雷达基础知识雷达工作原理

合集下载

雷达基础知识

雷达基础知识
9
三、最大不模糊距离
当多个目标的位置产生相同的信息,模糊产生
通常
Ru
c Tr 2
Ru Rmax
Tr是脉冲重复周期
Tr
2 c
Rmax
10
三、最大不模糊距离
例:某雷达的脉冲重复频率为每秒1250个脉冲,则它 的最大不模糊距离是?
1250个脉冲/秒 可得: Rumax = 120km
Tr=800μs
20
八、速度的测量
v
-v
21
八、速度的测量
fd
2v
v 是径向速度 λ 是波长
22
八、速度的测量
fd
2v
co辆汽车以29m/s的速度向交警测速雷达驶来, 其速度方向与雷达的轴线方向重合;雷达的发射频率 为24.15G,问接收到的回波信号的频率和多普勒频移 是多少?
25
八、分贝表示法
30 dB = 1000 3 dB = 2 -3 dB = 0.5
- times, - times , - times
26
八、分贝表示法
30 dBm = 1000 • 1mW = 1W 60 dBm = 1000 W 99 dBm = 8,000,000 W,
27
九、天线的波束宽度
雷达距雷分辨力
R c
2
R c 2B
15
六、角度的获得
天线 方向图
方位角
16
六、角度的获得
俯仰角
17
六、角度的获得
18
七、角度(横向距离)分辨力
区分相同距离上不同角度位置上多个目标的能力
准则:相同距离上的目标分开超过波束宽度能够分辨
19
七、角度(横向距离)分辨力

相控阵雷达的基础知识

相控阵雷达的基础知识

相控阵雷达的基础知识相控阵雷达,即采用相控阵天线的雷达,是一种先进的雷达系统。

其基础结构和功能如下:1.相控阵雷达的天线阵列是由上千个天线单元组成的,这些天线单元可以收发雷达波。

任何一个天线都可以收发雷达波,而相邻的数个天线即具有一个雷达的功能。

2.在扫描时,选定其中一个区块(数个天线单元)或数个区块对单一目标或区域进行扫描,因此整个雷达可同时对许多目标或区域进行扫描或追踪,具有多个雷达的功能。

3.由于一个雷达可同时针对不同方向进行扫描,再加之扫描方式为电子控制而不必由机械转动,因此资料更新率大大提高,机械扫描雷达因受限于机械转动频率因而资料更新周期为秒或十秒级,电子扫描雷达则为毫秒或微秒级。

因而它更适于对付高机动目标。

4.相控阵雷达采用的是电子方法实现波束无惯性扫描,因此也叫电子扫描阵列(ESA),它的波束方向可控、扫描也灵活,并且增益也可以很高。

5.相控阵雷达的波束指向始终与等相位面垂直,而等相位面由阵元间的馈相关系确定。

因此在各个阵元都是等幅馈电情况下,线性阵的波束方向图函数为sinc函数。

可以通过阵因子来计算相控阵波束宽度。

6.相控阵雷达的波束宽度与扫描角θB的关系:当扫描的最大角度为θmax时,为了不出现删瓣,阵元间距d和波长λ需要满足关系,也就是说当阵元间距小于半波长时,即使扫描到90°都不会出现删瓣。

7.相控阵雷达具有功能多、机动性强的特点。

它不需要天线驱动系统、光束指向灵活,能实现无惯性的扫描,从而缩短目标信号检测时间,如信息的传播需要时间,高数据率。

相控阵雷达是一种先进的雷达系统,具有高精度、高更新率、多功能和机动性强的特点。

这些特点使得相控阵雷达在军事和民用领域都有着广泛的应用前景。

跟踪雷达基础知识讲

跟踪雷达基础知识讲

18.5 目标捕获和距离跟踪距离跟踪就是连续测量从发射射频脉冲到目标回波信号返回之间的延时的过程。

距离测量是雷达最精确的位置坐标测量。

其典型数据是在测量几百英里距离时精密到几码以内。

通常距离跟踪是从其他目标中鉴别出所需目标的主要方法,通过距离波门(即时间选通)从误差检波器输出中消除其他目标的回波(虽然也有用速度鉴别和角度鉴别的)。

距离跟踪电路也可用来捕获所希望的目标。

距离跟踪不仅必须测量脉冲从雷达到目标的往返行程时间,而且必须识别出反射信号是一目标而不是噪声,并且保存目标的距离随时间变化的历程。

这里的讨论适用于典型的脉冲跟踪雷达。

距离测量也可以用使用调频连续波的连续波雷达来完成,这种调频连续波通常是一种线性调频波。

目标距离由回波信号和发射信号之间的频率差异决定。

考虑到多普勒效应的调频连续波系统的性能见参考资料1。

捕获距离跟踪的第一个作用是捕获所需的目标。

虽然这不是跟踪工作,但在典型的雷达里这是实现距离跟踪或角跟踪之前必需的第一步。

对于窄波束跟踪雷达而言,为使天线波束指向目标的方向,必须具备有关目标角位置的某些信息。

这个信息叫做引导数据,可以由搜索雷达或其他来源提供。

引导数据可以足够精确地把窄波束指向目标或者可以要求跟踪器扫描一个较大的不确定区域。

雷达距离跟踪的优点是能看到从近距离一直到雷达的最大距离上的所有目标。

通常把这个距离分成小段,其中各段可以同时检验是否有目标存在。

当需要波束扫描时,距离跟踪器可在短时间里(如0.1s)检验各段情况,即可作出关于目标是否存在的判断。

如果没有目标存在,就让波束移向新的位置。

这个过程对机械式跟踪而言是完全连续的,因为机械式跟踪移动波束相当慢,因此使得在对各段距离进行检验的短时间内目标仍然留在波束宽度之内。

与搜索雷达一样,目标捕获要考虑实现给定的检测概率和虚警概率所需的信噪比门限和积累时间[1]。

然而,与搜索雷达相比,目标捕获可使用较高的虚警概率,这是因为操纵员知道目标是存在的,不存在在等待目标时由于虚警而使操纵员疲劳。

雷达系统基础知识解析

雷达系统基础知识解析

雷达系统基础知识解析雷达系统是一种以电磁波为载体,利用接收机接收反射回来的信号,获得目标的位置、速度、形状、运动状态等信息的远程探测手段。

在现代军事、民用、科研等领域中,雷达系统得到了广泛应用。

本文将从雷达的原理、分类、应用等方面进行分析,对雷达系统进行基础知识解析。

一、原理雷达系统的探测原理基于电磁波的回波信号。

雷达系统通过向目标发送一个连续波或者脉冲波,这些波被目标反射后返回到雷达接收机。

接收机接收到的信号被处理后,可以提供目标的位置、速度、方向、距离等信息。

雷达系统的原理主要包括两个方面:1. 电磁波的传输和反射雷达系统中常用的电磁波包括微波、毫米波、红外线等,其中微波是最为常用的。

雷达发射的微波成为发射波,这些波穿过空气,到达目标后会被目标吸收或反射。

被反射回来的波成为回波,这些回波被接收机接收并处理,从而得到目标的信息。

2. 接收和处理雷达系统中的接收机可以接收发射的信号,并进行处理。

接收机的处理可以包括信号的放大、滤波、检波等,从而得到有效的目标信息。

接收机通常还会通过多普勒现象对目标的速度进行测量。

二、分类按照不同的特征,雷达系统可以分为多种不同类型:1. 脉冲雷达脉冲雷达通常使用的是短脉冲信号来探测目标。

这种雷达系统能够测量目标的距离和位置,但对于目标的速度探测能力较弱。

2. 连续波雷达连续波雷达通常使用连续发射的信号来探测目标。

这种雷达系统能够测量目标的速度和方向,但对于目标的距离探测能力较弱。

3. 相控阵雷达相控阵雷达使用多个发射天线和接收天线,这些天线可以通过计算机进行编程,从而形成一个具有指向性的波束。

相控阵雷达能够非常精确地探测目标的位置和速度。

4. 毫米波雷达毫米波雷达使用的电磁波在波长上较短,因此具有很强的穿透能力和抗干扰能力。

毫米波雷达通常被用于捕捉小物体的距离信息。

三、应用雷达系统的应用主要包括以下几个方面:1. 军事领域在军事领域中,雷达系统可以作为一种重要的侦察装备,能够探测敌方的目标信息,从而进行有效的作战指挥。

雷达基础知识

雷达基础知识

雷达基础知识嘿,朋友们!今天咱来聊聊雷达基础知识。

你说雷达像不像一双超级厉害的电子眼呀!它就静静地待在那儿,却能敏锐地捕捉到各种信息。

想象一下,在广阔的天空中或者茫茫大海上,雷达就像一个不知疲倦的小卫士,时刻警惕着周围的一切。

雷达的工作原理其实挺有趣的。

它会发出一种特殊的电波,就像我们扔出一个球一样,然后等着这个电波碰到东西反弹回来。

这反弹回来的电波就会告诉雷达好多信息呢,比如目标的位置、速度、方向等等。

这多神奇啊!咱们生活中可到处都有雷达的影子呢!飞机飞行靠它指引方向,轮船航行靠它避开危险,就连天气预报也得靠它来收集数据。

没有雷达,那可真是不敢想象啊!你看那飞机在天空中自由翱翔,可不得感谢雷达给它指的路呀!要是没有雷达,飞机不就像一只无头苍蝇一样乱撞啦?还有那些在海上航行的轮船,要是没有雷达及时发现暗礁啥的,那不是很容易就触礁了嘛!雷达的种类也不少呢。

有那种能探测很远很远的远程雷达,就像一个千里眼;还有能探测得特别精细的高精度雷达,就像一个放大镜。

每种雷达都有自己独特的用处,都在为我们的生活默默贡献着。

而且,雷达的发展也是日新月异啊!以前的雷达可能比较笨重,功能也没那么强大,可现在呢,越来越小巧,越来越智能啦!这就好比手机一样,以前的手机多大个呀,现在不都变得小小的,功能还特别多嘛。

我们真应该好好珍惜这些科技成果呀!想想看,如果没有雷达,我们的生活会变成什么样呢?是不是会变得很不方便,很不安全呢?所以呀,我们要感谢那些发明雷达的科学家们,是他们让我们的生活变得更加美好。

总之,雷达这东西可太重要啦!它就像我们生活中的隐形守护者,默默地守护着我们的安全,为我们的生活提供便利。

我们可得好好了解它,爱护它呀!原创不易,请尊重原创,谢谢!。

多普勒雷达基础知识

多普勒雷达基础知识

主要厂家: 北京敏视达雷达有限公司 安徽四创电子股份有限公司 (38所) 南京恩瑞特实业有限公司(14所) 成都锦江电子系统工程有限公司
3
CINRAD/SA&SB
2020/2/26
❖ 工作频率 :
2700---3000MHz;
❖ 峰值发射功率: 650 KW ;
❖ 脉宽 :
1.57s / 4.71s ;
60 2020/2/26
风向不变,风速随高度增加
61 2020/2/26
风向不变,风速随高度增加
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
62 2020/2/26
风向不变,风速先增后减
84 2020/2/26
风速递增,风向顺转,地面风速不为零
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
85 2020/2/26
风速先增后减,风向顺转,地面风速不为零
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
56 2020/2/26
风向风速随高度都不变
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
57 2020/2/26
实例:风向风速不变
58 2020/2/26
59 2020/2/26
风向不变,风速随高度增加

雷达基础知识

雷达基础知识
• 显示器 – 显示目标在某一坐标系统中的位置。
雷达波段
• L波段(1000-2000 MHz)
– 警戒雷达最常用的波段 – 作用距离远 – 外部噪声较低 – 天线的尺寸并不太大 – 角分辨率较好
• S波段(2000-4000MHz)
– 中距离的警戒雷达和跟踪雷达均可使用这一波段 – 可用合理的天线尺寸得到较好的角分辨率 – 动目标显示的性能比P波段要差 – 电磁波的传播受气条件影响已变的明显起来
300km。
雷达的分类
• 炮瞄雷达
– 控制火炮对目标进行跟踪,以实现准确的射击。 – 必须连续而准确地测定目标的坐标,并迅速把数
据传递给火炮。 – 作用距离较近,只有几十公里,但测量的精度要
求高。
雷达的分类
• 制导雷达
– 控制自己发射的导弹飞行过程,要不断地测量导弹的飞行情 况,以实现控制。
• 截击雷达
– 用于歼击机上的雷达。 – 当歼击机根据地面的引导,接近攻击目标,进入有利空域
时,就利用装在机上的截击雷达,准确地测量目标的位置, 发起攻击。 – 作用距离短,但测量的精度高。
雷达的分类
• 轰炸瞄准雷达
– 装在轰炸机上,给飞行员提供轰炸瞄准的指示信号。
• 气象雷达
– 用来测量暴风雨的位置,跟踪它的移动路线。
雷达基础知识
内容提要
• 雷达是什么 • 雷达的特点和功能 • 雷达的基本工作原理 • 基本单元 • 雷达波段 • 雷达的分类 • 雷达检测
什么是雷达
• 雷达是利用目标对电磁波的反射、应答或 自身的辐射以发现目标的多种电子设备所 构成的一个整体。
– 一次雷达
• 利用目标电磁波的反射而发现目标的雷达 • 一次雷达是使用得最多的一种雷达

雷达基础知识

雷达基础知识

分分层层
积积累累
判判定定
输出
雷达检测
• 发现概率
– 有目标存在,检测器判定有目标,这种事件发生的概率,用Pd 表 示。
• 虚警概率
– 没有目标只有噪声存在,检测器也判定有目标,这种错误事件发生 的概率,用PN 表示。
N
∑tk
PN
=
k =1 N
∑ Tk
k =1
雷达检测
• 发现概率Pd与虚警概率PN和信噪比的关系
内容提要
• 雷达是什么 • 雷达的特点和功能 • 雷达的基本工作原理 • 基本单元 • 雷达波段 • 雷达的分类 • 雷达检测
什么是雷达
• 雷达是利用目标对电磁波的反射、应答或 自身的辐射以发现目标的多种电子设备所 构成的一个整体。
– 一次雷达
• 利用目标电磁波的反射而发现目标的雷达 • 一次雷达是使用得最多的一种雷达
• 常用警戒雷达的作用距离约为500km。 •对洲际导弹的预警雷达,作用距离要求达到
5000km。
– 能够测量目标的距离和方位,测量的精度要 求不高。
雷达的分类
• 指挥引导雷达
– 引导飞机去执行任务。 – 要求雷达能精确地测量目标的距离、方位和高
度,并能进行必要的引导计算。 – 作用距离比警戒雷达要短一些,一般在200-
– 二次雷达
• 通过对询问信号的应答而发现目标的雷达
– 被动雷达
• 利用目标自身的电磁辐射来发现目标的雷达
雷达的特点和功能
• 特点
– 作用距离远 – 受气象条件的影响不很大
• 功能
– 发现目标 – 测量目标的座标和运动参数 – 识别目标的类型 – 对目标进行跟踪
雷达的基本工作原理

雷达基础知识雷达工作原理

雷达基础知识雷达工作原理

雷达基础知识雷达⼯作原理 雷达即⽤⽆线电的发现⽬标并测定它们的空间位置。

那么你对雷达了解多少呢?以下是由店铺整理关于雷达知识的内容,希望⼤家喜欢! 雷达的起源 雷达的出现,是由于⼀战期间当时英国和德国交战时,英国急需⼀种能探测空中⾦属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。

⼆战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)⽕控、敌我识别功能的雷达技术。

⼆战以后,雷达发展了单脉冲⾓度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的⾼分辨率、结合敌我识别的组合系统、结合计算机的⾃动⽕控系统、地形回避和地形跟随、⽆源或有源的相位阵列、频率捷变、多⽬标探测与跟踪等新的雷达体制。

后来随着微电⼦等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。

雷达的探测⼿段已经由从前的只有雷达⼀种探测器发展到了红外光、紫外光、激光以及其他光学探测⼿段融合协作。

当代雷达的同时多功能的能⼒使得战场指挥员在各种不同的搜索/跟踪模式下对⽬标进⾏扫描,并对⼲扰误差进⾏⾃动修正,⽽且⼤多数的控制功能是在系统内部完成的。

⾃动⽬标识别则可使武器系统最⼤限度地发挥作⽤,空中预警机和JSTARS这样的具有战场敌我识别能⼒的综合雷达系统实际上已经成为了未来战场上的信息指挥中⼼。

雷达的组成 各种雷达的具体⽤途和结构不尽相同,但基本形式是⼀致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及。

还有电源设备、数据录取设备、抗⼲扰设备等辅助设备。

雷达的⼯作原理 雷达所起的作⽤和眼睛和⽿朵相似,当然,它不再是⼤⾃然的杰作,同时,它的信息载体是⽆线电波。

事实上,不论是可见光或是⽆线电波,在本质上是同⼀种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各⾃的频率和波长不同。

其原理是雷达设备的发射机通过天线把电磁波能量射向空间某⼀⽅向,处在此⽅向上的物体反射碰到的电磁波;雷达天线接收此反射波,送⾄接收设备进⾏处理,提取有关该物体的某些信息(⽬标物体⾄雷达的距离,距离变化率或径向速度、⽅位、⾼度等)。

雷达原理基础知识

雷达原理基础知识

雷达原理基础知识
雷达原理是一种用于遥测目标的无线技术,历史可追溯到二十世纪初期。

它是一种能
够检测并评估(例如距离、外形等)未知目标的一种技术。

在雷达原理中,微波或射频信号被发射一个大小的探测区域,以定期的波形发射出去。

一旦有的物体在检测区域内的波射,那么一些微小的部分会被反射,由接收机接收,并
将其返回给发射机。

发射机将根据接收回来的信号来计算目标的距离,方向等参数。

此外,雷达还可以检测到天气现象,探测目标的大小和形状,还可以进行辅助定位。

雷达技术常用在运输行业、军事监视和气象预警系统中。

雷达原理一般有如下两部分组成:
• 发射机:发射机是雷达原理的核心,它负责发射高功率微波或射频信号去探测物体
的位置和性质。

• 接收机:接收机是一种收集和研究从目标物体反射回来的微波或射频信号的装置,
这些信号通常用于测定距离、运动状态或对象的大小、形状等信息。

从上面可以看出,双向雷达测量系统的核心元件是发射机和接收机,它们一起将微波
或射频信号发射到指定的探测区域,然后捕捉并识别反射回来的信号。

这些信号通常只能
经过一定的处理,才能用于测量。

此外,雷达还需要一个扫描机制来标识物体的位置,而这一机制的实现有两种方式:
一种是移动发射和接收机设备,另一种是使用空地交互天线来建立波束以旋转扫描整个探
测区域。

因此,要想正确识别目标物体,就需要同时考虑到诸如频率、功率、发射时间、扫描
机制等一系列参数,确保雷达系统能够准确有效地检测到特定的物体。

雷达基本理论与基本基础学习知识原理

雷达基本理论与基本基础学习知识原理

雷达基本理论与基本原理一、雷达的基本理论 1、雷达工作的基本过程发射机产生电磁信号,由天线辐射到空中,发射的信号一部分被目标拦截并向许多方向再辐射。

向后再辐射回到雷达的信号被天线采集,并送到接受机,在接收机中,该信号被处理以检测目标的存在并确定其位置,最后在雷达终端上将处理结果显示出来。

2、雷达工作的基本原理一般来说,会通过雷达信号到目标并从目标返回雷达的时间,得到目标的距离。

目标的角度位置可以根据收到的回波信号幅度为最大时,窄波束宽度雷达天线所指的方向而获得。

如果目标是运动的,由于多普勒效应,回波信号的频率会漂移。

该频率的漂移与目标相对于雷达的速度成正比,根据2rd v f λ=,即可得到目标的速度。

3、雷达的主要性能参数和技术参数 3.1 雷达的主要性能参数 3.1.1 雷达的探测范围雷达对目标进行连续观测的空域,叫做探测范围,又称威力范围,取决于雷达的最小可测距离和最大作用距离,仰角和方位角的探测范围。

3.1.2 测量目标参数的精确度和误差精确度高低用测量误差的大小来衡量,误差越小,精确度越高,雷达测量精确度的误差通常可以分为系统误差、随机误差和疏失误差。

3.1.3 分辨力指雷达对两个相邻目标的分辨能力。

可分为距离分辨力、角分辨力(方位分辨力和俯仰角分辨力)和速度分辨力。

距离分辨力的定义:第一个目标回波脉冲的后沿与第二个目标回波脉冲的前沿相接近以致不能分辨出是两个目标时,作为可分辨的极限,这个极限距离就是距离分辨力:min ()2c R τ∆=。

因此,脉宽越小,距离分辨力越好3.1.4数据率雷达对整个威力范围完成一次探测所需时间的倒数。

3.1.5 抗干扰能力指雷达在自然干扰和人为干扰(主要的是敌方干扰(有源和无源))条件下工作的能力。

3.1.6 雷达可靠性分为硬件的可靠性(一般用平均无故障时间和平均修复时间衡量)、软件可靠性和战争条件下雷达的生存能力。

3.1.7 体积和重量体积和重量决定于雷达的任务要求、所用的器件和材料。

雷达知识点总结口诀

雷达知识点总结口诀

雷达知识点总结口诀一、雷达基础知识1. 雷达由天线、发射/接收器、处理设备组成2. 发射的雷达波反射在目标上,接收后进行信号处理3. 雷达可以探测目标的距离、方向和速度4. 雷达常用的频段包括X波段、Ku波段、Ka波段等二、雷达工作原理1. 发射端发射雷达波,遇到目标反射回来2. 接收端接收反射信号,并进行处理3. 通过处理可以确定目标的位置、速度和性质4. 雷达波在空气中传播速度快,可以在短时间内获得目标信息三、雷达探测目标1. 雷达可以通过测量返回信号的时间来求解目标与雷达的距离2. 通过探测目标的多次位置变化可以确定目标的速度3. 雷达可以通过脉冲状波、连续波和脉冲多普勒等技术来识别目标4. 雷达可以分为二维雷达和三维雷达,分别可以获取目标的距离和方向以及高度信息四、雷达应用领域1. 军事领域:用于探测敌方飞机、舰船和导弹2. 气象领域:用于探测气象条件和气候变化3. 交通领域:用于飞机、船舶和车辆导航和碰撞预警4. 地质勘探领域:用于勘探地下资源和地质条件五、雷达系统的性能参数1. 探测能力:用于衡量雷达对目标探测的能力2. 定位精度:用于衡量雷达对目标位置测量的准确性3. 信噪比:用于衡量雷达接收信号的清晰度和稳定性4. 工作距离:用于衡量雷达最大工作距离六、雷达系统的优化1. 天线设计:优化天线结构可以提高雷达灵敏度和分辨率2. 信号处理:优化信号处理算法可以提高雷达的探测精度3. 发射功率:增加雷达的发射功率可以提高工作距离和穿透能力4. 频率选择:选择合适的频率可以提高对不同目标的探测性能七、雷达的发展方向1. 多普勒雷达:用于探测目标的速度和运动状态2. 目标识别雷达:用于识别目标的类型和特征3. 三维雷达:用于获取目标的高度信息4. 合成孔径雷达:用于提高雷达对地面目标的分辨能力八、雷达常见故障及处理方法1. 天线故障:检查天线结构和调整天线方向2. 信号处理故障:检查接收器和处理设备的连接和设置3. 发射故障:检查发射器的状态和发射功率4. 系统故障:检查雷达系统的连接和通讯状况总结口诀:雷达探测目标速度距离,多普勒频率增强识别。

船舶雷达知识点总结图表

船舶雷达知识点总结图表

船舶雷达是一种用于船舶导航和安全的重要设备。

它通过发射和接收无线电波来探测周围环境,帮助船舶避免障碍物、识别其他船只并保持安全距离。

船舶雷达的使用对于船舶的航行至关重要,因此船员需要掌握相关的知识和技能来正确操作雷达。

下面将对船舶雷达的知识点进行总结,包括雷达的工作原理、常见的雷达显示和功能、雷达的使用注意事项等内容。

一、雷达的工作原理1. 电磁波的发射和接收雷达通过发射一定频率的电磁波,然后接收并分析被目标反射回来的信号来探测目标的位置和距离。

2. 雷达回波的处理雷达系统会对接收到的回波信号进行处理,包括计算目标的距离、方位和速度,并在雷达显示器上显示出来。

3. 雷达的波束和分辨率雷达发射的电磁波是由天线发射出去的,形成一个类似于手电筒光束的范围,被称为“波束”。

雷达的分辨率取决于波束的宽度,波束越窄,分辨率越高。

二、雷达的显示和功能1. 雷达的显示器雷达显示器通常是采用脉冲波形显示,用于显示探测到的目标物体的位置、距离和方位。

2. 雷达的操作控制雷达设备通常有一系列的操作控制,包括调整雷达的灵敏度、增益、对比度等参数,以获得更清晰的目标显示。

3. ARPA和AIS功能一些先进的雷达设备具有自动雷达目标追踪(ARPA)和自动识别系统(AIS)的功能,可以自动追踪目标并显示其关键信息。

4. 雷达报警系统雷达设备通常配备有报警系统,能够在发现潜在危险或规避目标时发出声音或视觉警报提示船员。

1. 遵守雷达使用规定船舶雷达的使用需要遵守相关的法规和规定,船员需要熟悉并严格遵守这些规定。

2. 定期维护检查船舶雷达需要定期进行维护和检查,确保设备的正常运行和准确性。

3. 熟悉目标特征船员需要熟悉各种不同目标的雷达反射特征,以便正确识别和区分目标。

4. 与其他导航设备的配合雷达在船舶导航中通常需要与其他导航设备如GPS、电子海图等配合使用,船员需要掌握这些设备的协调使用方法。

以上是对船舶雷达知识点的总结,船员需要熟悉这些知识,合理使用雷达设备,保障船舶的安全航行。

雷达基础知识

雷达基础知识
• 常用警戒雷达的作用距离约为500km。 • 对洲际导弹的预警雷达,作用距离要求达到 5000km。
– 能够测量目标的距离和方位,测量的精度要 求不高。
雷达的分类
• 指挥引导雷达
– 引导飞机去执行任务。 – 要求雷达能精确地测量目标的距离、方位和高 度,并能进行必要的引导计算。 – 作用距离比警戒雷达要短一些,一般在200300km。
雷达波段
• C波段(4000-8000 MHz)
– 性能是S波段X波段的折中。 – 中距离的警戒雷达可以使用这个波段。 – 常用于船舶导航、导弹跟踪和武器控制等。
• X波段(8-12.5 GHz)
– 雷达的体积小,波瓣窄,适宜于空用或其他移动的场合。 – 多卜勒导航雷达和某些武器控制都采用这个波段的雷达。
图2-1
雷达的基本工作原理
• 测距
1 R = ct R 2
tR
雷达的基本工作原理
• 角坐标测量
雷达的基本工作原理
• 径向速度测量
– 多卜勒效应
回波信号的频率和发射信号频 率之间的差值fd,就可以求出 目标的径向速度vr
2vr fd = f0 − f = f0 c + vr
基本单元
• 发射机 – 发射机产生射频(RF)信号 • 天线 – 天线的基本任务是在自由空间和雷达内部传输线之间耦合能量 • 发射天线:把来自发射机的射频能量转量换为所需形状的波束照射到 所希望的空间范围内。 • 接收天线:接收特定方向来的电磁能量并传送此能量到接收机。 • 接收机 – 拾取从天线传送来的射频能量,并把它处理成为适合于所用显示器的形式。 • 显示器 – 显示目标在某一坐标系统中的位置。
– PN一定时,S/N 增加 – S/N一定时,PN 增加 => Pd 增加 => Pd 增加, PN 减小 => Pd 减小

天气雷达的基本工作原理和参数知识讲解

天气雷达的基本工作原理和参数知识讲解
E(t)ReE1[e(xpi(1ti0t)] E1co2s(f0f1)t

风暴跟踪信息文本产品(上海)
风暴结构产品(SS)
冰雹指数产品(HI)
回波顶高产品(ET)
回波顶高等值线产品(ETC)
垂直液态水含量产品(VIL)
强天气概率产品(SWP)
一小时降水量产品(OHP)
三小时降水量产品(THP )
风暴总降水量产品(STP)
多普勒频率fd与目标物径向 速度Vr的关系
多普勒频率fd 定义: 目标物相对于雷达作径向运动
引起回波信号的频率变化,称 多普勒频移,亦称多普勒频率, 单位:赫兹(Hz)。
多普勒频率fd与目标物径向速度Vr 的关系(证明见P211-212)
fd
2Vr
其中: f d为多普勒频率
Vr 为目标物的径向速度
(单位 Hz )
(也称多普勒速度 , 单位 m / s)
这类产品主要有:
• 平面位置显示(PPI)
• 垂直最大回波强度显示 (CR)
• 等高平面位置显示(CAPPI)
• 距离高度显示(RHI)、
• 任意垂直剖面显示(VCS)
WSR-88D产品生成器根据用户要求生成的基本产 品有:基本反射率产品6种,平均径向速度产品6 种,速度谱宽产品3种,共计3类15种气象产品, 如下表
组合反射率因子 平均值产品图 (LRA)
2001年8月7日 15:26
中层(上图12~33 千英尺)和低层 (下图从地面到 12千英尺)
2010年8月7日15:02弱回波区产品图也 称为反射率因子多层透视图(上海)
风暴跟踪信息产品(STI)

示 产 生 冰 雹 的 可 能
图 中 绿 色 三 角 形

雷达探测大气的基础知识(散射)

雷达探测大气的基础知识(散射)
9

散射的分类
粒子散射电磁波的能力,除和电磁波的波 长等因素有关外,和粒子的大小、形状、以及 粒子的电学特性有关。当雷达波长确定后,球 形粒子的散射情况主要取决于粒子直径d和入 射波长λ的相对大小。 瑞利散射:d<<λ 米(Mie)散射: d≈λ
10
4. 瑞利散射和米散射
瑞利散射 1871年Rayligh推出散射公式,粒子直径和入射波长 d<<λ 的小球形粒子散射。 一般云滴、小雨滴对厘米波长的雷达波的散射可看作 瑞利散射 米散射 1908年G.Mie 推出均匀介质圆粒子对平行波散射的函 数表达式。粒子直径和入射波长 d ≈ λ 的大球形粒子 散射。
第二章 雷达探测大气的 基础知识
2.1 散射 2.2 衰减 2.3 雷达气象方程 2.4 折射 2.5 雷达的探测能力
1
1、雷达探测大气的基础:气象目标的散射作用
大气介质
大气气体分子 大气介质折射 指数分布不均
云 滴
随粒子的相 态、几何形 状、大小、 电学特性而 异
降水粒子
2
2、散射现象
当电磁波传播遇到空气介质和云、雨质点时,入射的 电磁波会从这些质点向四面八方传播相同频率电磁波 ,称 散射现象。

σ = 4πβ (π )
引入的意义:以入射波能流密度乘上雷达截面,得到一个
散射粒子的总散射功率;当散射粒子以这个总功率作各向同 性散射时,散射到天线处的功率密度正好等于该粒子在天线 处造成的实际的后向散射能流密度。 雷达截面的大小反映了粒子所造成的后向散射的大小。
23
说明: 1、假想面积 2、描述目标在入射功率一定下后向散 射功率的大小 3、散射截面以面积单位来描述。面积 越大,后向散射能力越强,产生的回波功 率也就越大。

天气雷达探测基础知识

天气雷达探测基础知识

天气雷达探测基础知识
天气雷达是一种能够探测大气中降水、云层、风暴等天气现象的仪器。

它通过发射一束雷达波,然后接收反射回来的信号,来了解大气中各种物质的状态和分布情况。

下面是天气雷达探测基础知识:
1. 雷达波的特点:雷达波是一种电磁波,它的传播速度与光速
相同。

雷达波在传播时会被大气中的物质吸收、反射、散射等,这些作用会影响雷达波的传播路径和信号强度。

2. 雷达波的频率:雷达波的频率是指单位时间内波的振动次数,通常以赫兹(Hz)为单位。

不同频率的雷达波具有不同的特性,例如高频率的雷达波能够穿透云层,但信号强度较弱;低频率的雷达波信号强度较高,但容易被云层等物质吸收。

3. 雷达反射信号:雷达波的反射信号是指当雷达波遇到物体时,会产生一部分信号向雷达设备返回。

这些反射信号的强度取决于物体的大小、形状、材质等因素。

4. 雷达图像的解析:雷达图像是由反射信号构建出来的,它能
够显示大气中不同物质的分布情况。

解析雷达图像需要考虑信号强度、信噪比、扫描角度、反射信号的特征等多种因素。

5. 天气雷达的应用:天气雷达广泛应用于气象预测、航空、海洋、农业、水文等领域。

通过天气雷达可以了解天气现象的分布情况和演变趋势,为人们的生产和生活带来很大的便利。

- 1 -。

雷达探测大气的基础知识 散射

雷达探测大气的基础知识 散射
瑞利散射方向性图
16
5. 散射函数或方向函数
瑞利散射时的总散射功率
SS
=
Si R2
β (θ ,ϕ)
=
Si R2
16π 4r6 λ4
m2 m2
−1 +2
2
(cos2θcos2ϕ
+
sin

)
瑞利散射的特征
粒子散射能力与λ 4 成反比。波长越短,散射越 强
粒子散射能力与D 6成正比。粒子半径越大,散 射越强
瑞利散射时方向函数的函数形式:
β

,
ϕ
)
=
16π 4 λ4
r
6
m2 m2
−1 +2
2
(cos2θcos2ϕ
+
sin
2ϕ )
r:粒子半径
m:折射指数
λ:波长
φ: 任意散射方向与x-y平面之间的夹角
θ: 任意散射方向在x-y平面上的投影与入射波流密度方向之
间的夹角
14
5. 散射函数或方向函数
波长及粒子大小的相态一定时,λ,r,m
E
2 im
21
i =1
球形水滴和冰粒的散射
9. 单个球形粒子的雷达截面(后向散射截面)
雷达天线接收到的只是粒子散射中返回雷达方向(即θ
=π)的那一部分能量,这部分能量称为后向散射能量。因
此,对探测云、雨等有意义的是粒子的后向散射。
对于普遍的球形粒子,根据米氏散射理论,其后向散
射函数
∑ β (π=)
瑞利散射
1871年Rayligh推出散射公式,粒子直径和入射波长
d<<λ 的小球形粒子散射。 一般云滴、小雨滴对厘米波长的雷达波的散射可看作

激光雷达基础知识

激光雷达基础知识

激光雷达基础知识激光雷达(Lidar)是一种通过发射激光脉冲并测量返回信号来感知周围环境的传感器。

它是一种被广泛应用于无人驾驶、机器人、地质勘探等领域的高精度测距技术。

激光雷达的基本原理是利用激光束在空间中传播的特性来测量目标物体的距离和位置。

激光雷达发射器发射一束激光脉冲,激光脉冲经过一系列光学元件的聚焦和调制后,以光速向目标物体传播。

当激光束照射到目标物体上时,一部分激光能量会被目标物体吸收,另一部分则会被目标物体反射回来。

激光雷达接收器接收到反射回来的激光脉冲,并通过测量激光脉冲的时间差来计算目标物体与激光雷达的距离。

激光雷达的工作原理类似于雷达,但相比传统雷达,激光雷达具有更高的精度和分辨率。

激光雷达可以实现对目标物体的三维重建,即可以获取目标物体的距离、方位角和俯仰角等信息。

这些信息对于无人驾驶和机器人等应用来说至关重要,可以帮助它们实时感知周围环境、避免障碍物和规划路径。

激光雷达的性能主要取决于发射功率、激光束的形状和宽度、接收器的灵敏度以及激光脉冲的重复频率等因素。

发射功率越高,激光束的能量越大,测量距离的精度就越高。

激光束的形状和宽度决定了测量角度的精度,通常采用光学系统来控制激光束的形状和宽度。

接收器的灵敏度决定了激光雷达的探测范围,灵敏度越高,探测距离就越远。

激光脉冲的重复频率越高,激光雷达获取目标物体的速度和加速度等信息的能力就越强。

激光雷达的应用非常广泛。

在无人驾驶领域,激光雷达被用于实时感知周围环境,帮助无人驾驶车辆识别和避免障碍物,并规划最优路径。

在机器人领域,激光雷达可以用于地图构建、定位和导航,帮助机器人在未知环境中自主行动。

在地质勘探领域,激光雷达可以用于获取地表和地下结构的三维信息,帮助地质工程师进行勘探和分析。

激光雷达是一种基于激光测距原理的高精度传感器。

它通过发射激光脉冲并测量返回信号来感知周围环境,可以实现对目标物体的三维重建。

激光雷达在无人驾驶、机器人和地质勘探等领域有着广泛的应用前景,将为人们的生活和工作带来更多的便利和效益。

雷达基础

雷达基础

1、基本概念 、 及含义
雷达对抗基本原理
对雷达干扰的基本方法——使得敌方雷达不能检测目标 对雷达干扰的基本方法 破坏电波传播路径 产生干扰信号进入雷达接收机,破坏目标检测 减小目标的雷达截面积
未知雷达工作频率,是否能够进行雷达干扰? 大带宽的有源压制式干扰;适用于多个频段的 无源干扰
1、基本概念 、 及含义
1、基本概念 、 及含义
YLC-20无源定位雷达
关键特点: 关键特点: 信号适应能力强:系统探测非合作信号,能适应各种信号 信号适应能力强 形式。包括各种雷达信号、通信信号、干扰信号等。 定位精度高:采用高精度的测量技术和通讯传输技术,实 定位精度高 现了目标的精确定位。 具有目标识别能力:在获得目标位置信息的同时,可得到 具有目标识别能力 目标载频,信号形式等情报信息,通过自身数据库实现对 辐射源即辐射源平台的识别。
1、基本概念 、 及含义
为什么要进行雷达对抗?
例1:飞机所面临的威胁 飞机所面临的威胁 雷达示意图
如果不能有效地对抗敌方雷达和武器系统,不能保证自身 武器系统的生存!
1、基本概念 、 及含义
为什么要进行雷达对抗?
JY-27米波远程警戒雷达 测量精度150米,对目标的探测距离为330公里,在10秒 内处理128个目标
1、基本概念 、 及含义
雷达对抗的重要性
取得军事优势的重要手段和保证 例:二战诺曼底登陆。 盟军完全掌握了德军40多部雷达的参数和配置,通过 干扰和轰炸,使德军雷达完全瘫痪。盟军参战的2127艘 舰船,只损失了6艘。(破坏敌方雷达获取信息) 例:海湾战争。 多国部队凭借高技术优势,在战争的整个过程中使用了各 种电子对抗手段,使伊军的雷达无法工作、通信中断、指 挥失灵。双方人员损失为百余人 数十万人 百余人vs数十万人 百余人 数十万人。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达基础知识雷达工作原理
雷达即用无线电的方法发现目标并测定它们的空间位置。

那么你对雷达了解多少呢?以下是由店铺整理关于雷达知识的内容,希望大家喜欢!
雷达的起源
雷达的出现,是由于一战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。

二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。

二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。

后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。

雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。

自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。

雷达的组成
各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。

还有电源设备、数据录取设备、抗干扰设备等辅助设备。

雷达的工作原理
雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰
作,同时,它的信息载体是无线电波。

事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。

其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。

测量距离原理是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。

测量目标方位原理是利用天线的尖锐方位波束,通过测量仰角靠窄的仰角波束,从而根据仰角和距离就能计算出目标高度。

测量速度原理是雷达根据自身和目标之间有相对运动产生的频率多普勒效应。

雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。

从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。

当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。

雷达的种类
雷达的种类繁多,分类的方法也非常复杂。

一般为军用雷达。

通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、引导指挥雷达、炮瞄雷达、测高雷达、战场监视雷达、机载雷达、无线电测高雷达、雷达引信、气象雷达、航行管制雷达、导航雷达以及防撞和敌我识别雷达等。

按照雷达信号形式分类,有脉冲雷达、连续波雷达、脉部压缩雷达和频率捷变雷达等。

按照角跟踪方式分类,有单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫描雷达等。

按照目标测量的参数分类,有测高雷达、二坐标雷达、三坐标雷达和敌我识对雷达、多站雷达等。

按照雷达采用的技术和信号处理的方式有相参积累和非相参积累、
动目标显示、动目标检测、脉冲多普勒雷达、合成孔径雷达、边扫描边跟踪雷达。

按照天线扫描方式分类,分为机械扫描雷达、相控阵雷达等。

按雷达频段分,可分为超视距雷达、微波雷达、毫米波雷达以及激光雷达等。

2005年4月19日19-22时,哈尔滨雷达站观测到重力波结构,主要利用新一代多普勒天气雷达速度场资料对本次过程的重力波结构进行分析。

在本次重力波发生发展过程中,径向速度在水平方向上表现为正负速度交替分布的特征;垂直速度在水平方向上平均高度1100m以下是上升、下沉气流交替分布,垂直方向上的气流有时是与垂直方向成一定角度的;重力波波长约为5km,相速约为10m/s,周
相控阵雷达又称作相位阵列雷达,是一种以改变雷达波相位来改变波束方向的雷达,因为是以电子方式控制波束而非传统的机械转动天线面方式,故又称电子扫描雷达相控阵技术,早在30年代后期就已经出现。

1937年,美国首先开始这项研究工作。

但一直到50年代中期才研制出2部实用型舰载相控阵雷达。

80年代,相控阵雷达由于具有很多独特的优点,得到了更进一步的应用。

在已装备和正在研制的新一代中、远程防空导弹武器系统中多采用多功能相控阵雷达,它已成为第三代中、远程防空导弹武器系统的一个重要标志。

从而,大大提高了防空导弹武器系统的作战性能。

在21世纪,相控阵雷达随着科技的不断发展和现代战争兵器的特点,其制造和研究将会更上一层楼。

相关文档
最新文档