纳米二氧化钛的制备综述

合集下载

TiO2的制备方法综述

TiO2的制备方法综述

纳米TiO2的制备方法综述纳米二氧化钛是一种新型的无机材料,粒径在10nm~50nm,具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强 ,表面活性大、热导性好、分散性好、所制悬浮液稳定、对人体无毒、价格低廉等优点,故其在诸多半导体光催化剂中脱颖而出,应用领域至今已遍及有机废水的降解、重金属离子的还原、空气净化、杀菌、防雾等众多方面。

由于其独特的性能和广泛的用途 , 纳米二氧化钛受到了国内外科学界的高度重视。

目前,纳米二氧化钛的制备根据反应物的相态,可以分为固相法、气相法和液相法,其中液相法是比较常用的一种制备方法固相法合成纳米二氧化钛是利用热分解或固相—固相的变化来进行的。

基础的固相法是钛或钛的氧化物按一定的比例充分混合 ,研磨后进行煅烧 ,通过发生固相反应直接制得纳米TiO2粉体 ,或者是再次粉碎得到TiO2纳米粉体。

固相法主要包括热分解法,固相反应法,火花放电法等。

固相法的主要优点是:经济,工艺过程和设备简单,但是耗能较大;由于固相反应反应不充分,因此产物的纯度不能得到很好的保证;此外由于固相法一般需要高温煅烧,得到的产物一般粒度大且分布不均匀。

因此,固相法只适用于对产品纯度和粒度要求不高的情况。

气相法指直接利用气体或者通过各种手段将物质变为气体 ,使之在气体状态下发生物理或化学反应 , 最后在冷却过程中凝聚长大形成纳米TiO2的方法。

用气相法制备的二氧化钛纳米粒子具有粒度细、化学活性高、粒子呈球形、单分散性好、凝聚粒子少、可见光透过性好、吸收紫外线的能力强等特点,易于工业放大,实现连续生产。

目前常见的方法有气相合成法和气相沉积法。

气相合成法是一种传统的方法。

其生产原理如下:Ti+2Cl2=TiCl4TiCl4+2H2+O2=TiO2+4HCl↑与其他方法相比,气相氢氧焰水解法[1]有以下优点:原料TiCl4获得容易,产品无需粉碎,生成的例子凝聚少,纯度高,粒度小,且粒度分布均匀。

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述

纳米二氧化钛的制备实验综述摘要:纳米二氧化钛,亦称纳米钛白粉。

其外观为白色疏松粉末。

具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。

关键词:纳米二氧化钛、溶胶凝胶法、应用、发展前景溶胶凝胶法:溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

一、二氧化钛的性质:白色无定形粉末。

溶于氢氟酸和热浓硫酸,不溶于水、盐酸、硝酸和稀硫酸。

与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。

相对密度约4.0。

熔点1855℃。

二、纳米二氧化钛的应用1、杀菌:用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。

在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。

因此,纳米TiO2能净化空气,具有除臭功能。

2、防紫外线:纳米二氧化钛的强抗紫外线能力是由于其具有高折光性和高光活性。

其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。

防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。

其防晒机理是吸收紫外线,主要吸收中波区紫外线。

3、纳米二氧化钛可作为锂电池、太阳能电池原料(1)纳米二氧化钛具有极好的高倍率性能和循环稳定性,快速充放电性能和较高的容量,脱嵌锂可逆性好等特点,在锂电池领域具有很好的应用前景。

纳米二氧化钛综述

纳米二氧化钛综述

纳米二氧化钛的制备综述摘要综述了纳米二氧化钛的多种制备方法和原理,比较和评述了不同方法的优缺点。

关键词纳米二氧化钛;制备方法;原理纳米材料以其特殊的性能和广阔的发展前景引起众多科学家们的广泛关注。

纳米材料是指微粒几何尺寸在1nm~l00nm范围内的固体材料。

纳米粒子是处于微观粒子和宏观粒子之间的介观系统。

纳米材料以其独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子效应等性质,而呈现出许多奇异的物理、化学性质,使其在众多领域具有特别重要的应用价值和广阔的发展前景。

纳米二氧化钛TiO2是当前应用前景最为广阔的一种纳米材料,它是当前众多纳米材料中的“明星”。

我国对纳米二氧化钛的研究已经进入产业化开发与生产阶段,其制备手段可分为物理和化学两大类。

本文就采用化学方法制备纳米二氧化钛的一些方法进行总结,并对不同方法的优缺点进行比较和评述。

一气相法1.气相合成法气相合成法是一种传统方法。

1941年德国Degussa公司率先采用气相四氯化硅氧焰水解制备自炭黑(纳米级的二氧化硅)。

在20世纪80年代中后期,气相氢氧焰水解法(Aerosil法)制备纳米级TiO2开始被应用于工业生产中。

其生产过程是将精制过的氢气、空气和氯化物(TIC14 )蒸汽以一定的配比进入水解炉高温水解,温度控制在18000C以上,生成TiO2的气溶胶,经过聚集冷却器停留一段时间即形成絮状大颗粒的TiO2,再经过脱酸炉脱酸(吸附在TiO2表面的HC1)后,从而得到产品,其生产原理如下:Ti+2CI4 = TiC14TiC14 +2H2+ O2 = TiO2 + 4HCIAerosil法的优点是:原料TiC14获得容易,可挥发,易水解,易提纯,产品无需粉碎,物质的浓度小,生成粒子的凝聚少,气相产物TiO2的表面整洁、纯度高,易控制粒径颗粒分布集中,可得到不同比表面或不同晶型的系列产品。

2.气相沉积法化学气相沉积法可沉积金属、碳化物、氧化物、氮化物、硼化物等,能在几何形状复杂的物件表面涂敷,涂层与基底结合牢固,此方法发展非常迅速。

纳米二氧化钛的制备及其应用研究进展

纳米二氧化钛的制备及其应用研究进展

纳米二氧化钛的制备及其应用研究进展摘要:纳米二氧化钛作为一种重要的功能性材料,在光催化、电池、光电器件等领域具有广泛的应用潜力。

本文对纳米二氧化钛的制备方法进行了综述,并探讨了其在不同应用领域的研究进展。

主要包括溶胶-凝胶法、水热法、气相法等一系列制备方法及其优缺点,以及纳米二氧化钛在光催化、电池和光电器件等领域的应用前景。

最后,总结了现有研究中存在的问题,并展望了未来纳米二氧化钛在各个领域的发展趋势。

1. 引言纳米二氧化钛作为一种重要的半导体材料,因其独特的物理、化学性质而受到广泛关注。

其具有高比表面积、优异的光电催化性能、良好的化学稳定性、可控的光吸收能力等特点,使其在光催化、电池、光电器件等领域有着广泛的应用潜力。

在实际应用中,纳米二氧化钛的功能和性能往往与其结构和制备方法密切相关。

因此,研究纳米二氧化钛的制备方法及其应用是目前材料科学和化学领域的热点之一。

2. 纳米二氧化钛的制备方法2.1 溶胶-凝胶法溶胶-凝胶法是一种常用的纳米二氧化钛制备方法。

该方法通过将金属前驱物溶解在有机或无机溶剂中,生成溶胶,然后通过控制溶胶的凝胶过程,形成纳米二氧化钛颗粒。

由于溶胶-凝胶法制备过程相对简单、可控性强,使得纳米二氧化钛的晶粒尺寸和形貌可以通过控制溶胶的成分、浓度、PH值等条件来调节。

然而,溶胶-凝胶法制备纳米二氧化钛的缺点是制备周期长,需要较高温度和长时间的热处理。

2.2 水热法水热法是一种采用高温高压水作为反应介质,将金属前体转化为纳米二氧化钛的制备方法。

水热法可以在相对较低的温度下制备出高度结晶的纳米二氧化钛颗粒,其晶形和晶面可通过调节反应温度和时间来控制。

由于水热法制备过程相对简单,且无需添加昂贵的添加剂,因此被广泛应用于纳米二氧化钛的制备。

2.3 气相法气相法是指将气体或气态前体转化为纳米二氧化钛的制备方法。

传统的气相法将有机金属化合物蒸汽通过热分解或水解,控制反应条件,形成纳米二氧化钛颗粒。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备方法综述纳米二氧化钛的制备方法综述【摘要】纳米二氧化钛(Ti02)具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点倍受关注,制备和开发纳米二氧化钛成为国内外科技界研究的热点之一。

本文主要对纳米二氧化钛的各种制备方法作了简单介绍。

【关键词】纳米二氧化钛、制备【正文】二氧化钛的制备方法可分为气相法和液相法两大类。

一、气相制备法低压气体蒸发法此种制备方法是在低压的氩、氮气等惰性气体中加热普通的Ti02,然后骤冷生成纳米二氧化钛粉体,其加热源有以下几种:(1)电阻加热法;(2)等离子喷射法; (3)高频感应法; (4)电子束法; (5)激光法,这些方法可制备lOOnm以下的二氧化钛粒子。

活性氢—熔融金属反应法含有氢气的等离子体与金属钛之间产生电弧,使金属熔融,电离的N2,Ar等气体和H2溶入熔融金属,然后释放出来,在气体中形成了金属的超微粒子,用离心收集器或过滤式收集器使微粒与气体分离而获得纳米二氧化钛微粒。

溅射法此方法是用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气,两电极间施加的电压范围为0.3—1.5kV。

由于两电极间的辉光放电使Ar离子形成。

在电场的作用下Ar离子冲击阴极靶材表面,靶上的Ti02就由其表面蒸发出来,被惰性气体冷却而凝结成纳米TiO2粉末,粒度在50nm以下,粒径分布较窄。

流动液面上真空蒸发法用电子束在高真空下加热蒸发TiO2,蒸发物落到旋转的圆盘下表面油膜上,通过圆盘旋转的离心力在下表面上形成流动的油膜,含有超微粒子的油被甩进了真空室的壁面,然后在真空下进行蒸馏获得TiO2超微粒子钛醇盐气相水解法该工艺可以用来开发单分散的纳米TiO2,其反应式如下: nTi(0R)4,+2nH2O(g)————>nTiO2(s)+4nROH优点是操作温度较低、能耗小,对材质要求不是很高,并且可以连续化TiCl4,高温气相水解法该法与气相法生产白炭黑的原理相似,是将TiCl4气体导入高温的氢氧火焰中进行气相水解,其化学反应式为: TiCl4(g)+2H2(g)+O2(g)→TiO2(s)+4HCl(g)优点工艺制备的纳米粉体产品纯度高、粒径小、表面活性大、分散性好、团聚程度较小。

纳米TiO2的制备综述

纳米TiO2的制备综述

纳米TiO2的制备综述应091-2纳米二氧化钛的制备摘要:纳米二氧化钛,亦称纳米钛白粉。

从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在100纳米以下,其外观为白色疏松粉末。

具有抗紫外线、抗菌、自洁净、抗老化功效,可用于化妆品、功能纤维、塑料、油墨、涂料、油漆、精细陶瓷等领域。

纳米二氧化钛在生活和生产中有着不可替代的作用:纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中、锂电池中。

目前,制备纳米TiO2的方法很多,基本上可归纳为物理法和化学法。

物理法又称为机械粉碎法,对粉碎设备要求很高;化学法又可分为气相法、液相法和固相法。

关键词:纳米二氧化钛制备方法生产生活应用二氧化钛目前主要有以下几种制备方法:一:液相法1.1.溶胶-凝胶法【1】溶胶凝胶法是液相合成制备纳米TiO2的典型方法。

以化学纯的有机钛酸丁脂[Ti(OC4H9)4]为前驱体,将其溶于无水乙醇中,缓慢加水使[Ti(OC4H9)4]水解,得到稳定的TiO 凝胶。

生产中原料物质的量比n[Ti(OC4H9)4]:n[EtOH]:n[H2O]=3:4:3,制得的TiO2凝胶在100~C干燥5h后,放入马弗炉在500"C保温(灼烧)l0h,取出后自然冷却至室温,研磨后即得纳米TiO2粉体。

1.2.水解沉淀法【2】水解沉淀法制备TiO2粉体的工艺流程为:首先在自然冷却下,将TiCl4缓慢滴加到去离子水、浓盐酸水溶液、浓盐酸+硫酸铵水溶液和其他沉淀剂的水溶液中;其后在一定温度下,搅拌、回流、保温一段时间,制备出沉淀物,经冲洗、过滤、干燥;然后在不同温度条件下煅烧一段时间,获得TiO2粉体。

二:气相法:2.1.四氯化钛气相氧化法【3】此法多是以四氯化钛为原料,以氮气为载气,以氧气为氧源,在高温条件下四氯化钛和氧气发生反应生成纳米二氧化钛。

纳米TiO2的制备方法综述

纳米TiO2的制备方法综述

纳米TiO2的制备方法综述1.引言纳米微粒是指颗粒尺寸在1 nm -100 nm的超细微粒。

由于纳米微粒具有量子尺寸效应、小尺寸效应、表面效应和量子隧道效应,因而展现出许多特有的性质,在催化、滤光、光吸收、医药、磁介质及新材料等方面具有广阔的应用前景。

其中纳米二氧化钛作为一类无机功能材料备受关注。

氧化钛(TiO2)俗称钛白粉,具有无味、无毒、无刺激性和热稳定性好等特点,且来源广泛,极易获得,从晶形角度而言,TiO2分为锐钛矿、板钛矿和金红石三种,其中锐钛矿型和金红石型应用较为广泛。

纳米二氧化钛因其具有粒径小、比表面积大、磁性强、光催化、吸收性能好,吸收紫外线能力强,表面活性大、热导性好、分散性好、所制悬浮液稳定等优点,倍受关注。

制备和开发纳米二氧化钛成为国内外科技界研究的热点。

纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。

纳米二氧化钛用于涂料是涂料发展的一个重大研究方向,它的开发与应用为涂料的发展注入了新的活力,可利用其各种特殊效应来提高涂料的多方面性能。

目前纳米二氧化钛的制备方法主要分为液相法和气相法,本文将对其制备方法进行分类介绍。

2.气相法气相法通常是采用某些特定的方法使反应前体物质气化,以使其在气相状态下发生化学或者物理变化,继而通过冷却使其成核、生长最终形成颗粒二氧化钛。

气相法主要分为物理气相沉积法(PVD)与化学气相沉积法(CVD),其中PVD是将前提物质通过挥发或者蒸发为气体,然后冷凝成核,从而得到粉体的方法,通常包括热蒸发法、溅射法等。

PVD法是制备纳米材料采用的最早方法,多用于制备二氧化钛薄膜。

在利用物理气相沉积法制备二氧化钛的过程中并不发生化学反应,所得的二氧化钛粒径小、纯度高、分散性较好,但是成本高、回收率低。

[3]2.1 扩散火焰法以钛醇盐或四氯化钛、燃料气体和氧气等作为原料,首先将前提气体物质通入火焰反应器中,然后将燃料气体经烧嘴打入空气中,利用扩散作用使其相互混合而达到燃烧的目的,在此过程中气相会发生水解和氧化等作用,随之经过结晶成核、成长、转化晶型等过程最终制得二氧化钛。

纳米二氧化钛的可控制备及其光催化和光电性能的研究

纳米二氧化钛的可控制备及其光催化和光电性能的研究

纳米二氧化钛的可控制备及其光催化和光电性能的研究纳米二氧化钛是一种具有广泛应用前景的材料,在催化、光电、电子等领域有着重要的作用。

本文将介绍纳米二氧化钛的制备方法及其在光催化和光电性能方面的研究进展。

1.可控制备方法纳米二氧化钛的制备方法有很多种,如水热法、凝胶法、溶胶凝胶法等。

其中,水热法具有制备纳米二氧化钛粒子尺寸小、结晶度高等优点,因此被广泛应用。

水热法的基本步骤为:将钛酸四丁酯等钛源和氨水等碱性氧化剂加入水中,控制反应温度和时间,即可得到纳米二氧化钛。

在水热法中,可通过控制反应条件如反应温度、反应时间、pH值等来调节制备的纳米二氧化钛的结构和形貌。

此外,还可以通过掺杂、复合等方法来改变纳米二氧化钛的性质和应用。

2.光催化性能纳米二氧化钛具有优异的光催化性能,能够将阳光中的紫外线转化成具有氧化剂能力的电子和空穴,从而促进有机物的氧化降解。

纳米二氧化钛的光催化性能与其晶体结构、晶粒大小、比表面积等因素有关。

较小的晶粒和高的比表面积有助于提高纳米二氧化钛的光催化效率。

此外,在纳米二氧化钛的光催化研究中,还出现了可见光响应的纳米二氧化钛。

这些材料具有比纯二氧化钛更广泛的应用前景。

纳米二氧化钛也具有较好的光电性能,可以作为光电器件的材料。

在光电性能研究中,主要着眼于太阳能电池、传感器、发光二极管等方面的应用。

在太阳能电池方面,纳米二氧化钛的电子传输速度较快,有助于提高太阳能电池的转化效率。

而在传感器和发光二极管方面,纳米二氧化钛的高比表面积和光致发光性质成为重要的研究方向。

总的来说,纳米二氧化钛具有广泛的应用前景,在理论和实践研究中被广泛探讨。

随着制备技术的不断发展,我们相信纳米二氧化钛的应用领域将会越来越广泛。

纳米二氧化钛的制备及光催化

纳米二氧化钛的制备及光催化

纳米二氧化钛的制备及光催化引言:纳米二氧化钛是一种新型的光催化无机功能材料,由于其粒径在1~ 100 nm 之间, 具有粒径小、比表面积大表面活性高、分散性好等特点, 表现出独特的物理化学性质。

它具有良好的透明性,紫外线吸收性及熔点低、磁性强、热导性强、高效、无毒、成本低和不造成二次污染等优点等奇异特性;还具有良好的抗菌作用,使用过程中不会发生自身损耗,而且资源丰富,价格低廉,因此在光催化降解废水中的有机物、涂料、精细陶瓷、塑料、催化剂、及化妆品等方面应用广泛,成为新型功能材料研究的热点之一。

1.纳米TiO2的制备纳米TiO2的制备方法有很多, 归纳起来主要有固相法、气相法和液相法等其中气相法又包括化学气相沉积法和化学气相水解法等; 液相法包括溶胶凝胶法、胶溶法、醇盐水解法、沉淀法、水热合成法等。

(1).化学气相沉积法(CVD)CVD法是利用挥发性金属化合物的蒸汽通过化学反应生成所需化合物。

它包括单一化合物的热分解, 也包括通过两种以上物质之间的气相反应制备超细粉。

该方法制备的超细粉纯度高,分散性好,粒度分布窄, 除能制备氧化物外, 还能制备碳化物、氮化物等非氧化物超细粉。

Leszek W.achow ski等人利用CVD 法在含碳材料表面制得TiO2。

李文漪利用化学气相沉积法水解四异丙醇钛(TTIP)制备TiO2薄膜, 并研究了制备过程中水解TTIP的反应动力学。

该工艺的优点是自动化程度高, 可以制备出粒径小、粒径尺寸均匀的优质粉体。

(2).化学气相水解法化学气相水解法按照所用原料的不同可分为:TiCL4氢氧火焰水解法和钛醇盐气相水解法。

TiCL4氢氧火焰水解法的基本原理是将TiCL4气体导入高温的氢氧火焰中(700~1000e)进行气相水解,其基本化学反应式为:TiCL4(g)+2H2(g)+O2(g)=TiO2+4HCL(g)钛醇盐气相水解法是通过醇盐水解、均相成核与生长等过程在液相中生成沉淀产物,再经过液固分离、干燥和煅烧等工序,制备TiO2粉体。

纳米二氧化钛综述

纳米二氧化钛综述

纳米二氧化钛的研究现状综述摘要:近年来,人们对纳米二氧化钛进行了广泛的研究。

本文根据近年来国内外对纳米二氧化钛的研究,对纳米二氧化钛的制备技术及其光催化应用的研究现状进行了详细阐述。

关键词:纳米二氧化钛制备技术光催化应用研究现状1 引言二十世纪纳米技术兴起并迅速发展,由于纳米材料的独特性质使它在科学技术领域占据重要地位。

纳米二氧化钛 (TiO2)具有许多的特殊性能比如表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等,从而使其与普通二氧化钛相比具有许多特殊性能。

纳米二氧化钛在水处理、催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、涂料填料、光电子器件等领域具有广泛的用途。

纳米TiO2的制备方法有气相法、液相法。

目前,研究的一个热点是纳米TiO2作为半导体光催化剂用于废水、废气的净化。

纳米TiO2具有湿敏、气敏功能,如它对一氧化碳极为敏感,可用在传感器上,本文介绍几种纳米TiO2光催化材料的主要用途。

尽管我国对纳米二氧化钛的研究起步较晚,但是科技工作者们在其制备和应用上做了大量的工作和深入的研究,并取得了许多成果。

2 正文2.1 纳米二氧化钛的制备方法气相法气相法是直接利用气体,或者通过各种手段将物质转变为气体,使之在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳米粒子的方法。

此类反应大多是在高温下瞬时完成的, 对反应器的构型、设备的材质、加热及进料方式等均有很高的要求。

2.1.1 四氯化钛气相氧化法此法多是以四氯化钛为原料,以氮气为载气,以氧气为氧源,在高温条件下四氯化钛和氧气发生反应生成纳米二氧化钛。

其反应式如下:TiCl4(g)+O2(g) =TiO2(s)+2Cl2(g)施利毅等[1]利用气相氧化法制备出金红石型二氧化钛。

研究发现氧气预热温度越高,微粒粒径越小、分布越窄,随着晶型转化促进剂浓度增加粒径尺寸减小,随停留时间延长、晶型转化促进剂的增加,金红石相含量增大。

纳米材料二氧化钛的研究

纳米材料二氧化钛的研究

水 热合成 法
先将 粗 品 TiO2溶 于热 的 浓 硫 酸中, 制 成 Ti ( SO4 )2 溶液 , 再加 人适量 的尿 素水 溶 液 , 混 合后置 于通用型 自制高 压反应釜 中进行 反应 , 将温 度控制 在 1 2 2±1 ℃范 围 内 反应 4 5小 时 得 到 白色沉 淀 , 过 滤 、洗 涤、 干燥 、研 磨 . 在 4 2 0 ℃ 灼 烧 2 h得 成 品

ATM形貌特征分析
二氧化钛水溶液浸泡24h后的云母片在ATM下的形貌图
从图中可以看出,纳米二氧化钛颗粒分布均匀,粒径大小差别不是 很大,纳米二氧化钛颗粒在水中的分散较好,这也说明超声波对纳 米二氧化钛的分散效果较好。
二氧化钛的性能
具有光催化性 良好的导电性 化学稳定性

二氧化钛光催化性的测试
测定方法参照《工业循环冷却水中粘液形成 菌的测定-平皿计数法》测试结果如图
自制样品不同质量浓度杀菌效果比较
二氧化钛的用途
光催化
降解室内外空气中的有 害有机物、处理石油污 染、降解农药、抗菌
二 氧 化 钛
造纸业 其他 电极材料
太阳能电池电极 纸张填料、功能纸、 处理造纸废水 防晒剂、汽车面漆等
谢 谢!
纳米材料二氧化钛的研究
纳米TiO2简介
纳米二氧化钛是一种新型无机材料 ,其 在作为催化剂载 体、 光敏性催化剂、 处理 各种气固液水污染物、 制备各种精细陶 瓷、 气敏元件、 改善材料性能等领域具有广泛 的用途,ห้องสมุดไป่ตู้可以说 纳米二氧化钛是当前应用 前景最为广阔的纳米材料之一, 有很强的 研究、 开发和生产价值。
二氧化钛的制备
S
o l - Ge l 法 热合成 法

纳米二氧化钛的制备与应用

纳米二氧化钛的制备与应用

纳米二氧化钛的制备与应用摘要:(一)二氧化钛的制备1.水热法是指在较高温度和较高压力下,在水(水溶液或蒸气等流体)中进行有关化学反应的总称。

水热条件下,水作为一种化学组分并参加反应,既是溶剂又是矿化剂,同时还可以作为压力传递介质。

以有机钛或无机钛为原料,不经高温处理就可得到金红石相TiO2,但存在操作复杂、产物易团聚、晶化程度不好等问题。

以TiCl4为前驱体,采用水热法在低温条件下可制备具有Ti-O-Ti和Ti-O结构、粒径为150nm的均匀nano-TiO2粉体,且-TiO2由锐钛矿相向金红石相的转变过程是缓慢的。

2.溶胶-凝胶法溶胶-凝胶法是目前制备纳米材料的重要方法,近年来被广泛应用于制备纳米二氧化钛。

其制备工艺原理是:以钛醇盐或钛的无机盐为原料经水解和缩聚反应得溶胶,再经进一步缩聚得到凝胶,凝胶经过干燥得到纳米二氧化钛。

有人以钛酸丁酯为前驱物,无水乙醇为溶剂,研究不同条件下用此法制备纳米二氧化钛光催化剂的凝胶过程,得到了制备稳定溶胶的最佳条件。

3.微乳液法微乳液法制备纳米二氧化钛是近年来才发展起来的一种方法。

微乳液是指热力学稳定分散的互不相溶的液体组成的宏观上均一而微观上不均匀的液体混和物。

该法的制备原理是在表面活性剂作用下使两种互不相溶的溶剂形成一个均匀的乳液。

利用这两种微乳液间的反应可得到无定型的二氧化钛,经煅烧、晶化得到二氧化钛纳米晶。

此法得到粒子纯度高、粒度小而且分布均匀.但稳定微乳液的制备较困难,因此,此法的关键在于制备稳定的微乳液4.沉淀法沉淀法是制备纳米材料的一种相对比较简单的方法.它又可分为直接沉淀法和均匀沉淀法. (1)直接沉淀法是较早使用的一种方法,但由于所得沉淀物一般为胶状物,洗涤、过滤比较困难;而且沉淀剂可能混入产品、洗涤时沉淀物可能溶解,造成产品不纯、分散性较差,所以,现在已很少使用,或是采用已经经过改进的直接沉淀法.直接沉淀法制备原理在国内外都有较为详细的介绍。

[讲解]纳米二氧化钛制备方法

[讲解]纳米二氧化钛制备方法

1.纳米TiO 2粉体制备方法物理法 气相冷凝法:预先处理为气相的样品在液氮的气氛下冷凝成核制得纳米TiO2 粉体,但该法不适于制备沸点较高的半导体氧化物高能球磨法:工艺简单,但制得的粉体形状不规则,颗粒尺寸分布宽,均匀性差化学法 固相法:依靠固体颗粒之间的混合来促进反应,不适合制备微粒液相法:就是将钛的氯化物或醇盐先水解生成氢氧化钛(或羟基氧钛) ,再经煅烧得到TiO2. 研究最广泛。

以四氯化钛为原料,其反应为TiCl4 + 4H2O → Ti (OH) 4 + 4HCl ,Ti (OH) 4 → TiO2 + 2H2O.以醇盐为原料,其反应为Ti (OR) 4 + 4 H2O → Ti (OH) 4 + 4 ROH ,Ti (OH) 4 −−−→煅烧TiO2 + 2 H2O.主要包括硫酸法、水解法、溶胶-凝胶(Sol2gel) 法、超声雾化、热解法等。

溶胶- 凝胶法就是将钛醇盐制备成二氧化钛溶胶. 为了得到多孔催化剂,通常采用煅烧等方法将凝胶进行干燥,去除溶剂,制得干凝胶. Dagan 等[25 ]采用超临界干燥法所制得的TiO2气凝胶孔隙率为85 % ,比表面积高达600 m2·g - 1 ,晶粒尺寸为5. 0 nm ;对水杨酸的光催化氧化表明该催化剂具有比Degussa P - 25 TiO2粉末更高的催化活性.气相法:其核心技术是反应气体如何成核的问题. 通过四氯化钛与氧气反应或在氢氧焰中气相水解获得纳米级TiO2 ,目前德国Degussa 公司P-25 粉末光催化剂是通过该法生产的常用的化学制备方法有溶胶-凝胶法、沉淀法、水解法、喷雾热解法、水热法和氧化- 还原法等。

10. 纳米TiO2薄膜制备方法:除了与粉体制备相同的制备方法如溶胶-凝胶法、热解法外,还有液相沉积法、化学气相沉积法、磁控溅射法等。

溶胶-凝胶法(Sol-Gel):制备的薄膜纯度高,且制备工艺简单,易批量生产;水热合成法:通过水解钛的醇盐或氯化物前驱体得到无定形沉淀,然后在酸性或碱性溶液中胶溶得到溶胶物质,将溶胶在高压釜中进行水热Ostwald熟化。

纳米二氧化钛的制备综述

纳米二氧化钛的制备综述

纳米二氧化钛的制备综述前言:纳米材料以其特殊的性能和广阔的发展前景引起科学家们的广泛关注。

纳米材料是指微粒几何尺寸在1n m-100n m范围内的固体材料。

纳米粒子是处于微观粒子和宏观粒子之间的介观系统。

纳米材料以其独特的表面效应﹑小尺寸效应﹑量子尺寸效应和宏观量子效应等性质, 而呈现出许多奇异的物理﹑化学性质, 使其在众多领域具有特别重要的应用价值和广阔的发展前景。

纳米二氧化钛(T i O 2) 是当前应用前景最为广阔的一种纳米材料, 它是当前众多纳米材料中的“明星”。

我国对纳米二氧化钛的研究已经进入产业化开发与生产阶段, 其制备手段可分为物理和化学两大类。

关键词:纳米二氧化钛;制备;气相法;液相法;固相法;制备方法。

1、纳米二氧化钛的制备方法1.1 气相法气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成纳米微粒的方法。

1.1.1 TiCl4 气相氧化法气相氧化法采用氮气携带TiCl4 和氧气分别预热后在反应器内反应。

首先让可燃气体与过量氧气燃烧,生成高温含氧气流,然后再与经过预热的气体TiCl4(含微量晶型转化促进剂)呈一定角度交叉混合,使反应在高速下进行,同时采用外部急冷的方法,使反应物迅速冷却,从而获得高金红石型含量的纳米TiO2。

该工艺的关键是喷嘴和反应器结构的设计、纳米TiO2 遇冷壁结疤、产品的收集等问题。

1.1.2 气相水解法气相水解法又称为火焰水解法[ 2 ],其原理是:将TiCl4 气体导入高温(700~1000℃)氢氧焰中进行高温水解制备纳米TiO2,或将钛醇盐的水解反应移至气相反应中,该法最早由德国迪高沙公司开发成功。

该工艺制得的粉体晶型一般是锐钛矿和金红石的混合型,该工艺的特点是生产过程较短,自动化程度高。

但由于其过程温度较高,而且生成的HC1 对设备腐蚀严重,对设备材质要求较高,因此很少在工业化生产中应用。

纳米二氧化钛制备综述

纳米二氧化钛制备综述

二氧化钛的制备综述一.前言纳米材料是20世纪80年代末、90年代初才逐步发展起来的一类新型材料。

纳米二氧化钛是其中最重要的一类无机功能材料之一。

二氧化钛俗称钛白粉,为无机物.它的特性有无毒、无味、无刺激性、热稳定性好、不分解、不挥发。

它有三种晶型:板钛矿、锐钛矿和金红石型,其中金红石和锐钛矿应用较广。

常规TiO2纳米化后,除了具有一般纳米粒子所特有的量子尺寸效应和表面效应等的特性外,还具有高光催化效应、强紫外线屏蔽能力以及能产生奇特颜色效应等许多特殊性能,纳米二氧化钛在催化剂载体、紫外线吸收剂、光敏性催化剂、防晒护肤化妆品、塑料薄膜制品、水处理、精细陶瓷、生态陶瓷、气敏传感元件等领域具有广泛的用途。

由于其独特的性能和广泛的用途,其制备及应用研究受到世界各国的高度重视。

二.主题纳米Ti02的制备方法1溶胶-凝胶法(Sol-Gel)溶胶-凝胶法是80年代兴起的一种制备纳米材料的湿化学方法,以钛醇盐Ti(OR)4(R=-C2H5-C3H7-C4H9)为原料,将其溶于乙醇、丙醇和丁醇等溶剂中形成均相溶液,使钛醇盐在分子均匀的水平上进行水解反应,同时发生失水与失醇的缩聚反应,生成物聚集成lnm左右的粒子并形成溶胶,经陈化形成三维网络的凝胶,干燥除去残余水分、有机基团和有机溶剂得到干凝胶,经研磨、煅烧最终得到纳米级Ti02.根据H2O/钛醇盐摩尔比的不同。

可大致分为两种制备方法:粒子凝胶法和聚合凝胶法.2液相沉淀法.液相沉淀法一般以TiCl4或取Ti(SO4)2等无机钛盐为原料,将(NH4)2SO4、NH3·H2O和(NH4)2CO3或NaOH等碱性物质加入到钛盐溶液中,生成无定形的Ti(OH)4沉淀.将沉淀过滤、洗涤、干燥,经600℃左右煅烧得到锐钛矿型纳米TiO2,或在800℃以上煅烧得到金红石型纳米TiO2粉体.也可将硫酸法钛白生产的中间产品硫酸氧钛(TiOS04)作为原料.以尿素等弱碱为主沉淀剂宿主,或用TiOS04·2H2O或Ti(SO4)2·4H2O为原料,以氨为沉淀剂,采用均匀沉淀法制备纳米TiO2粉体.或将硫酸法生产钛白粉的半成品水合TiO2洗净后,加硫酸溶解形成TiOSO4水溶液,再加碱中和水解,将生成的产物煅烧得到纳米TiO23.钛醇盐水解法醇盐水解沉淀法与上述的溶胶·凝胶法一样,也是利用钛醇盐的水解和缩聚反应,不同的是它只是通过醇盐水解、均相成核与生长等过程在液相中生成沉淀产物,再经过液固分离、干燥和煅烧等工序,制备TiO2.其反应如下:水解:Ti(OR)4+nH2O→Ti(OR)(4-n)+nROH缩聚:Ti(OR)(4-n)(OH)n→[Ti(OR)(4-n)(OH)n-1]2+H2Hague等用H2O:Ti(OC3H7)4摩尔比为165:1,以控制水解法制备纳米氧化钛粉体,他们认为生成粉体的结晶状态和醇与水的摩尔比有关系,即水解反应是一个可逆反应,当水与醇的摩尔比大于或等于20时产物会呈晶体结构.高濂等利用控制钛酸丁酯水解的方法,通过改善沉淀物的过滤洗涤工艺,有效地避免了粒子的团聚,制备了纳米级的TiO2粉体;李大成等为解决钛醇盐的供应和储运问题,开发了从合成钛醇盐到醇盐水解制备TiO2粉体的成套工艺,以来源广泛、易于获得和再生的乙醇为原料,先将精制的TiCl4酯化合成钛乙醇盐,再将钛乙醇水解制备TiO2.4.热合成法水热合成法制备纳米材料的技术始于1982年.水热法由于原料易得,反应过程可控等特点而成为了最有应用前景的方法之—.其基本方法是:在特制的密闭反应容器(高压釜)里,采用水溶液作为反应介质,通过高温高压将反应体系加热至临界温度.使前驱物在水热介质中溶解,进而成核、生长、最终形成具有一定粒度和结晶形态的晶粒,卸压后经洗涤,干燥即可得到纳米级TiO2粉体.目前,利用水热法制备纳米颗粒的方法按反应原理可以分为如下几种类型:水热氧化法、水热沉淀法、水热合成法、水热分解法、水热晶化法.水热法制备粉体常采用固体粉末或新配制的凝胶作为前驱体,第一步是制备钛的氢氧化物凝胶,反应有四氯化钛与氨水体系和钛醇盐与水体系.第二步是将凝胶转入高压釜内。

纳米二氧化钛

纳米二氧化钛

目前,纳米Ti0:的制备方法可归纳为气相法和液相法。

气相法是通过钦源与氧气反应或在氢氧焰中气相水解获得纳米级TiO2,目前德国的Degussa公司粉末P-25光催化剂是通过该法生产的。

在气相法中,由于反应温度高.成核过程快,粉体的结晶度高,所得到的TO:纳米粉体纯度高,粒径小,单分散性好,反应的产物无需经反复洗涤来提高产品的纯度,是一种快速制备粉体的方法。

但是气相法所需制备设备复杂,能耗大,成本高。

相比之下,液相法制备纳米Ti0:合成温度低、工艺简单以及设备投资较低,是制备纳米Ti氏粉体的较理想方法。

液相法中,主要有金属醇盐水解法、水热晶化法、溶胶一凝胶法、液相一步合成法,以及均匀沉淀法等。

1.6.1.1 金属醇盐水解法金属醇盐水解法制备Ti02粒子的基本原理为:钦源与醇反应生成钦酸酷,钦酸醋再水解形成Ti02醇溶胶,经洗涤、热处理后得到r02纳米粒子。

利用金属醇盐水解制备Ti仇纳米颗粒,方法简便易行,能耗低,工艺重复性好,所得Ti02粒子单分散性好,纯度高。

Kim H T["[等用水解法制备T102, Si02和ZrO2粒子。

他们发现实验中影响Ti02粒子的参数如下:(1)随着反应时间的延长,得到的Ti02粒子尺寸变小;(2)高的水/钦源比有利于制备纳米Ti02粒子;(3) TiO:粒子尺寸随着加料量的增多而增大。

在综合以上的条件下,他们制备出粒径小于30 m 的Ti02粒子,并得出Ti02粒子受反应物加料量以及摩尔比的影响最大。

Ravi V[08[等用TiOCl2与柠檬酸混合后在水浴加热条件下水解,得到Ti02凝胶。

400'C锻烧凝胶得到锐钦矿型TiO2, 500℃继续缎烧得到金红石型Ti02 0所得到的锐钦矿型T102的粒径为3.5 mn,金红石型T102的粒径为45 mnaKominami H[093等用钦源在惰性有机溶剂中300℃下水解得到粒径为9 mn,比表面积为100 m2/g的锐钦矿型Ti02粒子。

纳米二氧化钛的制备

纳米二氧化钛的制备

纳米二氧化钛的制备及其光催化活性评价一、实验目的3、了解纳米半导体材料的性质。

4、了解纳米半导体光催化的原理。

二、实验原理二氧化钛,化学式为,俗称钛白粉。

多用于光触媒、化装品,能靠紫外线消毒及杀菌。

以纳米级为代表的具有光催化功能的光半导体材料,因其颗粒细小、比外表积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。

1、纳米二氧化钛的制备溶胶凝胶法中,反响物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成,脱水后即可得到。

在后续的热处理过程中,只要控制适当的温度条件和反响时间,就可以得到二氧化钛。

在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反响,钛酸四丁酯在酸性条件下,在乙醇介质中水解反响是分步进行的。

一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。

上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。

此过程中涉及的反响为:2、光催化活性评价光触媒在光照条件下〔可以是不同波长的光照)所起到的催化作用的化学反响,通称为光反响。

光催化一般是多种相态之间的催化反响。

本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反响前后的溶液的吸光度的变化算出降解率来评价制备的二氧化钛的活性。

三、实验仪器与试剂仪器:磁力搅拌器,搅拌磁子,水浴锅,PH试纸,胶头滴管,量筒,玻璃棒,烧杯,坩埚,石棉网,电炉,真空枯燥箱,量杯,充气管,自制紫外灯光催化装置,离心机。

试剂:亚甲基蓝,甲基橙,盐酸,冰醋酸,钛酸丁酯,四氯化钛,硫酸氧钛,纳米二氧化钛,无水乙醇。

四、实验步骤〔1〕二氧化钛的制备1、室温下取10ml钛酸丁酯,缓慢滴入到35ml无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米二氧化钛的制备综述
纳米二氧化钛(TiO2)是一种具有广泛应用潜力的材料,用于催化、光电子学、传感器、环境污染治理等领域。

制备纳米二氧化钛的方法有很多种,包括溶胶-凝胶法、水热合成法、溶剂热法、气相沉积法等。

下面是纳米二氧化钛制备的一些综述:
1. 溶胶-凝胶法:这是一种常见的制备纳米二氧化钛的方法。

通过将钛源和溶剂混合形成溶胶,然后通过凝胶化反应得到凝胶,最后通过热处理过程形成纳米二氧化钛。

该方法制备的纳米二氧化钛具有较高的纯度和较小的粒径。

2. 水热合成法:这是一种利用高温高压水环境合成纳米二氧化钛的方法。

通过在水溶液中加入适量的钛源和控制反应条件,可以得到形貌和粒径可调的纳米二氧化钛。

水热合成法制备的纳米二氧化钛具有较高的比表面积和晶体质量。

3. 溶剂热法:这是一种利用有机溶剂作为反应介质合成纳米二氧化钛的方法。

通过在有机溶剂中加热处理钛源溶液,可以形成纳米二氧化钛。

溶剂热法制备的纳米二氧化钛可以调控晶体形貌和粒径。

4. 气相沉积法:这是一种利用气相反应合成纳米二氧化钛的方法。

通过在适当的气氛条件下,钛源蒸汽和氧气反应生成纳米二氧化钛。

气相沉积法制备的纳米二氧化钛具有较高的纯度和较小的粒径。

相关文档
最新文档