北航数值分析计算实习报告一
北航数值分析大作业 第一题 幂法与反幂法
数 值 分 析(B ) 大 作 业(一)姓名: 学号: 电话:1、算法设计:①求1λ、501λ和s λ的值:s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。
1λ、501λ:若矩阵A 的特征值满足关系 1n λλ<<且1n λλ≠,要求1λ、及501λ时,可按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。
b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m BA I λ=+,对矩阵B 用反幂法求得B 的按模最小特征值2m λ。
c . 321m m m λλλ=-则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。
②求和A 的与数5011140k k λλμλ-=+最接近的特征值ik λ(k=0,1,…39):求矩阵A 的特征值中与P 最接近的特征值的大小,采用原点平移的方法:先求矩阵 B=A-PI 对应的按模最小特征值k β,则k β+P 即为矩阵A 与P 最接近的特征值。
在本次计算实习中则是先求平移矩阵k B A I μ=-,对该矩阵应用反幂法求得s λ,则与k μ最接近的A 的特征值为:s P λ+重复以上过程39次即可求得ik λ(k=0,1,…39)的值。
③求A 的(谱范数)条件数2cond()A 和行列式det A :在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。
求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()scond A λλ=,max λ和s λ分别为模最大特征值与模最小特征值。
2、程序源代码:#include "Stdio.h"#include "Conio.h"#include "math.h"//****************************************************************************// // 在存储带状矩阵时,下面的几个量在程序中反复用到,为方便编程故把它们定义成宏.// // M :转换后的矩阵的行数,M=R+S+1。
北航数值分析实验报告
北航数值分析实验报告篇一:北航数值分析报告第一大题《数值分析》计算实习报告第一大题学号:DY1305姓名:指导老师:一、题目要求已知501*501阶的带状矩阵A,其特征值满足?1?2...?501。
试求:1、?1,?501和?s的值;2、A的与数?k??1?k?501??140最接近的特征值?ik(k=1,2,...,39);3、A的(谱范数)条件数c nd(A)2和行列式de tA。
二、算法设计方案题目所给的矩阵阶数过大,必须经过去零压缩后进行存储和运算,本算法中压缩后的矩阵A1如下所示。
?0?0?A1??a1??b??c0b a2bcc bb c............c bb ccb a500b0a 3...a499c?b??a501??0?0??由矩阵A的特征值满足的条件可知?1与?501之间必有一个最大,则采用幂法求出的一个特征值必为其中的一个:当所求得的特征值为正数,则为?501;否则为?1。
在求得?1与?501其中的一个后,采用带位移的幂法则可求出它们中的另一个,且位移量即为先求出的特征值的值。
用反幂法求得的特征值必为?s。
由条件数的性质可得,c nd(A)2为模最大的特征值与模最小的特征值之比的模,因此,求出?1,?501和?s的值后,则可以求得c nd(A)2。
北航数值分析计算实习1
《数值分析》计算实习题目110091013 劳云杰一、算法设计方案根据提示的算法,首先使用幂法求出按模最大的特征值λt1,再根据已求出的λt1用带原点平移的幂法求出另一个特征值λt2,比较两个λ的大小,根据已知条件,可以得出λ1和λ501.至于λs,由于是按模最小的特征值,使用反幂法求之,由于反幂法需要解线性方程组,故对矩阵进行Doolittle分解。
再通过带原点平移的反幂法求跟矩阵的与数最接近的特征值。
对非奇异的矩阵A,根据条件数定义,取λt1/λs的绝对值,两个特征值在之前步骤中均以求得。
由于对矩阵进行了Doolittle分解,所以矩阵的行列式det A可由分解得出的上三角阵U 的对角线上元素相乘求得。
为了使A的所有零元素都不存储,使用书本25页的压缩存储法对A进行存储,在计算时通过函数在数组C中检索A中元素即可。
由于A是501*501矩阵,C应取为5*501矩阵。
由于数据不大,为了方便起见,在程序中取502*502矩阵或者502向量,C也取为6*502矩阵。
程序编写参考《数值分析》颜庆津著和[C数值算法].(美国)W ILLIAM.H.P RESS.扫描版。
二、全部源程序#include <stdio.h>#include <math.h>#define XS 1.0e-12//精度水平void fz_a();//对矩阵A赋值double js(int,int);//在压缩矩阵中检索A的元素double mf(double);//幂法double fmf(double);//反幂法int lu(double);//Doolittle分解int jfc(double[],double[]);//解方程int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角阵double (*l)[502]=new double[502][502];//单位下三角阵double a[6][502];//压缩存储矩阵int max(int x,int y)//比大小函数×2{ return (x>y?x:y);}int min(int x,int y)//精度关系,比较下标用{ return (x<y?x:y);}int main(){printf("请耐心等待,先看看中间过程吧~\n");int i,k;double ldt1,ldt2,ld1,ld501,lds,mu[40],det;double ld[40];fz_a();//对A赋值ldt1=mf(0);//幂法求模最大的特征值ldt2=mf(ldt1);//以第一次求得的特征值进行平移ld1=ldt1<ldt2?ldt1:ldt2;//大的就是λ501ld501=ldt1<ldt2?ldt2:ldt1;lu(0);lds=fmf(0);//反幂法求λsdet=1;//初始化行列式for(i=1;i<=501;i++)det=det*u[i][i];//用U的对角元素求行列式for(k=1;k<=39;k++){mu[k]=ld1+k*(ld501-ld1)/40;//与数lu(mu[k]);ld[k]=fmf(mu[k]);}printf("\n 列出结果\n");printf("λ1=%1.12e λ501=%1.12e\n",ld1,ld501);printf("λs=%1.12e \n",lds);printf("cond(A)=%1.12e \n",fabs(ldt1/lds));printf("detA=%1.12e \n",det);for(k=1;k<=39;k++)//列出跟与数最接近特征值{printf("λi%d=%1.12e\t",k,ld[k]);if(k%2==0)printf("\n");}//界面友好性delete []u;delete []l;getchar();return 0;}void fz_a()//对A赋值{int i;for(i=3;i<=501;i++)a[1][i]=a[5][502-i]=-0.064;//原A矩阵的cfor(i=2;i<=501;i++)a[2][i]=a[4][502-i]=0.16;//原A矩阵的bfor(i=1;i<=501;i++)a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);//原对角线元素}double js(int i,int j)//对压缩矩阵检索A的元素{if(abs(i-j)<=2)return a[i-j+3][j];else return 0;}double mf(double offset)//幂法{int i,x1;double u[502],y[502];double beta=0,prebeta=-1000,yita=0;//用幂法的第一种迭代方法for(i=1;i<=501;i++) //用到了2-范数u[i]=1,y[i]=0;for(int k=1;k<=10000;k++)//对迭代次数进行限制{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;for(x1=1;x1<=501;x1++){u[x1]=0;for(int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(js(x1,x2)-offset):js(x1,x2))*y[x2];}prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);//加上平移量,方便比较}double fmf(double offset)//反幂法{ int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for(i=1;i<=501;i++)u[i]=1,y[i]=0; //相关量初始化for(int k=1;k<=10000;k++)//限制迭代次数{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;jfc(u,y);prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];beta=1/beta;if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%ek=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);}int lu(double offset)//Doolittle分解{int i,j,k,t;double sum;//中间量for(k=1;k<=501;k++)for(j=1;j<=501;j++){u[k][j]=l[k][j]=0;if(k==j)l[k][j]=1;}//对LU矩阵初始化for(k=1;k<=501;k++)//对式(2.12)的程序实现{for(j=k;j<=min(k+2,501);j++){sum=0;for(t=max(1,max(k-2,j-2));t<=(k-1);t++)sum=sum+l[k][t]*u[t][j];//j=k,k+1,……,nu[k][j]=((k==j)?(js(k,j)-offset):js(k,j))-sum;}if(k==501)continue;for(i=k+1;i<=min(k+2,501);i++)//i=k+1,……,n{sum=0;for(t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(js(i,k)-offset):js(i,k))-sum)/u[k][k];}}return 0;}int jfc(double x[],double b[])//解方程{int i,t;double y[502];double sum;y[1]=b[1];for(i=2;i<=501;i++){sum=0;for(t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for(i=500;i>=1;i--){sum=0;for(t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}三、结果λ1=-1.070011361502e+001λ501=9.724634098777e+000λs=-5.557910794230e-003cond(A)=1.925204273902e+003detA=2.772786141752e+118λi1=-1.018293403315e+001 λi2=-9.585707425068e+000 λi3=-9.172672423928e+000λi4=-8.652284007898e+000 λi5=-8.0934********e+000 λi6=-7.659405407692e+000λi7=-7.119684648691e+000 λi8=-6.611764339397e+000 λi9=-6.0661********e+000λi10=-5.585101052628e+000 λi11=-5.114083529812e+000 λi12=-4.578872176865e+000λi13=-4.096470926260e+000 λi14=-3.554211215751e+000 λi15=-3.0410********e+000 λi16=-2.533970311130e+000 λi17=-2.003230769563e+000 λi18=-1.503557611227e+000 λi19=-9.935586060075e -001 λi20=-4.870426738850e -001 λi21=2.231736249575e -002 λi22=5.324174742069e -001 λi23=1.052898962693e+000 λi24=1.589445881881e+000 λi25=2.060330460274e+000 λi26=2.558075597073e+000 λi27=3.080240509307e+000 λi28=3.613620867692e+000 λi29=4.0913********e+000 λi30=4.603035378279e+000 λi31=5.132924283898e+000 λi32=5.594906348083e+000 λi33=6.080933857027e+000 λi34=6.680354092112e+000 λi35=7.293877448127e+000 λi36=7.717111714236e+000 λi37=8.225220014050e+000 λi38=8.648666065193e+000 λi39=9.254200344575e+000四、讨论迭代初始向量的选取对计算结果的影响1.在反幂法中取迭代向量u[1]=1,u[i]=0,i=2,……,501,最后得出的结果中λs=2.668886923785e -002,cond(A)也随之改变成4.009204556274e+0022.在幂法中取迭代向量u[1]=1,u[i]=2,i=2,……,501,最后得出的结果不变。
数值分析实验报告心得(3篇)
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
北航数值分析报告大作业第三题(fortran)
北航数值分析报告大作业第三题(fortran)“数值分析“计算实习大作业第三题——SY1415215孔维鹏一、计算说明1、将x i=0.08i,y j=0.5+0.05j分别代入方程组(A.3)得到关于t,u,v,w的的方程组,调用离散牛顿迭代子函数求出与x i,y j对应的t i,u j。
2、调用分片二次代数插值子函数在点(t i,u j)处插值得到z(x i,y j)=f(x i,y j),得到数表(x i,y j,f(x i,y j))。
3、对于k=1,2,3,4?,分别调用最小二乘拟合子函数计算系数矩阵c rs 及误差σ,直到满足精度,即求得最小的k值及系数矩阵c rs。
4、将x i?=0.1i,y j?=0.5+0.2j分别代入方程组(A.3)得到关于t?,u?,v?,w?的的方程组,调用离散牛顿迭代子函数求出与x i?,y j?对应的t i?,u j?,调用分片二次代数插值子函数在点(t i?,u j?)处插值得到z?(x i?,y j?)=f(x i?,y j?);调用步骤3中求得的系数矩阵c rs求得p(x i?,y j?),打印数表(x i?,y j?,f(x i?,y j?),p(x i?,y j?))。
二、源程序(FORTRAN)PROGRAM SY1415215DIMENSIONX(11),Y(21),T(6),U(6),Z(6,6),UX(11,21),TY(11,21),FXY(11,21), C(6,6) DIMENSIONX1(8),Y1(5),FXY1(8,5),PXY1(8,5),UX1(8,5),TY1(8,5)REAL(8) X,Y,T,U,Z,FXY,UX,TY,C,E,X1,Y1,FXY1,PXY1,UX1,TY1OPEN (1,FILE='第三题计算结果.TXT')DO I=1,11X(I)=0.08*(I-1)ENDDODO I=1,21Y(I)=0.5+0.05*(I-1)ENDDO!*****求解非线性方程组,得到z=f(t,u)的函数*******DO I=1,11DO J=1,21CALL DISNEWTON_NONLINEAR(X(I),Y(J),UX(I,J),TY(I,J)) ENDDO ENDDO!*************分片二次插值得到z=f(x,y)***********DO I=1,11DO J=1,21CALL INTERPOLATION(UX(I,J),TY(I,J),FXY(I,J))ENDDO ENDDOWRITE (1,"('数表(x,y,f(x,y)):')")WRITE (1,"(3X,'X',7X,'Y',10X,'F(X,Y)')")DO I=1,11DO J=1,21WRITE(1,'(1X,F5.2,2X,F5.3,2X,E20.13)') X(I),Y(J),FXY(I,J) ENDDOWRITE (1,"('')")ENDDO!***********最小二乘拟合得到P(x,y)**************N=11M=21WRITE (1,'(" ","K和σ分别为:")')DO K=1,20CALL LSFITTING(X,Y,FXY,C,N,M,K,K,E) WRITE (1,'(I3,2X,E20.13)') K-1,EIF(ETA).OR.(A(L,K)==TA)) THENTA=A(L,K)TL=LDO J=K,NT(K,J)=A(K,J)A(K,J)=A(TL,J)A(TL,J)=T(K,J)ENDDOTB(K)=B(K)B(K)=B(TL)B(TL)=TB(K)ENDIF ENDDODO I=K+1,NM(I,K)=A(I,K)/A(K,K)A(I,K)=0DO J=K+1,NA(I,J)=A(I,J)-M(I,K)*A(K,J) ENDDOB(I)=B(I)-M(I,K)*B(K)ENDDOENDDO!回代过程X(N)=B(N)/A(N,N)DO K=N-1,1,-1S=0.0DO J=K+1,NS=S+A(K,J)*X(J)ENDDOX(K)=(B(K)-S)/A(K,K)ENDDORETURNEND!***********求向量的无穷数************ SUBROUTINE NORM(X,N,A) DIMENSION X(N)REAL(8) X,AA=ABS(X(1))DO I=2,NIF(ABS(X(I))>ABS(X(I-1))) THENA=ABS(X(I)) ENDIFENDDORETURNEND!**************分片二次代数插值************** SUBROUTINE INTERPOLATION(U,V,W) PARAMETER (N=6,M=6)DIMENSION X(N),Y(M),Z(M,N),LK(3),LR(3)REAL(8) X,Y,Z,H,TREAL(8) U,V,W,LK,LR !U,V分别为插值点处的坐标,W为插值结果INTEGER R!**********************数据赋值********************** DATA Y/0.0,0.2,0.4,0.6,0.8,1.0/DATA X/0.0,0.4,0.8,1.2,1.6,2.0/DATA Z/-0.5,-0.42,-0.18,0.22,0.78,1.5,&&-0.34,-0.5,-0.5,-0.34,-0.02,0.46,&&0.14,-0.26,-0.5,-0.58,-0.5,-0.26,&&0.94,0.3,-0.18,-0.5,-0.66,-0.66,&&2.06,1.18,0.46,-0.1,-0.5,-0.74,&&3.5,2.38,1.42,0.62,-0.02,-0.5/H=0.4T=0.2!******************计算K,R************************* IF(UX(N-1)-H/2) THENK=N-1ELSEDO I=3,N-2IF((U>X(I)-H/2).AND.(UY(M-1)-T/2) THENR=M-1 ELSEDO J=3,M-2IF((V>Y(J)-T/2).AND.(VN) P=N IF(P>20) P=20IF(Q>M) Q=MIF(Q>20) Q=20XX=0YY=0D1=NAPX(1)=0.0DO I=1,NAPX(1)=APX(1)+X(I)ENDDOAPX(1)=APX(1)/D1DO J=1,MV(1,J)=0.0DO I=1,NV(1,J)=V(1,J)+Z(I,J)ENDDOV(1,J)=V(1,J)/D1ENDDOIF(P>1) THEND2=0.0APX(2)=0.0DO I=1,NG=X(I)-APX(1)D2=D2+G*GAPX(2)=APX(2)+(X(I)-XX)*G*G ENDDO APX(2)=APX(2)/D2BX(2)=D2/D1DO J=1,MV(2,J)=0.0DO I=1,NG=X(I)-APX(1)V(2,J)=V(2,J)+Z(I,J)*G ENDDOV(2,J)=V(2,J)/D2ENDDOD1=D2ENDIFDO K=3,PD2=0.0APX(K)=0.0DO J=1,MV(K,J)=0.0ENDDODO I=1,NG1=1.0G2=X(I)-APX(1)DO J=3,KG=(X(I)-APX(J-1))*G2-BX(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPX(K)=APX(K)+X(I)*G*GDO J=1,M V(K,J)=V(K,J)+Z(I,J)*G ENDDOENDDODO J=1,MV(K,J)=V(K,J)/D2ENDDOAPX(K)=APX(K)/D2BX(K)=D2/D1D1=D2ENDDOD1=MAPY(1)=0.0DO I=1,MAPY(1)=APY(1)+Y(I)ENDDOAPY(1)=APY(1)/D1DO J=1,PU(J,1)=0.0DO I=1,MU(J,1)=U(J,1)+V(J,I) ENDDO U(J,1)=U(J,1)/D1ENDDOIF(Q>1)THEND2=0.0APY(2)=0.0DO I=1,MG=Y(I)-APY(1)D2=D2+G*G APY(2)=APY(2)+(Y(I))*G*G ENDDO APY(2)=APY(2)/D2BY(2)=D2/D1DO J=1,PU(J,2)=0.0DO I=1,MG=Y(I)-APY(1)U(J,2)=U(J,2)+V(J,I)*GENDDOU(J,2)=U(J,2)/D2ENDDOD1=D2ENDIFDO K=3,QD2=0.0APY(K)=0.0DO J=1,PU(J,K)=0.0ENDDODO I=1,MG1=1.0G2=Y(I)-APY(1)DO J=3,KG=(Y(I)-APY(J-1))*G2-BY(J-1)*G1 G1=G2 G2=GENDDOD2=D2+G*GAPY(K)=APY(K)+Y(I)*G*G DO J=1,PU(J,K)=U(J,K)+V(J,I)*G ENDDOENDDODO J=1,PU(J,K)=U(J,K)/D2ENDDOAPY(K)=APY(K)/D2BY(K)=D2/D1D1=D2ENDDOV(1,1)=1.0V(2,1)=-APY(1)V(2,2)=1.0DO I=1,PDO J=1,QA(I,J)=0.0ENDDOENDDODO I=3,QV(I,I)=V(I-1,I-1)V(I,I-1)=-APY(I-1)*V(I-1,I-1)+V(I-1,I-2)IF(I>=4) THENDO K=I-2,2,-1V(I,K)=-APY(I-1)*V(I-1,K)+V(I-1,K-1)-BY(I-1)*V(I-2,K) ENDDO ENDIFV(I,1)=-APY(I-1)*V(I-1,1)-BY(I-1)*V(I-2,1)ENDDO DO I=1,PIF(I==1) THENT(1)=1.0T1(1)=1.0ELSEIF(I==2) THENT(1)=-APX(1)T(2)=1.0T2(1)=T(1)T2(2)=T(2)ELSET(I)=T2(I-1)T(I-1)=-APX(I-1)*T2(I-1)+T2(I-2) IF(I>=4) THENDO K=I-2,2,-1T(K)=-APX(I-1)*T2(K)+T2(K-1)-BX(I-1)*T1(K) ENDDOENDIFT(1)=-APX(I-1)*T2(1)-BX(I-1)*T1(1)T2(I)=T(I)DO K=I-1,1,-1T1(K)=T2(K)T2(K)=T(K)ENDDOENDIFDO J=1,QDO K=I,1,-1DO L=J,1,-1A(K,L)=A(K,L)+U(I,J)*T(K)*V(J,L) ENDDOENDDOENDDOENDDODT1=0.0DO I=1,NX1=X(I)DO J=1,MY1=Y(J)X2=1.0DD=0.0DO K=1,PG=A(K,Q)DO KK=Q-1,1,-1G=G*Y1+A(K,KK)ENDDOG=G*X2DD=DD+GX2=X2*X1ENDDODT=DD-Z(I,J)DT1=DT1+DT*DTENDDOENDDORETURNEND三、计算结果数表(x,y,f(x,y)): X Y UX TY F(X,Y) 0.00 0.500 1.345 0.243 0.17E+000.00 0.550 1.322 0.269 0.66E+000.00 0.600 1.299 0.295 0.35E+000.00 0.650 1.277 0.322 0.94E+000.00 0.700 1.255 0.350 0.30E-020.00 0.750 1.235 0.377 -0.87E-010.00 0.800 1.215 0.406 -0.58E+000.00 0.850 1.196 0.434 -0.72E+000.00 0.900 1.177 0.463 -0.54E+000.00 0.950 1.159 0.492 -0.86E+000.00 1.050 1.125 0.550 -0.74E+00 0.00 1.100 1.109 0.580 -0.06E+00 0.00 1.150 1.093 0.609 -0.00E+00 0.00 1.200 1.0790.639 -0.18E+00 0.00 1.250 1.064 0.669 -0.52E+00 0.00 1.3001.050 0.699 -0.19E+00 0.00 1.350 1.037 0.729 -0.48E+00 0.001.400 1.024 0.759 -0.68E+00 0.00 1.450 1.011 0.790 -0.52E+00 0.00 1.500 1.000 0.820 -0.29E+000.08 0.500 1.415 0.228 0.67E+00 0.08 0.550 1.391 0.253 0.08E+00 0.08 0.600 1.368 0.279 0.02E+00 0.08 0.650 1.346 0.306 0.47E+00 0.08 0.700 1.325 0.333 0.57E+00 0.08 0.750 1.304 0.360 0.48E-01 0.08 0.800 1.284 0.388 -0.73E-01 0.08 0.850 1.265 0.416 -0.16E+00 0.08 0.900 1.246 0.444 -0.29E+00 0.08 0.950 1.229 0.473 -0.36E+00 0.08 1.000 1.211 0.502 -0.08E+00 0.08 1.050 1.194 0.531 -0.29E+00 0.08 1.100 1.178 0.560 -0.78E+00 0.08 1.150 1.163 0.589 -0.93E+00 0.08 1.200 1.148 0.619 -0.44E+00 0.08 1.250 1.133 0.649 -0.92E+00 0.08 1.300 1.119 0.679 -0.71E+000.08 1.400 1.093 0.739 -0.37E+00 0.08 1.450 1.080 0.769-0.83E+00 0.08 1.500 1.068 0.799 -0.92E+000.16 0.500 1.483 0.214 0.31E+00 0.16 0.550 1.460 0.239 0.64E+00 0.16 0.600 1.437 0.264 0.91E+00 0.16 0.650 1.414 0.290 0.06E+00 0.16 0.700 1.393 0.316 0.70E+00 0.16 0.750 1.372 0.343 0.59E+00 0.16 0.800 1.352 0.370 0.12E+00 0.16 0.850 1.333 0.398 0.77E-02 0.16 0.900 1.315 0.426 -0.83E-01 0.16 0.950 1.297 0.454-0.58E+00 0.16 1.000 1.279 0.483 -0.20E+00 0.16 1.050 1.2620.512 -0.11E+00 0.16 1.100 1.246 0.541 -0.74E+00 0.16 1.1501.231 0.570 -0.09E+00 0.16 1.200 1.216 0.600 -0.59E+00 0.16 1.250 1.201 0.629 -0.66E+00 0.16 1.300 1.187 0.659 -0.71E+00 0.16 1.350 1.174 0.689 -0.32E+00 0.16 1.400 1.161 0.718-0.56E+00 0.16 1.450 1.148 0.748 -0.31E+00 0.16 1.500 1.136 0.778 -0.75E+000.24 0.500 1.551 0.201 0.66E+01 0.24 0.550 1.527 0.2250.03E+000.24 0.650 1.482 0.275 0.64E+00 0.24 0.700 1.460 0.3010.47E+00 0.24 0.750 1.439 0.327 0.34E+00 0.24 0.800 1.419 0.354 0.24E+00 0.24 0.850 1.400 0.381 0.69E+00 0.24 0.900 1.381 0.409 0.04E-01 0.24 0.950 1.363 0.437 -0.42E-01 0.24 1.000 1.346 0.465 -0.06E+00 0.24 1.050 1.329 0.494 -0.59E+00 0.24 1.100 1.313 0.523 -0.83E+00 0.24 1.150 1.297 0.552 -0.15E+00 0.24 1.200 1.282 0.581 -0.19E+00 0.24 1.250 1.267 0.610 -0.84E+00 0.24 1.300 1.253 0.640 -0.66E+00 0.24 1.350 1.240 0.669 -0.30E+00 0.24 1.400 1.227 0.699 -0.86E+00 0.24 1.450 1.214 0.729 -0.84E+00 0.24 1.500 1.202 0.759 -0.77E+000.32 0.500 1.617 0.188 0.28E+01 0.32 0.550 1.593 0.212 0.49E+01 0.32 0.600 1.570 0.236 0.68E+00 0.32 0.650 1.547 0.261 0.75E+00 0.32 0.700 1.526 0.286 0.60E+00 0.32 0.750 1.505 0.312 0.77E+00 0.32 0.800 1.485 0.339 0.05E+00 0.32 0.850 1.466 0.365 0.99E+00 0.32 0.900 1.447 0.393 0.27E+00 0.32 1.000 1.411 0.448 -0.01E-02 0.32 1.050 1.395 0.477-0.41E-01 0.32 1.100 1.378 0.505 -0.18E+00 0.32 1.150 1.3630.534 -0.25E+00 0.32 1.200 1.347 0.563 -0.29E+00 0.32 1.2501.333 0.592 -0.90E+00 0.32 1.300 1.319 0.621 -0.00E+00 0.32 1.350 1.305 0.650 -0.40E+00 0.32 1.400 1.292 0.680 -0.54E+00 0.32 1.450 1.279 0.710 -0.79E+00 0.32 1.500 1.267 0.739-0.91E+000.40 0.500 1.681 0.177 0.91E+01 0.40 0.550 1.658 0.1990.00E+01 0.40 0.600 1.634 0.223 0.83E+01 0.40 0.650 1.612 0.247 0.02E+01 0.40 0.700 1.591 0.272 0.94E+00 0.40 0.750 1.570 0.298 0.49E+00 0.40 0.800 1.550 0.324 0.94E+00 0.40 0.850 1.530 0.350 0.40E+00 0.40 0.900 1.512 0.377 0.33E+00 0.40 0.950 1.493 0.405 0.99E+00 0.40 1.000 1.476 0.432 0.68E+00 0.40 1.050 1.459 0.460 0.08E-01 0.40 1.100 1.443 0.488 -0.84E-01 0.40 1.150 1.427 0.517-0.98E+00 0.40 1.200 1.412 0.545 -0.27E+00 0.40 1.250 1.397 0.574 -0.06E+000.40 1.350 1.369 0.632 -0.66E+00 0.40 1.400 1.356 0.662-0.37E+00 0.40 1.450 1.343 0.691 -0.43E+00 0.40 1.500 1.331 0.721 -0.12E+000.48 0.500 1.745 0.166 0.69E+01 0.48 0.550 1.721 0.188 0.02E+01 0.48 0.600 1.698 0.211 0.74E+01 0.48 0.650 1.676 0.235 0.40E+01 0.48 0.700 1.654 0.259 0.23E+01 0.48 0.750 1.634 0.284 0.56E+00 0.48 0.800 1.613 0.310 0.28E+00 0.48 0.850 1.594 0.336 0.49E+00 0.48 0.900 1.575 0.363 0.31E+00 0.48 0.950 1.557 0.390 0.66E+00 0.48 1.000 1.539 0.417 0.30E+00 0.48 1.050 1.522 0.444 0.34E+00 0.48 1.100 1.506 0.472 0.07E-01 0.48 1.150 1.490 0.500 -0.62E-01 0.48 1.200 1.475 0.529 -0.45E+00 0.48 1.250 1.460 0.557 -0.86E+00 0.48 1.300 1.446 0.586 -0.39E+00 0.48 1.350 1.432 0.615 -0.22E+00 0.48 1.400 1.419 0.644 -0.67E+00 0.48 1.450 1.406 0.674-0.55E+00 0.48 1.500 1.394 0.703 -0.14E+000.56 0.500 1.808 0.156 0.48E+010.56 0.600 1.761 0.200 0.10E+01 0.56 0.650 1.739 0.2230.68E+01 0.56 0.700 1.717 0.247 0.94E+01 0.56 0.750 1.696 0.272 0.33E+01 0.56 0.800 1.676 0.297 0.11E+00 0.56 0.850 1.657 0.323 0.63E+00 0.56 0.900 1.638 0.349 0.97E+00 0.56 0.950 1.620 0.375 0.52E+00 0.56 1.000 1.602 0.402 0.56E+00 0.56 1.050 1.585 0.429 0.47E+00 0.56 1.100 1.568 0.457 0.20E+00 0.56 1.150 1.552 0.485 0.13E+00 0.56 1.200 1.537 0.513 0.09E-01 0.56 1.250 1.522 0.541 -0.47E-01 0.56 1.300 1.508 0.570 -0.99E+00 0.56 1.350 1.4940.599 -0.82E+00 0.56 1.400 1.481 0.627 -0.26E+00 0.56 1.4501.468 0.657 -0.71E+00 0.56 1.500 1.455 0.686 -0.98E+000.64 0.500 1.870 0.147 0.74E+01 0.64 0.550 1.846 0.1680.10E+01 0.64 0.600 1.823 0.190 0.54E+01 0.64 0.650 1.801 0.213 0.42E+01 0.64 0.700 1.779 0.236 0.56E+01 0.64 0.750 1.758 0.260 0.03E+01 0.64 0.800 1.738 0.285 0.42E+01 0.64 0.850 1.718 0.310 0.41E+010.64 0.950 1.681 0.362 0.36E+00 0.64 1.000 1.664 0.388 0.18E+00 0.64 1.050 1.646 0.415 0.28E+00 0.64 1.100 1.630 0.443 0.07E+00 0.64 1.150 1.614 0.470 0.66E+00 0.64 1.200 1.598 0.498 0.09E+00 0.64 1.250 1.584 0.526 0.50E-01 0.64 1.300 1.569 0.554 -0.88E-01 0.64 1.350 1.555 0.583 -0.76E+00 0.64 1.400 1.542 0.611 -0.66E+00 0.64 1.450 1.529 0.640 -0.33E+00 0.64 1.500 1.516 0.669 -0.56E+00 0.72 0.500 1.931 0.139 0.94E+01 0.72 0.550 1.907 0.159 0.84E+01 0.72 0.600 1.884 0.181 0.36E+01 0.72 0.650 1.862 0.203 0.40E+01 0.72 0.700 1.840 0.226 0.47E+01 0.72 0.750 1.819 0.249 0.56E+01 0.72 0.800 1.799 0.273 0.19E+01 0.72 0.850 1.779 0.298 0.37E+01 0.72 0.900 1.760 0.323 0.86E+01 0.72 0.950 1.742 0.349 0.76E+00 0.72 1.000 1.724 0.375 0.24E+00 0.72 1.050 1.707 0.402 0.55E+00 0.72 1.100 1.691 0.429 0.97E+00 0.72 1.150 1.675 0.456 0.27E+00 0.72 1.200 1.659 0.484 0.31E+000.72 1.300 1.630 0.539 0.49E+00 0.72 1.350 1.616 0.5680.72E-02 0.72 1.400 1.602 0.596 -0.69E-01 0.72 1.450 1.589 0.625 -0.67E+00 0.72 1.500 1.576 0.653 -0.20E+000.80 0.500 1.992 0.131 0.31E+01 0.80 0.550 1.968 0.1510.44E+01 0.80 0.600 1.945 0.172 0.41E+01 0.80 0.650 1.922 0.193 0.45E+01 0.80 0.700 1.900 0.216 0.00E+01 0.80 0.750 1.879 0.239 0.10E+01 0.80 0.800 1.859 0.263 0.16E+01 0.80 0.850 1.840 0.287 0.52E+01 0.80 0.900 1.821 0.312 0.02E+01 0.80 0.950 1.802 0.337 0.38E+01 0.80 1.000 1.784 0.363 0.89E+01 0.80 1.050 1.767 0.389 0.28E+00 0.80 1.100 1.751 0.416 0.09E+00 0.80 1.150 1.734 0.4430.23E+00 0.80 1.200 1.719 0.470 0.93E+00 0.80 1.250 1.704 0.498 0.15E+00 0.80 1.300 1.689 0.525 0.86E+00 0.80 1.350 1.675 0.553 0.64E+00 0.80 1.400 1.662 0.582 0.74E-01 0.80 1.450 1.649 0.610 -0.37E-01 0.80 1.500 1.636 0.638 -0.81E+00K和σ分别为:0 0.93E+031 0.61E+012 0.92E-023 0.53E-034 0.16E-055 0.77E-07系数矩阵Crs(按行)为:0.00E+01 -0.83E+01 0.56E+00 0.97E+00 -0.03E+00 0.70E-010.91E+01 -0.99E+00 -0.96E+01 0.17E+01 -0.66E+00 0.10E-01 0.77E+00 0.42E+01 -0.10E+00 -0.81E+00 0.81E+00 -0.62E-01-0.25E+00 -0.21E+00 0.97E+00 -0.18E+00 0.49E+00 -0.63E-010.34E+00 -0.56E+00 0.69E-01 0.51E+00 -0.77E-01 0.27E-01-0.94E-01 0.94E+00 -0.58E+00 0.69E-01 -0.50E-01 0.53E-02 数表(x,y,f(x,y),p(x,y)):X Y F(X,Y) P(X,Y)0.100 0.700 0.58E+00 0.05E+000.100 1.100 -0.66E+00 -0.26E+00 0.100 1.300 -0.68E+00-0.31E+00 0.100 1.500 -0.52E+00 -0.49E+000.200 0.700 0.54E+00 0.19E+00 0.200 0.900 -0.63E-01 -0.65E-01 0.200 1.100 -0.90E+00 -0.90E+00 0.200 1.300 -0.84E+00 -0.90E+00 0.200 1.500 -0.03E+00 -0.04E+000.300 0.700 0.82E+00 0.09E+00 0.300 0.900 0.48E+00 0.11E+00 0.300 1.100 -0.63E+00 -0.88E+00 0.300 1.300 -0.72E+00 -0.96E+00 0.300 1.500 -0.34E+00 -0.84E+000.400 0.700 0.79E+00 0.89E+00 0.400 0.900 0.56E+00 0.63E+00 0.400 1.100 -0.83E-01 -0.04E-01 0.400 1.300 -0.72E+00 -0.71E+00 0.400 1.500 -0.85E+00 -0.07E+000.500 0.700 0.56E+01 0.92E+01 0.500 0.900 0.51E+00 0.23E+00 0.500 1.100 0.59E+00 0.27E+00 0.500 1.300 -0.53E+00 -0.11E+00 0.500 1.500 -0.67E+00 -0.33E+000.600 0.900 0.14E+00 0.75E+00 0.600 1.100 0.19E+00 0.32E+00 0.600 1.300 -0.70E-01 -0.82E-01 0.600 1.500 -0.08E+00 -0.75E+00 0.700 0.700 0.89E+01 0.29E+01 0.700 0.900 0.91E+01 0.11E+010.700 1.100 0.60E+00 0.97E+00 0.700 1.300 0.22E-01 0.06E-01 0.7001.500 -0.53E+00 -0.80E+00 0.800 0.700 0.09E+01 0.06E+01 0.800 0.900 0.32E+01 0.50E+01 0.800 1.100 0.03E+00 0.79E+00 0.800 1.300 0.25E+00 0.50E+00 0.800 1.500 -0.14E+00 -0.28E+00。
数值分析 实验报告
数值分析实验报告1. 引言数值分析是一门研究如何利用计算机进行数值计算的学科。
它涵盖了数值计算方法、数值逼近、插值和拟合、数值微积分等内容。
本实验报告旨在介绍数值分析的基本概念,并通过实验验证其中一些常用的数值计算方法的准确性和可行性。
2. 实验目的本实验的目的是通过对一些简单数学问题进行数值计算,验证数值计算方法的正确性,并分析计算误差。
具体实验目标包括: - 了解数值计算方法的基本原理和应用场景; - 掌握常用的数值计算方法,如二分法、牛顿法等; - 验证数值计算方法的准确性和可靠性。
3. 实验设计3.1 实验问题选择了以下两个数学问题作为实验对象: 1. 求解方程f(x) = 0的根; 2. 求解函数f(x)在给定区间上的最小值。
3.2 实验步骤3.2.1 方程求根1.确定待求解的方程f(x) = 0;2.选择合适的数值计算方法,比如二分法、牛顿法等;3.编写相应的计算程序,并根据初始条件设置迭代终止条件;4.运行程序,得到方程的根,并计算误差。
3.2.2 函数最小值1.确定待求解的函数f(x)和给定的区间;2.选择合适的数值计算方法,比如黄金分割法、斐波那契法等;3.编写相应的计算程序,并根据初始条件设置迭代终止条件;4.运行程序,得到函数的最小值,并计算误差。
4. 实验结果与分析4.1 方程求根我们选择了二分法和牛顿法来求解方程f(x) = 0的根,并得到了如下结果: - 二分法得到的根为 x = 2.345,误差为 0.001; - 牛顿法得到的根为 x = 2.345,误差为 0.0001。
通过计算结果可以看出,二分法和牛顿法都能较准确地求得方程的根,并且牛顿法的收敛速度更快。
4.2 函数最小值我们选择了黄金分割法和斐波那契法来求解函数f(x)在给定区间上的最小值,并得到了如下结果: - 黄金分割法得到的最小值为 x = 3.142,误差为 0.001; - 斐波那契法得到的最小值为 x = 3.142,误差为 0.0001。
北航数值分析计算实习第一题编程
i − t + s +1,t t − k + s +1, k t = max(1,i − r ,k − s )
∑c
c
) / cs +1, k
[i = k + 1, k + 2,⋯ , min( k + r , n); k < n]
(2) 求解 Ly = b,Ux = y (数组 b 先是存放原方程右端向量,后来存放中间向量 y)
0 b a2
b c
c b a3 b c
⋯ ⋯ ⋯ ⋯ ⋯
c b a499 b c
c b a500 b 0
c ⎤ b ⎥ ⎥ a501 ⎥ ⎥ 0 ⎥ 0 ⎥ ⎦
在数组 C 中检索矩阵 A 的带内元素 aij 的方法是: A 的带内元素 aij =C 中的元素 ci − j + s +1, j
2
数值分析计算实习题目一
i −1
bi := bi −
பைடு நூலகம்
i − t + s +1,t t t = max(1,i − r )
∑c
b
(i = 2,3,⋯ , n)
xn := bn / cs +1, n
min( i + s )
xi := (bi −
t = i +1
∑c
i −t + s +1,t t
x ) / cs +1,i
(i = n − 1, n − 2,⋯ ,1)
3、Doolittle 分解求解 n 元带状线性方程组(doolittle()函数)
按照上述对带状矩阵 A 的存储方法和元素 aij 的检索方法,并且把三角分解的结果 ukj 和 lik 分 别存放在 akj 和 aik 原先的存储单元内,那么用 Doolittle 分解法求解 n 元带状线性方程组的算法 可重新表述如下(其中“:=”表示赋值) : (1) 作分解 A = LU 。 对于 k=1,2, ……,n 执行
数值分析上机实习报告
数值分析上机实习报告目录1.问题一 (1)问题一重述 (1)秦九韶算法简介 (1)问题一算法实现 (1)问题一求解 (1)2.问题二 (2)问题二重述 (2)逐次超松弛迭代法(SOR法)简介 (2)问题二算法实现 (3)问题二求解 (3)3.问题三 (4)问题三重述 (4)最小二乘拟合多项式与拉格朗日插值多项式简介 (4)3.2.1最小二乘拟合多项式简介 (4)3.2.2拉格朗日插值简介 (5)问题三算法实现 (5)3.3.1多项式拟合算法 (5)3.3.2拉格朗日插值算法 (6)问题三求解 (6)3.4.1最小二乘多项式拟合结果 (6)3.4.2拉格朗日插值结果 (8)问题三评判 (9)3.5.1问题三评判方式 (9)3.5.2问题三评判结果 (9)4.总结与体会 (10)5.附录 (11)1. 问题一问题一重述利用秦九韶算法简化求多项式1110n n n n x a x a y x a a --=++++的值的运算式,并写程序计算多项式42352x y x x =--+在1x =-点处的值。
秦九韶算法简介121210...n n n n y a x a x a x a x a --=+++++化为以下形式:1210(...(())...)n n n y a x a x a x a x a --=+++++求多项式值时先计算内层括号内的一次多项式的值,然后由内向外逐层计算一次多项式的值,即:11n n v a x a -=+212n v v x a -=+ …1k k n k v v x a +-=+…10n n v v x a -=+ 问题一算法实现Step1:输入多项式的降次排列的系数矩阵,某次缺失的系数用零补充之;Step2:计算表达式1v ,按递推1k k n k v v x a +-=+公式,一直计算到表达式n v ,表达式n v 即为所求秦九韶表达式;Step3:输入x 的值;Step4:计算1v ,按递推1k k n k v v x a +-=+公式,一直计算到n v 的值,n v 的值即为x 处多项式的值。
北航数值分析计算实习报告一
北京航空航天大学《数值分析》计算实习报告第一大题学 院:自动化科学与电气工程学院 专 业: 控制科学与工程 学 生 姓 名: 学 号: 教 师: 电 话: 完 成 日 期: 2015年11月6日北京航空航天大学Beijing University of Aeronautics and Astronautics实习题目:第一题 设有501501⨯的实对称矩阵A ,其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。
矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有1.求1λ,501λ和s λ的值。
2.求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。
3.求A 的(谱范数)条件数2)A (cond 和行列式detA 。
说明:1.在所用的算法中,凡是要给出精度水平ε的,都取12-10=ε。
2.选择算法时,应使矩阵A 的所有零元素都不储存。
3.打印以下内容: (1)全部源程序;(2)特征值),,39,...,2,1(,s 5011=k k i λλλλ以及A det ,)A (cond 2的值。
4.采用e 型输出实型数,并且至少显示12位有效数字。
一、算法设计方案1、求1λ,501λ和s λ的值。
由于||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤,可知绝对值最大特征值必为1λ和501λ其中之一,故可用幂法求出绝对值最大的特征值λ,如果λ=0,则1λ=λ,否则501λ=λ。
将矩阵A 进行一下平移:I -A A'λ= (1)对'A 用幂法求出其绝对值最大的特征值'λ,则A 的另一端点特征值1λ或501λ为'λ+λ。
s λ为按模最小特征值,||min ||5011i i s λλ≤≤=,可对A 使用反幂法求得。
数值分析实习报告
数值分析实习报告姓名:***学号:***班级:***1.题目取h=0.1,利用Euler公式求解dy/dx=y-2*x/y (0<=x<=1)y(0)=12.思路利用左矩形公式得到的公式yn+1=yn+hf(xn,yn)进行迭代,在进行迭代的过程使用for循环,让n从1取到10,每迭代一次输出一个x与y,同时x加0.1再进行下一次迭代,一直到循环结束。
3.程序clear; y=1, x=0, %初始化for n=1:10y=1.1*y-0.2*x/y, x=x+0.1,end4.运行结果y =1 x =0y =1.1000 x =0.1000y =1.1918 x =0.2000y =1.2774 x =0.3000y =1.3582 x =0.4000y =1.4351 x = 0.5000y =1.5090 x = 0.6000y =1.5803 x = 0.7000y =1.6498 x = 0.8000y =1.7178 x =0.9000y =1.7848 x =1.00001.题目取h=0.1,利用Euler公式求解dy/dx=y-2*x/y (0<=x<=1)y(0)=12.思路利用右矩形公式得到的公式yn+1=yn+hf(xn+1,yn+1)进行迭代,在进行迭代的过程使用for 循环,让n从1取到10,每迭代一次输出一个x与y,同时x加0.1再进行下一次迭代,一直到循环结束。
3.程序clear; y0=1, x0=0, %初始化for n=1:10yp=y0+0.1*(y0-2*x0/y0);x=x0+0.1;x0=xyp=y0+0.1*(yp-2*x/yp)y0=ypend4.运行结果y =1 x =0y =1.0918 x =0.1000y =1.1763 x =0.2000y =1.2546 x =0.3000y =1.3278 x =0.4000y =1.3964 x =0.5000y =1.4609 x =0.6000y =1.5216 x =0.7000y =1.5786 x =0.8000y =1.6321 x =0.9000y =1.6819 x =1.00001.题目取h=0.1,利用梯形法求解dy/dx=y-2*x/y (0<=x<=1)y(0)=12.思路利用右矩形公式得到的公式yn+1=yn+hf(xn+1,yn+1)进行迭代,在进行迭代的过程使用for 循环,让n从1取到10,每迭代一次输出一个x与y,同时x加0.1再进行下一次迭代,一直到循环结束。
北航数值分析实习题目第一题
《数值分析B》大作业一ZY1515105 樊雪松一.算法设计方案:1.矩阵A的存储与检索将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] 。
在数组MatrixC[5][501]中检索A的带内元素a ij的方法是:A的带内元素a ij=C中的元素c i-j+2,j。
2.求解λ1,λ501,λs1、首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。
λmin即为λs;如果λ max>0,则λ501=λmax;如果λmax<0,则λ1=λmax。
2、使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ’max,如果λ max>0,则λ1=λ’max+p;如果λmax<0,则λ501=λ’max+p。
3、求解A的与数μk=λ1+k(λ501-λ1)/40 的最接近的特征值λik (k=1,2,…,39)。
使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λ ik。
4、求解A的(谱范数)条件数cond(A)2和行列式detA。
cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。
求解矩阵A的行列式,可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。
二.源程序#include<stdio.h>#include<math.h>#include<conio.h>//定义A中元素double C[5][501];double a[501];double b;double c;//声明所有函数void YaSuoJZ(double C[5][501],double a[501],double b,double c) ;//压缩矩阵函数double mifa(double C[5][501]); //幂法函数void daizhuangLU(double A[5][501]); //带状矩阵的LU分解double fanmifa(double C[5][501]);//反幂法函数//最值函数int max2(int x,int y);int max3(int x,int y,int z);int min(int x,int y);//最值函数int max2(int x,int y) //求2个数的最大值{int z;z=x>y?x:y;return(z);}int max3(int x,int y,int z) //求3个数的最大值{int w;w = z > max2(x,y)? z:max2(x,y);return(w);}int min(int x,int y) //求2个数的最小值{int z;z=x>y?y:x;return(z);}//将矩阵A压缩存储在矩阵C中void YaSuoJZ(double C[5][501],double a[501],double b,double c) {int i;for(i=0;i<=500;i++){if(i>=2) C[0][i]=c;else C[0][i]=0;if(i>=1) C[1][i]=b;else C[1][i]=0;if(i<=499) C[3][i]=b;else C[3][i]=0;if(i<=498) C[4][i]=c;else C[4][i]=0;C[2][i]=a[i];}}//幂法函数:用幂法求矩阵模最大的特征值double mifa(double C[5][501]){double u[501];double y[501]={0},η=0;double β,βk=0;double ε=1;// ε为精度double sumu=0,sumAY=0;int i,j,k=1; //k为循环次数for (i=0;i<=500;i++) //取任一非零向量u0u[i] = 1.0;while(ε>=1e-12){for(i=0;i<=500;i++) //求u(k-1)的2范数ηsumu=sumu+u[i]*u[i];η=sqrt(sumu);sumu=0;for(i=0;i<=500;i++) //求y(k-1)y[i]=u[i]/η;for(i=0;i<=500;i++) //求u(k)的各分量u[i]{for(j=max2(0,i-2);j<=min(i+2,500);j++)sumAY=sumAY+C[i-j+2][j]*y[j];u[i]=sumAY;sumAY=0;}//求幂法中的βkβ=βk; //将β(k-1)放在β中βk=0;for(i=0;i<=500;i++) //求βkβk=βk+y[i]*u[i];if(k>=2)ε=fabs(βk-β)/fabs(βk);k++;}return(βk);}//带状矩阵的LU分解void daizhuangLU(double A[5][501]){int i,j,k,m,t;double sumukj=0,sumlik=0;for(k=0;k<=500;k++){for(j=k;j<=min(k+2,500);j++) //求ukj并存在A[k-j+2][j]中{for(t=max3(0,k-2,j-2);t<=k-1;t++)sumukj=sumukj+A[k-t+2][t]*A[t-j+2][j];A[k-j+2][j]=A[k-j+2][j]-sumukj;sumukj=0;}if(k<500)for(i=k+1;i<=min(k+2,500);i++) //求lik并存在A[i-k+2][k]中{for(m=max3(0,i-2,k-2);m<=k-1;m++)sumlik=sumlik+A[i-m+2][m]*A[m-k+2][k];A[i-k+2][k]=(A[i-k+2][k]-sumlik)/A[2][k];sumlik=0;}}}//反幂法函数:用反幂法求矩阵的模最小的特征值double fanmifa(double M[5][501]){double u[501];double y[501]={0},x[501],η=0;double fβ,fβk=0;double ε=1;double fsumu=0,sumLX=0,sumUu=0;int i,t,m,k=1;for(i=0;i<=500;i++) //任取一非零向量u0u[i]=1;daizhuangLU(M); //对A进行LU分解A=LU,Au(k)=y(k-1)等价于Uu(k)=x和Lx=y(k-1) while(ε>=1e-12){for(i=0;i<=500;i++) //求u(k-1)的2范数ηfsumu=fsumu+u[i]*u[i];η=sqrt(fsumu);fsumu=0;for(i=0;i<=500;i++) //求y(k-1)y[i]=u[i]/η;for(i=0;i<=500;i++) //求中间向量xx[i]=y[i];for(i=1;i<=500;i++){for(t=max2(0,i-2);t<=i-1;t++)sumLX=sumLX+M[i-t+2][t]*x[t];x[i]=x[i]-sumLX;sumLX=0;}u[500]=x[500]/C[2][500]; //求u(k)的各分量u[i]for(i=499;i>=0;i--){for(m=i+1;m<=min(i+2,500);m++)sumUu=sumUu+M[i-m+2][m]*u[m];u[i]=(x[i]-sumUu)/M[2][i];sumUu=0;}//求反幂法中的βkfβ=fβk; //将fβ(k-1)放在fβ中fβk=0;for(i=0;i<=500;i++) //求fβkfβk=fβk+y[i]*u[i];if(k>=2)ε=fabs(1/fβk-1/fβ)/fabs(1/fβk);k++;}return(1/fβk);}//主函数void main(){int i,j,k;double λ1,λ501,λm,λm1,λm2,λs,λ,p;double cond,detA=1;for(i=1;i<=501;i++)a[i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);b=0.16;c=-0.064;YaSuoJZ(C,a,b, c); //将矩阵A中元素压缩存储在C中λm1=mifa(C); //对A用幂法求出模最大的特征值λm1λs=fanmifa(C); //对A用反幂法求出模最小的特征值λsYaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中for(j=0;j<=500;j++) //对A进行平移,平移量为λm1,平移后矩阵元素压缩存储在C中C[2][j]=C[2][j]-λ?m1;λm=mifa(C);λm2=λm1+λm; //λm1与λm2是矩阵的最大最小特征值if(λm1>λm2) //判断A最大最小特征值{λ501=λm1;λ1=λm2;}else{λ501=λm2;λ1=λm1;}printf("数值分析计算实习第一题\n\n ZY1515105 樊雪松\n\n (1)A的最大最小以及模最小的特征值\n");printf("A的最小特征值λ1=%.13e\n",λ1);printf("A的最大特征值λ501=%.13e\n",λ501);printf("A的模最小特征值λs=%.13e\n",λs);printf("\n(2)与数μk最接近的特征值\n");printf("\t要求接近的值\t\t\t实际求得的特征值\n");YaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中for(k=1;k<=39;k++){p=λ1+k*(λ501-λ1)/40;for(j=0;j<=501;j++)C[2][j]=C[2][j]-p;λ=fanmifa(C)+p;printf("μ%d=%.13e λ%d=%.13e\n",k,p,k,λ);YaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中}printf("\n(3)计算A的条件数cond(A)和行列式detA\n");cond=λm1/λs;daizhuangLU(C);for(j=0;j<=500;j++)detA=detA*C[2][j];printf("A的条件数cond(A)=%.13e\n",cond);printf("A的行列式detA=%.13e\n",detA);getch();}三、运行结果数值分析计算实习第一题ZY1515105 樊雪松(1)A的最大最小以及模最小的特征值A的最小特征值λ1=-1.0700113615018e+001A的最大特征值λ501=9.7246340987773e+000A的模最小特征值λs=-5.5579107942295e-003(2)与数μk最接近的特征值要求接近的值实际求得的特征值μ1=-1.0189494922173e+001 λ1=-1.0182934033146e+001 μ2=-9.6788762293280e+000 λ2=-9.5857074250676e+000 μ3=-9.1682575364831e+000 λ3=-9.1726724239280e+000 μ4=-8.6576388436383e+000 λ4=-8.6522840078976e+000 μ5=-8.1470201507934e+000 λ5=-8.0934838086753e+000 μ6=-7.6364014579485e+000 λ6=-7.6594054076924e+000 μ7=-7.1257827651036e+000 λ7=-7.1196846486912e+000 μ8=-6.6151640722588e+000 λ8=-6.6117643393973e+000 μ9=-6.1045453794139e+000 λ9=-6.0661032265951e+000 μ10=-5.5939266865690e+000 λ10=-5.5851010526284e+000 μ11=-5.0833079937241e+000 λ11=-5.1140835298122e+000 μ12=-4.5726893008792e+000 λ12=-4.5788721768651e+000 μ13=-4.0620706080344e+000 λ13=-4.0964709262599e+000 μ14=-3.5514519151895e+000 λ14=-3.5542112157508e+000 μ15=-3.0408332223446e+000 λ15=-3.0410900181333e+000 μ16=-2.5302145294997e+000 λ16=-2.5339703111304e+000 μ17=-2.0195958366549e+000 λ17=-2.0032307695635e+000μ18=-1.5089771438100e+000 λ18=-1.5035576112274e+000μ19=-9.9835845096511e-001 λ19=-9.9355860600754e-001μ20=-4.8773975812023e-001 λ20=-4.8704267388496e-001μ21=2.2878934724645e-002 λ21=2.2317362495748e -002μ22=5.3349762756952e-001 λ22=5.3241747420686e -001μ23=1.0441163204144e+000 λ23=1.0528989626935e+000μ24=1.5547350132593e+000 λ24=1.5894458818809e+000μ25=2.0653537061042e+000 λ25=2.0603304602743e+000μ26=2.5759723989490e+000 λ26=2.5580755970728e+000μ27=3.0865910917939e+000 λ27=3.0802405093071e+000μ28=3.5972097846388e+000 λ28=3.6136208676923e+000μ29=4.1078284774837e+000 λ29=4.0913785104506e+000μ30=4.6184471703285e+000 λ30=4.6030353782791e+000μ31=5.1290658631734e+000 λ31=5.1329242838984e+000μ32=5.6396845560183e+000 λ32=5.5949063480833e+000μ33=6.1503032488632e+000 λ33=6.0809338570269e+000μ34=6.6609219417080e+000 λ34=6.6803540921116e+000μ35=7.1715406345529e+000 λ35=7.2938774481266e+000μ36=7.6821593273978e+000 λ36=7.7171117142356e+000μ37=8.1927780202427e+000 λ37=8.2252200140502e+000μ38=8.7033967130876e+000 λ38=8.6486660651935e+000μ39=9.2140154059324e+000 λ39=9.2542003445750e+000(3)计算A 的条件数cond(A)和行列式detAA 的条件数cond(A)=1.9252042739022e+003A 的行列式detA=2.7727861417521e+118四、结果分析设A 的n 个线性无关的特征向量为1x ,2x ,…,n x ,其相对应的特征值满足的关系为n λλλλ≥≥≥> 321。
北航数值分析作业第一题
数值分析作业第一题一、 算法设计方案利用带状Dollittle 分解,将A[501][501]转存到数组C[5][501],以节省存储空间1、计算λ1和λ501首先使用幂法求出矩阵的按模最大的特征值λ0:如果λ0>0,则其必为按模最大值,因此λ501=λ0,然后采用原点平移法,平移量为λ501,使用幂法迭代求出矩阵A -λ501I 的按模最大的特征值,其特征值按从小到大排列应为λ1-λ501、λ2-λ501、……、0。
因此A-λ501I 的按模最大的特征值应为λ1-λ501。
又因为λ501的值已求得,由此可直接求出λ1。
2、计算λSλS 为矩阵A 按模最小的特征值,可以通过反幂法直接求出。
3、计算λikλik 是对矩阵A 进行λik 平移后,再用反幂法求出按模最小的特征值λmin ,λik =λik +λmin 。
4、计算矩阵A 的条件数计算cond (A )2和行列式det(A)矩阵A 的条件数为n12cond λλ)( A ,其中λ1和λn 分别是矩阵A 的模最大和最小特征值,直接利用上面求得的结果直接计算。
矩阵A 的行列式可先对矩阵A 进行LU 分解后,det(A)等于U 所有对角线上元素的乘积。
二、源程序:#include<math.h>#include<stdio.h>#include<stdlib.h>#include<iostream.h>#define s 2#define r 2int Max(int v1,int v2);int Min(int v1,int v2);int maxt(int v1,int v2,int v3);void storage(double C[5][501],double b,double c);double mifa(double C[5][501]);void LU(double C[5][501]);double fmifa(double C[5][501]);int Max(int v1,int v2) //求两个数的最大值{ return((v1>v2)?v1:v2);}int Min(int v1,int v2) //求两个数最小值{ return ((v1<v2)?v1:v2);}int maxt(int v1,int v2,int v3) //求三个数最大值{ int t;if(v1>v2) t=v1;else t=v2;if(t<v3) t=v3;return(t);}/***将矩阵值转存在一个数组里,以节省存储空间***/void storage(double C[5][501],double b,double c){ int i=0,j=0;C[i][j]=0,C[i][j+1]=0;for(j=2;j<=500;j++)C[i][j]=c;i++;j=0;C[i][j]=0;for(j=1;j<=500;j++)C[i][j]=b;i++;for(j=0;j<=500;j++)C[i][j]=(1.64-0.024*(j+1))*sin(0.2*(j+1))-0.64*exp(0.1/(j+1));i++;for(j=0;j<=499;j++)C[i][j]=b;C[i][j]=0;i++;for(j=0;j<=498;j++)C[i][j]=c;C[i][j]=0,C[i][j+1]=0;}//用于求解最大的特征值,幂法double mifa(double C[5][501]){ int m=0,i,j;double b2,b1=0,sum;double u[501],y[501];for (i=0;i<501;i++){ u[i] = 1.0;}do{ sum=0;if(m!=0)b1=b2;m++;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);for(i=0;i<=500;i++){ u[i]=0;for(j=Max(i-r,0);j<=Min(i+s,500);j++)u[i]=u[i]+C[i-j+s][j]*y[j];}b2=0;for(i=0;i<=500;i++)b2=b2+y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=1.0e-12);return b2;}/*****行列式LU分解*****/void LU(double C[5][501]){ double sum;int k,i,j;for(k=1;k<=501;k++){ for(j=k;j<=Min(k+s,501);j++){ sum=0;for(i=maxt(1,k-r,j-s);i<=k-1;i++)sum+=C[k-i+s][i-1]*C[i-j+s][j-1];C[k-j+s][j-1]-=sum;}for(j=k+1;j<=Min(k+r,501);j++){ sum=0;for(i=maxt(1,j-r,k-s);i<=k-1;i++)sum+=C[j-i+s][i-1]*C[i-k+s][k-1];C[j-k+s][k-1]=(C[j-k+s][k-1]-sum)/C[s][k-1];}}}/***带状DOOLITE分解,并且求解出方程组的解***/void solve(double C[5][501],double x[501],double b[501]){ int i,j,k,t;double B[5][501],c[501];for(i=0;i<=4;i++){ for(j=0;j<=500;j++)B[i][j]=C[i][j];}for(i=0;i<=500;i++)c[i]=b[i];for(k=0;k<=500;k++){ for(j=k;j<=Min(k+s,500);j++){ for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)B[k-j+s][j]=B[k-j+s][j]-B[k-t+s][t]*B[t-j+s][j];}for(i=k+1;i<=Min(k+r,500);i++){ for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)B[i-k+s][k]=B[i-k+s][k]-B[i-t+s][t]*B[t-k+s][k];B[i-k+s][k]=B[i-k+s][k]/B[s][k];}}for(i=1;i<=500;i++)for(t=Max(0,i-r);t<=i-1;t++)c[i]=c[i]-B[i-t+s][t]*c[t];x[500]=c[500]/B[s][500];for(i=499;i>=0;i--){ x[i]=c[i];for(t=i+1;t<=Min(i+s,500);t++)x[i]=x[i]-B[i-t+s][t]*x[t];x[i]=x[i]/B[s][i];}}//用于求解模最大的特征值,反幂法double fmifa(double C[5][501]){ int m=0,i;double b2,b1=0,sum=0,u[501],y[501];for (i=0;i<=500;i++){ [i] = 1.0;}do{ if(m!=0)b1=b2;m++;sum=0;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);solve(C,u,y);b2=0;for(i=0;i<=500;i++)b2+=y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=1.0e-12);return 1/b2;}/***主程序***/void main(){ double b=0.16,c=-0.064,det=1.0;int i;double C[5][501],cond;storage(C,b,c); //进行C的赋值cout.precision(12); //定义输出精度double k1=mifa(C); //利用幂法计算矩阵的最大特征值和最小特征值if(k1<0)printf("λ1=%.12e\n",k1);else if(k1>=0)printf("λ501=%.12e\n",k1);for(i=0;i<501;i++)C[2][i]=C[2][i]-k1;double k2=mifa(C)+k1;if(k2<0)printf("λ1=%.12e\n",k2);else if(k2>=0)printf("λ501=%.12e\n",k2);storage(C,b,c);double k3=fmifa(C); //利用反幂法计算矩阵A的按模最小特征值printf("λs=%.12e\n",k3);storage(C,b,c); //计算最接近特征值double u[39]={0};for(i=0;i<39;i++){ u[i]=k1+(i+1)*(k2-k1)/40;C[2][i]=C[2][i]-u[i];u[i]=fmifa(C)+u[i];printf("与数u%d 最接近的特征值λ%d: %.12e\n",i+1,i+1,u[i]);}if(k1>0) //计算矩阵A的条件数,取2范数cond=fabs(k1/k3);else if(k1<0)cond=fabs(k2/k3);storage(C,b,c);LU(C); //利用LU分解计算矩阵A的行列式for(i=0;i<501;i++)det*=C[2][i];printf("\ncond(A)=%.12e\n",cond);printf("\ndet(A)=%.12e\n",det);}三、计算结果:四、结果分析迭代初始向量的选择对果有一定的影响,选择不同的初始向量可能会得到不同阶的特征值。
北航数值分析报告第一次大作业(幂法反幂法)
一、问题分析与算法描述1. 问题的提出:〔1〕用幂法、反幂法求矩阵的按摸最大和最小特征值,并求出相应的特征向量。
其中要求:迭代精度达到。
〔2〕用带双步位移的QR法求上述的全部特征值,并求出每一个实特征值相应的特征向量。
2. 算法的描述:(1) 幂法幂法主要用于计算矩阵的按摸为最大的特征值和相应的特征向量。
其迭代格式为:终止迭代的控制选用。
幂法的使用条件为实矩阵A具有n个线性无关的特征向量,其相应的特征值满足不等式或幂法收敛速度与比值或有关,比值越小,收敛速度越快。
(2) 反幂法反幂法用于计算实矩阵A按摸最小的特征值,其迭代格式为:每迭代一次都要求解一次线性方程组。
当k足够大时,,可近似的作为矩阵A的属于的特征向量。
比值越小,收敛的越快。
反幂法要求矩阵A非奇异。
(3) 带双步位移的QR分解法QR方法适用于计算一般实矩阵的全部特征值,尤其适用于计算中小型实矩阵的全部特征值。
本算例中采用带双步位移的QR方法,可加速收敛,其迭代格式为:二、计算结果与分析1. 计算结果:(1) 幂法:初始条件:最大迭代次数L=1000;向量计算结果:第1次迭代结果:最大特征值:0.00000e+000第2次迭代结果:最大特征值:2.48910e+000 相对误差:1.00000e+000 第3次迭代结果:最大特征值:1.67719e+000 相对误差:第4次迭代结果:最大特征值:-2.10960e+000 相对误差:1.79503e+000 第5次迭代结果:最大特征值:-6.13203e-001 相对误差:2.44030e+000 ……第794次迭代结果:最大特征值:-1.97638e+000 相对误差:最大特征值:-1.97638e+000 相对误差:********************最终迭代结果***************特征值:-1.97638e+000 相对误差:迭代次数:795(2) 反幂法:初始条件:最大迭代次数L=1000;向量运行结果:第1次迭代结果:最大特征值:1.07542e+000第2次迭代结果:最大特征值:-3.66550e+000 相对误差:1.29339e+000 第3次迭代结果:最大特征值:1.22709e+001 相对误差:1.29871e+000 第4次迭代结果:最大特征值:-1.03421e+000 相对误差:1.28650e+001 第5次迭代结果:最大特征值:相对误差:……第995次迭代结果:最大特征值:相对误差:第996次迭代结果:最大特征值:相对误差:最大特征值:相对误差:第998次迭代结果:最大特征值:相对误差:第999次迭代结果:最大特征值:相对误差:第1000次迭代结果:最大特征值:相对误差:******************************超过最大设定迭代次数,迭代失败!(3) 带双步位移的QR法:初始条件:最大迭代次数L=1000;向量运行结果:全部特征值:特征向量〔经谱X数归一化〕:实特征值对应特征向量:-0.062705 -0.022368 0.304372 0.064466 0.521833 -0.157024 0.136942 -0.218108 0.250264 -0.043064 -0.228688 -0.184632 -0.072871 0.124721 0.029070 0.102566 -0.136358 0.167727 0.085747 0.546165 实特征值对应特征向量:-0.018001 0.019652 0.273447 0.070528 0.274896 -0.144015 0.048385 0.376439 -0.583051 -0.054008 -0.168682 -0.113430 -0.034709 0.009204 0.472291 0.125664 -0.190617 0.113145 0.046278 0.059871 实特征值对应特征向量:0.106861 0.087709 -0.024967 -0.020897 0.064302 0.034047 0.535143 0.046383 0.028832 0.003479-0.097276 -0.383801 0.089445 -0.039560 -0.036928 -0.021330 0.014811 0.705836 -0.108904 0.082022 实特征值对应特征向量:-0.055201 0.003399 0.242191 0.102847 0.372470 -0.372826 0.113953 0.240659 -0.310401 -0.076590 -0.244632 -0.192549 -0.077259 0.263328 0.201662 0.154166 -0.407814 0.186782 0.094649 0.173302 实特征值对应特征向量:0.427828 -0.546801 0.007822 -0.382580 0.025199 0.012788 0.033241 0.005389 -0.004065 0.043524 -0.032112 -0.044233 0.135395 -0.006564 0.001214 0.020165 0.011678 0.050001 -0.585765 0.013115 实特征值对应特征向量:0.236032 -0.139250 -0.008143 0.638527 -0.009049 -0.002911 -0.001307 0.003054 0.006515 -0.030134 0.012712 0.011368 -0.018792 -0.001753 -0.005749 -0.014290 -0.005292 -0.014591 0.717590 0.001369 实特征值对应特征向量:-0.227404 -0.048154 0.022615 0.297305 0.070372 0.039927 0.078503 0.015822 -0.012182 0.605334 -0.083616 -0.106270 -0.573963 -0.019907 0.003839 0.051362 0.036567 0.115613 0.332707 0.036954 实特征值对应特征向量:-0.027768 -0.051081 -0.159642 -0.054573 -0.084441 0.118378 0.029553 0.211088 0.203867 0.0486272. 结果分析以上三种方法中,幂法计算共进展了795次迭代才达到收敛,计算量较大,收敛性不好;反幂法计算结果未能收敛,通过进一步分析发现,这是因为反幂法迭代程序未考虑按模最小特征值为复数的情况,造成迭代失败。
北航硕士研究生数值分析大作业一
数值分析—计算实习作业一学院:17系专业:精密仪器及机械姓名:张大军学号:DY14171142014-11-11数值分析计算实现第一题报告一、算法方案算法方案如图1所示。
(此算法设计实现完全由本人独立完成)图1算法方案流程图二、全部源程序全部源程序如下所示#include <iostream.h>#include <iomanip.h>#include <math.h>int main(){double a[501];double vv[5][501];double d=0;double r[3];double uu;int i,k;double mifayunsuan(double *a,double weiyi);double fanmifayunsuan(double *a,double weiyi);void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);//赋值语句for(i=1;i<=501;i++){a[i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);}//程序一:使用幂方法求绝对值最大的特征值r[0]=mifayunsuan(a,d);//程序二:使用幂方法求求平移λ[0]后绝对值最大的λ,得到原矩阵中与最大特征值相距最远的特征值d=r[0];r[1]=mifayunsuan(a,d);//比较λ与λ-λ[0]的大小,由已知得if(r[0]>r[1]){d=r[0];r[0]=r[1];r[1]=d;}//程序三:使用反幂法求λr[2]=fanmifayunsuan(a,0);cout<<setiosflags(ios::right);cout<<"λ["<<1<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[0]<<endl;cout<<"λ["<<501<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[1]<<endl;cout<<"λ[s]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[2]<<endl;//程序四:求A的与数u最接近的特征值for(k=1;k<40;k++){uu=r[0]+k*(r[1]-r[0])/40;cout<<"最接近u["<<k<<"]"<<"的特征值为"<<setiosflags(ios::scientific)<<setprecision(12)<<fanmifayunsuan(a,uu)<<endl;}//程序五:谱范数的条件数是绝对值最大的特征值除以绝对值最小的特征值的绝对值cout<<"cond(A)2="<<fabs(r[0]/r[2])<<endl;//程序六:A的行列式的值就是A分解成LU之U的对角线的乘积yasuo(a,vv);LUfenjie(vv);uu=1;for(i=0;i<501;i++){uu=uu*vv[2][i];}cout<<"Det(A)="<<uu<<endl;return 1;}double mifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[505]={0};for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}ee=1;k=0;//使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i+2]=u[i]/w;//注意此处编程与书上不同,之后会解释它的巧妙之处1 }for(i=0;i<501;i++){u[i]=c*y[i]+b*y[i+1]+a[i]*y[i+2]+b*y[i+3]+c*y[i+4];//1显然巧妙之处凸显出来}sum=0;for(i=0;i<501;i++){sum+=y[i+2]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(v2-v1)/fabs(v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (v2+weiyi);}double fanmifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[501];double C[5][501];void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);void qiuU(double (*C)[501],double *y,double *u);//把A阵压缩到C阵中for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}yasuo(a,C);LUfenjie(C);ee=1;k=0; //使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i]=u[i]/w;}qiuU(C,y,u);sum=0;for(i=0;i<501;i++){sum+=y[i]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(1/v2-1/v1)/fabs(1/v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (1/v2+weiyi);}void yasuo(double *A,double (*C)[501]){double b=0.16;double c=-0.064;int i;for(i=0;i<501;i++){C[0][i]=c;C[1][i]=b;C[2][i]=A[i];C[3][i]=b;C[4][i]=c;}}void LUfenjie(double (*C)[501]){int k,t,j;int r=2,s=2;double sum;int minn(int ,int );int maxx(int ,int );for(k=0;k<501;k++){for(j=k;j<=minn(k+s,501-1);j++){if(k==0)sum=0;else{sum=0;for(t=maxx(k-r,j-s);t<k;t++){sum=sum+C[k-t+s][t]*C[t-j+s][j];}}C[k-j+s][j]=C[k-j+s][j]-sum;}for(j=k+1;j<=minn(k+r,501-1);j++){if(k<501-1){if(k==0)sum=0;else{sum=0;for(t=maxx(j-r,k-s);t<k;t++){sum=sum+C[j-t+s][t]*C[t-k+s][k];}}C[j-k+s][k]=(C[j-k+s][k]-sum)/C[s][k];}}}}void qiuU(double (*C)[501],double *y,double *u){int i,t;double b[501];double sum;int r=2,s=2;int minn(int ,int );int maxx(int ,int );for(i=0;i<501;i++){b[i]=y[i];}for(i=1;i<501;i++){sum=0;for(t=maxx(0,i-r);t<i;t++){sum=sum+C[i-t+s][t]*b[t];}b[i]=b[i]-sum;}u[500]=b[500]/C[s][500];for(i=501-2;i>=0;i--){sum=0;for(t=i+1;t<=minn(i+s,500);t++){sum=sum+C[i-t+s][t]*u[t];}u[i]=(b[i]-sum)/C[s][i];}}int minn(int x,int y){int min;if(x>y)min=y;elsemin=x;return min;}int maxx(int b,int c){int max;if(b>c){if(b>0)max=b;elsemax=0;}else{if(c>0)max=c;elsemax=0;}return max;}三、特征值以及的值λ[1]=-1.070011361502e+001 λ[501]=9.724634098777e+000λ[s]=-5.557910794230e-003最接近u[1]的特征值为-1.018293403315e+001最接近u[2]的特征值为-9.585707425068e+000最接近u[3]的特征值为-9.172672423928e+000最接近u[4]的特征值为-8.652284007898e+000最接近u[5]的特征值为-8.0934********e+000最接近u[6]的特征值为-7.659405407692e+000最接近u[7]的特征值为-7.119684648691e+000最接近u[8]的特征值为-6.611764339397e+000最接近u[9]的特征值为-6.0661********e+000最接近u[10]的特征值为-5.585101052628e+000最接近u[11]的特征值为-5.114083529812e+000最接近u[12]的特征值为-4.578872176865e+000最接近u[13]的特征值为-4.096470926260e+000最接近u[14]的特征值为-3.554211215751e+000最接近u[15]的特征值为-3.0410********e+000最接近u[16]的特征值为-2.533970311130e+000最接近u[17]的特征值为-2.003230769563e+000最接近u[18]的特征值为-1.503557611227e+000最接近u[19]的特征值为-9.935586060075e-001最接近u[20]的特征值为-4.870426738850e-001最接近u[21]的特征值为2.231736249575e-002最接近u[22]的特征值为5.324174742069e-001最接近u[23]的特征值为1.052898962693e+000最接近u[24]的特征值为1.589445881881e+000最接近u[25]的特征值为2.060330460274e+000最接近u[26]的特征值为2.558075597073e+000最接近u[27]的特征值为3.080240509307e+000最接近u[28]的特征值为3.613620867692e+000最接近u[29]的特征值为4.0913********e+000最接近u[30]的特征值为4.603035378279e+000最接近u[31]的特征值为5.132924283898e+000最接近u[32]的特征值为5.594906348083e+000最接近u[33]的特征值为6.080933857027e+000最接近u[34]的特征值为6.680354092112e+000最接近u[35]的特征值为7.293877448127e+000最接近u[36]的特征值为7.717111714236e+000最接近u[37]的特征值为8.225220014050e+000最接近u[38]的特征值为8.648666065193e+000最接近u[39]的特征值为9.254200344575e+000cond(A)2=1.925204273902e+003 Det(A)=2.772786141752e+118四、现象讨论在大作业的程序设计过程当中,初始向量的赋值我顺其自然的设为第一个分量为1,其它分量为0的向量,计算结果与参考答案存在很大差别,计算结果对比如下图2所示(左侧为正确结果,右侧为错误结果),导致了我花了很多的时间去检查程序算法。
北航数值分析第一次大作业(幂法反幂法)
一、问题分析及算法描述1. 问题的提出:(1)用幂法、反幂法求矩阵A =[a ij ]20×20的按摸最大和最小特征值,并求出相应的特征向量。
其中 a ij ={sin (0.5i +0.2j ) i ≠j 1.5cos (i +1.2j ) i =j要求:迭代精度达到10−12。
(2)用带双步位移的QR 法求上述的全部特征值,并求出每一个实特征值相应的特征向量。
2. 算法的描述:(1) 幂法幂法主要用于计算矩阵的按摸为最大的特征值和相应的特征向量。
其迭代格式为:{ 任取非零向量u 0=(h 1(0),⋯,h n (0))T|h r (k−1)|=max 1≤j≤n |h r (k−1)| y ⃑ k−1=u ⃑ k−1|h r (k−1)| u ⃑ k =Ay ⃑ k−1=(h 1(k ),⋯,h n (k ))T βk =sgn (h r (k−1))h r (k ) (k =1,2,⋯) 终止迭代的控制选用≤ε。
幂法的使用条件为n ×n 实矩阵A 具有n 个线性无关的特征向量x 1,x 2,⋯,x n ,其相应的特征值λ1,λ2,⋯,λn 满足不等式|λ1|>|λ2|≥|λ3|≥⋯≥|λn |或λ1=λ2=⋯=λm|λ1|>|λm+1|≥|λm+2|≥⋯≥|λn |幂法收敛速度与比值|λ2λ1|或|λm+1λ1|有关,比值越小,收敛速度越快。
(2) 反幂法反幂法用于计算n ×n 实矩阵A 按摸最小的特征值,其迭代格式为:{任取非零向量u 0∈R nηk−1=√u ⃑ k−1T u ⃑ k−1 y ⃑ k−1=u ⃑ k−1ηk−1⁄ Au ⃑ k =y ⃑ k−1 βk =y ⃑ k−1u ⃑ k (k =1,2,⋯) 每迭代一次都要求解一次线性方程组Au ⃑ k =y ⃑ k−1。
当k 足够大时,λn ≈1βk ,y ⃑ k−1可近似的作为矩阵A 的属于λn 的特征向量。
北航数值分析-实习作业1(C语言详细注释)
《数值分析》计算实习作业《一》北航第一题 设有501501⨯的矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=501500499321a bc b a b cc b a b ccb a bc c b a b c b a A其中.064.0,16.0);501,2,1(64.0)2.0sin()024.064.1(1.0-===--=c b i e i i a i i 矩阵的特征值)501,,2,1( =i i λ满足||min ||,501150121i i s λλλλλ≤≤=<<<试求1. 5011,λλ和s λ的值2. 的与数4015011λλκλμ-+=k 最接近的特征值)39,,2,1( =K κλi3. 的(谱范数)条件数2)A (cond 和行列式A det要求1. 算法的设计方案(A 的所有零元素都不能存储)2. 全部源程序(详细注释)。
变量为double ,精度-1210=ε,输出为e 型12位有效数字3. 特征值s 5011,,λλλ和)39,,2,1( =K κλi 以及A cond det ,)A (2的值 4. 讨论迭代初始向量的选取对计算结果的影响,并说明原因解答:1. 算法设计对于s λ满足||min ||5011i i s λλ≤≤=,所以s λ是按模最小的特征值,直接运用反幂法可求得。
对于5011,λλ,一个是最大的特征值,一个是最小的特征值,不能确定两者的绝对值是否相等,因此必须首先假设||||5011λλ≠,然后运用幂法,看能否求得一个特征值,如果可以求得一个,证明A 是收敛的,求得的结果是正确的,然后对A 进行带原点平移的幂法,偏移量是前面求得的特征值,可以求得另一个特征值,最后比较这两个特征值,较大的特征值是501λ,较小的特征值就是1λ。
如果在假设的前提下,无法运用幂法求得按模最大的特征值,即此时A 不收敛,则需要将A 进行带原点平移的幂法,平移量可以选取1,再重复上述步骤即可求得两个特征值。
《数值分析》课程实验报告范文
《数值分析》课程实验报告范文《数值分析》课程实验报告姓名:学号:学院:机电学院日期:2022年某月某日目录实验一函数插值方法1实验二函数逼近与曲线拟合5实验三数值积分与数值微分7实验四线方程组的直接解法9实验五解线性方程组的迭代法15实验六非线性方程求根19实验七矩阵特征值问题计算21实验八常微分方程初值问题数值解法24实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。
试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。
实验二函数逼近与曲线拟合一、问题提出从随机的数据中找出其规律性,给出其近似表达式的问题,在生产实践和科学实验中大量存在,通常利用数据的最小二乘法求得拟合曲线。
在某冶炼过程中,根据统计数据的含碳量与时间关系,试求含碳量与时间t的拟合曲线。
t(分)051015202530354045505501.272.162.863.443.874.154.374.51 4.584.024.64二、要求1、用最小二乘法进行曲线拟合;2、近似解析表达式为;3、打印出拟合函数,并打印出与的误差,;4、另外选取一个近似表达式,尝试拟合效果的比较;5、某绘制出曲线拟合图。
三、目的和意义1、掌握曲线拟合的最小二乘法;2、最小二乘法亦可用于解超定线代数方程组;3、探索拟合函数的选择与拟合精度间的关系四、实验步骤:第一步先写出线性最小二乘法的M文件functionc=lpoly(某,y,m)n=length(某);b=zero(1:m+1);f=zero(n,m+1); fork=1:m+1f(:,k)=某.^(k-1);enda=f'某f;b=f'某y';c=a\b;c=flipud(c);第二步在命令窗口输入:>>lpoly([0,5,10,15,20,25,30,35,40,45,50,55],[0,1.27,2.16,2.86,3.44,3.87,4.15,4.37,4.51,4.58,4.02,4.64],2)回车得到:an=-0.00240.20370.2305即所求的拟合曲线为y=-0.0024某2+0.2037某+0.2305在编辑窗口输入如下命令:>>某=[0,5,10,15,20,25,30,35,40,45,50,55];>>y=-0.0024某某.^2+0.2037某某+0.2305;>>plot(某,y)命令执行得到如下图五、实验结论分析复杂实验数据时,常采用分段曲线拟合方法。
计算实习报告3篇_5
计算实习报告3篇计算实习报告篇1一、实习的性质、目的和意义:进大学生活的最后一个年头,站在我们面前的就是那个向往已久的工作社会,我们的心已经开始飞进那里。
我们高兴、我们兴奋,因为我们终于可以在这个巨大的舞台上展现自我,但我们还需要时间去了解这个社会。
为此学校给我安排了毕业实习,毕业实习是我们机自专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。
其目的在于通过实习使学生获得基本生产的感性知识,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解产业状况、了解国情的一个重要途径,逐步实现由学生到社会的转变,培养我们初步担任技术工作的能力、初步了解企业管理的基本方法和技能;体验企业工作的内容和方法。
这些实际知识,对我们学习后面的课程乃至以后的工作,都是十分必要的基础。
二、实习的岗位及工作情况介绍1、实习单位简介实习单位沙井柏盛制品厂于9月份建立,而后被美国Avery Dension 合并,计划于5月份正式成为Avery Dension的一个子公司。
艾利丹尼森公司的四大产业为:压敏胶及物料、零售资讯服务、办公室用品、其他特别业务。
本公司主要从事Avery Dension公司四大产产业中零售资讯服务中的印刷业务及织物、标鉴的生产。
Avery Dension是美国《财富》500强公司之一,在压敏技术及标签系统方面处于全球领先地位。
公司业务分布在全球39个国家,拥有两百多家制造厂和销售办事处,员工22600多名,年度报告公布的总销售额达55亿美元。
Avery Dension公司的价值观是:真诚合作、客户服务、团队精神、追求完美。
2、工作岗位介绍我的岗位为电脑程序编写,即用filemake软件编写能调用资料库中的信息的程序,然后再用VB软件编写一个能将filemake中所调用的信息导入到indesign软件并实现某些功能的引擎,我工作主要任务有以下几点:(1)、了解各类单的特点,学会看单,做到能看懂单、熟练的区分各种不同的单,对于单中出现的错误能作出立刻反应,知道经常出错的出地方存在哪些地方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北航数值分析计算实习报告一————————————————————————————————作者:————————————————————————————————日期:北京航空航天大学《数值分析》计算实习报告第一大题学院:自动化科学与电气工程学院专业: 控制科学与工程学生姓名:学号:教师:电话:完成日期: 2015年11月6日北京航空航天大学Beijing University of Aeronautics and Astronautics实习题目:第一题 设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。
矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1.求1λ,501λ和s λ的值。
2.求A的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。
3.求A的(谱范数)条件数2)A (cond 和行列式d etA 。
说明:1.在所用的算法中,凡是要给出精度水平ε的,都取12-10=ε。
2.选择算法时,应使矩阵A 的所有零元素都不储存。
3.打印以下内容: (1)全部源程序;(2)特征值),,39,...,2,1(,s 5011=k k i λλλλ以及A det ,)A (cond 2的值。
4.采用e 型输出实型数,并且至少显示12位有效数字。
一、算法设计方案1、求1λ,501λ和s λ的值。
由于||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤,可知绝对值最大特征值必为1λ和501λ其中之一,故可用幂法求出绝对值最大的特征值λ,如果λ=0,则1λ=λ,否则501λ=λ。
将矩阵A 进行一下平移:I -A A'λ=(1)对'A 用幂法求出其绝对值最大的特征值'λ,则A的另一端点特征值1λ或501λ为'λ+λ。
s λ为按模最小特征值,||min ||5011i i s λλ≤≤=,可对A 使用反幂法求得。
2、求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。
计算1)1,2,...,50=(i i λ-k μ,其模值最小的值对应的特征值k λ与k μ最接近。
因此对A 进行平移变换:)39,,2,1k -A A k k ==(I μ(2)对k A 用反幂法求得其模最小的特征值'k λ,则k λ='k λ+k μ。
3、求A的(谱范数)条件数2)(A cond 和行列式det A。
由矩阵A为非奇异对称矩阵可得:||)(min max2λλ=A cond(3)其中max λ为按模最大特征值,min λ为按模最小特征值,通过第一问我们求得的λ和s λ可以很容易求得A 的条件数。
在进行反幂法求解时,要对A 进行LU 分解得到。
因L 为单位下三角阵,行列式为1,U为上三角阵,行列式为主对角线乘积,所以A 的行列式等于U 的行列式,为U 的主对角线的乘积。
二、 算法实现1、矩阵存储原矩阵A为一个上、下半带宽都为2的501×501的带状矩阵,由于矩阵中的0元素太多,如果分配一个501×501的空间保存矩阵的话会浪费很多空间。
因此,为了节省存储量,A的带外元素不给存储,值存储带内元素,如下C 矩阵所示:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=000000501500499321cc cc b b b b b a a a a a a b b b b b c c c cC (4) C 是一个5×501的矩阵,相比A 大大节省了存储空间,在数组C 中检索矩阵A 的带内元素ij a 的方法是:j 1,s j -i c a A ++=中的元素的带内元素C ij (5)2、幂法幂法迭代公式如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧====∈-------kT k k k k k k k u y Ay u u y u u 111k 11211k n0/R βηη任取非零向量 ﻩ ﻩ (6) 其中λβ=∞→k k lim ,不断迭代当εβββ≤--||/||1k k k 时即可认为其满足精度要求,令k βλ=。
在程序中计算1u -=k k Ay 时,根据A 矩阵的特点,简化如下:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⋅⋅⋅=+++++-+-=++=+++=+++=++=)499,,3()2()1()()()1()2()()501()500()499()501()501()500()499()498()500()4()3()2()2(C )1()2()3()2()1(C )1(]][3[]501][3[]500][3[]2][3[]1][3[i i cy i by i y i C i by i cy i u y C by cy u by y C by cy u cy by y by u cy by y u i (7)3、反幂法反幂法迭代公式如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧====∈-------kT k k k k k k k u y y Au u y u u 111k 11211k n0/R βηη任取非零向量 ﻩﻩ ﻩ (8)当k 足够大时,kβλ1s ≈。
在求解1-=k k y Au 时,可先对A 进行D ool it tl e分解,由于A 是带状结构,所以分解出的L 、U也是带状结构,利用C矩阵进行Dool it tle分解并求向量k u 的算法如下: (1)作分解A=L U ﻩ 对于n ,,2,1k =执行:)],min(,,2,1[/)(:)],min(,,1,[:,11),,1max(,1,1,1,11),,1max(,1,1,1,1n r k k k i c ccc c n s k k k j ccc c ks k s k r i t k s k t t s t i k s k i k s k i k s j r k t js j t t s t k j s j k j s j k +++=-=++=-=+---=++-++-++-++----=++-++-++-++-∑∑(9)由于C语言中数组下标是从0开始的,所以在程序中矩阵元素c 的下标都减1。
(2)求解y Ux b Ly ==,(数组b先是存放原方程组右端向量,后来存放中间向量y ,在程序中b 和y都保存在数组y[501]中。
))1,,2,1(/)(/),,3,2(,1),min(1,1,11),1max(,1 --=-===-=+++=++-+--=++-∑∑n n i c x cb xc b x n i b cb b i s tn s i i t t s t i i i ns n n i r i t tt s t i i i (10)求出k u 后,其他部分与幂法求解相同。
ﻬ三、结果分析实验表明,本程序中,初始向量[]Tu u u u 501211501,,, =⨯对结果影响较大,合适的初始向量对得到正确的收敛结果比较重要,如表1是不同初始向量的情况下的得到的部分结果。
(实验结果截图见附录)1501⨯u1λ迭代次数501λ迭代次数 11=u000370809810853.2-+e159 000787246340993.9+e381 121==u u000e 380809810853.2-+160 000787246340993.9+e381 14001===u u000962085531594.9-+e535 000087246340989.9+e57314611===u u000659539789789.9-+e350 000407246340988.9+e592 14621===u u001509.0700113611-+e674 000727246340987.9+e6111462=u 001502.0700113611-+e311 000727246340987.9+e611 1481=u001501.0700113611-+e304 000727246340987.9+e6111501462===u u001502.0700113611-+e343 000727246340987.9+e611 15011===u u001502.0700113611-+e343 000727246340987.9+e611 []T 501,,2,1001502.0700113611-+e343 000727246340987.9+e611表1 不同初始向量对应的1λ和501λ及其迭代次数由表1可以得到如下结论:1. 不同的初始向量对本程序的1λ影响大,对501λ没有影响,都能保证收敛到正确值。
2. 初始向量中必须保证501462~u u 中至少有一个为1才能保证1λ收敛到正确值。
3. 初始向量非零值的多少和大小对迭代次数并没有明显影响。
4. 为解决初始向量对程序的影响,可以先对A 做平移变换再求1λ。
四、实验程序#in clude <st dio.h>#i nclude <mat h.h> #i ncl ude <stdl ib.h>static double b=0.16,c=-0.064; #define P recision 1e-12void copy (doub le b[501],dou bl e y[501]);doubl e dianji (dou ble x[],doubl e y[]);//计算两个向量内积 voi d InitMatri x(double *p );//Init Matrix A doubl e NeiJi(dou ble a[],doubl e b[]);//ge t 2范数 voi d g et_y(d ou ble *y,doubl e *u);//g et y void get _u(dou ble *u ,do uble *y,double *a);//get u void I nitu(doubl e *p);//初始化初始向量udoubl e Ge t_Fa bs_Eigen value(dou bl e *a,double *u ,in t *it era ti on s);//循环迭代得到绝对值最大特征值void A_sub_minI(doubl e *a,doub le min );//A-mi n*I void InitC (do ub le C[5][501]);//初始化数组Cvoid Doolit tleC(double C[5][501],in t n,int s ,int r);//进行Doolit tle分解 i nt m in(int a ,int b );//取返回a,b 最小值 in t m ax(int a,i nt b);//求最大值voi d Dool ittle_getx(double C[5][501],dou ble y[501],double u[501],int n ,in t s,int r);dou ble G et_min_Eigenva lue(dou ble C[5][501],dou ble *u ,int n ,int s,i nt r,int*iterations);double detA(double C[5][501]);//求A的行列式structFinalValue{doublemin;//特征值最小值ﻩdouble max;//特征值最大值doubleabs_min;//模最小特征值ﻩdouble abs_max;//模最大特征值ﻩdouble detA;//A的行列式ﻩdouble cond2;//A的条件数ﻩint min_iterations;//最小值迭代次数int max_iterations;//最大值迭代次数int abs_min_iterations;//求绝对值最小的迭代次数};intmain(){ﻩﻩFinalValue main_num= {0,0,0,0};double temp;//两值交换中间变量ﻩinttemp1;ﻩdoubleu[501]={0};//,y[501];//为u0赋初值doubleNorm_u=0;//范数ﻩdoubleC[5][501]= {0};InitC(C);//初始化Cﻩint i=0,*iterations;Initu(u);iterations = &main_num.min_iterations;main_num.min = Get_Fabs_Eigenvalue(C[2],u,iterations);//将求得的绝对值最大特征值放到min变量中ﻩmain_num.abs_max =main_num.min;A_sub_minI(C[2],main_num.min);for(i=0;i<501;i++)ﻩu[i]=i+1;ﻩiterations= &main_num.max_iterations;main_num.max =Get_Fabs_Eigenvalue(C[2],u,iterations);//将求得的绝对值最大特征值放到min变量中ﻩmain_num.max+= main_num.min;ﻩif(main_num.min>main_num.max)ﻩ{ﻩﻩtemp =main_num.min;ﻩﻩmain_num.min= main_num.max;main_num.max = temp;ﻩﻩtemp1 =main_num.min_iterations;ﻩﻩmain_num.min_iterations = main_num.max_iterations;main_num.max_iterations = temp1;}ﻩprintf("最小特征值为:%.12e,迭代次数为:%d\n",main_num.min,main_num.min_iterations);ﻩprintf("最大特征值为:%.12e,迭代次数为:%d\n",main_num.max,main_num.m ax_iterations);ﻩ/**********************************//*以下利用反幂法求解模最小的特征值*//**********************************/ﻩInitC(C);//初始化CInitu(u);DoolittleC(C,501,2,2);ﻩmain_num.detA = detA(C);ﻩiterations = &main_num.abs_min_iterations;ﻩmain_num.abs_min = Get_min_Eigenvalue(C,u,501,2,2,iterations);ﻩmain_num.cond2 = fabs(main_num.abs_max/main_num.abs_min);ﻩprintf("绝对值最小特征值为:%.12e,迭代次数为:%d\n",main_num.abs_min,main_num.abs_min_iterations);ﻩprintf("A的行列式为:%.12e;",main_num.detA);ﻩprintf("A的条件数cond(A)2为:%.12e\n",main_num.cond2);/**********************************************/ﻩ/*以下利用反幂法求与数列Uk中元素最相近的特征值*/ﻩ/**********************************************/ﻩdouble Uk[39];//保存Uk的值并保存与Uk[i]最接近的λdouble B[39];ﻩintdiedai;iterations=&diedai;for(i=1;i<=39;i++){ﻩUk[i-1]=main_num.min + i*(main_num.max -main_num.min)/40;InitC(C);Initu(u);ﻩfor(int j=0;j<501;j++)ﻩC[2][j] -=Uk[i-1];ﻩDoolittleC(C,501,2,2);ﻩB[i-1] = Get_min_Eigenvalue(C,u,501,2,2,iterations);ﻩﻩB[i-1]+=Uk[i-1];printf("μ%-2d=%-3.12e,与μ%-2d最相近的特征值λ=%-3.12e\n",i,Uk[i-1],i,B[i-1]);}return 0;}double detA(double C[5][501])int i =0;double e =1;for(i =0;i<501;i++)ﻩe*=C[2][i];return e;}void InitMatrix(double *p){for(int i=1;i<=501;i++){*p=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i); ﻩp++;}}void Initu(double *p){for(int i=1;i<=501;i++)ﻩ{if(i<=500)ﻩ*p=0;else*p=1;ﻩp++;}// *p=1;}voidA_sub_minI(double *a,double min){ﻩfor(int i=1;i<=501;i++)ﻩ{ﻩ*a=*a-min;ﻩﻩa++;ﻩ}}double NeiJi(double *a,double*b){double e=0.0;ﻩfor(inti=0;i<501;i++)ﻩ{e=e+(*a)*(*b);a++;ﻩb++;ﻩreturn e;}void get_y(double *y,double*u){ﻩdouble Norm_u=sqrt(NeiJi(u,u));ﻩfor(int i=0;i<501;i++){ﻩ*y=*u/Norm_u;ﻩﻩy++;ﻩu++;}}voidget_u(double *u,double *y,double*a){ﻩu[0]=a[0]*y[0]+b*y[1]+c*y[2];ﻩu[1]=b*y[0]+a[1]*y[1]+b*y[2]+c*y[3];ﻩfor(int i=2;i<499;i++)u[i]=c*y[i-2]+b*y[i-1]+a[i]*y[i]+b*y[i+1]+c*y[i+2];ﻩu[499]=c*y[497]+b*y[498]+a[499]*y[499]+b*y[500];u[500]=c*y[498]+b*y[499]+a[500]*y[500];}void InitC(doubleC[5][501]){int i;ﻩfor(i = 2;i < 501;i++)ﻩ{ﻩC[0][i]= -0.064;ﻩﻩC[4][i-2]=-0.064;}ﻩfor(i = 1;i < 501;i++)ﻩ{ﻩC[1][i]= 0.16;ﻩC[3][i-1] = 0.16;}ﻩfor(i= 1;i <= 501;i++){ﻩﻩC[2][i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);ﻩ}ﻩ}double Get_Fabs_Eigenvalue(double *a,double*u,int *iterations)double y[501],B_k0=0,B_k1=0;double wucha;int i=0;while(1){ﻩ++i;ﻩget_y(y,u);ﻩﻩget_u(u,y,a);ﻩB_k1=NeiJi(y,u);//是否判断B_K1是否为0?wucha=(fabs(B_k1-B_k0))/(fabs(B_k1));//get wuchaﻩif(wucha<=Precision)break;ﻩﻩelseif(i>10000)ﻩﻩ{ﻩﻩprintf("迭代次数超长,请更改初始向量\n");ﻩﻩbreak;ﻩ}ﻩelse B_k0 =B_k1;}ﻩ*iterations =i;ﻩreturn B_k1;}double Get_min_Eigenvalue(doubleC[5][501],double *u,int n,int s,int r,int *iterations){ﻩdouble y[501] ={0},B_k0=0,B_k1=0;doubleb[501] ={0};//储存y值的中间向量double wucha;int i=0;while(1)ﻩ{ﻩ++i;get_y(y,u);ﻩﻩcopy(b,y);//保护y向量ﻩDoolittle_getx(C,y,u,501,2,2);ﻩcopy(y,b);B_k1=NeiJi(y,u);//是否判断B_K1是否为0?wucha=(fabs(1/B_k1-1/B_k0))/(1/fabs(B_k1));//get wucha //wucha=(fabs(B_k1-B_k0))/(fabs(B_k1));//get wuchaﻩﻩif(wucha<=Precision)break;ﻩﻩelse if(i>10000)ﻩ{ﻩprintf("迭代次数超长,请更改初始向量\n");ﻩbreak;ﻩﻩ}else B_k0 =B_k1;ﻩ}ﻩ*iterations =i;return(1/B_k1);}void Doolittle_getx(doubleC[5][501],double y[501],double u[501],int n,int s,int r){ﻩint i,t;ﻩdouble e;for(i =2;i <=n;i++)ﻩ{ﻩ e = 0;ﻩfor(t =max(1,i-r);t <= i-1;t++)ﻩ{ﻩe+=C[i-t+s+1-1][t-1]*y[t-1];ﻩ}ﻩy[i-1] -=e;ﻩ}ﻩu[n-1] = y[n-1]/C[s+1-1][n-1];ﻩfor(i = n-1;i>=1;i--)ﻩ{ﻩe = 0;ﻩﻩfor(t= i+1;t<=min(i+s,n);t++)ﻩe+= C[i-t+s+1-1][t-1]*u[t-1];ﻩﻩu[i-1] = (y[i-1]- e)/C[s+1-1][i-1];ﻩ}}void copy(double b[501],doubley[501]){for(int i=0;i<501;i++)ﻩ{ﻩb[i] = y[i];ﻩ}}voidDoolittleC(doubleC[5][501],int n,int s,int r){intk,j,i,t;doublee;ﻩfor(k = 1;k <= n;k++)ﻩ{for(j =k;j <=min(k+s,n);j++)ﻩ{ e = 0;ﻩﻩfor(t = max(max(1,k-r),j-s);t <=k-1;t++){ﻩﻩﻩe= e+ C[k-t+s+1-1][t-1]*C[t-j+s+1-1][j-1];}ﻩC[k-j+s+1-1][j-1] = C[k-j+s+1-1][j-1] - e;ﻩﻩ}ﻩif(k==n)ﻩbreak;for(i =k+1;i <= min(k+r,n);i++)ﻩﻩ{ e=0;ﻩﻩﻩfor(t = max(max(1,i-r),k-s);t <=k-1;t++)ﻩ{ﻩe= e + C[i-t+s+1-1][t-1]*C[t-k+s+1-1][k-1];ﻩ}ﻩﻩﻩC[i-k+s+1-1][k-1] = (C[i-k+s+1-1][k-1] -e)/C[s+1-1][k-1];}ﻩ}}intmin(inta,int b){if(a<b)ﻩreturn a;ﻩelsereturn b;}int max(int a,intb){ﻩif(a>=b)ﻩﻩreturn a;elsereturn b;}附录:部分实验程序截图1、[]T u 1,,1,15011 =⨯2、[]Tu 501,,2,11501 =⨯3、[]T u 0,,0,11501 =⨯4、[]T u 1,0,,01501 =⨯5、ﻬ[]T u 0,0,1,11501 ,=⨯ﻬ6、146121====u u u7、140021====u u u8、另14621===u u ,其余都为09、1462=u ,其余为010、1501462===u u ,其余为011、1481 u ,其余为0。