非球曲面的超精密加工工艺及加工系统的研究

合集下载

非球曲面的超精密加工工艺及加工系统的研究

非球曲面的超精密加工工艺及加工系统的研究

本科毕业设计(论文)通过答辩摘要非球面光学零件可以获得球面光学零件无可比拟的良好的成像质量,在光学系统中能够很好的矫正多种像差,改善成像质量,提高系统鉴别能力,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,降低成本并有效的减轻仪器重量。

可广泛应用于各种现代光电子产品,几乎在所有的工程应用领域中,无论是现代国防科技技术领域,还是普通的工业领域都有着广泛的应用前景,开展光学玻璃非球面零件的高精密光学技术研究具有重要的理论意义和现实指导意义。

本次设计研究内容为非球曲面的超精密加工系统的研究,非球曲面的超精密加工工艺的研究。

重点内容是非球曲面加工超精密磨削装置的设计,主要为砂轮主轴装置的选取,中心高位调机构的设计,各个运动的传动设计以及砂轮运动轨迹的分析。

在研究过程中详细的分析了影响零件加工精度的各种主要因素并提出相应的控制措施,尤其是对非球曲面的磨削加工设备进行详细设计,并简要分析了非球曲面加工机床的数控及伺服控制系统等。

关键词:非球曲面;超精密加工;微调机构;金刚石砂轮本科毕业设计(论文)通过答辩AbstractThe aspheric optical parts can get good image quality, good optical system correction of various aberrations, to improve the image quality, and improve the system ability to identify it to one or several non-spherical spherical optical parts unparalleledparts instead of a number of spherical parts, thus simplifying the instrument structure, reduce costs and reduce instrument weight. It’s widely used in many realms, such as national defense, machine chemical and aviation. It’s very useful to develop the grinding theory and important practical significance to study the high precision grinding methods about the optical glass aspheric surface parts. This article discussed in the ultra-precision grinder, the CNC operation program,and the aspheric surface optics parts’grinding craft. The center height micro-adjusting mechanism and the drive system. In the process of the research, we analysis it detailed that the main factor influence the process precision of the parts, and make something to solve it, especially for the precision grinding equipments, and analysis it simplify for the precision machine tool for aspheric surface optics parts and the servo-control system and the other technology.Key words: the aspheric surface; ultra-precision machining; the micro-adjusting mechanism; diamond wheel本科毕业设计(论文)通过答辩目录摘要 (I)目录 (III)第1章绪论 (1)1.1非球面加工的优点和意义 (1)1.2非球曲面研究概述 (1)1.2.1 非球面的定义 (1)1.2.2 非球面应用领域 (2)1.2.3 非球曲面加工技术近年来发展概况 (2)1.2.4 非球曲面加工的发展趋势和研究方向 (4)1.3 非球面光学零件材料及其加工方法 (4)1.3.1 计算机数控单点金刚石技术(SPDT) (5)1.3.2 超精密磨削技术 (5)1.3.3 计算机控制光学表面成型(CCOS)技术 (5)1.3.4 光学玻璃模压成型技术 (6)1.3.5 光学塑料成型技术 (6)1.3.6 其他非球面加工技术 (6)1.4非球面精密磨削加工理论 (6)1.4.1 微量加工理论 (7)1.4.2 脆性材料的延性域磨削 (8)第2章超精密非球面加工方案选择及误差分析 (10)2.1 超精密非球曲面磨床的总体布局 (10)2.1.1 空气主轴系统 (10)2.1.2 伺服进给系统 (11)2.1.3 微位移测量系统 (11)2.1.4 中心高微调系统 (11)2.1.5 数控系统 (11)2.2 非球曲面磨削方案的确定 (12)2.2.1加工零件的技术参数 (13)本科毕业设计(论文)通过答辩2.2.2 非球曲面磨削方案确定 (13)2.3 加工误差分析 (14)2.3.1 中心高微调机构对零件加工精度的影响 (15)2.3.2 在X轴上砂轮安装误差对零件加工精度的影响 (17)2.3.3 砂轮半径误差对零件加工精度的影响 (18)2.3.4 X∆综合作用时对零件面形精度的影响 (19)∆及R第3章非球面磨削装置设计 (21)3.1 超精密加工的关键技术 (21)3.1.1 超精密主轴 (21)3.1.2 超精密导轨 (21)3.1.3 传动系统 (22)3.1.4 超精密刀具 (22)3.1.5 超精密加工其他技术 (23)3.2 传动系统设计 (23)3.2.1 磨削参数的计算 (23)3.2.2 导轨的整体设计 (24)3.2.3 传动参数的计算 (25)3.3 磨削系统设计 (25)3.3.1 系统结构设计 (26)3.3.1 中心高微调机构设计 (27)3.3.2 砂轮主轴的选择 (28)结论 (31)致谢 (32)参考文献 (33)本科毕业设计(论文)通过答辩CONTENTSAbstract (I)CONTENTS (III)Capter 1 Introduction (1)1.1 The meaning of the processing of aspheric surface (1)1.2 The introuduction of the aspheric surface’s research (1)1.2.1 Definition of aspheric surface (1)1.2.2 Application of aspheric surface (2)1.2.3 The development of aspheric surface in recent years (2)1.2.4 Aspheric pricesssing trends and research directions (4)1.3 The parts’ material and the processing method (4)1.3.1 Computer-controlled single-point diamond technology(SPDT) (5)1.3.2 Ultra-precision grinding technology (5)1.3.3 Computer Controlled Optical Surfacing(CCOS) (5)1.3.4 Optical glass compression molding technology (6)1.3.5Optical plastic molding technology (6)1.3.6 Other processing technology (6)1.4Aspheric surface precision grinding theory (6)1.4.1 Trace processing theory (8)1.4.2 Ductile-regime grinding of brittle materials (8)Capter 2 Ultra-precision aspheric processing alternatives and error analysis.. 102.1 Ultra precision aspherical surface grinding machine layout (10)2.1.1 Air spindle system (10)2.1.2 S ervo feed system (11)2.1.3 Micro-displacement measurement system (11)2.1.4 Center high tuning system (11)2.1.5 Numerical control system (11)2.2 Aspherical surface grinding scheme (12)2.2.1 Processing part of the technical parameters (13)本科毕业设计(论文)通过答辩2.2.2 Aspherical surface grinding scheme (13)2.3 Processing error analysis (14)2.3.1 Center high fine-tuning mechanism on the impact of cuttingaccuracy (15)2.3.2 In the X axis on the wheel on the impact of cutting accuracy (17)2.3.3 Wheel radius error on the part of machining precision (18)2.3.4 Both X∆on the part (19)∆and RCapter3 Aspheric tooling design (21)3.1 Ultra-precision machining technology (21)3.1.1 Ultra-precision spindle (21)3.1.2 Ultra-precision guide (21)3.1.3 Drive system (22)3.1.4 Ultra-precision cutter (22)3.1.5 Other technology (23)3.2 Transmission System Designing (23)3.2.1 Grinding parameters (23)3.2.2 The overall design of the Rails (24)3.2.3 Calculation of transmission parameters (25)3.3 Grinding systems design (25)3.3.1 System architecture design (26)3.3.1 Center high micro-adjusting mechanism design (27)3.3.2 Wheel spindle design (28)Conclusion (31)Thanks (32)References (33)本科毕业设计(论文)通过答辩第1章绪论1.1非球曲面加工的意义和优点非球面技术应用于光学零件,相对于球面而言,具有许多优点,它可以消除球面镜片在光传递过程中产生的球差、慧差、像散、场曲及畸变等诸多不利因素,减少光能损失,从而获得高质量的图像效果和高品质的光学特征。

非球面超精密抛光技术研究现状_袁巨龙

非球面超精密抛光技术研究现状_袁巨龙
Abstract:The requirement of profile accuracy and surface quality for aspherical surface has become higher and higher with the expanding application range and raising application precision demand. As the finishing process, the ultra-precision polishing method for aspherical surface is drawing great attention from countries around the world. For improving the precision and efficiency of aspheric surface polishing, an understanding of the mechanisms of material removal in ultra-precision aspheric polishing, as well as the sub-surface damage imparted, is essential prerequisites. Historical progress of aspheric polishing techniques is plotted, and based on the development of aspheric polishing methods, the present advanced ultra-precision aspheric polishing methods are described with emphasis on the processing mechanisms and examples. The different ultra-precision aspheric polishing methods are compared in terms of sub-surface damage and edge effect. And aiming to high finishing accuracy and high efficiency, the probable further trend of ultra-precision aspheric polishing technology is forecasted. Key words:Aspherical surface Ultra-precision machining Polishing

非球面镜片的精密加工;光学镜片的加工及检测

非球面镜片的精密加工;光学镜片的加工及检测
圈,斜面N2为1/2光圈,局部1/3光圈。光洁度为Ⅲ级。角度90度 ±10″,45度±10″,塔差π 10″。
三、加工辅料
磨料 黏合剂 冷却液 抛光粉 抛光模层材料 清洗材料 抛光后的防护
磨料
磨料的分类和国内外磨料代号
磨料
人造金刚石
棕刚玉
刚玉
白刚玉
单晶刚玉
黑碳化硅
碳化物 绿碳化硅
碳化硼
氮化硼 立方氮化硼
中国 JR GZ GB GD TH TL TP LDB
美国
A 38A 32A 37C 39C B4C CB
国内金刚砂的粒度表示方法
标准号
60 70 80 100 120 150 180 210 280 W40 W28
尺寸/um
315~250 250~200 200~160 160~125 125~100 100~80
松香蜂蜡胶上盘法
优点是操作简便,缺点是平行度精度不高,也不适用于面形精度 要求较高的薄片。
荷重 工件 粘结模
工件 粘结模
方法一
方法二
2.3 上 盘
点胶上盘法
优点是可获得较好的面形和平行度。缺点是承受不了高速高压 的加工条件,易“走动” 。
工件 软胶点 粘结模
工件 火漆点 粘结模
软点胶粘结
硬点胶(火漆)粘结
2.3上 盘
浮胶上盘法
优点是工件和粘结平板都不 需加温,工件可达到较高的平行 度和面形精度,缺点是承受不了 高速高压的加工条件。
光胶上盘法
优点是平行度和平面度均可达到 很高的精度。缺点是对光胶面表面 疵病等级有一定影响,怕剧烈震动 和骤冷骤热。
工件 粘结胶 玻璃垫板
工件 防水涂层 玻璃垫板

数控非球面加工技术

数控非球面加工技术
Company Logo
1.4非球面光学零件制造过程
❖ 非球面制造通常分为非球面成形和光学面实现两 个工艺方面。
❖ 1)非球面成形:就是通过研磨等方法使零件表 面面形达到非球面要求,但是表面粗糙度还很大, 还不是光学面,不能够透射或反射光。
❖ 2)光学非球面实现:主要有抛光、模压和切削 等方法,是在保持非球面面形的前提下,减小表 面粗糙度,使之成为光学面。
Company Logo
Company Logo
❖ 经过普雷斯顿假设,光学抛光过程顺利的简化了。 计算机控制小工具抛光技术也是以此为基础,上 式正是计算机控制抛光技术的基础方程。
❖ 只要我们对抛光过程的描述正确,并已知被抛光 位置的压力、相对抛光速度以及抛光时间,就可 以计算出在这个位置的材料去除量。
Company Logo
1.3非球面光学零件的应用 非球面光学零件已广泛应用于航空机载设备、
卫星、激光制导、红外探测等领域,同时在民用 光电产品上的应用也越来越普及。光学系统中采 用非球面元件,可以提高系统的性能,减少光学 元件的数量,从而减轻仪器的质量,减小体积, 紧凑结构。因此,非球面常常应用于大视场、大 孔径,像差要求高,结构要求小,或有特殊要求 的光学系统中,非球面光学零件因其优良的光学 性能而日益成为一类非常重要的光学零件。
目录
1 非球面光学零件的简介 2 非球面光学零件的加工方法 3 计算机控制光学表面成型技术 4 直径76.2 mm非球面数控加工工艺 5 数控非球面加工的影响因素
Company Logo
Part1. 非球面光学零件的简介
非球面光学元件,是指面形由多项高次方程决定、 面形上各点的半径均不相同的光学元件。
Company Logo

数控加工光学非球面技术研究

数控加工光学非球面技术研究

数控加工光学非球面技术的研究The Aspheric optics processing technologystudies CNC摘要自从非球面加工技术出现以来,至今几百年来采用的加工方法已有50多种,传统的加工方法虽然能达到较高的精度,但这种加工方法加工效率低、重复精度差。

在最近几年出现的数控加工光学非球面技术大大解决了传统加工方法存在的缺陷。

它提高了加工精度和加工质量、缩短了产品研制周期等。

在诸如航空工业、汽车工业等领域有着大量的应用。

由于生产实际的强烈需求,国内外都对数控加工技术进行了广泛的研究,并取得了丰硕成果。

本文将简单的介绍一些非球面和数控机床的理论知识,传统加工非球面技术。

最后重点介绍数控加工光学非球面技术。

关键词: 数控加工非球面抛光技术计算机控制ABSTRACTSince the emergence of non-spherical processing technology ,about 50 methods in the optical processing have been used. Although traditional processing methods can achieve high accuracy, this processing method has processing inefficiency and poor repeatability precision . In recent years the NC aspheric optics technology greatly solve the traditional processing methods flawed. It improves processing accuracy and processing quality, and shorten the product development cycle and so on. A large number of applications has been found in some areas such like the aviation industry, and the auto industry. Because of the strong demand, Home and Abroad are on the NC machining techniques for a wide range of research, and achieved fruitful results.This paper will briefly introduces some technology of the Non-spherical and NC machine tools and the traditional processing.And highlights NC aspheric optical processing technology in the last part.Keywords : CN Aspheric optics Polishing Technology CCOS目录第一章绪论 (1)1.1研究的目的和意义 (1)1.2国内外发展现状 (1)第二章非球面的理论基础 (3)2.1非球面的优缺点 (3)2.2非球面的数学表达式 (3)2.3非球面的加工方法 (4)2.4传统加工非球面技术 (5)2.5光学非球面的检验 (7)第三章数控机床的介绍 (10)3.1数控机床的发展概况 (10)3.2数控机床的结构和特点 (10)第四章非球面的数控加工技术 (14)4.1常见的计算机控制抛光技术 (14)4.2计算机数控研磨和抛光技术 (15)4.3数控抛光技术中工艺参数选择 (19)4.4数控加工技术的检验 (20)4.5阴影法检验非球面 (22)4.6数控加工非球面实例 (23)结论 (25)参考文献 (26)致谢 (27)第一章绪论1.1研究的目的和意义自从1638年法国学者笛卡儿第一个提出凸面是椭圆面,凹面是球面的无球差非球面透镜,各国公司都进行了大量的非球面透镜技术研究和开发,但加工精度不高。

非球面加工工艺实验研究

非球面加工工艺实验研究

非球面加工工艺实验研究朱振涛,于正林(长春理工大学机电工程学院,长春130022)摘要:由于非球面零件本身的特殊性和复杂性,较球面零件加工更加困难。

基于自主研发的切线法数控成形非球面机床,分析加工零件表面精度的影响因素。

采用单因素法分别对砂轮参数、冷却液影响因素进行分析,着重分析砂轮磨损和磨轮转速误差。

严格控制加工过程中所产生的误差,避免由于过多误差影响最终零件的面形精度和表面粗糙度,优化工艺流程。

关键词:非球面;数控机床;表面精度;工艺流程中图分类号:TH706文献标志码:粤文章编号:员园园圆原圆猿猿猿(圆园员9)03原园017原园3 Experimental Research on the Processing Technology of Aspheric SurfaceZHU Zhentao,YU Zhenglin(Changchun University of Science and Technology,Changchun130022,China)Abstract:Due to its particularity and complexity,it is more difficult to process aspherical parts than spherical parts. Based on the self-developed tangent NC forming aspherical machine tool,this paper analyzes the influencing factors of the surface precision of the machined parts.The single factor method is used to analyze the parameters of the grinding wheel and the coolant.The grinding wheel wear and the grinding wheel speed error are analyzed.The errors generated during the machining process are strictly controlled to avoid the surface accuracy and surface roughness of the final part due to excessive errors,and the process flow is optimized.Keywords:aspherical surface;NC machine tool;surface accuracy;process flow0引言近些年来,非球面光学零件凭借自身的光学特性和无与伦比的成像效果,使其在军事、民用和航天等领域成为不可或缺的光学器件。

超精密加工中刀具参数对脆性材料非球面加工质量的影响

超精密加工中刀具参数对脆性材料非球面加工质量的影响
21 00年 8月 中 加 工 中 刀 具 参 数 对 脆 性 材 料 非 球 面 加 工 质 量 的 影 响
王 国栋 , 张 宇, 关 强
( 昆明理工大 学 C MS中心 , I 云南 昆 明
609 ) 5 0 3
摘要 : 性材料 的光 学非球 面零件 以其特 有 的优 势 , 军 用和 民用产 品 中越 来越普及 。光 学非球 脆 在
形 成轮廓 峰和轮廓 谷 , 它们 之 间的距 离被称 为理论 粗糙 度 ( 图 1 示 ) 其 大 小等 于 /R( 如 所 [ , 8 f为
进 给量 , 为刀具 圆弧半径 ) R 。
发展起 来 的新 技 术 … 1。锗单 晶质 软 , 统 磨 削 时 传 金刚石 颗粒很容 易嵌入锗 晶体 中 , 造成零 件表 面的 损失 , 以 目前最理 想 的加 工方式 为单点金 刚石 切 所
面器件材料 有一 系列不利 于加 工的 特点 , 公 认 为是 最难 加 工 的光 学零 件 。概 述 了超精 密加 工 被
中单 点金 刚石 车削技 术在 脆性材 料 非球 面加 工 中的应 用 , 并详 细地 分 析 了单 点金 刚石 车 削加 工 时刀具几何 参数 、 偏 置 、 x 刀具 半径补偿 对非球 面加 工表 面质 量的影 响。

般 不用 。 国外 金 刚石刀 具都采 用 圆弧修 光刃 , 目
前 国 内也 越来越 多地 使用 圆弧修 光 刃 , 因为在超 精
密 车 削 过 程 中 ,进 给 量 很 小 , 般 为 厂 < 一
00 rm/ 采用 圆 弧修 光 刃 时 , 刀 容 易 , 用 .2 a R, 对 使 方便 , 圆弧 刃 留下 的残 留面 积 极 小 , 对表 面粗 糙 度

非球面光学零件的超精密加工技术

非球面光学零件的超精密加工技术

Equipment Manufacturing Technology No.11,2012非球面光学零件常用的有椭球面镜、抛物面镜、双曲面镜等,其是一种非常重要的光学零件。

相对于球面镜而言,非球面镜具有许多优点,其可以消除球面镜片在光传递过程中产生的彗差、球差、像散、场曲及畸变等诸多不利因素,减少光能损失,具有高品质的光学特征,可以获得高品质的图像效果。

另外,其能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,减轻仪器总质量,降低成本。

非球面光学产品的应用前景非常广阔,在国防、航空航天领域,大型或超大型光学产品的开发是空间和国防技术的关键,体现着一个国家的科技水平和经济实力。

而在民用产品领域,如:数码相机、电脑摄像头、条形码读出头、光纤通讯以及激光产品等,也已经成为与人民生活息息相关的核心技术。

因此,非球面光学零件超精密加工技术的研究一直是制造领域的热点。

1国外非球面零件的超精密加工技术国外从20世纪60年代就开始了对非球面零件加工技术的研究,20世纪80年代以来出现了许多新的非球面超精密加工技术,主要有:计算机数控单点金刚石车削技术(SPDT)、超精密磨削和抛光技术、计算机控制光学表面成形技术(CCOS)、光学玻璃模压成型技术、光学塑料成型技术以及非球面零件的特种加工技术等。

1.1计算机数控单点金刚石车削技术计算机数控单点金刚石车削技术(SPDT)是在超精密数控车床上,采用天然单晶金刚石刀具,在对机床和加工环境进行精确控制的条件下,直接利用天然金刚石刀具单点车削出符合光学品质要求的非球面光学零件。

该技术主要用于加工中小尺寸、中等批量的红外晶体和软金属材料的光学零件,其特点是生产效率高、成本低、重复性好、适合批量生产。

1.2超精密磨削和抛光技术超精密磨削和抛光能进一步提高光学零件的表面精度,尤其是对于采用玻璃、陶瓷等硬脆材料制造的非球面零件。

其中,延性磨削方式可以使材料以“塑性”流动方式去除,加工表面不产生脆性断裂现象[2]。

日本NACHI那智超精密非球面纳米加工机ASP系列

日本NACHI那智超精密非球面纳米加工机ASP系列

机械型号
ASP-E
ASP005P
ASP01A
ASP10
工件尺寸(切削)
φ20
φ50
φ100
φ300
特点
・小直径
・中径
・高精度
・高精度 ・Blu-ray
镜片
・面向量产
・多功能
・大型镜片
直交轴数
直交 2 轴
机械型号
ASP01X
ASP30X
ASP30
工件尺寸 (切削)
200(W)x50(H 100(W)x50(H)
控制方式
X、Z 轴 Y轴
砂轮主轴
砂轮主轴转速 砂轮主轴轴承类型
机器主机
主机重量 所需地面面积(主机)
加工机主机 外形/尺寸
φ50mm 10~1,500rpm
空气轴承 φ70mm2 280mm □12mm 200mm 100mm
20mm 0.001μm
0.1μm 1,000mm/min
600mm/min 0.1~1,000mm/min 方形液体静压滑动轴承+线性马达
o
激光打印机用 fθ镜片模具
o
各种光学镜片模具
f-θ fθ镜片加工实例
使用自由曲面加工机(ASP30) 新增机载测量装置,对机载测量结果进行补正 使用金刚石刀具的飞切加工 使用砂轮主轴的磨削加工
典型自由曲面工件实例
工件的作业(标准装备) 形状分析软件中新增砂轮磨耗解析功能,大幅缩短补
正加工时间 采用任何人都能够简单操作的对话型操作画面
●节约空间 机床的安装空间与以往相比,缩小至 60%。
规格
最大 20 [mm]最大角度:±75[度]
平行法磨削(水平轴支架) 端面磨削(45 度轴支架)

离轴非球面反射镜设计与超精密加工技术

离轴非球面反射镜设计与超精密加工技术

离轴非球面反射镜设计与超精密加工技术温凌峰;姚亚斌;周启飚;赵军;孙红岩【摘要】离轴非球面反射镜的设计与加工涉及到零件非球面设计,工艺路线的安排,工装夹具设计,以及超精密加工设备的使用、检测等多方面技术,加工难度大,在国内属于先进的加工技术.通过进行工艺攻关,应用Pro/E软件进行零件三维曲面设计,优化了夹具设计,在减轻夹具质量的同时,保证了其具备足够的刚度、强度,从而减少了切削时的振动影响.在加工过程中,通过调整加工参数,保证了曲面的表面粗糙度和面形要求.运用三坐标测量装置对零件进行了精密测量,验证了零件的尺寸精度符合设计要求.该技术的使用对加工同类型非球面离轴反射镜具有很好的借鉴和推广作用.%Off-axis aspheric design and machining involved many fields such as design of aspheric surface parts ,arrangement of craft route, clamping design of tooling, operation of ultra-precision equipment, inspection and so on.it has the characteristic of difficult machining and belongs to developed machining technology.Through process reform, Pro/E parts 3D curved surface design was solved, optimization clamp design was solved, which reduced clamp weigh and ensured enough stiffness and strength, so vibration was reduced when cutting.Through adjusting machining parameters during operating, ensured roughness and surface shape, accurate measurement through three coordinates measurement device to parts testified size and accuracy neet design requirement.The usage of it has reference and promotion value to machining the same kind of aspheric off-axis mirror.【期刊名称】《新技术新工艺》【年(卷),期】2017(000)002【总页数】4页(P75-78)【关键词】非球面;离轴;反射镜;超精密加工【作者】温凌峰;姚亚斌;周启飚;赵军;孙红岩【作者单位】北方信息控制研究院集团有限公司,江苏扬州 225009;北方信息控制研究院集团有限公司,江苏扬州 225009;北方信息控制研究院集团有限公司,江苏扬州 225009;北方信息控制研究院集团有限公司,江苏扬州 225009;北方信息控制研究院集团有限公司,江苏扬州 225009【正文语种】中文【中图分类】TG519.3离轴非球面反射镜(以下简称反射镜)属于光学元件,具有精度高、可靠性高和性能优良等光学性能,被广泛应用于现代光电系统中;但由于非球面固有的复杂性,其设计、加工和检测相对于球面光学元件来讲比较困难,使得该技术在国内起步较晚,还未形成良好的加工体系,设备与工艺的衔接集成度差。

自由曲面光学的超精密加工技术及其应用

自由曲面光学的超精密加工技术及其应用

自由曲面光学的超精密加工技术及其应用自由曲面光学指的是将光学元件的表面形状设计为任意曲面,而不是传统的平面或球面。

这种技术的应用非常广泛,包括天文望远镜、激光器、显微镜等。

超精密加工技术是指在高精度、高效率、高质量的基础上实现自由曲面光学元件的加工。

这种技术通常采用数控磨削、激光切割、电火花加工等方法。

超精密加工技术在自由曲面光学领域的应用主要有以下几点:
天文望远镜:通过超精密加工技术实现高精度的自由曲面形状,提高望远镜的解析度和成像质量。

激光器:通过超精密加工技术实现高精度的自由曲面形状,提高激光器的能量转换效率和光束质量。

显微镜:通过超精密加工技术实现高精度的自由曲面形状,提高显微镜的成像质量和放大倍数。

总之,自由曲面光学的超精密加工技术是一种关键技术,在提高光学元件的性能和增强光学系统性能方面发挥着重要作用。

光学非球面的超精密加工技术及非接触检测

光学非球面的超精密加工技术及非接触检测

华南理工大学学报(自然科学版)第32卷第2期J our nal of Sout h China U niversity of TechnologyV ol.32 N o.22004年2月(Natural Science Edition )February 2004文章编号:1000565X (2004)02009405光学非球面的超精密加工技术及非接触检测谢 晋(华南理工大学机械工程学院,广东广州510640)摘 要:针对亚微米级及亚微米级以下的光学硬脆性非球面器件难加工问题,分析了光学非球面的形状精度和应用,讨论了其超精密加工原理和方法及非接触检测手段.结果表明,精密数控机床、硬脆性材料延性域加工原理和超精密检测是光学非球面超精密加工的技术保证.关键词:非球面;超精密加工;光学器件;非接触检测;单点金刚石切削;弧形金刚石砂轮中图分类号:T G 58 文献标识码:A 收稿日期:20031022 作者简介:谢晋(1963-),男,博士,副教授,主要从事磨削及精密加工的研究.E-mai :jinxie @ 长期以来,光学球面镜头存在色像差的问题,如图1(a )所示.要构成高性能的光学系统,往往采用多枚镜头.20世纪30年代,为了消除这种色像差,研究人员提出并发明了非球面镜头,如图1(b )所示.但是,几个世纪以来的传统切削、磨削和抛光方法无法加工非球面产品,而只有利用数控机床才能有效地实现非球面的加工.19世纪70年代至80年代,应用于投影仪、显微镜、照相机、CD 读写装置和激光加工机等领域的民用光学产品开始朝着高性能、大口径化和小型化等方向快速发展,工业上开始生产非球面光学部件.目前,一些主要的非球面光学器件及其应用领域如表1所示,从该表中可以看出,大部分光学非球面器件材料为难加工的硬脆性材料.在光学系统的应用中,光的反射和折射要求非球面的形状精度达到光波长的1/10左右[1],特别是,应用于航空和军事领域中的光学系统要求非球面具有较高的形状精度.因此,光学非球面超精密加工及超精度测试已经受到许多研究者的关注.例如,O P TI CA M 中心已经将CN C 技术应用到精密光学器件的生产中,自动进行有选择性的非球面粗加工、精细加工和最终抛光加工,从而大幅度地降低了生产成本.图1 球面和非球面透镜的光学性能Fig.1 Op tical perf or ma nce of sp heric a nd asp heric le ns表1 光学非球面器件的材料及应用Table 1 Op tic asp heric materials a nd its appplication 非球面类型材料应用领域普通镜头红外线镜头普通反射镜注射模具椭圆体反射镜光学玻璃单晶锗、单晶硅铝合金、铜、磷青铜陶瓷、镍合金石英玻璃、碳化硅显微镜、CD/DVD 、投影仪夜视镜、医用内视镜、激光加工激光加工机、大型显示器激光打印机X 射线系统国内也已经开始引进超精密加工机床来加工国防、航空等高科技领域所急需的高精度非球面零件.由于超精密磨削涉及的技术比较复杂,国内花巨资购买的砂轮系统还没有得到有效的使用[2].虽然中国航空精密机械研究所成功地研制了Na nosys-300球面曲面超精密复合加工系统[2],但是,加工精度、砂轮精密修整、非球面成形机理以及非球面的超精密检测等诸多关键技术的研究都没有详细的报道.实际上,目前我国光学非球面的加工技术和质量检测仍处在初级阶段.本文中主要介绍和分析最新研究和开发的光学非球面的超精密加工机理、方法和测试技术及其特点.1 光学非球面部件的制作工艺光学非球面的成型加工大体可分为模具成形法和切除加工法两种.模具成形法是在非球面模具上用可塑化材料注射或模压,形成有非球面的光学部件;而切除加工是利用切削、磨削和抛光将工件直接切除成非球面.模具成形法适应大批量生产,但很难保证非球面形状的高精度.注射和模压成形用的镀镍模具通常采用单点金刚石切削,但对于陶瓷等超硬模具,切削就变得非常困难.因此,采用磨削加工法,可大大缩短加工工期.非球面光学镜头按制作工艺可分为玻璃镜头、塑化镜头、微型镜头和复合镜头[3].其中,玻璃镜头主要在耐热非球面模具中将玻璃材料加温到软化温度400~700℃再模压成形.塑化镜头是利用镀镍硬质钢模具将非球面注射成形.微型非球面镜头是在超精密机床上将树脂材料直接加工成形后再抛光,或者在球面模具中注射树脂再加热硬化.复合非球面镜头是在非球面模具与球面镜头之间注入紫外线树脂,然后用紫外线照射使其硬化成形.2 非球面的切除加工方法及特点无论是注射成形/模压成形所需的模具还是高精度光学非球面部件,都必须采用切削、磨削和抛光直接进行切除加工.切削加工主要采用单晶金刚石刀具,磨削加工主要采用金刚石砂轮,而抛光主要采用游离磨料.每一种方法都是在工件表面沿着非球面的三维坐标轨迹对工件逐渐进行切除加工.一般是先在数控机床上将非球面形状加工成型,然后在保持形状精度不变的情况下将其抛光,减小其表面粗糙度[4].但是,这种游离磨料抛光方式会消耗大量的加工时间,无法进行规模生产.美国Precitech I nc.公司生产的超精密多轴自由曲面加工机床不需抛光就可以使光学非轴对称非球面零件的加工精度达到亚微米级乃至纳米级的范围[5].近来,全部省去游离磨料抛光方式进行直接切削或磨削来达到最终的形状精度和表面粗糙度,即利用延性域加工原理进行镜面切削和镜面磨削的研究已经取得了许多新的进展.2.1 非球面超精密加工机床的构造最新的研究结果表明,为了实现硬脆性材料的精密切除加工就要求材料的切除深度始终保持在临界延性域(ductile-mode)切深以下的范围,一般要求亚微米级以及亚微米级以下.这也就是要求加工机床能够控制工件进给量在微米级甚至亚微米级以下.采用空气静压和油静压轴承配制高精度(直线度,表面粗糙度)摩擦系数小的V-V滚动滑道和高精度(圆柱度,圆心度)传动杆可以使导向机构到达10~20nm以内的波动[3].图2中所示的为空气差压圆柱立轴的工作结构图.空气静压轴承可以使低速运动时无震动.利用d1,d2,p能够进行克单位的力调节,可以达到与水平结构一样的纳米级的微小波动.工件回转轴最合适采用空气静压形式,安装内置电机可以消除传递转动带的振动,可以达到轴方向和径向方向小至10nm的偏心振幅.图2 空气静压轴的工作原理Fig.2 Wor king p rinciple of air-p ressure axis2.2 单点金刚石切削单点金刚石切削是在精密数控机床上同时控制x和y两轴的运动,将旋转工件切除成非球面体,如图3(a)所示.通常应用于加工激光反射的非球面铜镜面和塑化玻璃非球面金属模具.最近的研究表明,弧形单晶金刚石刀具的圆弧包络线切削法可以应用到硬脆性材料的非球面超精密切削中[6],但是,必须要求金刚石刀具进给量非常小(小于1~2μm/r),这就会花费非常长的切削时间,导致单晶金刚石刀具的急剧磨耗.然而,平面形单晶金刚石刀具的直线包络线切削法在加工非球面59第2期谢 晋:光学非球面的超精密加工技术及非接触检测单晶硅镜头时可以较大幅度地加大金刚石刀具进给量(20μm/r ),提高加工效率,其非球面的表面粗造度达到16nm ,形状精度(PV 值)可达到1.36μm [7].2.3 弧形金刚石砂轮磨削加工在磨削加工方面,无论对于硬脆性材料还是金属材料,采用弧形金刚石砂轮在一定的行走轨迹和修整条件下都可以在数控机床上实现非球面的成形加工.最新研发的几种弧形金刚石砂轮成型磨削方法可以大致分为交叉磨削法、平行磨削法、倾斜磨削法、球面砂轮磨削法和斜轴圆柱砂轮磨削法[8~10],分别如图3(b ),(c ),(d ),(e )和(f )所示.图3 光学非球面成形加工方法Fig.3 Form machining methods of optical asp heric surface交叉磨削法的加工表面粗造度较差,为此,将砂轮轴旋转90°使砂轮周速与工件速度方向平行进行磨削,即采用平行磨削法.实验结果表明,平行磨削法比交叉磨削法能获得更好的表面加工质量[9].倾斜磨削法是将砂轮轴倾斜一定角度适用于加工更深的凹形非球面.球面砂轮磨削法是利用砂轮球面按照非球面的运动轨迹与工件点接触进行磨削加工,它能使球面的砂轮均衡摩耗,形状精度可达到0.089μm [10],但球面砂轮成形修整比较困难.斜轴圆柱砂轮磨削法[9]是采用小直径砂轮加工很深的凹面,主要用于光通讯,医疗器件等3m m 以下的小口径非球面的加工.3 光学非球面的形状精度光学非球面器件的形状精度要求在几到几十厘米的范围内达到1μm 以下[11].图4表示了一些应用于不同领域的非球面光学器件的尺寸大小及其必要的加工精度.可以看到非球面光学部件正在向小型高精度化和大型高精度化方面发展.但是,现有的加工工具,加工工艺及加工设备常常无法保证更小或更大尺寸的产品达到高精度.这主要是因为以下原因造成了设计形状与加工形状的差异.(1)机床的运动误差和切削刀具/金刚石砂轮的磨耗;(2)非球面中心和外围的不同加工条件;(3)切削刀具/磨削砂轮的形状测试误差;(4)加工形状的测试误差;(5)三维坐标系与加工点的漂移;(6)加工力引起的变形和加工热产生的热变形.图4 光学非球面的尺寸与形状精度Fig.4 Op tic asp heric size a nd its f or m accuracy为消除这些因素的影响,使其与设计值的形状误差缩小到1μm 以下,往往利用被加工的非球面形状的检测信息进行多次的误差修正.非球面加工中可能需要几十次的测试和修正才能达到目标精度,也就是说,没有高精度的测试手段也就无法加工出高精度的光学非球面器件.但是,传统的三维测试仪的测试精度只能达到5μm ,而且大多只能检测球面和平面[13].因此,最近非接触三维形状测试手段已经可以在行走精度为0.1μm 的水平面上检测垂直方向精度为0.05μm 以下的非球面的形状精度[11,12].69华南理工大学学报(自然科学版) 第32卷4 非球面的非接触测试仪通常,非球面的加工形状测试主要采用接触式测定方式.它的动态测试范围较大,但容易损伤工件表面,特别不易检测断口,且超硬材料易损伤探头.因此,非接触三维形状测试的研究开始得到了广泛的重视.但是,非接触测试无法检测到陡峭的斜面,且非球面材料的颜色和反射率也会产生散乱导致数据误差.针对这些问题,最近研制的光干涉形状测试仪,激光形状测试仪和原子力探针测试仪能够在纳米级范围内检测非球面的三维形状.4.1 非接触光干涉三维形状测试仪非接触光干涉三维形状测试构造如图5(a )所示.其原理是采用白色光源在半反射镜上分叉到测试表面和参照镜,再反射回来结合于半反射镜,当光路差相等时发生干涉[12].白色光的干涉性较小,能够在很小的范围内产生干涉条纹,因此,通过采集的光的干涉强度驱动干涉计的垂直光轴方向,使之能够调节到干涉条纹的零位置.利用这种原理,垂直移动参照镜观察测试面上的CCD 各点的干涉条纹,确定其等光路位置,然后在水平方向的测试面上进行一定速度的扫描,最终检测出非球面的高度数据.若在白色干涉计中处理干涉强度并进行频域解析,不仅能够检测粗糙面及断口面,而且还能够检测超精密加工的工件表面.白色干涉计测试仪的横向行走精度一般为0.6μm ,垂直移动精度可达10nm.图5 非球面的非接触检测方法Fig.5 N on-contact measure me nt met hod of asp heric surf ace4.2 非接触激光三维形状测试仪非接触激光测试构造如图5(b )所示.激光通过显微镜镜筒,从物镜的一端开始向光轴中心聚焦,再由工件反射后经物镜返回,在聚焦A F 感应器聚焦成像.然后,通过移动物镜使激光点最小且达到光轴心确定垂直方向的位置.此时,将聚焦点的xyz 坐标以线性形式输入到计算机,获取非球面表面的三维形状数据.测试精度直接取决于工作台面向工件聚焦的移动精度.此外,在非接触激光显微镜上安装微分干涉光学系统,利用可视光能够检测出数纳米级的凸凹程度,并且可以在1nm 的范围内定量地评价表面粗糙度.非接触激光三维形状测试仪N H-3S P 的水平面的测试精度为1+5L /120μm (L 为测量长度);垂直方向的测量精度在10m m 以内为1μm [13].4.3 原子力探针测试仪原子力探针测试构造图如图5(c )所示.这种方法是根据原子间排斥力通常保持一致的原理,利用探针与物体的原子间排斥力的作用接近测试表面,从而确定非球面表面的三维形状[11].在测试装置上,将重0.2mg 的微型空气滑道用弹簧悬挂,用安置的反射镜对具有波长安定性的激光进行聚光,采集反射光的聚焦误差信号,驱动垂直方向的步进空气滑道,使误差信号接近于零,最终确定垂直方向的坐标.因为原子力探针测试的原子间排斥力仅有30mg ,所以对测试面几乎没有损伤,近似于非接触检测.最大的特点是测试精度不受材质、反射率和表面粗造程度的影响.但是,测量精度与测量范围和测量面角度有关[11].例如,水平测量范围的精度,100mm 以下为0.05μm ,100~200mm 之间为0.1μm ,200~400m m 之间为0.3μm ;测量面倾斜角度的精度,30°以下为0.01~0.05μm ,30°~45°之间大于等于0.1μm ,45°~60°之间大于等于0.3μm.5 结束语光学非球面加工正朝着高精度大型化和高精度小型化方向发展.精密数控机床、硬脆性材料延性域79第2期谢 晋:光学非球面的超精密加工技术及非接触检测加工原理和非接触精度检测是光学非球面加工形状精度达到亚微米级及亚微米级以下的技术保证.此外,超精密加工和高精度检测在开拓高增值的复杂光学自由曲面以及特殊形状液晶光导板的模具加工方面将会发挥先导作用.参考文献:[1] Ta na ka K.Rece nt t re nd of asp heric p rocessing tech2nology[J].Scie nce of Machine,2002,54(3):11-20.[2] 罗松保,张建明.非球面的超精密加工与测量技术的研究[J].制造技术与机床,2003,494(9):58-61.[3] Toya ma T.Develop me nt of ult ra-p recision grinder f ormachining asp heric surf ace[J].Toyota MachineryRep ort,1992,32(3):8-18.[4] Suzuik H,Hara S,Matsunaga H.Study on asp hericalsurf ace p olishing using a small rotating t ool-develop2me nt of p olishing syste m[J].J our nal of t he J ap a n So2ciety f or Precision Engineering,1993,59(10):1713-1718.[5] 李荣彬,杜雪,张自辉,等.光学自由曲面的超精密加工技术及应用[A].2003年机械工程学会年会论文集[C],深圳:机械工程学会,2003.15-19[6] Suzuik H,Kitajima T,O kuya ma S.Study of p recisioncutting of axi-symmet ric asp herical surf ace-eff ect oft ool errors on wor kpiece f or m accuracies a nd its com2 pe nsation met hods[J].J our nal of t he J ap a n Societyf or Precision Engineering,1999,65(3):401-405.[7] Ya n J,Syoji K,Kuriyagawa T.Fabrication of large-di2a meter single-crystal silicon asp heric le ns by st raight-line e nveloping dia mond-t ruing met hod[J].J our nalof t he J ap a n society f or Precision Engineering,2002,68(4):1067-1071.[8] Zhou Z,Naga kawa T.New grinding met hods f or as2p heric mirrors wit h large curvature radii[J].A nnalsof t he CI R P,1992,31(1):335-338.[9] Kuriyagawa T,Sep asy M S,Syoji K.A new grindingmet hod f or asp heric cera mic mirrors[J].J our nal ofMaterials Processing Technology,1996,62(2):387-392.[10] Sae ki M,Kuriyagawa T,Syoji K.Machining of as2p herical molding dies utilizing p arallel grindingmet hod[J].J our nal of t he J ap a n Society f or Preci2sion Engineering,2002,68(4):1067-1071.[11] YoshizumI K.Ult ra high accurate3-D p rofilometerusing at omic f orce p robe[J].J our nal of t he Societyof Grinding Engineers,2001,45(12):562-565. [12] Matsushita H.N on-contact3D imaging surf ace st ruc2ture a nalyzer using interf eromet ry[J].J our nal of t heSociety of Grinding Engineers,2001,45(12):566-569.[13] Miura K.Three-dime nsional measuring equip me ntwit h a laser p robe[J].J our nal of t he Society ofGrinding Engineers,2001,45(12):558-561.Super-p recision Machining a nd Non-cont act Meas urement of t heAsp heric Surf ace of Optic PartsXie J i n(College of Mecha nical Engineering,Sout h China U niv.of Tech.,Gua ngzhou510640,Gua ngdong,China)Abst ract:Ai mi ng at t he diff icult y i n machi ni ng t he op tic p a rt wit h asp heric surf ace,w hich is of high ha r dness/brittle ness a nd is up t o t he accuracy of submicrometer or below submicrometer,t his p ap er a na2 lyzes t he f or m accuracy a nd t he application of t he asp heric surf ace,t he releva nt f a brication p ri nciple a nd p rocess,as well as t he non-contact measure me nt mea ns.The results i ndicate t hat t he sup er-p recision machi ni ng of asp heric surf ace tech nically dep e nds on p recision numerically-cont rolled machi ne t ools,t he ductile-mode machi ni n g p ri nciple of ha r d a nd brittle materials,a nd t he sup er-p recision measure me nt. Key words:asp heric surf ace;sup er-p recision machi ni ng;op tic p a rt;non-contact measure me nt;si ngle-p oi nt dia mond cutti ng;a rc dia mond gri ndi ng w heel89华南理工大学学报(自然科学版) 第32卷。

高精度非回转对称非球面加工方法研究

高精度非回转对称非球面加工方法研究
为了降低加工难度,我们将偶次项改为此偶 次非球面的最佳拟合球。最佳拟合球的方法拥有 更大优势,在加工方面,由图可知此抛物面最大矢 高为 -14329mm,因此其最佳拟合球曲率半径 为 971460mm,如 图 3所 示,最 大 面 形 误 差 为 22μm,与前面 所 述 方 法 去 除 量 基 本 相 同,球 面 的加工比非球面的加工更加容易,并且可以通过 古典抛光方式修正表面中频误差,从而得到更好
选用 Uninap)加工的方式得到最终非对称非球面
面形。
为了保证加工效率,此方法只对非对称非球
面有较好的加工效果,因为在上述第二步中采用
Uninap抛光膜,此抛光膜的特点是不会引入中频
误差(尤其对 4mm以下频段控制良好),但是去
除效率较低,因此如果非回转对称项于对称项偏
离量过大则会使得加工周期变长,影响加工效率。
收稿日期:20160126;修订日期:20160219 基金项目:国家科技重大专项资助项目(No.2009ZX02205)
SupportedbyNationalMajorS&TSpecialProjectofChina(No.2009ZX02205)
第 3期
徐 乐,等:高精度非回转对称非球面加工方法研究
第 9卷 第 3期
中国光学
Vol.9 No.3
2016年 6月
ChineseOptics
Jun.2016
文章编号 20951531(2016)03036407
高精度非回转对称非球面加工方法研究
徐 乐 ,张春雷,代 雷,张 健
(中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室 超精密光学工程研究中心,吉林 长春 130033)
Researchonmanufacturingmethodofnonrotationally symmetricalasphericsurfacewithhighaccuracy

超精密非球曲面磨削系统中砂轮修整技术的研究

超精密非球曲面磨削系统中砂轮修整技术的研究
统 : 于 z 向溜 板 之 上 ; 2 伺 服 进 给 系 统 : 括 纵 位 () 包
的接触 点 处 倾 角 为 目 考 虑 到 砂 轮 回转 轴 线 倾 斜 , 4 。则 由 △ 所 产 生 的 轴 方 向上 的误 差 E R 5, R (
町表 示 如 下 : Ea ( R 目卜 一d R L 2A
图 2 1 砂 轮半 径 曝差 对 零件 加 I 精 度 的 影 响 .
如 图 1 1 1纵 溜 板 ;2主 轴 箱 ;3主 轴 ;4真空 吸 .(
盘; 5过 渡 盘 ; 工 件 ; 高 速 磨 头 ;8 中 心 高 微 调 6 7
机构; 9微 调 支 座 ;l 0横 溜 板 1 示 的 磨 削 系统 方 所 案。该磨 削 系统 主要分 为五 大部分 , 1 空气 主轴 系 ()
26 0 1年 0月啦 稿 .0 2年 3月 定 稿 20 *国家 自然 科 学 基盘 资助 项 目C 9 3 l( 5 8 5 ) 8J * 尔 滨 工业 大 学较 基 盎 资助 项 日( r 2 0 1 啃 Hr 0 0 6 )
从 ( 1 式 中 可 看 小 , 方 面 , 工 误 差 髓 2 ) 一 加 △ 绝 对 值 的增 大 1 大 ;另 一方 面 .当 A 值 固 而增 R
个影 响 因素 。本 文 对非 球曲 面零 件 磨 削过程 中 的砂 轮修 整技术作 了较 为 深 入 的研 究 , 设计 研制 了一 并 套金 刚石砂 轮 的廓形 修 整 机 构 。最 后 , 修 整好 的 用 金刚 百砂轮 进行 非 球 曲 面零 件 的磨 削实 验 . 结果 表 明, 该修 整机构 达 到 了预 期的设 计效 果 :
咕 尔 滨 工 业 大学 精 密 r 研 究 所 , 芘 江 喑 尔 撬 .5 0 程 黑 I0 0

高精度非球面透镜的加工与检测

高精度非球面透镜的加工与检测

高精度非球面透镜的加工与检测摘要:针对非球面透镜高精度的加工需求,提出了一种组合式抛光技术。

在采用不用研抛参数的条件下将自动化研抛系统与离子研抛机相结合,从而提高了系统对非球面透镜的加工能力。

通过仿真分析与实验测试,验证了提高表面精度的设计理念。

关键词:透镜加工;非球面;离子抛光机;仿真计算1 引言大口径不是球面的元件由于具有不需要中心遮蔽,可以改善成像质量,让系统结构更简单等优点,现已是空间相机和超大功率的激光器等光学装置的重要器件之一[1]。

随着科学技术的进步,目前的大尺寸光学系统在器件表面质量、加工效率方面都有了很大的提高,远超出古典光学在系统设计中的要求从频域上看,光学器件的制作误差可分为低频段的误差、中频段的误差还有高频段的误差三种。

中频段的误差可分为两个频段:SD1、PSD2。

分段的频率是0.4 mm-1。

高频相位的误差在8.3到100 mm-1之间[2]。

大口径不是球面零件的常规加工工艺是采用铣磨出形状、散粒研磨和抛光等工艺,使其达到与球面形态最接近,然后采用人工修整抛光或者数控机床把球面再变成非球面。

这种把零件抛光成球面,然后再从球面到非球面的加工方法存在着很大的缺陷。

2 设计思路为解决以上问题,改善非球面的加工效率和精确度,各种先进的工艺技术(抛光技术例如磁流变、离子束、气囊、等离子体技术等)被开发出来并且迅速发展。

同时,以先进的制造技术为基础,开发了多种工艺的加工方法。

位于英国的Zeeko公司的Walker等人提出了一种利用超精密研磨加气囊抛光的技术来加工欧洲大型望远镜制造所需要的大型非球面零件。

所制得的米级口径的六边形不是球面光学器件的面形误差PV可达62纳米, RMS可达11纳米。

位于美国的QED公司的 Dumas等人[3]提出了一种新的抛光工艺,即将 MRF技术与常规的沥青抛光技术相结合,应用于非球面研磨出形以后再抛光的加工。

为了满足高精确度批量生产离轴型的非球面零件需求,本文研究了一种混合的抛光工艺,以达到高效率生产非球面零件的目的。

高精度光学非球面加工

高精度光学非球面加工

1.
1. 2. 3.
谢谢! 不妥之处,请大家指正!
通过非球面铣磨,抛光完成非球面加工,仍是现在主 要的加工方法,而且主要工作量逐渐改变传统手工的 模式,向数控的方向转变; 该技术发展的历史比较长,成熟的设备较为全面,如 德国Satisloh, Schneider公司和Optotech等公司推 出不同类型的铣磨和抛光机床;我国也开展了大量数 控技术的研究 不仅在数控设备自动话和加工精度方面取得了很大的 进展,各种不同抛光方法和原理的研究,极大的推动 了光学非球面加工技术的发展
一、数控铣磨和抛光技术
数控抛光技术之一经典小磨头抛光:
相对于数控铣磨而言, 抛光技术更加重要,因 此开展的研究工作更为 广泛,工作原理多种多 样,左图为行星式抛 光,早期的抛光头为沥 青,因此本文暂且称之 为经典小磨头抛光。
一、数控铣磨和抛光技术
数控抛光技术--经典小磨 头抛光:
小磨头行星式抛光的优点: 1. 设备造价相对较低; 2. 控制系统和工作环境要求较低; 缺点: 1. 无法进行超光滑加工; 2. 抛光头工作状态容易改变,抛光函数不稳定,不 利于数控。
二、单点金刚石车削技术
1. 2. 3.
主要生产厂家: 美国MOORE TOOLS公司 英国TYLOR HOBSON公司 日本TOSHIBA MASHINARY 公 司
二、单点金刚石车削技术
250UPL金刚石车床
工作原理图
二、单点金刚石车削技术
三、模压技术
利用预先制造的磨具,将已经软化的低熔点 玻璃压制成所需面形。
一、数控铣磨和抛光技术
数控抛光技术--流体抛光
使用含有抛光颗粒的流体进行加工,该方法并未获得广泛应用,个 人以为,去除函数不理想以及仅能抛光小口径非球面镜限制了其应 用。

先进制造技术研究与发展——现代超精密加工机床的发展研究及战略

先进制造技术研究与发展——现代超精密加工机床的发展研究及战略

作者简介 : 宪玉, : 孔 专业 机械设计制造及其 自动化 工作单位 : 巴音郭楞职业技术学院。

9 ・ 2
科 技 论 坛
密山市 晴雨预报指 标
张 伟 江 娟
( 黑龙江省密山市气象局 , 黑龙 江 密山 18 0 ) 5 30 摘 要: 通过对密 山地 区2 0 — 0 1 降水的分析 , 002 1 年 我们总结 出了密山地 区晴雨预报 指标 , 同的气象要 素组合的 晴雨条件。 不 关键词 : 晴雨预报 ; 指标条件 ; 预报考核
现代高科技领域新技术的发展 , 对零部件的加工精度要求 6微米上 0 2 Im。英 国 Cafl ^ . 0 X rn e i d精密加工 中心于 19 年研制成功 O M 91 AG 升到亚微米, 纳米级。 在这个过程中超精密加工技术就能实现。 超精密生 2 0 50多功能三 坐标 联动数控磨 床, 其工作 台尺寸为 25 0 m × 0r a 2 发展水平 。 50 。 0 mm 该机床采用油膜轴承技术, 有利于减小振动, 实现运动的平稳控 4  ̄的切割 , , V3  ̄ 研磨 并利用声 , , 光 电和其他能源的材料和加工方法 , 并结 制。其无损磨削速度可达 10— 0 0 3 0加工表面粗糙度为 1— O t 形状 0 5n, o 合各种加工方法的复合加工方法 , 前 , 目 传统的加工方法仍然是占主要地 误 差 小 于 5 m / ,亚 表 面损 伤小 于 1 m。Caf l 学 P u m 0 rn e i d大 al 位在世界各地以及我国。 S oe等 人 汁制造了新型超精密磨床 , hr 设 机床主轴采用油膜轴承 功率 在全球竞争激烈的今天 , 超精密加工是机械制造行业中极具竞争力 可达 1k , 0 W 材料切削速度可达 2 0。该机床具 0 的动静态特性, 的超精密加工技术 , 把握超精密机床 的发展趋势 , 借鉴国内外先进的制造 其静态刚度大于 1O , 0 N 运动件质量小于 7 0k 5 g共振频率大于 10 z 0H 。 精密新技术 , 自主创新 , 自主研发 , 本 超精密加工设备水平, j 对促进 亚表面损伤 P v值小于 1 m。 本 T Y T — 日 O O A公司生产的 A N 1 H 0型 中国的经济以及社会发展 , 都具有极其重要的战略意义。 高效专用超精密车床, 机床主轴采用空气轴承, 最大加工直径为 10 m 0r , a 1 超精 密加 工技术 刀架设计成滑板结构。直线移动分辨率为 0 1 m 采用激光测量反馈 . ' 0 超精密加工技术适应现代高技术的需求而发展起来先进的技术, 是 系统, 定位精度全行程 0 3 m B轴回转分辨率为 1 ”。砂轮轴由气 . ’ 0 . 3 指 加工 精度 控 制在 10 m 以下 ,表 面粗 糙度 在 2 n 以下 的加工要 动透平驱动, 0 0m 转速为 100 0d 0 0 m i n。该机床加工的模具形状精度为 求。超精密加工综合应用了柳械技术发展的新成果, 是高科技领域中分 、 0 5 I . n 0 ,表 面粗 糙 度 R 0 2 m 。 日本 F N C公 司研 制 的 a. 5 0 A U 的基础 , 在国防军事以及国民经济建设, 都发挥着至关重要作用。 R B N N 一 O O A Oa 0i B超精密加工机床 , 该机床利用了 F N C公司的 A U 超精密加工的方法主要有 以下几种: 刚石刀具镜面切削 超精 纳米级控制技术, ( 1 淦 直线轴( 、 Z) X Y、 分辨率可达 lm 旋转轴 、 分辨 n, C) . 1 O 进 密磨削加工, 主要加工对象是玻璃、 陶瓷等硬脆材料;超 精密研磨加工 、 率为 0 00 。。机床的运动部件全部采用空气静压支承结构 轨 、 ( 3 抛 、 利用特殊磨料可研抛出极高质量的表面I 超精密特种加工, 圯 ( 4 ) 是利 给丝杆螺母副、 驱动电机) 将系统的摩擦减小为 0 , 。机床的发热量仅为 W 通过供给机床医缩空气可使温升控制在 ± . 。C 0 1 。利用该机床可 0 用声 、 、 磁等能源的非传统加工方法; 光 电、 复合加工, 综合采用几种不 5 , 同 的加工方法 。 实现 铣削 、 和高速刻绘加 工 。 车削 2超精 密机 床的发展 现状 2 国内超精密机床的发展腈况。北京机床研究所自主研发了一系 2 如 Q A E系列超 精密 光学 镜 面 2 1国外超精密机床的发展情况。 我国虽然是制造大国, 但还不是一 列具 有 自主知 识产 权 的超 精 密机床 , S U R 个“ 制造强 国”与发达的国家相 比仍存有差距 , 、 德 国在上世纪 7 铣床 、P E E 0 , 美 英、 0 S H R 2 0超精密球面镜加工机床 、A O T 5 纳米级车铣 N N —M O A 8 0 这些机床的轴系精度 于 扑 年代就开始生产超精密机床产品。不倪 套水平高, 而且可批量供 复合加工机床和 N 度分析 了影 响机床加 工精度 的 因素,既对我 国超精密加工技 术装备研究与发展提 出了一点建议 , 从 也对我 国 超精 密加 工机床 的研发提 出了一点建议 。

非球面加工技术

非球面加工技术
(1.1)
式中, 是非球面顶点处的曲率; 表示非球面上任一点到光轴 的距离; 是二次曲面系数,它与二次曲面的离心率 有关, 值的不同则表示不同形状的非球面,如图1.2
图1二次曲线
当K=0时,表示为一个圆,如图1.2中曲线1;
当K>0时,表示椭圆。如图1.2中曲线2;
当-1K<0时,表示抛物线。如图1.2中曲线3;
该技术可以加工出符合光学质量要求的非球面光学零件,主要用于加工中小尺寸、中等批量的光学零件,其特点是生产效率高、加工精度高、重复性好。采用该项技术,可以加工120mm以下的光学零件,面形精度达l/2~1,表面粗糙度的均方根值为0.3~0.1um。目前实验室非球面铣磨采用德国LOH公司的设备,该设备精度高,细磨后,面形精度可达1um,粗糙度RMS小于200nm
非球面的研磨抛光是采用机修与手修结合的方法,特别是在最后的面形修抛阶段更是完全依靠加工者的经验进行手修。这种传统的非球面抛光工艺不仅周期长,劳动强度大,效率低。而且手修的过程不容易控制,抛光精度取决于技术人员的经验,对加工者的个人经验和能力要求很高。
3
射流抛光技术[13-15](Fluid Jet Polishing,简称FJP)是近几年来刚刚提出用于先进光学制造业的新方法,是在磨料射流技术的基础上发展起来的集流体力学、光学制造、表面技术于一体的先进光学加工工艺,属于非接触式抛光方法。它是利用由小喷管喷出的混有磨料粒子的高速抛光液作用于工件表面,借助于磨料粒子的高速碰撞剪切作用达成材料去除的目的。通过控制液体喷射的压力、方向及驻留时间等来定量的修正被加工工件面形的光学加工工艺。图1.3为液体喷射抛光的实验原理图。混有磨料粒子的抛光液经高压泵加速后,以极高的速度从喷管喷出射向工件表面,与工件发生碰撞,对工件表面进行抛光。碰撞结束后,磨料粒子随水流回流到收集器,循环往复,可对工件进行连续抛光。在喷射抛光过程中,高速磨料粒子如同一把把微小的柔性车刀,对工件表面进行切削、刻划加工。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计(论文)通过答辩摘要非球面光学零件可以获得球面光学零件无可比拟的良好的成像质量,在光学系统中能够很好的矫正多种像差,改善成像质量,提高系统鉴别能力,它能以一个或几个非球面零件代替多个球面零件,从而简化仪器结构,降低成本并有效的减轻仪器重量。

可广泛应用于各种现代光电子产品,几乎在所有的工程应用领域中,无论是现代国防科技技术领域,还是普通的工业领域都有着广泛的应用前景,开展光学玻璃非球面零件的高精密光学技术研究具有重要的理论意义和现实指导意义。

本次设计研究内容为非球曲面的超精密加工系统的研究,非球曲面的超精密加工工艺的研究。

重点内容是非球曲面加工超精密磨削装置的设计,主要为砂轮主轴装置的选取,中心高位调机构的设计,各个运动的传动设计以及砂轮运动轨迹的分析。

在研究过程中详细的分析了影响零件加工精度的各种主要因素并提出相应的控制措施,尤其是对非球曲面的磨削加工设备进行详细设计,并简要分析了非球曲面加工机床的数控及伺服控制系统等。

关键词:非球曲面;超精密加工;微调机构;金刚石砂轮本科毕业设计(论文)通过答辩AbstractThe aspheric optical parts can get good image quality, good optical system correction of various aberrations, to improve the image quality, and improve the system ability to identify it to one or several non-spherical spherical optical parts unparalleledparts instead of a number of spherical parts, thus simplifying the instrument structure, reduce costs and reduce instrument weight. It’s widely used in many realms, such as national defense, machine chemical and aviation. It’s very useful to develop the grinding theory and important practical significance to study the high precision grinding methods about the optical glass aspheric surface parts. This article discussed in the ultra-precision grinder, the CNC operation program,and the aspheric surface optics parts’grinding craft. The center height micro-adjusting mechanism and the drive system. In the process of the research, we analysis it detailed that the main factor influence the process precision of the parts, and make something to solve it, especially for the precision grinding equipments, and analysis it simplify for the precision machine tool for aspheric surface optics parts and the servo-control system and the other technology.Key words: the aspheric surface; ultra-precision machining; the micro-adjusting mechanism; diamond wheel本科毕业设计(论文)通过答辩目录摘要 (I)目录 (III)第1章绪论 (1)1.1非球面加工的优点和意义 (1)1.2非球曲面研究概述 (1)1.2.1 非球面的定义 (1)1.2.2 非球面应用领域 (2)1.2.3 非球曲面加工技术近年来发展概况 (2)1.2.4 非球曲面加工的发展趋势和研究方向 (4)1.3 非球面光学零件材料及其加工方法 (4)1.3.1 计算机数控单点金刚石技术(SPDT) (5)1.3.2 超精密磨削技术 (5)1.3.3 计算机控制光学表面成型(CCOS)技术 (5)1.3.4 光学玻璃模压成型技术 (6)1.3.5 光学塑料成型技术 (6)1.3.6 其他非球面加工技术 (6)1.4非球面精密磨削加工理论 (6)1.4.1 微量加工理论 (7)1.4.2 脆性材料的延性域磨削 (8)第2章超精密非球面加工方案选择及误差分析 (10)2.1 超精密非球曲面磨床的总体布局 (10)2.1.1 空气主轴系统 (10)2.1.2 伺服进给系统 (11)2.1.3 微位移测量系统 (11)2.1.4 中心高微调系统 (11)2.1.5 数控系统 (11)2.2 非球曲面磨削方案的确定 (12)2.2.1加工零件的技术参数 (13)本科毕业设计(论文)通过答辩2.2.2 非球曲面磨削方案确定 (13)2.3 加工误差分析 (14)2.3.1 中心高微调机构对零件加工精度的影响 (15)2.3.2 在X轴上砂轮安装误差对零件加工精度的影响 (17)2.3.3 砂轮半径误差对零件加工精度的影响 (18)2.3.4 X∆综合作用时对零件面形精度的影响 (19)∆及R第3章非球面磨削装置设计 (21)3.1 超精密加工的关键技术 (21)3.1.1 超精密主轴 (21)3.1.2 超精密导轨 (21)3.1.3 传动系统 (22)3.1.4 超精密刀具 (22)3.1.5 超精密加工其他技术 (23)3.2 传动系统设计 (23)3.2.1 磨削参数的计算 (23)3.2.2 导轨的整体设计 (24)3.2.3 传动参数的计算 (25)3.3 磨削系统设计 (25)3.3.1 系统结构设计 (26)3.3.1 中心高微调机构设计 (27)3.3.2 砂轮主轴的选择 (28)结论 (31)致谢 (32)参考文献 (33)本科毕业设计(论文)通过答辩CONTENTSAbstract (I)CONTENTS (III)Capter 1 Introduction (1)1.1 The meaning of the processing of aspheric surface (1)1.2 The introuduction of the aspheric surface’s research (1)1.2.1 Definition of aspheric surface (1)1.2.2 Application of aspheric surface (2)1.2.3 The development of aspheric surface in recent years (2)1.2.4 Aspheric pricesssing trends and research directions (4)1.3 The parts’ material and the processing method (4)1.3.1 Computer-controlled single-point diamond technology(SPDT) (5)1.3.2 Ultra-precision grinding technology (5)1.3.3 Computer Controlled Optical Surfacing(CCOS) (5)1.3.4 Optical glass compression molding technology (6)1.3.5Optical plastic molding technology (6)1.3.6 Other processing technology (6)1.4Aspheric surface precision grinding theory (6)1.4.1 Trace processing theory (8)1.4.2 Ductile-regime grinding of brittle materials (8)Capter 2 Ultra-precision aspheric processing alternatives and error analysis.. 102.1 Ultra precision aspherical surface grinding machine layout (10)2.1.1 Air spindle system (10)2.1.2 S ervo feed system (11)2.1.3 Micro-displacement measurement system (11)2.1.4 Center high tuning system (11)2.1.5 Numerical control system (11)2.2 Aspherical surface grinding scheme (12)2.2.1 Processing part of the technical parameters (13)本科毕业设计(论文)通过答辩2.2.2 Aspherical surface grinding scheme (13)2.3 Processing error analysis (14)2.3.1 Center high fine-tuning mechanism on the impact of cuttingaccuracy (15)2.3.2 In the X axis on the wheel on the impact of cutting accuracy (17)2.3.3 Wheel radius error on the part of machining precision (18)2.3.4 Both X∆on the part (19)∆and RCapter3 Aspheric tooling design (21)3.1 Ultra-precision machining technology (21)3.1.1 Ultra-precision spindle (21)3.1.2 Ultra-precision guide (21)3.1.3 Drive system (22)3.1.4 Ultra-precision cutter (22)3.1.5 Other technology (23)3.2 Transmission System Designing (23)3.2.1 Grinding parameters (23)3.2.2 The overall design of the Rails (24)3.2.3 Calculation of transmission parameters (25)3.3 Grinding systems design (25)3.3.1 System architecture design (26)3.3.1 Center high micro-adjusting mechanism design (27)3.3.2 Wheel spindle design (28)Conclusion (31)Thanks (32)References (33)本科毕业设计(论文)通过答辩第1章绪论1.1非球曲面加工的意义和优点非球面技术应用于光学零件,相对于球面而言,具有许多优点,它可以消除球面镜片在光传递过程中产生的球差、慧差、像散、场曲及畸变等诸多不利因素,减少光能损失,从而获得高质量的图像效果和高品质的光学特征。

相关文档
最新文档