110KV变电站一次设计

合集下载

110kV变电站一次系统设计

110kV变电站一次系统设计

110kV变电站一次系统设计110kV变电站一次系统设计摘要本设计首先对课题所给原始数据进行分析,然后进行变电站的负荷计算和无功补偿计算。

确定无功补偿装置及无功补偿容量。

其次就是根据原始数据,进行短路计算和主接线的选择,然后根据短路计算的结果,对各种一次设备进行选型校验;完成主接线选择及设备选型后,根据设计要求绘制该变电站一次系统图。

最后进行防雷、接地、变电站布置以及变电站自用电系统的设计,其中电器设备的选择主要包括:断路器、隔离开关、电压互感器、电流互感器、绝缘子、套管、电缆母线、避雷器等。

关键词:变电站;一次系统;负荷计算;无功补偿;短路计算IDesign of 110kV Substation and Primary System AbstractThe design first to subject the original data analysis,and substations loads computation and no work make the calculation. Then precede the burthen calculation of the transformer substation with have no the coefficient the in expiation of calculation the etc.. Secondly, according to the original data, for short terms and the choice, And according to short-circuit the result, a device would the checksum ;Complete the connection to choose the type and equipment designed to draw, when the substations a system. Finally, to prevent ground, ready for substations, and the electricity system in substations, Of electrical equipment chosen primarily includes : breaker, isolated from a switch, voltage, potential transformer , current transformer, post-type insulator, bushing and cables etc., lightning arrester,bus etc.Keywords: Transformer Substation, The Primary System, load calculation,Reactive power compensation,Short-circuit calculationIII前言变电站是接受、变换、分配电能的环节,是供电系统中极其重要的组成部分。

110kV变电站一次系统设计

110kV变电站一次系统设计

110kV变电站一次系统设计随着电力系统的快速发展和演化,变电站的设计和规划成为了电力系统的重要组成部分。

其中,110kV变电站作为电力系统的重要节点,其一次系统设计对于整个电力网络的稳定性和安全性具有决定性的影响。

本文将详细阐述110kV变电站一次系统设计的主要步骤和关键因素,以确保变电站的安全、可靠和高效运行。

110kV变电站一次系统设计的基本架构包括高压进线、主变压器、断路器、隔离开关、电流互感器、电压互感器以及无功补偿装置等关键部分。

设计时需要明确各部分的功能和作用,并根据系统工程原理进行整体优化。

在设备选择方面,需要考虑到设备性能、技术参数以及运行环境等多个因素。

例如,主变压器应选择低损耗、低噪音、高可靠性的产品,同时要考虑到散热和冷却问题;断路器则应选择切断能力强、动作速度快、使用寿命长的设备。

还要根据实际需求来选择适当的电流、电压互感器和无功补偿装置。

设备布置也是一项重要的设计任务。

在设备布置时,需要考虑设备的维护和操作空间,保证人员安全和设备稳定运行。

同时,要合理安排设备的排列和布局,使整个系统看起来简洁、明了,方便运行和维护。

为了保证变电站的安全和稳定运行,仪表和安全防护装置也是必不可少的。

仪表可以实时监测设备的运行状态,为运行人员提供重要的运行参考。

安全防护装置则可以在设备故障或异常情况下,快速切断电源,保护设备和人员安全。

在进行电路分析时,需要采用适当的计算方法和原理,以确定各部分的电气性能和参数。

例如,可以通过电路仿真软件进行模拟实验,得到各部分的电压、电流以及功率因数等关键数据。

根据电路分析结果,可以进一步计算设备的参数。

例如,可以通过计算得到主变压器的容量、断路器的切断能力、电流互感器的变比等关键参数。

这些参数对于设备的选择和系统的整体性能具有重要影响。

在完成上述计算和分析后,可以得出110kV变电站一次系统设计的主要内容和结论。

设计时需要权衡各种因素,如设备性能、系统稳定性、经济性等,以满足用户需求和系统规划要求。

110kV变电所电气一次设计

110kV变电所电气一次设计

第 1 章原始资料分析1.变电站的地址和地理位置选择:建设一个变电站要考虑到地理环境、气象条件等因素,包括:⑴年最高温度、最低温度。

⑵冬季、夏季的风向以及最大风速。

⑶该地区的污染情况。

2.确定变电站的建设规模设计⑴电压等级有两个:110kV 10kV。

⑵主变压器用两台。

⑶进出线情况:110kV有两回进线,10kV有18回出线。

3.设计110kV和10kV侧的电气主接线:通过比较各种接线方式的优缺点、适用范围,确定出最佳的接线方案。

⑴110kV侧有两回进线,为电源进线,此时宜采用桥形接线,根据桥断路器的安装位置,可分为内桥和外桥接线两种,比较这两种接线的特点,适用范围,确定110k V侧的接线方式为内桥接线。

⑵10kV侧有18回出线,可供选择的接线方式有:①单母线分段接线。

②双母线以及双母线分段。

③带旁路母线的单母线和双母线接线。

比较这几种接线方式的优缺点,适用范围,确定出10K V侧的接线方式为单母线分段接线。

4.计算短路电流及主要设备选型。

⑴主变压器的型号、容量、电压等级、冷却方式、结构、容量比和中性点接地方式的选择等。

①主变的容量:主变容量的确定应根据电力系统5-10 年发展规划进行。

当变电所装设两台及以上主变时,每台容量的选择应按照其中任一台停运时,其余容量至少能保证所供一级负荷或为变电所全部负荷的60-80%。

②接线方式:我国110kV及以上电压,变压器三相绕组都采用“YN'联接;35kV采用“Y” 联接,其中性点多通过消弧线圈接地。

因此,普通双绕组一般选用YN,d11 接线;三绕组变压器一般接成YN,y,d11 或YN,yn,d11 等形式。

5.绘制电气主接线图;总平面布置图;110kV和10kV的进出线间隔断面图等有关图纸。

6.简要设计主变压器继电保护的配置、整定计算选择几个特殊的短路点:如110k V侧、10kV母线上。

根据系统的短路容量进行整定计算。

7.防雷接地设计防雷设计要考虑到年雷暴日,保护范围等因素。

110KV变电站电气一次部分初步设计说明书.docx

110KV变电站电气一次部分初步设计说明书.docx

110KV变电站电气一次部分初步设计说明书第一部分设计说明书第1章原始资料该课题来源于工程实际,建设此变电站是为了满足该地区输变电的需要。

本次设计的变电站高压侧从相距 6.5km 的 PX110kV变电站受电,经过降压后分别以35kV、10kV 两个电压等级输出。

它在系统中起着重要的作用,它是变换电压、汇集和分配电能的电网环节,可以降低输电时电线上的损耗,主要的作用是将高压电降为低压电,经过降压后的电才可接入用户。

1.1 建站规模(1)、变电站类型:待建电站属于110kV 变电工程。

(2)、主变台数及容量:待建DK110kV 变电站主变台数及容量为:本期2×31.5MVA,远景规划: 2× 31.5MVA。

(3)、主变台数及容量:待建DK110kV 变电站主变台数及容量为:本期2×31.5MVA,远景规划: 2× 31.5MVA。

(4)、进出线:待建DK110kV变电站从相距6.5km 的 PX110kV变电站受电,线径 LGJ-240;变电站进出线 ( 全部为架空线 ) ,110kV共 2 回;35kV 共 4 回;10KV 共16回。

(5)负荷情况:待建 DK110kV变电站年负荷增长率为 5%,变电站总负荷考虑五年发展规划。

(6)无功补偿:待建DK110kV变电站无功补偿装置采用电力电容两组,容量为 2×3000kvar 。

(7)建站规模:待建DK110kV变电站所占地面积可采用半高型布置。

1.2 、短路阻抗系统作无穷大电源考虑,归算到本站110kV 侧母线上的阻抗标幺值X1= X 20.06 , X 00.154 (取 S B100 MVA, E S 1.0 )。

1.3 、地区环境条件待建 DK110kV变电站所在地区年最高气温35℃,年最低气温- 15℃,年平均气温 15℃。

第 2 章电气主接线设计电力系统是由发电厂、变电站、线路和用户组成。

110kV变电站电气一次部分设计

110kV变电站电气一次部分设计

发电厂课程设计报告110kV变电站电气一次部分设计摘要电力工业是能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的位置,是时间国家现代化的战略重点。

电能是一种无形的、不能大量储存的二次能源。

电能的发、变、送、配和用电,几乎是在同一瞬间完成的,须随时保持功率平衡。

要满足国民经济发展的要求就必须加强电网建设,而变电站建设就是电网建设中的重要一环。

在变电站的设计中,既要求所变电能能很好地服务于工业生产,又要切实保证工厂生产和生活的用电的需要,并做好节能工作,就必须达到以下基本要求:安全,在变电过程中,不发生人身事故和设备事故。

可靠,所变电能应满足电能用户对用电的可靠性的要求。

优质,所变电能应满足电能用户对电压和频率等质量的要求。

经济变电站的投资要少,输送费用要低,并尽可能地节约电能、减少有色金属的消耗量和尽可能地节约用地面积。

由原始资料可以知道,该地区变电所所涉及方面多,考虑问题多,分析变电所担负的任务及用户负荷等情况,选择所址,利用用户数据进行负荷计算,确定用户无功功率补偿装置。

同时进行各种变压器的选择,从而确定变电站的接线方式,再进行短路电流计算,选择送配电网络及导线,进行短路电流计算。

选择变电站高低压电气设备,为变电站平面及剖面图提供依据。

本变电站的设计包括了:总体方案的确定、负荷分析、短路电流的计算、高低压配电系统设计与系统接线方案选择、继电保护的选择与整定、防雷与接地保护等内容。

随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。

变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。

关键词:变电站变压器接线高压网络配电系统目录第一部分变电站(所)电气一次部分设计说明书一、原始资料 (1)二、电气主接线设计 (2)三、主变压器变的选择 (6)四、站(所)用变压器的选择 (7)五、高压电气设备选择 (10)高压断路器的选择及校验 (12)隔离开关的选择及校验 (13)电流互感器的选择及校验 (14)电压互感器的选择及校验 (14)高压熔断器的选择及校验 (17)母线选择及校验 (18)电缆选择及校验 (18)六、防雷及过电压保护装置设计 (19)第二部分变电站(所)电气一次部分设计计算书七、负荷计算 (21)八、短路电流计算 (22)九、电气设备选择及校验计算 (32)高压断路器的选择及校验 (33)隔离开关的选择及校验 (35)电流、电压互感器的选择及校验 (37)高压熔断器的选择及校验 (40)母线选择及校验 (40)电缆选择及校验 (45)四、防雷保护计算 (45)结束语 (49)参考文献 (50)第一部分变电站电气一次部分设计说明书一、110KV降压变电站一次部分设计原始资料1.1 进线1.3 环境条件变电所位于某城市,地势平坦,交通便利,空气污染较重,区平均海拔200米,最高气温39℃,最低气温2℃,年平均雷电日90日/年,土壤电阻率高达300 .M1.4 短路阻抗系统作无穷大电源考虑二、电气主接线设计电气主接线是由高压电器通过连接线,按其功能要求组成接受和分配电能的电路,成为传输强电流,高电压的网络,它要求用规定的设备文字和图形符号,并按工作顺序排列,详细地表示电气设备或成套装置全部基本组成和连接关系,代表该变电站电气部分的主体结构,是电力系统结构网络的重要组成部分。

110KV常规变电站电气一次部分设计任务书

110KV常规变电站电气一次部分设计任务书

110KV常规变电站电气一次部分设计
一、原始资料
1、变电所设有两台主变
2、110kv架空线路两回路供电,10kv侧6回出线
1#、2#:负荷为2000kw,长度为2km
3#、4#:负荷为1700kw,长度为2.5km
5#、6#:负荷为1500kw,长度为1.5km
3、系统至110kv母线的短路容量1000MVA,功率因数为0.85
最大负荷利用小时数为5000h/年,变电所10kv出现保护最长动作时间为1.5s.
二、设计内容
1、变压器的选择
2、确定电器主接线方案
3、短路电流计算
4、计算并选择电气设备
5、母线的选择
三、本次课程设计应提交的文件
1、设计计算说明书,应包含:
1)主变的选择
2)对各种电器主接线设计的方案的比选
3)详细的短路电流计算过程
4)主要电气设备选择与校验
2、设计图纸
绘制变电所电器主接线图1张。

110kV降压变电所电气一次部分的设计毕业设计

110kV降压变电所电气一次部分的设计毕业设计

摘要本毕业设计通过对110KV变电站一次部分的设计,完成了对负荷的分析、主变压器的选择、无功补偿装置的选择、电气主接线的选择、各电压等级负荷的计算、最大持续工作电流及短路电流的计算、变压器、高压断路器、隔离开关、母线、绝缘子和穿墙套管、电流互感器、电压互感器、接地刀闸、避雷器的配置、选择、校验工作。

关键词:电气一次部分设计计算短路电流变电站110kV降压变电所电气一次部分的设计第一章:设计概况一.设计题目110kV降压变电所电气一次部分的设计二.所址概况1.所址地理位置及地理条件变电所位于某中型城市边缘,所区西为城区,南为工业区,所址地势平坦,交通便利,进出线方便,空气污染轻微,不考虑对变电所的影响。

2.所区平均海拔200米,最高气温40℃,最低气温-18℃,年平均气温14℃,最热月平均最高气温30℃,土壤温度25℃。

三.系统情况如下图:四.负荷情况:五.设计任务1.负荷分析及主变压器的选择。

2.电气主接线的设计。

3.变压器的运行方式以及中性点的接地方式。

4.无功补偿装置的形式及容量确定。

5.短路电流计算(包括三相、两相、单相短路)6.各级电压配电装置设计。

7.各种电气设备选择。

8.继电保护规划。

9.主变压器的继电保护整定计算。

六.设计目的总体目标:培养学生综合运用所学各科知识,独立分析和解决实际工程问题的能力。

第二章:负荷分析及主变选择一.负荷分析:1.负荷分类及定义1)一级负荷:中断供电将造成人身伤亡或重大设备损坏,切难以修复,带来极大的政治、经济损失者,属于一级负荷。

一级负荷要求有两个独立电源供电。

2)二级负荷:中断供电将造成设备局部破坏或生产流程紊乱,且较长时间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。

二级负荷应由两回线供电。

但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。

3)三级负荷:不属于一级和二级的一般电力负荷。

三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。

110kV中间变电站一次设计

110kV中间变电站一次设计

110kV中间变电站一次设计本文旨在介绍110kV中间变电站一次设计的背景信息。

该项目的目的在于建设一座高压中间变电站,以实现电力输送和供电需求。

中间变电站是电力系统中的重要组成部分,能够协调不同电压等级之间的电力传输,保障电力的稳定供应。

该中间变电站将运用110kV电压等级,可以连接其他变电站及配电网,为周边地区的大型工业和居民用电提供稳定和可靠的电力供应。

通过该项目的建设,可以满足当地用电需求的增长,并促进区域经济的发展。

中间变电站的一次设计需要充分考虑项目所处的环境和现有条件。

这包括选址要求、土地利用情况、地形地貌特征等因素。

同时,还需要考虑当地气候状况、地震等自然灾害风险,以及社会环境、交通条件等因素。

通过仔细研究和设计,我们将确保中间变电站的一次设计充分满足项目的要求,并在建设过程中考虑到现有条件和环境保护等因素。

本文档旨在列出110kV中间变电站一次设计的主要要求。

以下是各方面的要求:容量需求:中间变电站需要满足指定的容量要求,以确保电力系统的正常运行。

电力系统架构:中间变电站的一次设计应基于适当的电力系统架构,确保系统的可靠性和灵活性。

电力设备选择和配置:选择和配置适当的电力设备,包括变压器、断路器、开关设备等,以满足变电站的要求。

安全要求:中间变电站应考虑安全因素,包括防火、防爆等措施,以确保工作人员和设备的安全。

维护要求:一次设计应考虑设备的维护和检修要求,以便确保设备的可持续运行和性能。

以上是110kV中间变电站一次设计的主要要求,这些要求将指导设计过程,确保中间变电站的正常运行和可靠性。

本部分将详细描述关于110kV中间变电站一次设计的具体方案。

包括主要设备的选择和布置,安全和可靠性考虑,系统的互连和监控等方面的设计。

主要设备选择和布置在110kV中间变电站的一次设计中,需仔细选择和布置主要设备。

关键设备包括变压器、电缆、断路器、隔离开关等。

在选择主要设备时,应考虑其技术性能、可靠性和适用性,以满足变电站的需求。

110kv变电站电气一次部分及主变差动保护配置设计

110kv变电站电气一次部分及主变差动保护配置设计

110kv变电站电气一次部分及主变差动保护
配置设计
110千伏变电站是电力系统的重要组成部分,其电气一次部分的配置设计以及主变差动保护方案对于保障电力系统的稳定运行至关重要。

首先,110千伏变电站电气一次部分应包括主要设备如高压进线柜、高压母线、断路器、隔离开关、电容器、电流互感器、电压互感器等。

其中,高压进线柜是用于接收输电线路带来的电能,将其通过高压母
线供应给各个用电设备。

断路器负责切断故障电路,隔离开关用于进
行设备的检修和维护。

电容器的作用是对电力负载进行补偿,提高系
统功率因数。

电流互感器和电压互感器则用于测量电力系统中的电流
和电压。

其次,主变差动保护是保护主变压器的重要手段。

差动保护主要
措施是测量变压器两侧电流的差值,若存在差异则说明系统中存在故障,保护装置将立即切断故障电路。

差动保护的可靠性、速度和灵敏
度是电力系统保障稳定运行的关键指标,在实际设计过程中,需要根
据变电站的实际情况确定变压器的额定电流和差动保护的动作性能参数。

此外,为保障电力系统的安全运行,110千伏变电站电气一次部分和主变差动保护的设计也需要考虑电力系统的可靠性、灵活性和可维
护性等要素。

在实际工程中,应根据变电站的实际情况,合理选择设
备规格,并进行对应的系统配置。

总之,110千伏变电站电气一次部分及主变差动保护是保障电力系统稳定运行的重要组成部分。

在设计过程中,需要充分考虑电力系统的实际情况,根据不同情况做出对应的设计方案,以确保设备的可靠性和安全性。

110kV变电站一次系统设计

110kV变电站一次系统设计

110kV变电站一次系统设计一、本文概述随着社会的快速发展和电力需求的日益增长,110kV变电站作为电力系统中不可或缺的重要环节,其设计与建设的合理性和高效性显得尤为重要。

本文旨在探讨110kV变电站一次系统的设计,通过对变电站的主要设备、电气接线、短路电流计算、设备选择及布置等方面的详细论述,以期为变电站的设计、建设和运行提供理论支持和实践指导。

本文首先介绍了110kV变电站一次系统的基本组成和功能,包括变压器、断路器、隔离开关、互感器、避雷器等关键设备的作用和选型原则。

随后,详细阐述了电气接线的设计原则,包括接线方式的选择、接线方案的优化以及运行灵活性和可靠性的保证。

在此基础上,本文还深入探讨了短路电流的计算方法,以确保设备在短路故障时能够安全、可靠地运行。

本文还重点介绍了设备选择及布置的内容,包括设备的选型依据、技术参数要求以及布置方案的优化等。

通过对设备选型和布置的综合分析,旨在提高变电站的运行效率,降低故障率,确保电力系统的安全稳定运行。

本文总结了110kV变电站一次系统设计的关键要点和注意事项,为变电站的设计、建设和运行提供了有益的参考和借鉴。

也指出了当前设计中存在的问题和不足,为进一步的研究和改进提供了方向。

二、110kV变电站一次系统设计基础110kV变电站的一次系统设计是整个变电站设计的核心部分,它涉及到电力系统的安全、稳定运行以及电力供应的可靠性。

在进行110kV变电站一次系统设计时,需要遵循一定的设计基础和原则,确保设计的合理性、经济性和先进性。

设计基础包括电气主接线的设计。

电气主接线是变电站内部电气设备的连接方式,它决定了电力系统的运行方式。

在设计中,应充分考虑系统的可靠性、灵活性和经济性,合理确定电气主接线的形式和设备配置。

电气设备的选择也是设计的基础之一。

电气设备包括变压器、断路器、隔离开关、互感器、避雷器等,它们的选择直接影响到变电站的运行性能和安全性。

在选择电气设备时,应根据变电站的容量、电压等级、运行方式等因素,选择符合国家标准和行业规范的设备,并充分考虑设备的可靠性、维护性和经济性。

(整理)110kv变电站一次系统设计.

(整理)110kv变电站一次系统设计.

引言电力行业是国民经济的基础工业,它的发展直接关系到国家经济建设的兴衰成败,它为现代工业、农业、科学技术和国防提供必不可少的动力。

电力系统规划设计及运行的任务是:在国民经济发展计划的统筹安排下,合理开发、利用动力资源,用较少的投资和运行成本,来满足国民经济各部门及人民生活不断增长的需要,提供可靠充足、质量合格的电能。

所以在本次设计中选择变电站电气部分的初步设计,是为了更多的了解现代化变电站的设计规程、步骤和要求,设计出比较合理变电站。

根据设计要求的任务,在本次设计中主要通过变电站电气主接线、短路电流计算、设备选择与校验、无功补偿、主变保护和配电装置部分的设计,使我对四年来所学的知识更进一步的巩固和加强,并从中获得一些较为实际的工作经验。

由于在设计中查阅了大量的相关资料,所以开始逐步掌握了查阅,运用资料的能力,又可以总结四年来所学的电力工业的部分相关知识,为我们日后的工作打下了坚实的基础。

第1章概述由于某地区电力系统的发展和负荷增长,拟建一座110KV变电站,向该地区用35KV和10KV两个电压等级供电。

本变电站由两个系统1S2S供电,对35KV侧来讲,本所供电对象是A厂、B厂的厂区和生活区及A、B两座变电站,10KV侧供电对象是a厂、b厂、c厂、d厂的厂区和生活区及a、b两个居民区。

具体数据如下:注:35KV负荷同时系数为0.9表1-3 10KV侧负荷资料表注:10KV负荷同时系数为0.85根据上表所述,一旦停电,就会造成地区断电、断水等后果严重影响人们的正常生活,还将造成机器停运,整个生产处于瘫痪状态,严重影响各厂生产的质量和数量。

因此对本所得运行可靠性必须保证在非特殊情况下一本不允许对他们断电。

鉴于以上情况,110KV侧线路回数采用4回,其中2回留作备用,35KV侧线路回数采用6回,另有2回留作备用,A、B厂采用双回路供电,10KV侧线路回数采用8回,另有2回留作备用,c、d厂采用双回路供电,以提高供电可靠性。

110KV变电站一次部分设计级毕业设计任务书

110KV变电站一次部分设计级毕业设计任务书

1.110KV变电站一次部分设计原始资料数据1 .变电所的性质:地区性降压变电所,主要供地方负荷3 .自然条件:所区地势平坦,海拔 600 米,交通方2 .地理位置:本所在开发区轻纺工业区便,有公路经过本所附近。

最高气温: + 38 摄氏度最低气温:一 25 摄氏度,年平均温度: + l5 摄氏度最大风速: 25m/ s 覆冰厚度:5mm地震烈度: < 6 级土壤电阻率: < 400Ω.M雷电日: 30周围环境:条件较好,不受污染影响冻土深度: 1.2m主导风向:夏东南,冬西北4 .负荷资料: 110 千伏侧共 4 回线与电力系统联接, 35 千伏侧共 10 回架空出线,最大综合负荷 56MW ,功率因数0.85 。

35 千伏侧负荷情况表远景发展: 35 千伏侧远景拟发展 2 回线 14MW 负荷,最大综合负荷18MW ,功率因数 0.85 ,10千伏侧共 12 回电缆出线。

10 千伏侧负荷情况表系统情况2.220KV变电站一次部分设计一、设计题目220KV降压变电所电气一次部分设计二、设计要求(1)选择本变电所主变的台数、容量和类型。

(2)设计本变电所的电气主接线,选出数个电气主接线方案进行技术比较,确定一个较佳方案。

(3)进行必要的短路电流计算。

(4)选择和校验所需的电气设备。

(5)设计和校验母线系统。

(6)进行继电保护的规划设计。

(7)进行防雷保护的规划设计。

三、设计依据1、待建变电所的有关资料如下:(1)设计变电所在城市近郊,向开发区的炼钢厂供电,在变电所附近还有地区负荷。

(2)确定本变电所的电压等级为220∕110∕10KV,220KV是本变电所的电源电压,110KV和10KV是二次电压。

(3)待设计变电所的电源,由双回220KV线路送到本变电所;在中压侧110KV 母线送出2回线路;在低压侧10KV母线,送出12回线路;本变电所220KV 母线有三回输出线路。

该变电所的所址,地势平坦,交通方便。

110kV变电站的一次设计

110kV变电站的一次设计

110kV变电站的一次设计摘要:变电站是电力系统的一个重要组成部分,而变电站变压器的选择至关重要.在电力系统中,电压的转换与分配都需要借助变电站完成,变电站就是将不同的电网连接在一起,并对电能进行控制与分流.而变电站一次设计直接影响整个电网的运行效率,因此对110kv的变电站一次设计提出了更高的要求,本文主要针对110kv的变电站进行一次设计,并分析变压器以及线路的保护措施。

关键词:110kV变电站;电气;一次设计1、110kV变电站一次系统设计原则(1)严格执行国家制定的政策、法规,保证整个电力行业运行稳定,满足国家用电要求。

同时,在操作过程中,要保证人员的安全和电源的稳定,在实际设计工作中,应尽可能引进先进的设备和技术,以保证电力系统的整体水平。

(2)随着现代信息技术的发展,积极运用自动化技术,保证110kV变电站自动化水平的提高。

(3)110kV变电站的建设需要利用相应的土地资源,对周围环境和电力系统使用人员有一定的影响。

因此,根据施工现场的实际情况,要求设计人员保证参数符合标准要求,从而完成设计工作。

2、110kV变电站的主接线设计对于变电站来说,主接线的设计极其繁琐,其接线方式非常复杂,如果接线方式不对,则很容易引发故障,一旦发生故障,不仅检测非常困难,而且修复也非常困难,所以在确保供电良好的前提下,还要不断简化变电站主接线的设计。

首先清楚变压器的最大承载情况,然后依据电气的实际情况设计好变电站的主接线方式,一般常见的主接线方式为单母线分段接线或双母线接线。

通常110kV的变电站会采用直接接入对侧变电站间隔的进线方式,采用此种接线方式主要是由于供电更可靠,便于运行管理。

3、110kV变电站主变压器的设计通常主变压器在安装以前,必须先严格的察看整个变电站的运行情况,然后根据具体情况选取适当的变压器,其数量需要依据空间面积和规模结构进行选择,一般都以总容量和占地面积作为参考标准。

对于110kV的变电站来说,大多数都需要安装一台以上的变压器,这主要是为了确保变压器能够稳定高效的运行,当一台变压器出现异常情况时,另一台变压器就可自动承载一部分负荷,这样既能确保变电站的安全,又能保障变电站的运行效率。

【毕业设计】110kV变电站电气一次部分初步设计毕业设计

【毕业设计】110kV变电站电气一次部分初步设计毕业设计

【关键字】毕业设计110kV变电站电气一次部分初步设计毕业设计内容提要根据设计任务书的要求本次设计为110kV变电站电气一次部分初步设计并绘制电气主接线图及其他图纸该变电站设有两台主变压器站内主接线分为110kV35kV和10kV三个电压等级各个电压等级分别采用单母线分段接线单母线分段带旁母线和单母线分段接线本次设计中进行了电气主接线的设计电路电流计算主要电气设备选择及效验包括断路器隔离开关电流互感器母线等各电压等级配电装置设计及防雷保护的配置本设计以《电力工程专业毕业设计指南》《电力工程电气设备手册》《高电压技术》《电气简图用图形符号GBT》《电力工程设计手册》《城乡电网建设改造设备使用手册》等规范规程为依据设计的内容符合国家有关经济技术政策所选设备全部为国家推荐的新型产品技术先进运行可靠经济合理目录前言4第一部分110kV变电站电气一次部分设计说明书4原始资料4电气主接线设计6主接线的设计原则和要求6主接线的设计步聚8本变电站电气接线设计9第3章变压器选择12第31节主变压器选择12第32节站用变压器选择13第4章短路电流计算14第41节短路电流计算的目的14第42节短路电流计算的一般规定14第43节短路电流计算的步聚15第44节短路电流计算结果15第5章高压电器设备选择16第51节电器选择的一般条件16第52节高压断路器的选择18第53节隔离开关的选择19第54节电流互感器的选择20第55节电压互感器的选择21第56节高压熔断器的选择21第6章配电装置设计21第二部分110kV变电站电气一次部分设计计算书22第1章负荷计算22第11节主变压器负荷计算22第12节站用变压器负荷计算24第2章短路电流计算25第21节三相短路电流计算25第22节站用变压器高压侧短路电流计算31第3章线路及变压器最大长期工作电流计算31第31节线路最大长期工作电流计算31第32节主变进线最大长期工作电流计算32第4章电气设备选择及效验32第41节高压断路器选择及效验33第42节隔离开关选择及效验33第43节电流互感器选择及效验34第44节电压互感器选择及效验36第45节熔断器选择及效验36第46节母线选择及效验37总结38参考文献40前言变电站是电力系统的重要组成部分是联系发电厂和用户的中间环节起着变换和分配电能的作用直接影响整个电力系统的安全与经济运行电气主接线是变电站设计的首要任务也是构成电力系统的重要环节电气主接线的拟订直接关系着全站电气设备的选择配电装置的布置继电保护和自动装置的确定是变电站电气部分投资大小的决定性因素本次设计为110kV变电站电气一次部分初步设计分为设计说明书设计计算书设计图纸等三部分所设计的内容力求概念清楚层次分明本文是在老师们治学严谨知识广博善于捕捉新事物新的研究方向在毕业设计期间老师在设计的选题和设计思路上给了我很多的指导和帮助在此我对恩师表示最崇高的敬意和最诚挚的感谢本文从主接线短路电流计算主要电气设备选择等几方面对变电站设计进行了阐述并绘制了电气主接线图由于本人水平有限错误和不妥之处在所难免敬请各位老师批评指正第一部分110kV变电站电气一次部分设计说明书第1章原始资料11地区电网的特点综合小水电 S∑ 24MVA L1 20KM 35KV 双回路送入变电所丰水期满发电枯水期只发三分之一容量近区用电及站用电占发电容量的 10 最大运行方式时的综合电抗折算至 SJ 100MVA 时 XJ 3 本市火电厂发电机两台 Pe 5MWcosФ 08 Xd〃 018 经一台双绕组变压器 SLKVA 63KV35KV Ud 8 L2 5KM用架空线输入变电所其厂用电占 5 近区用电占 15省电网由西南方向经 110KV L3 65KM 的输电线路与变电所相连对本市的发供电起综合平衡作用12 建站规模4 变电所最大负荷利用小时数 T 6000h 同时率取 095 10KV 用户负荷资料如下表所示序号用户名称最大负荷负荷性质功率因数 1 市城区8MW Ⅰ095 2 化肥厂2MW Ⅲ090 3 工业区35MW Ⅱ090 4 农机厂15MW Ⅲ085 5 开发区4MW Ⅱ085 变电所建成后第五年总负荷增加到 306MW 建成后第十年总负荷增加到 493MW6 变电所自用负荷以 2 台 100KVA 考虑变电站类型110kV变电工程主变台数2电压等级110kV35kV10kV出线回数及传输容量13 环境条件气象及地质条件设计变电所地处半丘陵区无污染影响年最高温度 40 度最热月平均温度 34 度年最低温度 40 度最热地下 08M 处土壤平均温度 304 度海拔高度为 50M14 电器主接线图建议110kV双母线分4段35kV双母线带旁10kV单母线分段带旁路接线并考虑设置融冰措施15 短路阻抗系统作无穷大电源考虑X1∑=005X0∑=004X1∑min=01X0∑min=005火电厂的装机容量为37500kwXd=0125最大运行方式下该火电厂3台机组全部投入并满发最小运行方式下该火电厂只投入2台机组水电厂的装机容量为35000kwXd=027最大运行方式下该水电厂3台机组全部投入并满发最小运行方式下该水电厂只投入1台机组第2章电气主接线设计第21节主接线的设计原则和要求电力系统是由发电厂变电站线路和用户组成变电站是联系发电厂和用户的中间环节起着变换和分配电能的作用为满足生产需要变电站中安装有各种电气设备并b主接线代表了变电站电气部分主体结构是电力系统接线的主要组成部分是变电站电气设计的首要部分它表明了变压器线路和断路器等电气设备的数量和连接方式及可能的运行方式从而完成变电输配电的任务它的设计直接关系着全所电气设备的选择配电装置的布置继电保护和自动装置的确定关系着电力系统的安全稳定灵活和经济运行由于电能生产的特点是发电变电输电和用电是在同一时刻完成的所以主接线设计的好坏也影响到工农业生产和人民生活因此主接线的设计是一个综合性的问题必须在满足国家有关技术经济政策的前提下正确处理好各方面的关系全面分析有关因素力争使其技术先进经济合理安全可靠电气主接线的设计原则电气主接线的基本原则是以设计任务书为依据以国家经济建设的方针政策技术规定标准为准绳结合工程实际情况在保证供电可靠调度灵活满足各项技术要求的前提下兼顾运行维护方便尽可能地节省投资就近取材力争设备元件和设计的先进性与可靠性坚持可靠先进适用美观的原则接线方式对于变电站的电气接线当能满足运行要求时其高压侧应尽可能采用断路器较少或不用断路器的接线如线路-变压器组或桥形接线等若能满足继电保护要求时也可采用线路分支接线在110kV~220kV配电装置中当出线为2回时一般采用桥形接线当出线不超过4回时一般采用分段单母线接线在枢纽变电站中当110kV~220kV出线在4回及以上时一般采用双母线接线在大容量变电站中为了限制6~10kV出线上的短路电流一般可采用下列措施变压器分列运行在变压器回路中装置分裂电抗器或电抗器采用低压侧为分裂绕组的变压器出线上装设电抗器主变压器选择主变压器台数为保证供电可靠性变电站一般装设两台主变压器当只有一个电源或变电站可由低压侧电网取得备用电源给重要负荷供电时可装设一台对于大型枢纽变电站根据工程具体情况当技术经济比较合理时可装设两台以上主变压器主变压器容量主变压器容量根据5~10年的发展规划进行选择并应考虑变压器正常运行和事故时的过负荷能力对装设两台变压器的变电站每台变压器额定容量一般按下式选择Sn=06 PMPM为变电站最大负荷这样当一台变压器停用时可保证对60%负荷的供电考虑变压器的事故过负荷能力40%则可保证对84%负荷的供电由于一般电网变电站大约有25%的非重要负荷因此采用Sn=06 PM对变电站保证重要负荷来说多数是可行的对于一二级负荷比重大的变电站应能在一台停用时仍能保证对一二级负荷的供电主变压器的型式一般情况下采用三相式变压器具有三种电压的变电站如通过主变压器各侧绕组的功率均达到15%Sn以上时由于中性点具有不同的接地形式应采用普通的三绕组变压器当主网电压为220kV及以上中压为110kV及以上时多采用自耦变压器以得到较大的经济效益断路器的设置根据电气接线方式每回线路均应设有相应数量的断路器用以完成切合电路任务为正确选择接线和设备必须进行逐年各级电压最大最小有功和无功电力负荷的平衡当缺乏足够的资料时可采用下列数据最小负荷为最大负荷的60~70%如主要是农业负荷时则宜取20~30%负荷同时率取085~09当回路在三回一下时且其中有特大负荷时可取095~1功率因数一般取08线损平均取5%设计主接线的基本要求在设计电气主接线时应使其满足供电可靠运行灵活和经济等项基本要求可靠性供电可靠是电力生产和分配的首要要求电气主接线也必须满足这个要求在研究主接线时应全面地看待以下几个问题可靠性的客观衡量标准是运行实践估价一个主接线的可靠性时应充分考虑长期积累的运行经验我国现行设计技术规程中的各项规定就是对运行实践经验的总结设计时应予遵循主接线的可靠性是由其各组成元件包括一次设备和二次设备的可靠性的综合因此主接线设计要同时考虑一次设备和二次设备的故障率及其对供电的影响可靠性并不是绝对的同样的主接线对某所是可靠的而对另一些所可能还不够可靠因此评价可靠性时不能脱离变电站在系统中的地位和作用通常定性分析和衡量主接线可靠性时均从以下几方面考虑断路器检修时能否不影响供电线路断路器或母线故障时以及母线检修时停运出线回路数的多少和停电时间的长短以及能否保证对重要用户的供电变电站全部停运的可能性灵活性主接线的灵活性要求有以下几方面调度灵活操作简便应能灵活的投入或切除某些变压器或线路调配电源和负荷能满足系统在事故检修及特殊运行方式下的调度要求检修安全应能方便的停运断路器母线及其继电保护设备进行安全检修而不影响电力的正常运行及对用户的供电扩建方便应能容易的从初期过渡到最终接线使在扩建过渡时在不影响连续供电或停电时间最短的情况下投入新装变压器或线路而不互相干扰且一次和二次设备等所需的改造最少经济性在满足技术要求的前提下做到经济合理投资省主接线应简单清晰以节约断路器隔离开关等一次设备投资要使控制保护方式不过于复杂以利于运行并节约二次设备和电缆投资要适当限制短路电流以选择价格合理的电器设备在终端或分支变电站中应推广采用直降式1106~10kV变压器以质量可靠的简易电器代替高压断路器占地面积小电气主接线设计要为配电装置的布置创造条件以便节约用地和节省构架导线绝缘子及安装费用在运输条件许可的地方都应采用三相变压器电能损耗少在变电站中正常运行时电能损耗主要来自变压器应经济合理的选择主变压器的型式容量和台数尽量避免两次变压而增加电能损耗第22节主接线的设计步聚电气主接线图的具体设计步聚如下分析原始资料本工程情况变电站类型设计规划容量近期远景主变台数及容量等电力系统情况电力系统近期及远景发展规划5~10变电站在电力系统中的位置和作用本期工程和远景与电力系统连接方式以及各级电压中性点接地方式等负荷情况负荷的性质及其地理位置输电电压等级出线回路及输送容量等环境条件当地的气温湿度覆水污秽风向水文地质海拔高度等因素对主接线中电器的选择和配电装置的实施均有影响设备制造情况为使所设计的主接线具有可行性必须对各主要电器的性能制造能力和供货情况价格等资料汇集并分析比较保证设计的先进性经济性和可行性拟定主接线方案根据设计任务书的要求在原始资料分析的基础上可拟定出若干个主接线方案因为对出线回路数电压等级变压器台数容量以及母线结构等考虑不同会出现多种接线方案应依据对主接线的基本要求结合最新技术确定最优的技术合理经济可行的主接线方案短路电流计算对拟定的主接线为了选择合理的电器需进行短路电流计算主要电器选择包括高压断路器隔离开关母线等电器的选择绘制电气主接线图将最终确定的主接线按工程要求绘画工程图第23节本变电站电气主接线设计110kV电压侧接线《35~110kV变电所设计规范》规定35kV~110kV线路为两回以下时宜采用桥形线路变压器组或线路分支接线超过两回时宜采用扩大桥形单母线或分段单母线的接线35~63kV线路为8回及以上时亦可采用双母线接线110kV线路为6回及其以上时宜采用双母线接线在采用单母线分段单母线或双母线的35~110kV主接线中当不允许停电检修断路器时可设置旁路设施本变电站110kV线路有6回可选择用双母线或单母线分段接线两种方案如图21所示方案一供电可靠运行方式灵活倒闸操作复杂容易误操作占地大设备多投资大图21方案二简单清晰操作方便不易误操作设备少投资小占地面积小但是运行可靠性和灵活性比方案一稍差本变电站为地区性变电站电网特点是水电站发电保证出力时能满足地区负荷的需要加上小火电基本不需要外系统支援电源主要集中在35KV侧110KV侧是为提高经济效益及系统稳定性采用方案二能够满足本变电站110KV侧对供电可靠性的要求故选用投资小节省占地面积的方案二35kV电压侧接线本变电站35kV线路有8回可选择双母线或单母线分段带旁路母线接线两种方案根据本地区电网特点本变电站电源主要集中在35kV侧不允许停电检修断路器需设置旁路设施如图22所示图22方案一供电可靠调度灵活但是倒闸操作复杂容易误操作占地面积大设备多配电装置复杂投资大方案二简单清晰操作方便不易误操作设备少投资小占地面积小旁路断路器可以代替出线断路器进行不停电检修出线断路器保证重要回路特别是电源回路不停电方案二具有良好的经济性供电可靠性也能满足要求故35kV 侧接线采用方案二综上所述本变电站主接线如图24所示图 24第3章变压器选择第31节主变压器选择在变电站中用来向电力系统或用户输送功率的变压器称为主变压器《35~110kV变电所设计规范》规定主变压器的台数和容量应根据地区供电条件负荷性质用电容量和运行方式等条件综合考虑确定在有一二级负荷的变电所中宜装设两台主变压器当技术经济比较合理时可装设两台以上主变压器装有两台以上主变压器的变电所当断开一台时其余主变器的容量不应小于60%的全部负荷并应保证用户的一二级负荷具有三种电压的变电所如通过主变压器各侧线圈的功率均达到该变压器容量的15%以上主变压器宜采用三线圈变压器主变压器台数和容量直接影响主接线的形式和配电装置的结构由负荷计算设计计算书第1章可知本变电站远景负荷为PM=3015 MVA 装设两台主变压器每台变压器额定容量按下式选择SN=06PM=1809 MVA故可选择两台型号为SFSZ7-的变压器表 31 主变压器技术参数型号额定容量kVA额定电压 kV空载电流空载损耗kW负载损耗 kW 阻抗电压连接组标号高压中压低压高-中高-低中-低高 -中高 -低中-低-2000011038510515358131712599710517565YNyn0d11第 32 节站用变压器选择《35~110kV 变电所设计规范》规定在有两台及以上主变压器的变电站中宜装设两台容量相同可互为备用的站用变压器分别接到母线的不同分段上变电站的站用负荷一般都比较小其可靠性要求也不如发电厂那样高变电站的主要负荷是变压器冷却装置直流系统中的充电装置和硅整流设备油处理设备检修工具以及采暖通风照明供水等这些负荷容量都不太大因此变电站的站用电压只需 04kV 一级采用动力与照明混合供电方式380V 站用电母线可采用低压断路器即自动空气开关或闸刀进行分段并以低压成套配电装置供电本变电站计算站用容量为 100kVA设计计算书第 1 章选用两台型号为 S的变压器互为暗备用10kV 级 S9 系列三相油浸自冷式铜线变压器是全国统一设计的新产品是我国国内技术经济指标比较先进的铜线系列配电变压器站用变压器参数如表 32 所示表 32 站用变压器技术参数型号额定容量 kVA额定电压 kV空载电流损耗 W阻抗电压连接组标号高压低压空载短路S9-1001010010041629015004Yyn0 图 41 计算电路图及其等值网络图 42 变压器低压侧分列运行计算电路图及其等值网络表 41 短路电流计算结果按正常工作条件进行选择并按短路状态来校验热稳定和动稳定额定电压和最高工作电压在选择电器时一般可按照电器的额定电压 U N 不低于装置地点电网额定电压tk=tprtab而 tab=tinta式中 tab 断路器全开断时间t pr 后备保护动作时间tin 断路器固有分闸时间ta 断路器开断时电弧持续时间开断电器应能在最严重的情况下开断短路电流故电器的开断计算时间 tbr 应为主保护时间 tpr1和断路器固有分闸时间之和即Tbr=tpr1tin第52节高压断路器的选择高压断路器的主要功能是正常运行时用它来倒换运行方式把设备或线路接入电路或退出运行起着控制作用当设备或线路发生故障时能快速切除故障回路保证无故障部分正常运行能起保护作用高压断路器是开关电器中最为完善的一种设备其最大特点是能断开电路中负荷电流和短路电流本变电站高压断路器选择如下选择和校验计算见计算书第 4 章1 110kV 线路侧及变压器侧选择 LW11-110 型 SF6 户外断路器2 35kV 线路侧及变压器侧选择 ZW7-405 型真空户外断路器计算数据ZW7-405UNs35 kVUN405 kVI34642 AIN1600 AI"563 kAINbr315 kAish1436 kAiNcl80 kAQk22117 kA ·s2I t·t3969 kA2·sish1436 kAies80 kA计算数据KYN28A-12 Z 1250-315 UNs 10 kV UN 12 kV I 1894 A IN 1250 A I" 120 kA INbr 315 kAish 2496 kA iNcl 80 kA Qk 211186 kA ·s 2I t·t3969 kA2·s ish 2496 kA ies 80 kA3 10kV 线路侧选择 KYN28A-12 Z 1250-315 型高压开关柜计算数据ZW7-405UNs35 kVUN405 kVI34642 AIN1600 AI"563 kAINbr315 kAish1436 kAiNcl80 kAQk22117 kA ·s2I t·t3969 kA2·sish1436 kAies80 kA计算数据KYN28A-12 Z 1250-315 UNs 10 kV UN 12 kV I 1894 A IN 1250 A I" 120 kA INbr 315 kAish 2496 kA iNcl 80 kA Qk 211186 kA ·s 2I t·t3969 kA2·s ish 2496 kA ies 80 kA4 10kV 变压器侧选择 KYN28A-12 Z 2000-315 型高压开关柜计算数据KYN28A-12 Z 2000-315 UNs 10 kV UN 12 kV I A IN 2000 A I" 120 kA INbr 315 kA ish 2496 kA iNcl 80 kA Qk 211186 kA ·s 2I t·t3969 kA2·s ish 2496 kA ies 80 kA计算数据GW5--80 UNs 110 kV UN 110 kV I 2067 A IN 1000 A Qk 2653 kA ·s 2I t·t 2311 kA2·s ish 693 kA ies 80 kA 2 35kV选择GW4-35D1000-83计算数据GW4-35D1000-83 UNs 35 kV UN 12 kV I 34642 A IN 1000 A Qk 22117 kA ·s 2I t·t2500 kA2·s ish 1436 kA ies 83 kA第55节电压互感器的选择110kV出线选用TYD110 3型成套电容式电压互感器校验合格110kV母线选用JDCF-110型单相瓷绝缘电压互感器校验合格35kV母线选用JDZXW-35型单相环氧浇注绝缘电压互感器校验合格10kV母线选用JSZX1-10F型三相环氧浇注绝缘电压互感器校验合格第 56 节高压熔断器的选择熔断器是最简单的保护电器它用来保护电气设备免受过载和短路电流的损害35kV母线电压互感器选用RXW-3505型户外跌落式高压熔断器保护校验合格10kV母线电压互感器选用RN2-1005型户内限流式高压熔断器保护校验合格第6章配电装置设计配电装置是变电站的重要组成部分它是根据主接线的连接方式由开关设备保护和测量电路母线和必要的辅助设备组建而成用来接受和分配电能的装置配电装置应满足以下基本要求1 配电装置的设计必须贯彻执行国家基本建设方针和技术经济政策2 保证运行可靠按照系统和自然条件合理选用设备在布置上力求整齐清晰保证具有足够的安全距离3 便于检修巡视和操作4 在保证安全的前提下布置紧凑力求节约材料和降低造价5 安装和扩建方便配电装置设计的基本步骤1 根据配电装置的电压等级电器的型式出线多少和方式有无电抗器地形环境条件等因素选择配电装置的型式2 拟定配电装置的配置图3 按照所选设备的外形尺寸运输方法检修及巡视的安全和方便等要求遵照《配电装置设计技术规程》的有关规定并参考各种配电装置的典型设计和手册设计绘制配电装置的平断面图普通中型配电装置我国有丰富的经验施工检修和运行都比较方便抗震能力好造价比较低缺点是占地面积较大半高型配电装置占地面积为普通中型的47而总投资为普通中型的982同时该型布置在运行检修方面除设备上方有带电母线外其余布置情形与中型布置相似能适应运行检修人员的习惯与需要高型一般适用于220kV及以上电压等级本变电站有三个电压等级110kV 主接线不带旁路母线配电装置采用屋外中型单列布置35kV 主接线带旁路母线配电装置采用屋外半高型布置10kV 配电装置采用屋内成套高压开关柜布置第二部分110kV变电站电气一次部分设计计算书第 1 章负荷计算第 11 节主变压器负荷计算电力系统负荷的确定对于选择变电站主变压器容量电源布点以及电力网的接线方案设计等都是非常重要的电力负荷应在调查和计算的基础上进行对于近期负荷应力求准确具体切实可行对于远景负荷应在电力系统及工农业生产发展远景规划的基础之上进行负荷预测负荷发展的水平往往需要多次测算认真分析影响负荷发展水平的各种因素反复测算与综合平衡力求切合实际本变电站负荷分析计算如下线损平均取 5功率因数取 08负荷同时率取09 线损5 功率因数08负荷同时率0910KV侧。

110KV变电站一次设计

110KV变电站一次设计

10KV母线 图6.2.1 短路电流接线图
110kV电力系统继电保护的等值网络如图:
1 0.0301
110KV
d-1
2 0.269 3 0.269
d-2 图6.2.2等值阻抗图
10KV
短路计算表如下:
第六章 选择和校验所需的电气设备、设计和校验母 线系统

6.1、主接线中的设备配置 6.2、各级配电装置的配置 6.3、变电站设备选择
第一章 负荷分析

1.1、10KV侧及站用电各侧负荷大小 1.1.1、本期负荷

1.1.2、最终负荷
考虑本变电站所辖区域的长远发展及最终的建设规模 ,本 次按最终负荷设计选型

第二章 主变压器的选择

2.1、主变压器台数的确定 2.2、主变容量的确定
2.1、主变压器台数的确定

由于本次设计所辖区域有学校、医院等大量一级负 荷和二级负荷,本地区四季温差大。季节性负荷变 化较大,而且工厂集中负荷较大,从安全角度考虑, 本次设计装设两台主变压器为宜。
导体的选择与校验


导体选择的一般要求: 裸导体应根据具体情况,按下列技术条件分别进行选择和校 验。 1、工作电流; 2、电晕(对110级以上电压的母线); 3、动稳定和机械强度; 4、热稳定性; 5、同时也应注意环境条件,如温度、日照、海拔等。 导体截面可以按长期发热允许电流或经济密度选择,除配电 装置的汇流母线外,对于年负荷利用小时数大,传输容量大, 长度在20m以上的导体,其截面一般按经济电流密度选择。
谢辞

论文设计在XX老师的悉心指导和严格要求下 已完成,从课题选择到具体的写作过程,论 文初稿与定稿无不凝聚着杜老师的心血和汗 水。同时也谢谢同学及室友的帮助。要在这 里向老师和同学道一声谢谢 !

110kV变电站电气一次部分设计毕业论文

110kV变电站电气一次部分设计毕业论文

110kV变电站电气一次部分设计毕业论文
设计毕业论文的题目可以为"110kV变电站电气一次部分设计",该论文可以包括下列内容:
1. 引言:介绍110kV变电站的作用和重要性,以及电气一次
部分设计的背景和目的。

2. 变电站布置图:绘制变电站的布置图,包括主变、断路器、组合电器柜、电流互感器等设备的布置和连接方式。

3. 变电站主要设备选型:根据变电站的负载情况、运行要求和安全标准,对主要设备进行选型,包括主变压器、断路器、电容器等。

4. 主变压器设计:根据负载需求计算主变压器的容量,选择适当的交流电压等级,并设计主变压器的绕组、冷却系统、绝缘等。

5. 断路器设计:根据负载需求和故障电流的大小,选择合适的断路器额定电流,并设计断路器的开关特性、运行机构和保护装置等。

6. 组合电器柜设计:根据变电站的布置和设备需求,设计组合电器柜的结构和连接方式,并设计合适的开关柜、控制柜和仪表柜等。

7. 电流互感器设计:根据主变压器的容量和负载要求,选择适
当的电流互感器额定电流,并设计电流互感器的绕组和保护装置等。

8. 变电站电力系统设计:根据变电站的负载要求和电力系统的稳定性要求,设计电力系统的配电方案、保护方案和接地方案等。

9. 结论:总结论文的主要内容和设计成果,提出对未来变电站电气一次部分设计的展望和改进建议。

10. 参考文献:列举参考文献,包括相关标准、技术手册和专
业论文等。

以上是110kV变电站电气一次部分设计的毕业论文内容提纲,具体的内容可以根据实际情况进行调整和完善。

110kv变电站一次部分设计

110kv变电站一次部分设计

110kV变电站一次部分设计目录摘要 (3)概述 (4)第一章电气主接线 (6)1.1110kv电气主接线 (7)1.235kv电气主接线 (8)1.310kv电气主接线 (10)1.4站用变接线 (12)第二章负荷计算及变压器选择 (13)2.1 负荷计算 (13)2.2 主变台数、容量和型式的确定 (14)2.3 站用变台数、容量和型式的确定 (16)第三章最大持续工作电流及短路电流的计算 (17)3.1 各回路最大持续工作电流 (17)3.2 短路电流计算点的确定和短路电流计算结果 (18)第四章主要电气设备选择 (19)4.1 高压断路器的选择 (21)4.2 隔离开关的选择 (22)4.3 母线的选择 (23)4.4 绝缘子和穿墙套管的选择 (24)4.5 电流互感器的选择 (24)4.6电压互感器的选择 (26)4.7各主要电气设备选择结果一览表 (29)附录I设计计算书 (30)附录II电气主接线图 (37)10kv配电装置配电图 (39)致谢 (40)参考文献 (41)摘要本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。

从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。

关键词:变电站变压器接线概述1、待设计变电所地位及作用按照先行的原则,依据远期负荷发展,决定在本区兴建1中型110kV变电所。

该变电所建成后,主要对本区用户供电为主,尤其对本地区大用户进行供电。

改善提高供电水平。

110kV变电站一次设计

110kV变电站一次设计

110kV变电站一次设计110KV变电所电气一次初步设计目录前言 (5)第一部分毕业设计说明书 (7)第1章总则 (7)第2章原始资料 (8)第3章接入导线及配电导线设计 (11)第4章电气主接线设计 (12)第5章短路电流计算 (16)第6章变压器选择 (17)第7章站用变选择 (21)第8章主要电气设备选择 (22)第9章过电压保护与接地 (24)第10章继电保护配置 (25)第二部分毕业设计计算书 (28)第1章接入导线及配电导线计算 (28)第2章主变压器调压分接头计算 (39)第3章短路电流计算 (44)第4章主要电气设备选择计算 (54)第5章防雷保护计算 (63)总结 (64)谢辞 (65)参考文献 (66)前言变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,直接影响整个电力系统的安全与经济运行。

电气主接线是变电站设计的首要任务,也是构成电力系统的重要环节。

电气主接线的拟订直接关系着全站电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

本次设计为110kV 变电站电气一次部分初步设计,分为设计说明书、设计计算书、设计图纸等三部分。

所设计的容力求概念清楚,层次分明。

本文是在电力高等专科学校电力工程系启军教授的精心指导下完成的。

老师治学严谨、知识广博、善于捕捉新事物、新的研究方向。

在毕业设计期间老师在设计的选题和设计思路上给了我很多的指导和帮助。

老师循循善诱的教学方法、热情待人的处事方式、一丝不苟的治学态度、对学生严格要求的敬业精神给我留下了很深的印象。

在此,我对恩师表示最崇高的敬意和最诚挚的感谢!本文从接入导线和配电导线的设计选择,主接线、短路电流计算、主要电气设备选择等几方面对变电站设计进行了阐述,并绘制了电气主接线图、电气总平面布置图、站用电系统图、防雷保护配置图、各级电压配电装置断面图、直流系统图等相关设计图纸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,直接影响整个电力系统的安全与经济运行。

电气主接线是变电站设计的首要任务,也是构成电力系统的重要环节。

电气主接线的拟订直接关系着全站电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。

本次设计为110kV变电站电气一次系统初步设计,分为设计说明书、设计计算书、设计图纸等三部分。

所设计的内容力求概念清楚,层次分明。

本文是在老师们治学严谨、知识广博、善于捕捉新事物、新的研究方向。

设计的主要内容有主变压器及所用变压器选择、电气主接线选择与论证、短路电流的计算、主要电气一次设备的选择与校验、配电装置选择与布置、初步设计方案的基本图纸;在毕业设计期间老师给了我很多的指导和帮助。

在此,我对恩师表示最崇高的敬意和最诚挚的感谢!本文从主接线、短路电流计算、主要电气设备选择等几方面对变电站设计进行了阐述,并绘制了电气主接线图。

由于本人水平有限,错误和不妥之处在所难免,敬请各位老师批评指正。

第一部分110kV变电站电气一次部分设计说明书第1章原始资料1.1变电站情况:①类型:地区性变电站②气象条件:最高气温35度;年平均气温15度。

③电压等级:110kV/38.5 kV/11kV 。

④所用电:量0.1%1.2负荷与系统情况:①10kV侧:负荷最大值12MW,最小值7.5MW,平均功率因数0.8,年最大负荷利用小时数5000小时,负荷馈线8回。

②35kV系统:负荷最大值30MW,最小值21MW,平均功率因数0.85,年最大负荷利用小时数5500小时;系统联络线两回,该系统电源容量1000MVA,系统阻抗标幺值折合到本所110kV母线为3.1;负荷馈线共计4回。

③110kV系统:该系统电源容量为2000MVA,归算到本所110kV母线的阻抗标幺值得3.1;架空输电线路2回。

1.3其他必要的原始数据自己合理补充。

第2章电气主接线设计变电站是联系发电厂和用户的中间环节,起着变换和分配电能的作用。

为满足生产需要,变电站中安装有各种电气设备,主接线代表了变电站电气部分主体结构,是电力系统接线的主要组成部分,是变电站电气设计的首要部分。

它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。

它的设计,直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,关系着电力系统的安全、稳定、灵活和经济运行。

由于电能生产的特点是发电、变电、输电和用电是在同一时刻完成的,所以主接线设计的好坏,也影响到工农业生产和人民生活。

因此在选择变电站的电气主接线时,应注意变电站在电力系统中的地位、回路数、设备特点及负荷性质等条件,按照电气主接线设计的一般原则和要求,经过慎密的比较和严格的论证才能保证在建成使用的过程中不致有任何无法弥补的失误。

主接线的设计是一个综合性的问题,必须在满足国家有关技术经济政策的前提下,正确处理好各方面的关系,全面分析有关因素,力争使其技术先进、经济合理、安全可靠。

第2.1节电气主接线的设计原则电气主接线的基本原则是以设计任务书为依据,以国家经济建设的方针、政策、技术规定、标准为准绳,结合工程实际情况,在保证供电可靠、调度灵活、满足各项技术要求的前提下,兼顾运行、维护方便,尽可能地节省投资,就近取材,力争设备元件和设计的先进性与可靠性,坚持可靠、先进、适用、经济、美观的原则。

2.1.1 合理地确定变压器的运行方式。

确定运行方式总的原则是安全、经济地保证对用户安全、连续的供电。

2.1.2 接线方式的确定。

变电站建设规模应根据电力系统5--10年发展规划进行设计,在主接线设计时,必须从全局出发,统筹兼顾,根据待设计变电站在系统中的地位、进出线回路数、负荷情况、周围环境条件等,确定合理的设计方案。

2.1.3断路器的设置:根据电气接线方式,每回线路均应设有相应数量的断路器,用以完成切、合电路任务。

第2.2节设计主接线的设计要求在设计电气主接线时,应使其满足供电可靠,运行灵活和经济等项基本要求。

2.2.1可靠性:供电可靠是电力生产和分配的首要要求,电气主接线也必须满足这个要求。

在研究主接线时,应全面地看待以下几个问题:①可靠性的客观衡量标准是运行实践,估价一个主接线的可靠性时,应充分考虑长期积累的运行经验。

我国现行设计技术规程中的各项规定,就是对运行实践经验的总结。

设计时应予遵循。

②主接线的可靠性,是由其各组成元件(包括一次设备和二次设备)的可靠性的综合。

因此主接线设计,要同时考虑一次设备和二次设备的故障率及其对供电的影响。

③可靠性并不是绝对的,同样的主接线对某所是可靠的,而对另一些所可能还不够可靠。

因此,评价可靠性时,不能脱离变电站在系统中的地位和作用。

通常定性分析和衡量主接线可靠性时,均从以下几方面考虑:①断路器检修时,能否不影响供电。

②线路、断路器或母线故障时,以及母线检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对重要用户的供电。

③变电站全部停运的可能性。

2.2.2灵活性:主接线的灵活性要求有以下几方面:①调度灵活,操作简便:应能灵活的投入(或切除)某些变压器或线路,调配电源和负荷,能满足系统在事故、检修及特殊运行方式下的调度要求。

②检修安全:应能方便的停运断路器、母线及其继电保护设备,进行安全检修而不影响电力的正常运行及对用户的供电。

③扩建方便:应能容易的从初期过渡到最终接线,使在扩建过渡时,在不影响连续供电或停电时间最短的情况下,投入新装变压器或线路而不互相干扰,且一次和二次设备等所需的改造最少。

2.2.3经济性:在满足技术要求的前提下,做到经济合理。

①投资省:主接线应简单清晰,以节约断路器、隔离开关等一次设备投资;要使控制、保护方式不过于复杂,以利于运行并节约二次设备和电缆投资;要适当限制短路电流,以选择价格合理的电器设备。

②占地面积小:电气主接线设计要为配电装置的布置创造条件,以便节约用地和节省构架、导线、绝缘子及安装费用。

在运输条件许可的地方,都应采用三相变压器。

③电能损耗少:在变电站中,正常运行时,电能损耗主要来自变压器。

应经济合理的选择主变压器的型式、容量和台数,尽量避免两次变压而增加电能损耗。

第2.3节设计主接线的设计步骤2.3.1分析原始资料①本工程情况变电站类型,设计规划容量(近期,远景),主变台数及容量等。

②电力系统情况电力系统近期及远景发展规划(5~10 年),变电站在电力系统中的位置和作用,本期工程和远景与电力系统连接方式以及各级电压中性点接地方式等。

③负荷情况负荷的性质及其地理位置、输电电压等级、出线回路数及输送容量等。

④环境条件当地的气温、湿度、覆冰、污秽、风向、水文、地质、海拔高度等因素,对主接线中电器的选择和配电装置的实施均有影响。

⑤设备制造情况为使所设计的主接线具有可行性,必须对各主要电器的性能、制造能力和供货情况、价格等资料汇集并分析比较,保证设计的先进性、经济性和可行性。

2.3.2拟定主接线方案根据设计任务书的要求,在原始资料分析的基础上,可拟定出若干个主接线方案。

因为对出线回路数、电压等级、变压器台数、容量以及母线结构等考虑不同,会出现多种接线方案。

应依据对主接线的基本要求,结合最新技术,确定最优的技术合理、经济可行的主接线方案。

2.3.3短路电流计算:对拟定的主接线,为了选择合理的电器,需进行短路电流计算。

2.3.4主要电器选择:包括高压断路器、隔离开关、母线等电器的选择。

2.3.5绘制电气主接线图:将最终确定的主接线,按工程要求,绘制工程图。

第2.4节本变电站电气主接线设计2.4.1110kV电压侧接线《35~110kV变电所设计规范》规定,35kV~110kV线路为两回以下时,宜采用桥形、线路变压器组或线路分支接线。

超过两回时,宜采用扩大桥形、单母线或单母分段线的接线。

35~63kV线路为8回及以上时,亦可采用双母线接线。

110kV线路为6回及其以上时,宜采用双母线接线。

在采用单母线、单母分段线或双母线的35~110kV主接线中,当不允许停电检修断路器时,可设置旁路设施。

本变电站110kV架空输电线路有2回,宜采用桥形、线路变压器组或线路分支接线,但桥形接线不易扩建,为了以后的扩建,本设计选择用双母线或单母线分段接线两种方案,如图2.1所示。

方案一供电可靠、运行方式灵活、倒闸操作复杂, 容易误操作;占地大、设备多、投资大。

图2.1方案二简单清晰、操作方便、不易误操作,设备少,投资小,占地面积小,但是运行可靠性和灵活性比方案一稍差。

本变电站为地区性变电站,电网特点是水电站发电保证出力时能满足地区负荷的需要,加上小火电,基本不需要外系统支援,电源主要集中在35KV侧,110KV 侧是为提高经济效益及系统稳定性,采用方案二能够满足本变电站110KV侧对供电可靠性的要求,故选用投资小、节省占地面积的方案二。

2.4.2 35kV电压侧接线本变电站35kV负荷馈线有4回、系统联络线有2回,共有6回。

可选择双母线或单母线分段带旁路母线接线两种方案,根据本地区电网特点,本变电站70%多的负荷主要集中在35kV侧,不允许停电检修断路器,需设置旁路设施,如图2.2所示。

图2.2方案一供电可靠、调度灵活,但是倒闸操作复杂,容易误操作,占地面积大,设备多,配电装置复杂,投资大。

方案二简单清晰,操作方便,不易误操作,设备少,投资小,占地面积小,旁路断路器可以代替出线断路器,进行不停电检修出线断路器,保证重要回路特别是电源回路不停电。

方案二具有良好的经济性,供电可靠性也能满足要求,故35kV 侧接线采用方案二。

2.4.3 10kV电压侧接线《35~110kV变电所设计规范》规定,当变电所装有两台主变压器时,6~10kV侧宜采用分段单母线。

线路为12回及以上时,亦可采用双母线。

当不允许停电检修断路器时,可设置旁路设施。

本变电站10kV侧线路为10回,可采用双母线接线或单母线分段接线两种方案,如图2.3所示。

方案一一般用于出线较多,输送和穿越功率较大,供电可靠性和灵活性要求较高得场合,设备多,投资和占地面积大,配电装置复杂,易误操作。

方案二简单清晰,调度灵活,不会造成全场停电,能保证重要用户的供电,设备少,投资和占地小。

故选用投资小、节省占地面积的方案二。

图2.3综上所述,本变电站主接线如图2.4所示。

2.4.4站用变压器低压侧接线站用电系统采用 380/220V 中性点直接接地的三相四线制,动力与照明合用一个电源,站用变压器低压侧接线采用单母线分段接线方式,本所在10KV侧设计2台所用变互为备用,以限制故障范围,提高供电可靠性。

380V 站用电母线可采用低压断路器(即自动空气开关)或闸刀进行分段,并以低压成套配电装置供电。

相关文档
最新文档