【数学】备战中考数学旋转解答题压轴题提高专题练习含详细答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、旋转 真题与模拟题分类汇编(难题易错题)

1.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)

(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;

(2)试判断:旋转过程中

BD

AE

的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;

(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.

【答案】(1)90°,2n ;(2)无变化;(3125;(4)BD=102114. 【解析】

试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CE

CB CA

=即可解决问题.②求出BD 、AE 即可解决问题.

(2)只要证明△ACE ∽△BCD 即可.

(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.

(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =1

2

n .故答案为90°,

1

2

n . ②如图2中,当α=180°时,BD =BC +CD =

32n ,AE =AC +CE =32m ,∴BD AE =n m

.故答案为n

m

. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵

CD BC n

CE AC m

==,

∴△ACE ∽△BCD ,∴

BD BC n

AE AC m

==.

(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB =22AC BC -=6.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,

∴AE =22AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴

BD BC

AE AC

=,∴

35=810,∴BD =125.故答案为125

. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°

时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()

=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于

M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =

22AM ME +=57,由(2)可知

DB AE =223

,∴BD =2114

3. 故答案为210或

2114

3

点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.

2.已知△ABC 是边长为4的等边三角形,边AB 在射线OM 上,且OA=6,点D 是射线OM 上的动点,当点D 不与点A 重合时,将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,连接DE .

(1)如图1,猜想:△CDE的形状是三角形.

(2)请证明(1)中的猜想

(3)设OD=m,

①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.

②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.

【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.

【解析】

【分析】

(1)由旋转的性质猜想结论;

(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;

(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到

C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;

②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;

b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;

c)当6<m<10时,此时不存在;

d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.

【详解】

(1)等边;

(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE 是等边三角形.

(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,

∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,

∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;

②存在,分四种情况讨论:

a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合

相关文档
最新文档