导热导电性、可控的热膨胀系数以及良好的高温性能于一体,成为当代发展迅速的重要先进材料之一.目MMCs按基体不同可分为黑色金属基(如钢、铁)和有色金属基(如铝、镁、钛、镍等)两大类.按照增强相的形态不同又可分为分散强化型、颗粒增强型和纤维增强型三大类.分散强化型MMCs强化相的平均尺寸小于0.1μm,强化相的容积比Vf只有千分之几,通过强化相阻止基体中位错运动而强化基体.颗粒增强型MMCs颗粒平均尺寸在1μm以上,Vf最大可达90%,靠颗粒自身强度强化,基体作用是把颗粒组合在一起.纤维增强型MMCs是利用纤维(或金属细线)的极高强度来增强金属,纤维可以是长纤维,也可以是短纤维或者是晶须,纤维直径从3μm到150μm(晶须直径小于1μm),长度与直径比在100以上.目前,MMCs中的增强相已有多种,重要的有氧化铝纤维、硼纤维、石墨(碳)纤维、SiC纤维、SiC晶须;颗粒型的有SiC、碳化硼、图化钛等;丝状的有钨、铍、硼、钢等.[2]前在MMCs中仍以SiC和Al2O3颗粒增强铝为主,其次为短纤维增强和连续纤维增强的MMCs。

颗粒增强型MMCs以其高耐磨、高强度、低成本等优点受到广泛关注。

目前已具备批量生产条件,具有良好的发展及应用前景[3]。

1 金属基复合材料的沿革与发展现代金属基复合材料是从20 世纪60 年代初发展起来的。

60 年代初分别以美苏为首的两大阵营在宇宙空间开展的竞争推动了航空航天技术的发展,促进了定向凝固复合材料、难熔金属丝增强高温合金材料的研究与开发。

由于硼纤维的研制成功,并应用于环氧树脂基复合材料,因此出现了硼纤维增强铝基复合材料,并得到成功的应用。

第五章 金属基复合材料

第五章 金属基复合材料

• 用于集电和电触头的金属基复合材料有:碳(石墨)纤
维或颗粒、金属丝、陶瓷颗粒增强铝、铜、银及合金等 金属基复合材Βιβλιοθήκη 。三、金属基复合材料的性能特征
金属基复合材料的性能取决于所选的金属或合金基体和 增强体的特性、含量、分布等。通过优化组合可以既发挥 金属特性,又具有高比强度、高比模量、耐热、耐磨等综 合性能。其主要的性能特点有: 高比强度、比模量 良好的断裂韧性和抗疲劳性能 热膨胀系数小、尺寸稳定性好 良好的导电、导热性能 良好的高温性能 良好的耐磨性与阻尼性 性能再现性及可加工性好 不吸潮、不老化、气密性好
合金以及金属间化合物作为基体材料。如碳化硅/钛、钨丝/镍基超合
金复合材料可用于喷气发动机叶片、转轴等重要零件。
汽车发动机:要求其零件耐热、耐磨、导热、一定的高温强
度等,同时又要求成本低廉,适合于批量生产,因此选用铝合金作基 体材料与陶瓷颗粒、短纤维组成颗粒(短纤维)/铝基复合材料。如碳 化硅/铝复合材料、碳纤维或氧化铝纤维/铝复合材料可制作发动机活

Cgr/Al基复合材料在500℃高温下,仍具有600MPa的强 度,而铝基体在300℃时强度已下降到100MPa以下; Wf/耐热合金,在1100℃/100h下持久强度为207MPa, 而基体耐热合金在同样条件下的持久强度只有48MPa.


硼纤维增强铝在近400 ℃温度下仍有较好的高温比强度。
第四章
金属基复合材料
(Metallic Matrix Composites)
主要内容
一、基本概念和分类
二、金属基体
三、金属基复合材料的性能特征 四、金属基复合材料的界面及优化 五、金属基复合材料的制备工艺 六、铝基复合材料 七、镁基复合材料 八、钛基复合材料 九、镍基复合材料

金属基复合材料简介及研究现状

金属基复合材料简介及研究现状

3D打印技术
02
利用3D打印技术,实现金属基复合材料的定制化、高效制造

多尺度复合技术
03
发展多尺度复合技术,实现金属基复合材料的多层次结构设计

05
结论与展望
研究成果总结
金属基复合材料的制备技术得到改进,包括粉末冶金法、喷射沉积法、机械合金 化法等复合材料的应用领域不断扩大,涉及到能源、环保、医疗、航空航天等领 域,且在各个领域中都有显著的应用成果。
02
金属基复合材料的性能与 特点
力学性能
01
02
03
强度与硬度
金属基复合材料具有较高 的强度和硬度,能够承受 较大的应力和压力。
韧性
金属基复合材料的韧性比 金属单质更强,能够吸收 更多的能量,抵抗冲击和 振动。
疲劳性能
金属基复合材料的疲劳性 能较好,能够在反复应力 作用下保持稳定的性能。
物理性能
由于金属基复合材料具有高强度、高刚性和 轻质等优点,因此在航空航天领域得到广泛 应用,如飞机结构件、卫星部件等。
金属基复合材料在汽车工业中也有广泛应用 ,如汽车发动机部件、变速器齿轮等。
能源领域
生物医学领域
金属基复合材料在能源领域也有广泛应用, 如太阳能电池板支架、核反应堆结构件等。
金属基复合材料在生物医学领域也有广泛应 用,如人工关节、牙科种植体等。
扩散法
将增强体和金属基体在高温下进行扩散处理,使两者相互 渗透、结合,形成复合材料。该方法适用于制备连续或非 连续增强金属基复合材料。
喷射沉积法
将增强体和金属熔体通过喷射、雾化等方法制备成复合材 料。该方法适用于制备连续或非连续增强金属基复合材料 。
金属基复合材料的应用领域

金属基复合材料

金属基复合材料

飞行器和卫星构件宜选密度小的轻金属合金-镁、铝合金为 基体,与高强、高模石墨纤维、硼纤维组成石墨/镁、石墨/铝、硼 /铝等复合材料; ② 高性能发动机要求:高比强、比模量,优良的耐高温性能在 高温氧化性气氛中工作。
而选用钛合金、镍基合金及金属间化合物,如碳化硅 / 钛、镥、 钨丝/镍基起合金复合材料,可用于喷气发动机叶片、转轴等重要 零件。
基本原理是: 液态金屑基体通过特殊的喷嘴,在隋性气体气流的作用下雾化成细小的液态金属沉,
喷向衬底.将颗粒加入到雾化的金属流中,与金属液滴混合在一起并沉积在衬底上,
凝固形成金属基复合材料。
共喷沉积法的特点:
①适用面广。可用于铝、铜、镍、钻等有色金同基体,也可用于铁、 金属间化合物基体,可加入SiC、Al2O3、、石墨等多种颗粒产品可以 是圆棒、圆锭、板带、管材等。 ②生产工艺简单、效率高。与粉末冶金法相比,不必先制成金属粉末, 然后再与颗粒混合、压型、烧结等工序,而是快速一次复合成坯料, 雾化速率可达25-100Kg/min,沉淀凝固迅速。 ③冷却速度大。所得复合材料基体金属的组织与快速凝固相近,晶粒 细、无宏观偏析、组织均匀。 ④颗粒分布均匀。在严格控制工艺参数的条件下颗粒在基体中的分布 均匀。 ⑤复合材料中的气孔卒较大。气孔率在2%-5%之间,但经挤压处理后可 消除气孔.获得致密材科。
液态法
液态法是制备金属基复合材料的主要方法:
真空压力浸渍法; 共喷沉积;
挤压铸造;
真空吸铸; 搅拌铸造等方法
共喷沉积法
共喷沉积法是制造各种颗粒增强金属基复合材料的有效 方法,1960年由Siager发明,随后由Ospray金属有限公 司发展成工业生产规模的制造技术,可用来制造铝、铜、 镍、铁、金属间化合物基复合材料。

金属基复合材料(MMC)制备工艺

金属基复合材料(MMC)制备工艺
金属基复合材料(mmc)制备工艺
contents
目录
• 引言 • 金属基复合材料的制备方法 • 金属基复合材料的制备工艺流程 • 金属基复合材料的应用与发展前景
01 引言
金属基复合材料的定义与重要性
金属基复合材料是由两种或两种以上材料组成的新型材料,其中一种材料为金属 ,其他材料为增强体(如陶瓷、玻璃、碳纤维等)。这种材料具有优异的力学性 能、物理性能和化学性能,广泛应用于航空航天、汽车、能源、电子等领域。
电子工业
用于制造电子产品的外壳、散 热器、连接器等,以提高导热 、导电和绝缘性能。
医疗器械
用于制造医疗器械,如牙科植 入物、手术刀等,以提高生物
相容性和耐腐蚀性能。
金属基复合材料的发展趋势与挑战
发展趋势
随着科技的进步,金属基复合材料的 应用领域不断扩大,新型的制备技术 和复合材料不断涌现,如纳米增强复 合材料、自修复复合材料等。
制备工艺中的问题与解决方案
界面反应控制
在制备过程中,金属基体与增强相之间可能发生界面反应, 影响材料性能。通过选择合适的金属基体和增强相、控制 制备工艺参数等措施来控制界面反应。
增强相分散
为了获得均匀的复合材料,需要确保增强相在基体中均匀 分散。采用适当的分散剂和搅拌方式,提高增强相的分散 效果。
挑战
金属基复合材料的制备成本较高,性 能稳定性有待提高,同时环保法规对 材料生产和废弃处理提出了更高的要 求。
金属基复合材料的前景展望
THANKS FOR WATCHING
感谢您的观看
激光熔覆法
利用激光束将增强体与金属基体 熔化混合,快速冷却固化后形成 复合材料。
03 金属基复合材料的制备工 艺流程
原材料的选择与处理

金属基复合材料ppt课件

金属基复合材料ppt课件

(3)、热膨胀系数小、尺寸稳定性好
金属基复合材料中的碳纤维、碳化硅纤维、晶须、颗 粒、硼纤维等均具有很小的热膨胀系数,又具有很高的 模量,特别是高模量、超高模量的石墨纤维具有负的热 膨胀系数。加入相当含量的增强物不仅大幅度提高材料 的强度和模量,也使其热膨胀系数明显下降,并可通过 调整增强物的含量获得不同的热膨胀系数,以满足各种 应用的要求。
铝基复合材料是在金属基复合材料中应用得最广
的一种。由于铝的基体为面心立方结构,因此具有良好的塑 性和韧性,再加之它所具有的易加工性、工程可靠性及价格 低廉等优点,为其在工程上应用创造了有利的条件。
在制造铝基复合材料时,通常并不是使用纯铝而是用各 种铝合金。
铝基复合材料
• 大型运载工具的首选材料。如波音747、757、767 • 常用:B/Al、C/Al、SiC/Al • SiC纤维密度较B高30%,强度较低,但相容性好。 • C纤维纱细,难渗透浸润,抗折性差,反应活性较高。 • 基体材料可选变形铝、铸造铝、焊接铝及烧结铝。它们
(2)、导热导电性能
虽然有的增强体为绝缘体,但在复合材料中占 很小份额,基体导电及导热性并未被完全阻断, 金属基复合材料仍具有良好的导电与导热性。
为了解决高集成度电子器件的散热问题,现已 研究成功的超高模量石墨纤维、金刚石纤维、金 刚石颗粒增强铝基、铜基复合材料的热导率比纯 铝、铜还高,用它们制成的集成电路底板和封装 件可有效迅速地把热量散去,提高了集成电路的 可靠性。
氧化铝和硅酸铝短纤维增强铝基复合材料的室温 拉伸强度并不比基体合金高,但它们的高温强度明显 优于基体,弹性模量在室温和高温都有较大的提高, 热膨胀系数减小,耐磨性能得到改善。
• 纤维增强复合材料的强度和刚性与纤维方向密纤维使材料具有明显的各向异性。纤维采 用正交编织,相互垂直的方向均具有好的性能。纤维 采用三维编织,可获得各方向力学性能均优的材料。

金属基复合材料制备

金属基复合材料制备

金属基复合材料制备金属基复合材料是指以金属作为基体,并添加一种或多种金属、非金属或有机物作为增强相,经一系列工艺制备而成的一种新型材料。

金属基复合材料具有金属的导电、导热、强度高等优点,同时又能克服金属材料的缺点,比如低的自重和高的成本。

因此,金属基复合材料具有广泛的应用前景,并被广泛运用于航空航天、汽车制造等领域。

一种常见的制备方法是粉末冶金法。

这种方法首先需要制备金属和增强相的可压粉末,然后通过压制、烧结等工艺将其烧结成块状材料。

具体操作步骤如下:1.混合:将金属和增强相的粉末按一定比例混合均匀,可以使用球磨机等设备进行混合。

2.压制:将混合好的粉末放入模具中,并施加一定的压力,压制成所需形状的绿体。

压制的压力和时间要根据材料的性质进行适当的控制。

3.烧结:将压制好的绿体置于高温炉中进行烧结。

在烧结过程中,金属和增强相之间会发生扩散反应,从而形成金属基复合材料的相。

另一种常见的制备方法是熔体复合法。

这种方法利用金属的熔化性质,在熔融状态下将增强相加入金属中,并通过一系列工艺制备所需的金属基复合材料。

具体操作步骤如下:1.准备金属和增强相:首先需要准备金属和增强相的原材料,可以选择适当的金属粉末、非金属粉末或有机物。

2.混合:将金属和增强相的原材料混合均匀,可以使用球磨机等设备进行混合。

混合时,可以根据需要添加一些助熔剂或增塑剂。

3.加热熔融:将混合好的原材料置于高温炉中进行加热,使其达到熔融状态。

加热温度和时间要根据材料的熔点和熔化性质进行适当的控制。

4.凝固:将熔融状态的金属和增强相冷却至固态,并形成金属基复合材料的块状。

除了上述制备方法,还有其他制备方法,比如穿梭法、叠层法等。

这些制备方法在不同的材料和需求下有不同的适用性。

金属基复合材料制备中需要注意的一些问题包括原材料的选择、混合均匀性、压制参数的选择、烧结温度的控制等。

此外,制备中还需要对所得到的材料进行性能测试和微观结构观察,以进一步确认制备的成功与否,并对其性能进行评估。

金属基复合材料

金属基复合材料

⾦属基复合材料以⾦属或合⾦为基体,并以纤维、晶须、颗粒等为增强体的复合材料。

按所⽤的基体⾦属的不同,使⽤温度范围为350~120℃。

其特点在⼒学⽅⾯为横向及剪切强度较⾼,韧性及疲劳等综合⼒学性能较好,同时还具有导热、导电、耐磨、热膨胀系数⼩、阻尼性好、不吸湿、不⽼化和⽆污染等优点。

例如碳纤维增强铝复合材料其⽐强度3~4×107mm,⽐模量为6~8×109mm,⼜如⽯墨纤维增强镁不仅⽐模量可达1.5×1010mm,⽽且其热膨胀系数⼏乎接近零。

⾦属基复合材料按增强体的类别来分类,如纤维增强(包括连续和短切)、晶须增强和颗粒增强等,按⾦属或合⾦基体的不同,⾦属基复合材料可分为铝基、镁基、铜基、钛基、⾼温合⾦基、⾦属间化合物基以及难熔⾦属基复合材料等。

由于这类复合材料加⼯温度⾼、⼯艺复杂、界⾯反应控制困难、成本相对⾼,应⽤的成熟程度远不如树脂基复合材料,应⽤范围较⼩。

树脂基复合材料通常只能在350℃以下的不同温度范围内使⽤。

近些年来正在迅速开发研究适⽤于350℃~1200℃使⽤的各种⾦属基复合材料。

⾦属基复合材料是以⾦属或合⾦为基体与各种增强材料复合⽽制得的复合材料。

增强材料可为纤维状、颗粒状和晶须状的碳化硅、硼、氧化铝及碳纤维。

⾦属基体除⾦属铝、镁外,还发展有⾊⾦属钛、铜、锌、铅、铍超合⾦和⾦属间化合物,及⿊⾊⾦属作为⾦属基体。

⾦属基复合材料除了和树脂基复合材料同样具有⾼强度、⾼模量外,它能耐⾼温,同时不燃、不吸潮、导热导电性好、抗辐射。

是令⼈注⽬的航空航天⽤⾼温材料,可⽤作飞机涡轮发动机和⽕箭发动机热区和超⾳速飞机的表⾯材料。

⽬前不断发展和完善的⾦属基复合材料以碳化硅颗粒铝合⾦发展最快。

这种⾦属基复合材料的⽐重只有钢的1/3,为钛合⾦的2/3,与铝合⾦相近。

它的强度⽐中碳钢好,与钛合⾦相近⽽⼜⽐铝合⾦略⾼。

其耐磨性也⽐钛合⾦、铝合⾦好。

⽬前已⼩批量应⽤于汽车⼯业和机械⼯业。

金属基复合材料

金属基复合材料
1)基体与增强剂的选择,基体与增强剂的结合: 增强剂与基体之间应具有良好的物理相容性和化学相容性。 另外,如果在复合材料中使用高强度的纤维,就必须寻找具 有高断裂功的基体材料。在这方面,固态法制备方法更好一 些,因铸造合金一般具有较低的断裂韧性。
2)界面的形成及机制,界面产物的控制及界面设计; 3)增强剂在基体中的均匀分布: 在选择制备方法时,应选择那些使得增强剂更均匀、均质排 布(分布)的方法。在这方面,液态法与固态法相比较差。 4)制备工艺方法及参数的选择和优化; 5)制备成本的控制和降低,工业化应用的前景。
图9-11 粉末(冶金)法制备金属 基复合材料示意图
3 - 6 固态法制备工艺方法及参数的选择和优化固态法工艺的 主要参数:
1) 温度、时间: D = D0 exp (- Q / RT) D:扩散系数;Q: 扩散激活能。
X = k t 1/2 X:反应层厚度; k:反应速度常数。 2) 压力:促进结合 面的接触及在一定 温度下的金属基体 的塑性流动。 3) 结合面的清洁度:
合材料时,主要是基体
与基体之间的扩散结合,
有利于材料界面的改善;
同时通过控制基体沉积
层的厚度可控制纤维的 体积比。
图 9-4 PVD法纤维表面金属基体沉积层
2 - 4 粉末法纤维/基体复合丝
首先将金属基体粉末与聚合物 粘接剂混合制成基体粉末/聚合 物粘接剂胶体,然后将纤维通 过带有一定孔径毛细管的胶槽, 在纤维表面均匀地涂敷上一层 基体粉末胶体,干燥后形成一 定直径的纤维/基体粉末复合丝。 复合丝的直径取决于胶体的粘 度、纤维走丝速度以及胶槽的 毛细管孔径等。
业化生产。铝基复合材料单坯可达250公斤。
4 - 4 无压浸渗法(Lanxide法)

金属基复合材料

金属基复合材料

金属基复合材料
金属基复合材料是一种由金属基体和其他非金属材料(如陶瓷、碳纤维等)组
成的复合材料。

它具有金属的高强度、刚性和导热性,同时又具有非金属材料的轻量化和耐腐蚀性能。

金属基复合材料在航空航天、汽车制造、电子设备等领域有着广泛的应用。

首先,金属基复合材料的制备方法有多种,其中包括粉末冶金法、热压法、热
处理法等。

粉末冶金法是将金属粉末与非金属粉末混合后,通过压制和烧结得到复合材料。

热压法是将金属基体和非金属材料层叠在一起,然后通过高温和高压进行热压,使两者紧密结合。

热处理法则是将金属基体与非金属材料进行热处理,使其在高温下发生化学反应,形成复合材料。

其次,金属基复合材料具有优异的性能。

首先,它具有高强度和高刚性,能够
承受较大的载荷,因此在航空航天领域得到广泛应用。

其次,金属基复合材料具有良好的导热性和导电性,能够有效地传递热量和电流,因此在电子设备中有着重要的作用。

此外,金属基复合材料还具有耐磨损、耐腐蚀等特性,能够在恶劣环境下长期稳定运行。

最后,金属基复合材料的发展前景广阔。

随着科技的不断进步,金属基复合材
料的制备工艺和性能将不断得到提升,其应用领域也将不断扩大。

未来,金属基复合材料有望在汽车制造、建筑领域等方面发挥更加重要的作用,为人类社会的发展做出更大的贡献。

综上所述,金属基复合材料具有制备方法多样、优异的性能和广阔的发展前景。

它在现代工业中有着重要的地位,为各个领域的发展提供了重要支撑。

相信随着科技的不断进步,金属基复合材料将会迎来更加美好的未来。

金属基复合材料(MMC)

金属基复合材料(MMC)
采用磁控溅射等物理气相沉积(PVD)手段将基体金属均匀沉积到纤维表面(图9-3、4)上,形成纤维/基体复合丝。使用这种复合丝制备复合材料时,主要是基体与基体之间的扩散结合,有利于材料界面的改善;同时通过控制基体沉积层的厚度可控制纤维的体积比。
图 9-4 PVD法纤维表面金属基体沉积层
2 - 4 粉末法纤维/基体复合丝
图9-5 粉末法纤维/基体复合丝示意图
2 - 6 熔池法纤维 / 基体复合丝
图 9-6 熔池法纤维 / 基体复合丝示意图
这种复合丝制备方法主要是应用于碳纤维或石墨纤维增强铝基复合材料。 由于碳纤维或石墨纤维与铝液接触会反应生成Al4C3界面生成物。过量的脆性相Al4C3生成会严重影响复合材料的性能。 如图9-6所示,对纤维进行Ti-B或(液态)金属钠表面涂层处理可以增加纤维与铝液的润湿性,防止过量的脆性相Al4C3生成。
图 9-9 模压成型制备金属基复合材料示意图 模压成型也是扩散结合的一种手段。将纤维/基体预制体放置在具有一定形状的模具中进行扩散结合,最终得到一定形状的最终制品。常用这种工艺制备各种型材(图9-9)。
3-4 超塑性成型/ 扩散结合 (SPF / DB)
超塑性:材料在低负载作用下,拉伸变形时不发生缩颈,也不发生断裂,延伸率可达 100% 到 2000% 的现象。塑性流变和应变速度的关系如下: = K (e ) m 式中 :流变应力;e:应变速度;K:常数;m:应变速度敏感指数,衡量超塑性的重要参数。 影响超塑性的因素: 1) 形变速度:10 -4 ~10 -1 /分 2) 温度:> 0. 5T m ,达到相变临界点以下的某一温度可得到最大的m值和延伸率。 3) 晶粒度: 稳定、等轴、复相直径为0.5 5 m的细晶粒。

金属基复合材料的类型

金属基复合材料的类型

金属基复合材料的类型金属基复合材料是一种由金属基体和增强体组成的复合材料。

金属基体通常占据主导地位,承担大部分载荷,而增强体则起到增强材料性能的作用。

根据增强体的类型、形状、尺寸和分布,金属基复合材料可分为多种类型。

以下是几种常见的金属基复合材料类型:1. 按增强体形状分类(1)颗粒增强金属基复合材料:增强体为颗粒状,如陶瓷颗粒、金属颗粒等。

这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。

(2)纤维增强金属基复合材料:增强体为纤维状,如碳纤维、玻璃纤维、硼纤维等。

这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。

(3)晶须增强金属基复合材料:增强体为晶须状,如氧化铝晶须、碳化硅晶须等。

这种复合材料具有较高的强度和刚度,较好的韧性和耐磨性。

2. 按增强体材料分类(1)陶瓷增强金属基复合材料:增强体为陶瓷材料,如氧化铝、碳化硅等。

这种复合材料具有较高的硬度和耐磨性,但韧性较低。

(2)金属增强金属基复合材料:增强体为金属材料,如不锈钢、钛合金等。

这种复合材料具有较高的强度和韧性,但耐磨性相对较低。

(3)塑料增强金属基复合材料:增强体为塑料材料,如聚四氟乙烯、聚酰亚胺等。

这种复合材料具有良好的耐磨性和耐腐蚀性,但强度和刚度较低。

3. 按增强体分布方式分类(1)连续增强金属基复合材料:增强体呈连续分布,如纤维增强金属基复合材料。

这种复合材料具有较高的强度和刚度,但韧性和耐磨性相对较低。

(2)非连续增强金属基复合材料:增强体呈非连续分布,如颗粒增强金属基复合材料。

这种复合材料具有较好的韧性和耐磨性,但强度和刚度相对较低。

4. 按制备工艺分类(1)铸造法制备的金属基复合材料:采用铸造工艺将增强体与金属基体结合,如陶瓷颗粒增强铝基复合材料。

(2)粉末冶金法制备的金属基复合材料:采用粉末冶金工艺将增强体与金属基体结合,如碳纤维增强铜基复合材料。

(3)热压法制备的金属基复合材料:采用热压工艺将增强体与金属基体结合,如碳化硅晶须增强钛基复合材料。

金属基复合材料名词解释

金属基复合材料名词解释

金属基复合材料名词解释
嘿,你知道啥是金属基复合材料不?这可不是什么普通玩意儿啊!咱就说金属,那可是老重要了,像钢铁啦,铝合金啦,那都是在生活中到处都能看到的。

那金属基复合材料呢,就是把这些金属和其他的材料奇妙地组合在一起!比如说,把陶瓷颗粒加进去,哇塞,就好像给金属注入了一股强大的力量。

就好比啊,金属是个强壮的大力士,陶瓷颗粒就是给他配备的秘密武器,让他变得更厉害、更强大!你想想看,一辆汽车,要是用了金属基复合材料,那得多结实,多耐用啊!又或者飞机上的一些部件,用上这种材料,那安全性不就蹭蹭往上涨嘛!
再来说说这金属基复合材料的优点,那可真是多得让你惊叹!它强度高啊,比单纯的金属可强多了,这就像一个普通人经过特训后变成了超级英雄!而且它还耐磨、耐高温,这不就是传说中的“金刚不坏之身”嘛!你说牛不牛?
那它是怎么被制造出来的呢?这可不是随便就能搞定的事儿哦!需要经过一系列复杂的工艺,就像雕琢一件珍贵的艺术品一样。

科研人员们可是花费了大量的心血在这上面呢。

还有啊,它的应用范围那叫一个广!从航空航天到汽车制造,从电子设备到医疗器械,到处都有它的身影。

这就好像一个全能选手,哪里需要它,它就出现在哪里!你说神奇不神奇?
我觉得金属基复合材料就是材料界的一颗璀璨明星,它的出现给我们的生活带来了巨大的改变和进步,难道不是吗?。

金属基复合材料

金属基复合材料

金属基复合材料
金属基复合材料(Metal Matrix Composites,MMC)是指用金
属作为基体,加入一定比例的增强材料,经过加工制备成具有优异性能和特点的复合材料。

金属基复合材料能够综合了金属的导热性、导电性和良好的可塑性,以及增强材料的高强度、高硬度和高耐磨性。

这使得金属基复合材料在许多领域具有广泛的应用。

金属基复合材料可以通过不同的方法制备,其中最常见的方法是粉末冶金法。

在这种方法中,将金属基体和增强材料的粉末按照一定比例混合,并通过热等静压、热变形等工艺进行成型。

然后经过热处理和后续的加工工艺,得到具有一定结构和性能的金属基复合材料。

金属基复合材料具有许多优点。

首先,金属基复合材料具有较高的强度和硬度,使其能够承受更大的力和压力。

其次,金属基复合材料具有优异的耐腐蚀性能,使其在恶劣环境下能够长期稳定运行。

此外,金属基复合材料还具有良好的抗疲劳性能和热膨胀性能,可以适应不同的工作条件和温度变化。

金属基复合材料在汽车、航空航天、电子、建筑以及军工等领域得到广泛应用。

在汽车领域,金属基复合材料可以用于制造发动机零部件、车身结构件和刹车系统等。

在航空航天领域,金属基复合材料可以用于制造发动机叶片、航空航天结构件和燃气轮机等。

在电子领域,金属基复合材料可以用于制造散热器、连接器和电子封装材料等。

在建筑领域,金属基复合材料
可以用于制造抗疲劳、抗震和耐久的结构材料。

总之,金属基复合材料是一种具有优异性能和特点的复合材料,广泛应用于各个领域。

随着科学技术的不断发展,相信金属基复合材料将会有更加广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属基复合材料及其主要制备工艺简介
复合材料简介
本文介绍复合材料中的金属基复合材料的制备。

复合材料是指采用物理或化学的方法,使两种或两种以上的材料在相态(如连续相:基体;不连续体:增强相)以性能相互独立的形式下共存于一体之中,以达到提高材料的某些性能,或互补其缺点,或获得新的性能(或功能)的一种新型材料。

与常规材料相比较,金属材料有优良的延展性和可加工性,但其强度相对低,耐热、耐磨、耐蚀性差;陶瓷材料的强度高、耐热、耐磨、耐蚀性好,但很脆,加工性能差,复合后利用两者的优势互补,提高性能。

复合材料按用途分为结构材料和功能材料;按复合材料各成分在材料集散情况,分为三类:分散强化型复合材料、层状复合材料、梯度复合材料;按基体材料类型分:金属基复合材料,聚合物基复合材料,陶瓷基复合材料;按增强原理分为弥散增强型复合材料、晶须增强型复合材料、纤维增强型复合材料。

金属基复合材料简介
复合材料中的金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。

其中,基体主要是由Al,Mg,Ti及其合金制成,增强体是有硼纤维,SiC纤维,高强度石墨纤
维,Al2O3 等制成。

具有高强度、高模量、低膨胀系数,能耐300-500℃或更高的温度等优点。

但造价高、密度大、制备工艺复杂,存在界面反应等缺点。

其分类可以按照基体或增强体的不同分类。

金属基复合材料的制备工艺
接下来介绍重点部分,就是金属基复合材料的制备及加工。

根据制备特点等,我们可以把金属基复合材料的制备方法分成以下四大类:(下面将一一介绍)
1)固态法:粉末冶金法、真空热压扩散结合、热等静压、模压成型、超塑性成型 / 扩散结合。

2)液态法:真空压铸、半固态铸造、无压渗透等。

3)喷射成型法:喷射共沉积、等离子喷涂成型。

4)原位生长法(原位复合法)。

第一类:固态法
下面介绍第一种方法,即真空热压扩散结合法,这种方法是在一定的温度和压力下,把表面新鲜清洁的相同或不相同的金属,通过表面原子的互相扩散而连接在一起因而,扩散结合也成为一种制造连续纤维增强金属基复合材料的传统工艺方法。

特点:
1)工艺相对复杂,工艺参数控制要求严格,纤维排布、叠合以
及封装手工操作多,成本高。

2)扩散结合是连续纤维增强并能按照铺层要求排布的惟一可行
的工艺。

3)在扩散结合工艺中,增强纤维与基体的湿润问题容易解决,
在热压时可通过控制工艺参数的办法来控制界面反应。

因此,在金属基复合材料的早期生产中大量采用扩散结合工艺。

第二种方法是粉末冶金法,与上一种方法不同的是,这种方法常用于制备非连续增强相金属基复合材料。

粉末冶金既可用于连续长纤维增强,又可用于短纤维、颗粒或晶须增强的金属基复合材料。

在粉末冶金法中,长纤维增强金属基复合材料分两步进行:
1首先是将预先设计好的一定体积百分比的长纤维和金属基体粉末混装于容器中,在真空或保护气氛下预烧结。

2然后将预烧结体进行热等静压加工。

一般情况下,采用粉末冶金工艺制备的长纤维增强金属基复合材料中,纤维的体积百分含量为40%~60%,最多可达75%。

但也是优缺点并存的,粉末冶金法制得的产品质量好可控制,但是成本高不稳定。

再介绍一下热等静压法,也叫HIP,这种方法是一种先进的材料成形技术,可用于制造形状复杂的金属基复合材料零件。

热等静压法(HIP)工作原理:在高压容器内旋转加热炉,将金属基体(粉末或箔)与增强物(纤维、晶须、颗粒)按一定比例,分散混合放入金属包套中,抽气密封后装入热等静压装置中加热、加压 (一般用氩气作为压力介质),在高温高压(100~200MPa)下复合成金属基
复合材料零件。

第二类:液态法
这部分介绍液态法,相较于固态法,液态法亦称为熔铸法,是目前制备颗粒、晶须和短纤维增强金属基复合材料的主要工艺方法。

该法的主要特点是金属基体在制备复合材料时均处于液态。

与固态法相比,液态法的工艺及设备相对简便易行,与传统金属材料的成型工艺,如铸造、压铸等方法非常相似,制备成本较低,因此液态法得到较快的发展。

首先介绍压铸法,指在压力作用下将液态或半液态金属基复合材料或金属以一定速度充填压铸模型腔或增强材料预制体的孔隙中,在压力下快速凝固成型而制备金属基复合材料的工艺方法。

具体工艺:首先将包含有增强材料的金属熔体倒入预热摸具中后,迅速加压,压力约为70~100MPa,使液态金属基复合材料在压力下凝固。

待复合材料完全固化后顶出,即制得所需形状及尺寸的金属基复合材料的坯料或压铸件。

此法生产过程中影响MMC性能的工艺因素主要有:①熔融金属的温度②模具预热温度③使用的最大压力④加压速度。

与其他金属基复合材料制备方法相比,压铸工艺设备简单,成本低,材料的质量高且稳定,易于工业化生产。

接下来介绍半固态复合铸造,这种方法是将颗粒加入半固态的金
属熔体中,通过搅拌使颗粒在基体中分布均匀,并取得良好的界面结合,然后浇注成型或将半固态复合材料注入模具中进行压铸成型。

其主要控制工艺参数:
①金属基体熔体的温度应使熔体达到30%~50%固态;
②搅拌速度应不产生湍流以防止空气裹入,并使熔体中枝晶破碎形成固态颗粒,降低熔体的粘度,从而有利于增强颗粒的加入。

最后介绍无压渗透法,其方法是将增强材料制成预制体,放置于烧结氧化铝制成的托盘之中。

再将基体金属坯料置于可渗透的增强材料预制体上部。

整个设备放置在一可通流动氮气的加热炉中。

通过加热,基体金属熔化,并且自发渗透入状增强材料预制体中。

无压渗透工艺能较明显降低金属基复合材料的制造成本,但复合材料的强度较低,而其刚度显著高于基体金属。

材料的CTE低,耐磨性好,可得到接近零件形状(预制体)的坯料,减少机加工。

第三类:喷射成型法
喷射成型法可分为喷射共沉积和等离子喷涂两种方法。

1.等离子喷涂法是利用等离子体高温加热金属基体粉末,将其喷涂到基板上,形成MMC。

可分为低压等离子和等离子涂覆两种。

2.喷射共沉积法利用喷射金属熔体,将金属雾化成液滴,并与增强材料(多数为颗粒增强材料)均匀结合,共同沉积成各种形状的MMC材料或MMC铸件。

喷射沉积法的优越性:
①该工艺流程短,工序简单,喷射沉积效率高,有利于实现工业化生产。

②高致密度,直接沉积的复合材料密度一般可达到理论的95%~98%;
③属快速凝固方法,冷速可达103~106 K/s,故金属晶粒及组织细化,消除了宏观偏析,合金成分均匀,同时增强材料与金属液滴接触时间短,很少或没有界面反应;
④具有通用性和产品多样性。

该工艺适于多种金属材料基体,如高、低合金钢、铝及铝合金、高温合金等。

第四类:原位生长法
原位生长法又称为原位自生成法,在复合材料制造过程中,增强材料在基体中生成和生长的方法称作原位自生成法。

在MMC的制备过程中往往存在这样两个问题:润湿性问题和界面反应问题。

如果增强材料可以直接从金属基体中反应直接生成(原位生成),则可以解决这些问题。

以原位自生成法制造的金属基复合材料中,基体与增强材料间的相容性好,界面干净,结合牢固。

特别当增强材料与基体之间有共格或半共格关系时,能非常有效地传递应力;而且,界面上不生成有害的反应产物,因此这种复合材料有较优异的力学性能。

原位自生成有三种方法:
1) 共晶合金定向凝固法;
2) 直接金属氧化法(DIMOX TM);
3) 反应自生成法(XD TM)。

1)共晶合金定向凝固法:增强材料以共晶的形式从基体中凝固析出,通过控制冷凝方向,在基体中生长出排列整齐的类似纤维的条状或片层状共晶增强材料。

2)直接金属氧化法(DIMOX TM):是一种可以制备金属基复合材料和陶瓷基复合材料的原位复合工艺。

根据是否有预成型体又可分为唯一基体法和预成型体法,两者原理相同。

◆唯一基体法的特点:制备金属基复合材料的原材料中没
有填充物(增强材料预成型体)和增强相,只是通过基体金属
的氧化或氮化来获取复合材料。

◆当DIMOX TM工艺采用增强材料预成型体时,由于增强材
料预成型体是透气的,金属基体可以通过渗透的氧或氮顺序氧
(氮)化形成基体。

3)反应自生成法(XD TM):可生成颗粒、晶须或共同增强的金属和金属间化合物基复合材料。

根据所选择的原位生长的增强相的类别或形态,选择基体和增强相生成所需的原材料,如一定粒度的金属粉末、硼或碳粉等,按一定比例混合制成预制体,并加热到熔化或自蔓延燃烧(SHS)反应发生的温度时,预制体的组成元素进行放热反应,以生成在基体中弥散的微观增强颗粒、晶须和片晶等。

XD TM工艺特点
①各种金属或金属间化合物均可作为基体;
②增强相的类型、形态可以选择和设计;
③增强相是原位形成,具有热稳定性;
④复合材料可以采用传统金属加工方法进行二次加工。

总结
总体来说,本文介绍了MMC现有的主要制作工艺方法,通过总结可以学到很多新型制作工艺的特点,还可以更清晰的了解现有工艺的优缺点,以达到学习和改进的目的。

参考文献
于化顺,金属基复合材料及其制备技术,北京:化学工业出版社 2005
赵玉涛戴起勋陈刚,金属基复合材料,北京:机械工业出版社 2007
周曦亚,复合材料,北京:化学工业出版社 2005。

相关文档
最新文档