基于FPGA的DDS信号发生器的研究本科毕业论文
基于fpga的dds正弦信号发生器的设计和实现
基于FPGA的DDS正弦信号发生器的设计和实现引言在电子领域中,正弦信号是一种重要的基础信号,被广泛应用于通信、音频、视频等各个领域。
而DDS(Direct Digital Synthesis)直接数字合成技术则是一种通过数字方式生成高精度、高稳定性的正弦波信号的方法。
本文将详细介绍基于FPGA的DDS正弦信号发生器的设计和实现。
设计目标本次设计旨在实现一个可配置频率范围广泛且精度高的DDS正弦信号发生器。
具体设计目标如下: 1. 实现频率范围可调节,覆盖从几Hz到数十MHz; 2. 提供高精度的频率控制,满足特定应用场景对频率稳定性和相位精度的要求; 3. 支持模数转换器(DAC)输出,并能够通过外部接口控制输出幅值; 4. 使用FPGA作为主要硬件平台,以满足高速计算和灵活配置需求。
系统架构基于FPGA的DDS正弦信号发生器主要由以下几个部分组成: 1. 数字控制模块(Digital Control Module):负责接收外部输入的频率、相位和幅值等参数,并将其转换为对DDS核心模块的控制信号; 2. DDS核心模块(DDS Core Module):根据接收到的控制信号,通过数学运算生成正弦波形的离散采样值; 3. 数字模拟转换模块(Digital-to-Analog Converter, DAC):将DDS核心模块输出的数字采样值转换为模拟电压信号; 4. 输出放大器(Amplifier):用于放大DAC输出的电压信号,并通过外部接口提供可调节幅值的正弦波输出。
DDS核心模块设计DDS核心模块是整个系统中最关键的部分,它负责根据输入参数生成正弦波的离散采样值。
下面是DDS核心模块设计中需要考虑的几个关键要素:相位累加器相位累加器是DDS核心模块中最基础且重要的组件之一。
它根据输入的频率和时钟信号,在每个时钟周期内累加相位增量,从而实现相位连续变化。
相位累加器可以使用一个定点数或浮点数寄存器来表示,并通过固定步长进行相位递增。
基于FPGA的DDS信号发生器的设计
基于FPGA的DDS信号发生器的设计【摘要】本文介绍了基于FPGA和MCU技术的直接数字合成信号发生器的设计,详细分析了其主要模块的系统结构、软硬件设计和具体实现电路。
【关键词】信号发生器;DDS;FPGA1.引言随着数字集成电路和微电子技术的发展,直接数字合成技术(Direct Digital Synthesis)简称DDS将先进的数字处理技术与方法引入信号合成领域,优越的性能和突出的特点使其成为现代频率合成技术中的佼佼者。
DDS器件采用了高速数字电路和高速D/A转换技术,具备了频率转换时间短、相对带宽宽、频率分辨率高、输出相位连续和相位可快速程控切换等优点,可以实现对信号的全数字式调制。
本文给出了基于FPGA和MCU技术的直接数字合成信号发生器的设计,实现了满足预定指标的多频率波形输出。
2.DDS基本原理DDS建立在采样定理基础上,首先对需要产生的波形进行采样,将采样值数字化后存人存储器作为查找表。
然后通过查表读取数据,再经D/A转换器转换为模拟量,将保存的波形重新合成出来。
DDS基本原理框图如图1所示。
图1 DDS基本原理框图基本功能包括:接收频率控制字进行相位累加;使用带反馈的移位寄存器产生随机序列;把随机序列加到相位地址码或幅度值:对相位累加值进行相幅转换;把读出的幅度值进行D/A转换并调节其幅度;对波形进行滤波后放大输出波形。
3.DDS信号的产生下面就FPGA实现DDS正弦波信号为例,对其键技术进行分析。
3.1 采样点的实现对一个幅度为1的正弦波的一个周期进行1024点采样,用Matlab计算得到每一点对应的幅度值,然后量化成8位二进制数据存放在ROM中。
用MATLAB 语言编写的正弦函数数据采集程序如下:CLEAR TIC;T = 2*PI/1024;t = [0:T:2*pi];y=255*sinz(t);round(y);3.2 数据ROM制作有了上面的采样点接下去就可以结合QUARTUS中ROM的制作来设计一个存储1024个采样点的存储器,下面是实现的部分Verilog程序。
基于FPGA的DDS信号发生器设计分析
基于FPGA的DDS信号发生器设计分析摘要:随着现代电子技术的飞速发展,直接数字频率合成DDS 技术逐渐被广泛使用,DDS 是目前数据调度常用的数据分发技术,此技术能够有效结合数据服务质量要求,完成数据分发操作。
为此提出基于FPGA的DDS信号发生器设计,以提升信号发生器精度效果。
关键词:FPGA;DDS;信号发生器;设计;1 DDS数据分发模型设计网络层云服务器采用的DDS数据分发模型结构如图1所示。
DDS数据分发模型中,将数据库云平台中的数据发送端看作为发布者,数据写入者为数据采集端,而订阅者与读入者即为云平台中的数据接收端。
DDS数据分发模型的身份主要是通信数据库云平台中,通信网络的中间件,此模型能够为通信数据库云平台提供通信数据分发服务,让通信数据可以快速分发传输,从而避免出现数据拥塞问题。
图 1 基于 DDS 的通信数据库云平台2系统硬件设计2.1硬件整体方案函数信号发生器的硬件系统主要包括MCU控制电路,FPGA构成的DDS发生器、DAC转换和低通滤波电路,及一些用于输入输出的器件等。
按键输入和LCD输出显示主要由MCU负责控制,MCU然后将输入的信号运算处理后发送给FPGA,FPGA根据输入的各种参数在ROM表中寻址,同时输出对应控制的波形、频率和幅度的数字信号,最后经过DA转换为对应的模拟电压信号,在经过一个低通滤波器使得模拟电压信号变得平滑。
2.2硬件模块电路系统的硬件电路主要分为两个部分,一是系统主控电路,二是DDS信号发生器电路。
系统主控电路包括以STM32F103C8T6为主控的最小系统板、四路用户按键输入、OLED显示屏输出(SPI)、UART通信连接上位机、硬件SPI连接FPGA负责信号数据传输。
DDS信号发生器电路,其中的FPGA模块的核心芯片为LatticeLCMXO2-4000HC-4MG132,其模块上内置8路输出LED指示灯、4路按键输入、4路拨码输入和两位数码管输出灯资源。
(完整word版)基于FPGA的DDS信号发生器设计
基于FPGA的DDS信号发生器设计摘要:利用FPGA芯片及D/A转换器,采用直接数字频率合成技术,设计并实现了一个频率、幅值可调的信号发生器,同时阐述了该信号发生器的工作原理、电路结构及设计思路。
经过电路调试,输出波形达到技术要求,证明了该信号发生器的有效性和可靠性。
0 引言信号发生器作为一种基本电子设备广泛的应用于教学、科研中,因此从理论到工程对信号的发生进行深入研究,有着积极的意义.随着可编程逻辑器件(FPGA)的不断发展,直接频率合成(DDS)技术应用的愈加成熟,利用DDS原理在FPGA平台上开发高性能的多种波形信号发生器与基于DDS芯片的信号发生器相比,成本更低,操作更加灵活,而且还能根据要求在线更新配置,系统开发趋于软件化、自定义化。
本文研究了基于FPGA 的DDS信号发生器设计,实现了满足预定指标的多波形输出。
可产生不同频率、幅度的正弦波、三角波、矩形波信号,仿真和实测结果均证实了其灵活性和可靠性。
1 函数信号发生器的原理和设计1.1 函数信号发生器的结构图1为DDS信号发生器系统结构框图.系统以FPGA芯片为信息处理核心,主要完成数字频率合成、D/A转换、选择滤波、功率放大、LCD显示等功能。
频率控制字M送入32位的累加器进行累加运算,截取32位累加器的第24到第30位作为ROM的地址,ROM在累加器的控制下,输出8位的数字波形数据,经过DAC0832转换为模拟量,因为DAC0832输出的是电流的形式,所以通过电压转电流电路转换为电压形式的模拟波形,但其中还含有大量的高频成分,为了输出频率纯净的信号波形,再通过一个二阶的有源低通滤波器。
最后为了调节输出信号的峰峰值,再引入一个幅度调节电路。
根据直接数字频率合成理论将系统的频率分辨率及输出频率写为:其中fclk和N为系统时钟和位宽,M为频率控制字,利用信号相位与时间成线性关系的特性,直接对所需信号进行抽样、量化和映射,输出频率可调的信号波形。
基于FPGA的DDS信号发生器的设计
设计与分析・Sheji yu Fenxi基于F P GA 的DDS 信号发生器的设计蒋小军(湖南铁道职业技术学院,湖南株洲412001)摘要:直接数字频率合成器(DDS )广泛应用于航空控制、通信、电子测量及研究等领域。
现提出一种DDS 信号发生器,釆用EDA 自顶向下的设计方法,在Q-artus 3集成开发环境中利用原理图和调用PLM 宏功能模块完成软件设计,并通过FPGA 进行硬件测试。
关键词:FPGA ;直接数字频率合成器(DDS) ; PLM引言直接数字频率合成器(DDS), 一种 的频率合成技术和信号生方法,的频率 率, 实现频率的快速切换,并且在变能 ,实现频率、 和 的数控调制。
,在现代电子 及设的频率源设计中,在通信领域,DDS 的应用 广泛。
1系统的整体设计方案设计的一个DDS 信号发生器,如图1所示,它器、 调制器、 ROM 和D/A 换模块 成。
1ROM 中的mif 数件, 生 、方、 等 信号。
器 DDS 的核心,完成 的功能, 器的量!又由于!与输出频率血的B3=2g 血,器的频率字输入。
当系忌2$时等于尤频率字 在图1中 :过了一 器, 频率字改变加器的。
系统时钟图1 DDS 信号发生器结构调制器接 器的 出,在 一, 用于信号的 调制,如PSK (相移键控)等,在 用 , 一个固定的字数 S 字 最好也用步 器 步。
注意,字输入的数 宽 &与频率字$往往 不相等的,波数字储ROMG表)完成仏(凤)的换,也 理解成 到 的换,的 调制器的输出,事实上就是ROM 的地址出送往D/A ,转化模拟信号。
于 调制器的出数 宽&也ROM 的地址宽,因此在实际的DDS 结构中$往往很大,而&为10位左右。
2电路设计DDS 信号发生器电路原理图图2所示,法器ADDER32、 器REG32、数据波形ROM 三大功能子模块组成。
图2电路原理图(1) 32位加法器ADDER32。
基于FPGA的DDS信号发生器设计
基于FPGA的DDS信号发生器设计又称信号源或,在生产实践和科技领域中有着广泛的应用。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的被称为函数信号发生器。
函数信号发生器的实现办法通常是采纳分立元件或单片专用集成芯片,但其频率不高,稳定性较差,且不易调试,开发和用法上都受到较大限制。
随着可编程规律器件()的不断进展,挺直频率合成(DDS)技术应用的愈加成熟,利用DDS原理在FP-GA平台上开发高性能的多种波形信号发生器与基于DDS芯片的信号发生器相比,成本更低,操作越发灵便,而且还能按照要求在线更新配置,系统开发趋于软件化、自定义化。
本文讨论了基于FPGA的DDS信号发生器设计,实现了满足预定指标的多波形输出。
1 DDS基本原理DDS建立在采样定理基础上,首先对需要产生的波形举行采样,将采样值数字化后存入存储器作为查找表,然后通过查表读取数据,再经D/A转换器转换为模拟量,将保存的波形重新合成出来。
DDS基本原理框图1所示。
除了(LPF)之外,DDS系统都是通过数字实现的,易于集成和小型化。
系统的参考时钟源通常是一个具有高稳定性的晶体振荡器,为各组成部分提供同步时钟。
频率控制字(FSW)事实上是相位增量值(二进制编码)作为相位累加器的累加值。
相位累加器在每一个参考时钟脉冲输入时,累加一次频率字,其输出相应增强一个步长的相位增量。
因为相位累加器的输出衔接在波形存储器(ROM)的地址线上,因此其输出的转变就相当于查表。
这样就可以通过查表把存储在波形存储器内的波形抽样值(二进制编码)查找出来。
ROM的输出送到D/A转换器,经D/A 转换器转换成模拟量输出。
2 系统总体计划设计该设计以FPGA开发平台为核心,将各波形的幅值/相位量化数据存储第1页共5页。
基于DDS信号发生器毕业设计论文
目录绪论 (1)1 系统设计 (1)1.1方案论证 (2)1.1.1 信号模块 (2)1.1.2 控制模块 (3)1.1.3 显示模块 (4)1.1.4 键盘输入模块 (4)1.1.5 系统各模块的最终方案 (4)1.2理论分析与计算 (5)1.2.1 频率精度计算 (5)1.2.2 DDS的理论分析 (5)1.2.3 DDS的参数计算 (6)2 硬件系统设计 (7)2.1硬件元器件的选用 (7)2.1.1 C8051F020控制芯片简介 (7)2.1.2 AD9954简介 (9)2.2单元硬件电路设计 (13)2.2.1 矩阵(4×4)键盘电路 (13)2.2.2 电源电路 (14)2.2.3 电压调幅电路 (14)2.2.4 方波电路 (14)2.2.5 三角波电路 (15)3 软件系统设计 (16)3.1程序流程图 (16)4 系统测试 (19)4.1仿真测试 (19)4.2指标测试 (19)4.3测试方法 (20)5 结束语 (22)致谢 (23)参考文献 (24)附录一对AD9954编程的主要源程序清单 (25)附录二LCD显示子程序 (35)摘要:随着数字集成电路、微电子技术和EDA技术的深入研究,DDS技术以其有别于其它频率合成技术的优越性能和特点,成为现代频率合成技术中的佼佼者。
根据题目要求,我们以单片机C8051F020芯片和AD9954芯片为核心,辅以必要的模拟电路,设计一台信号发生器,使之能产生正弦波、方波和三角波。
该系统主要由控制模块、信号模块、显示模块、键盘输入模块构成。
仅用单片AD9954就实现了直接数字频率合成技术(DDS),产生稳幅正弦波。
输出的正弦波经过比较电路来实现方波的输出,而三角波则是在方波的基础上通过接入积分电路来实现的。
单片机对内部寄存器控制,AD9954就可以产生一个频谱纯净、频率和相位都可编程控制且稳定性很好的模拟波形,整个系统结构紧凑,电路简单,功能强大,可扩展性强。
基于DDS技术的信号发生器的设计与实现_毕业设计(论文)
毕业设计设计题目:基于DDS技术的信号发生器的设计与实现基于DDS技术的信号发生器的设计与实现摘要DDS是直接数字式频率合成器(Direct Digital Synthesizer)的英文缩写。
与传统的频率合成器相比,DDS具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,是实现设备全数字化的一个关键技术。
本设计采用单片机为核心处理器,利用键盘输入信号的参数,控制DDS的AD9850模块产生信号,信号的参数在LCD1602上显示,完成正弦信号和方波信号的输出,用示波器输出验证。
DDS是一种全数字化的频率合成器,由相位累加器、波形ROM、D/A转换器和低通滤波器构成。
时钟频率给定后,输出信号的频率取决于频率控制字,频率分辨率取决于累加器位数,相位分辨率取决于ROM的地址线位数,幅度量化噪声取决于ROM的数据位字长和D/A转换器位数。
与传统的频率合成方法相比,DDS合成信号具有频率切换时间短、频率分辨率高、相位变化连续等诸多优点。
使用单片机灵活的控制能力与AD9850的高性能、高集成度相结合,可以克服传统DDS设计中的不足,从而设计开发出性能优良的信号发生器系统。
关键词:单片机直接数字频率合成AD9850 DDSDesign and Implementation of the SignalGenerator Based on DDS TechnologyAbstractDDS is Direct Digital frequency Synthesizer (Direct Digital Synthesizer) English abbreviations. Compared with the traditional frequency synthesizer, with low cost, DDS low power consumption, high resolution and fast converting speed time and so on, widely used in telecommunications and electronic instruments field, is to realize equipment full digital a key technology.This design uses the single chip processor as the core, using a keyboard input signal parameters, control of DDS AD9850 module produce signals, the signal parameters in LCD1602 show that the complete sine signal and square wave signal output, the output with an oscilloscope validation.DDS is A full digital frequency synthesizer, by phase accumulators, waveform ROM, D/A converter and low pass filter composition. The clock frequency after A given, the output depends on the frequency of the signal frequency control word, the frequency resolution depends on accumulators digits, phase resolution depends on the ROM address line digits, amplitude quantization noise depends on the ROM data A word length and D/A converter digits. And the frequency of the traditional method than the synthesis, DDS synthesis signal has a frequency switching frequency of short time, high resolution and continuous phase changes, and many other advantages. Using single chip microcomputer control of the flexible ability and high performance, high level of integration of the AD9850 combination, can overcome the disadvantage of the traditional DDS design, to design the developed good performance of signal generator system.Key word:MCU; direct digital frequency synthesis;AD9850;DDS目录1 引言 (1)2DDS概要 (2)2.1DDS介绍 (2)2.1.1 DDS结构 (2)2.1.2典型的DDS函数发生器 (3)2.2DDS数学原理 (5)3 总体设计方案 (8)3.1系统设计原理 (8)3.2总体设计框图 (8)4 系统硬件模块的组成 (9)4.1单片机控制模块 (9)4.1.1 STC89C52主要性能 (9)4.1.2 STC89C52功能特性描述 (9)4.1.3 时钟电路 (11)4.1.4复位电路 (11)4.2AD9850模块 (12)4.2.1 AD9850简介 (12)4.2.2 AD9850的控制字与控制时序 (14)4.2.3单片机与AD9850的接口 (15)4.3滤波电路设计 (15)4.4键盘控制模块 (16)4.5LCD显示模块 (16)4.5.1液晶显示器显示原理 (16)4.5.2 1602LCD引脚与时序 (17)4.6A/D转换模块 (20)5 软件设计与调试 (21)5.1程序流程图 (21)5.2软件调试 (22)5.2.1 keil编程工具介绍 (22)5.2.2 STC-ISP下载工具介绍 (23)6 硬件电路制作 (24)6.1原理图的绘制 (24)6.2电路实现的基本步骤 (24)6.3硬件测试波形图 (25)7 结论 (27)谢辞 .............................................................................................. 错误!未定义书签。
基于FPGA的信号发生器设计论文
摘要信号发生器是数字设备运行工作中必不可少的一部分,没有良好的信号源,最终就会导致系统不能够正常工作,更不必谈什么实现其它功能了。
本次论文主要研究了基于FPGA的函数信号发生器的设计思路与软硬件实现。
首先介绍了本次设计任务的总体设计方案,以及该方案中涉及的知识点,所使用的软件及硬件基本知识。
在此基础上进行了硬件电路的设计,主要采用DDS(直接数字频率合成)方案,采用了Altera 公司的低成本cyclone II系列FPGA的EP2C5QC8作为核心芯片,构建了外围的0832DA转换电路,以及1MHZ低通滤波电路。
再次介绍系统软件的设计过程,给出了FPGA自底向上的设计思路,以及各个底层模块的设计原理与思路分析,最后介绍了相关软件的应用知识。
最后一段介绍了论文的相关结论,进行仿真调试的过程。
实现了设计任务的频率从100HZ到1MHZ可调,幅度从0.1V到5V可调的功能。
系统的设计方案和设计过程具有参考和学习价值。
关键词:信号发生器FPGA Modelsim Verilog语言AbstractThe signal generator is an essential part of the work of digital equipment operation, without a good source, and ultimately will cause the system to work properly, not to talk about the achievement of other features. This thesis studied the software and hardware design of the FPGA-based Signal Generator. First introduced the overall design of the design task, and knowledge involved in the program, use basic software and hardware knowledge. On this basis, the hardware circuit design, using DDS (Direct Digital Frequency Synthesizer) program, using Altera's low-cost cyclone II FPGA series EP2C5QC8 core chip to build a peripheral 0832DA conversion circuit, and 1MHZ low pass filter circuit. Re-introduce the system software design process, given FPGA design ideas from the bottom up, as well as the design principles and ideas of the bottom module, and finally introduced a software application knowledge. The last paragraph of the conclusions of the paper, simulation debugging process. Design task frequency is adjustable from 100HZ to 1MHZ function of the adjustable range from 0.1V to 5V. System design and design process has a reference and learning value.Keywords: Signal generator,FPGA,Modlesim,Verilog HDL目录摘要 (I)ABSTRACT (II)目录.............................................................................................................. I II 前言. (1)1 概述 (3)1.1FPGA简介 (3)1.2 MODELSIM简介 (8)1.3DDS基本原理介绍 (9)2 设计方案 (12)2.1总体设计思路 (12)2.2方案论证 (13)2.2.1方案一 (13)2.2.2方案二 (13)2.2.3方案三 (14)2.3方案确定 (14)3 硬件电路设计 (16)3.1硬件设计注意事项 (16)3.2DA电路 (16)3.3滤波电路 (18)3.4硬件电路实现 (20)4 软件设计 (21)4.1波形产生模块 (21)4.1.1正弦波 (21)4.1.2 矩形波 (23)4.1.3 三角波 (24)4.2频率控制模块 (24)4.3相位累加模块 (25)4.3选择波形模块 (26)4.4幅度控制模块 (27)5 调试 (32)5.1设计及仿真调试使用设备 (32)5.2调试方法 (32)5.2.1 硬件调试 (32)5.2.2 软件调试 (32)5.2.3 综合调试 (33)5.3调试结果 (33)5.3.1 软件仿真结果及分析 (33)5.3.2 综合调试结果 (38)总结 (39)致辞 (40)参考文献 (41)附件1 ROM生成元程序 (42)附件2 40位流水线加法器程序 (44)前言随着我国的经济日益增长,社会对电子产品的需求量也就越来越大,目前我国的电子产品市场正在迅速的壮大,市场前景广阔。
基于FPGA的DDS信号发生器设计
第1章绪论1.1 系统背景随着科技的不断发展,电子技术获得了飞速的发展,有力的推动了生产力的发展和社会信息化程度的提高,电子行业也经历着日新月异的变化。
90年代后期,出现了以高级语言描述、系统级仿真和综合技术为特征的第三代EDA工具,极大地提高了系统设计的效率,使广大的电子设计师开始实现“概念驱动工程”的梦想。
设计师们摆脱了大量的具体设计工作,而把精力集中于创造性的方案与概念构思上,从而极大地提高了设计效率,缩短了产品的研制周期。
现场可编程逻辑门阵列FPGA,与PAL、GAL器件相比,他的优点是可以实时地对外加或内置得RAM或EPROM编程,实施地改变迄今功能,实现现场可编程(基于EPROM型)或在线重配置(基于RAM型)。
是科学试验、演技研制、小批量产品生产的最佳选择其间。
自上世纪70年代单片机问世以来,它以其体积小、控制功能齐全、价格低廉等特点赢得了广泛的好评与应用。
由单片机构成的应用系统有有体积小、功耗低控制功能强的特点,它用利于产品的小型化、多功能化和智能化,还有助与提高仪表的精度和准确度,简化结构、减小体积与重量,便于携带与使用,降低成本,增强抗干扰能力,便于增加显示、报警和诊断功能。
因而许多现代仪器仪表都用到了单片机。
1.2 选题目的及其意义信号发生器它最原始的功能是能够产生多种波形,比如说它可以产生方波、三角波、正弦波、锯齿波等等。
但随着科技的发展,它的功能也得到了增强,成为最普通、最基本的,也是应用最广泛的电子仪器之一,几乎所有的电参量的测量都需要用到多功能信号发生器。
不论是在生产还是在科研与教学上,多功能信号源发生器都是电子工程师信号仿真实验的最佳工具。
它除此之外还有许多的用途,它已经被广泛地应用于工业、教学、医学,科学研究等领域。
目前大部分信号发生器的设计是以微控制器为核心进行的,它与纯硬件设计的信号发生器相比,具有高精度、高可靠性、操作方便、价格便宜、智能化等特点,是智能化仪器的一个发展方向,具有一定的实用价值。
毕业设计论文基于FPGA的信号发生器设计
武汉工业学院毕业设计(论文)设计(论文)题目:基于FPGA的信号发生器设计姓名学号院系电气与电子工程学院专业电子信息科学与技术指导教师目录摘要 ...................................................................................................................................... i ii Abstract (iv)前言 (1)1绪论 (3)1.1 FPGA简介 (3)1.2 modelsim简介 (5)1.3 DDS基本原理介绍 (6)2设计方案 (8)2.1 总体设计方案 (8)2.2方案论证 (8)2.2.1方案一 (8)2.2.2方案二 (9)2.2.3方案三 (9)2.3方案确定 (9)3 硬件电路设计 (11)3.1硬件设计注意事项 (11)3.2 DA电路 (11)3.3滤波电路 (12)3.4硬件电路实现 (13)4软件设计 (14)4.1波形产生模块 (14)4.1.1正弦波 (14)4.1.2方波 (15)4.1.3 三角波 (15)4.2频率控制模块 (16)4.3相位累加模块 (17)4.4选择波形模块 (17)4.5幅度控制模块 (18)4.6软件设计总成 (19)5 调试 (20)5.1设计及仿真调试使用设备 (20)5.2 调试方法 (20)5.2.1 硬件调试 (20)5.2.2 软件调试 (20)5.2.3 综合调试 (20)5.3 调试结果 (21)5.3.1 软件仿真结果及分析 (21)5.3.2 综合调试结果 (24)总结 (25)致谢辞 (26)参考文献 (27)附件1 ROM生成源程序 (28)附件2 40位流水线加法器程序 (30)摘要信号发生器是数字设备运行工作中必不可少的一部分,没有良好的信号源,最终就会导致系统不能够正常工作,更不必谈什么实现其它功能了。
基于FPGA的DDS信号发生器
0 引言由于现代电子技术的飞速发展,信号发生器已成为现代测试领域应用非常广泛的仪器。
而数字技术在生产实践和科技领域中的广泛使用,电子测量工作对信号发生器的频率范围、精度、稳定度、分辨率以及输出电平的范围、精度、频谱纯度等性能有了更严格,更具体的要求。
传统的信号发生器具有成本高,操作不灵活等缺点已经远远满足不了现代电子测量的需要退出了历史舞台[1]。
所以,为了适应现代电子技术的不断发展和试产所需求的信号发生器,研究高性能信号发生器是极为必要的。
FPGA (现场可编程门阵列)具有高集成度、高速度、低费用、低风险。
低功耗等特性,能有效地实现 DDS [2-4] 技术,极大地提高函数信号发生器的性能,大大降低电子系统的生产成本[5]。
现研究的基于51单片机和FPGA 的信号发生器具有超高的频率稳定度和高精度,大大提高了信号发生器的性能,能很好满足电子测量工作的需求。
1 系统设计方案1.1 系统硬件设计本文中主要利用 FPGA(EP4CE10F17C8)桥接控制TFT 的 LCD、4×4 键盘和AD9708(AT89C51单片机和AD9708有一条基准电压信号),系统硬件框图如图1所示。
本文中函数信号主要由FPGA(EP4CE10F17C8)产生;AT89C51单片机用作分析处理用户信息,给AD9708提供基准电压以及控制 FPGA(EP4CE10F17C8)产生需要用户的函数信号。
图1 系统硬件结构框图1.1.1 EP4CE10F17C8简介EP4CE10F17C8是ALTERA 公司推出一款嵌入式FPGA(现场可编程门阵列)芯片。
该芯片是极具功耗和性价比优势,它拥有10320个逻辑单元、414Kbits 的嵌入式存储资源、23个18×18的嵌入式乘法器、2个通用锁相环、10个全局时钟网络、8个用户IO BANK 和最大179个用户I/O,了解器件的整体硬件资源,有助于我们在设计时根据器件提供的资源,对设计进行合理的优化,以达到最佳的性价比。
基于FPGA的DDS波形发生器的设计论文
哈尔滨工业大学华德应用技术学院毕业设计(论文)摘要波形发生器己成为现代测试领域应用最为广泛的通用仪器之一,代表了波形发生器的发展方向。
随着科技的发展,对波形发生器各方面的要求越来越高。
近年来,直接数字频率合成器(DDS)由于其具有频率分辨率高、频率变换速度快、相位可连续变化等特点,在数字通信系统中已被广泛采用而成为现代频率合成技术中的佼佼者。
现场可编程门阵列(FPGA)设计灵活、速度快,在数字专用集成电路的设计中得到了广泛的应用,由于现场可编程门阵列(FPGA)具有高集成度、高速度、可实现大容量存储器功能的特性,能有效地实现DDS技术,极大的提高波形发生器的性能,降低生产成本。
本文首先介绍了DDS波形发生器的研究背景和DDS的理论。
然后详尽地叙述了用FPGA完成DDS模块的设计过程,利用Verilog-HDL硬件描述语言设计DDS波形发生器的各个模块,最后利用Altera的设计工具Quartus II并结合Modelsim软件对波形发生器进行电路设计功能仿真,并对仿真结果进行分析。
仿真结果表明,波形发生器可输出正弦波、三角波、方波、锯齿波,并且可通过改变频率控制字和相位控制字的大小来改变输出波形的频率和相位。
通过仿真结果表明,本设计达到了预定的要求,并证明了采用软硬件结合,利用FPGA技术实现DDS波形发生器的方法是可行的。
关键词:直接数字频率合成现场可编程门阵列波形发生器-I-哈尔滨工业大学华德应用技术学院毕业设计(论文)AbstractWaveform generator has become a modern field test one of the most widely used general-purpose equipment, on behalf of the waveform generator development. With the devel opment of technology in all aspects of the waveform generators have become increasingly demanding. In recent years, direct digital synthesizers (DDS) has a frequency resolution because of its high-frequency conversion speed, continuous changes in the phase characteristics in digital communication systems have been widely used in modern frequency synthesis technology to become the leader in . Field-programmable gate array (FPGA) design flexibility, high speed, in digital ASIC design has been widely used, due to field-programmable gate array (FPGA) with high integration, high-speed, large capacity memory can be realized functional characteristics, can effectively achieve DDS technology, which greatly improve the performance of waveform generator and reduce production costs. This paper introduces the DDS waveform generator of the research background and DDS theory. Then a detailed account of the completion of DDS module with FPGA design process, using Verilog-HDL Hardware Description Language Design DDS waveform generator for each module and finally the use of Altera's Quartus II design tool in conjunction with Modelsim software waveform generator circuit design features simulation, and simulation results analysis. Simulation results show that the waveform genera tor can output sine wave, triangle wave, square wave, sawtooth wave, and can be controlled by changing the frequency and phase control words words to change the size of the output waveform of the frequency and phase. The simulation results show that this d esigned to meet the scheduled requirements and proof of use of hardware and software combination of the use of FPGA technology to achieve DDS waveform generator approach is feasible.Keywords:DDS FPGA Waveform Generator-II-哈尔滨工业大学华德应用技术学院毕业设计(论文)目录摘要 (Ⅰ)Abstract (Ⅱ)第1章绪论 (1)1.1 课题背景 (1)1.2 国内外波形发生器发展现状 (2)1.2.1 波形发生器的发展现状 (2)1.2.2 国内外波形发生器产品比较 (4)1.2.3 研究波形发生器的目的及意义 (5)1.3本文研究主要内容 (5)第2章DDS波形发生器理论介绍 (6)2.1 频率合成技术 (6)2.1.1频率合成技术的发展和分类 (6)2.1.2频率合成技术的技术指标 (7)2.1.3直接数字频率合成技术的现状及应用 (8)2.2 DDS的原理及性能特点 (9)2.2.1 DDS的基本原理 (9)2.2.2 DDS的优点 (11)2.2.3 DDS的缺点 (12)本章小结 (12)第3章 FPGA及其开发环境简介 (13)3.1现场可编程门阵列(FPGA)简介 (13)3.2 Quartus II 8.1集成开发环境简介 (15)3.3 ModelSimHDL语言仿真软件简介 (16)3.4 Verilog-HDL语言简介 (17)3.5 FPGA开发流程 (19)本章小结 (19)第4章DDS波形发生器的FPGA实现 (20)4.1 DDS波形发生器的FPGA设计流程 (20)4.2 DDS波形发生器模块划分 (22)4.2.1 DDS波形发生器顶层模块 (22)-III-哈尔滨工业大学华德应用技术学院毕业设计(论文)4.2.2 DDS波形发生器测试模块 (23)4.2.3 DDS波形发生器ROM模块 (25)4.3 DDS波形发生器功能仿真 (25)本章小结 (27)结论 (28)致谢 (29)参考文献 (30)附录1 译文 (31)附录2 英文参考资料 (33)-IV-哈尔滨工业大学华德应用技术学院毕业设计(论文)第1章绪论1.1 课题背景直接数字频率合成(Direct Digital Synthesizer,简称:DDS)技术是一种新的全数字的频率合成原理,它从相位的角度出发直接合成所需波形。
DDS信号发生器完整论文
摘要信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
本设计主要有三大模块,主控制器模块、信号发生模块和液晶显示模块。
采用AT89S52单片机为主控制器,由它来控制DDS芯片AD9835再通过DAC0832,它是一个8位的数模转换器,可以完成数字量输入到模拟量输出的转换,然后经运放调节电压幅度,产生1MHz~15MHz的正弦波和方波,最后由液晶屏显示。
液晶屏采用的是四线电阻触摸式。
其重点讨论了AD9835基本工作原理、DAC数模转换及其与89S52单片机控制系统的硬件结构和软件设计框图,此外还增加了触摸屏,应用起来比较方便。
关键词:单片机89S52;AD9835芯片;DAC0832;触摸屏AbstractSignal generator is signal power or oscillator in production practice and science and technology has been widely used in the field. Various waveform curve can be expressed by trigonometric function equations. For example in telecommunications, broadcasting and television systems, high-frequency radio frequency (need) emission, here is the carrier of radio frequency waves, video and audio (low) signals or carrying out the pulse signal, need to be able to produce high-frequency oscillator. In industry, agriculture, biomedical fields, such as in high-frequency heating, smelting, quenching, ultrasonic diagnosis, nuclear magnetic resonance imaging, etc, all need power or big or small, high or low frequency or the oscillator.The three main module design, control module, signal module and LCD module. AT89S52 SCM, mainly adopted by it to control the controller chip AD9835 DAC0832 through spurious again, it is a of 8 bits can be completed digital-to-analog converters, digital input to the analog output conversion, then the op-amp regulation, to meet the requirements of the voltage waveform, finally by the display on the LCD panel. LCD USES is four line resistance feeling. This paper discusses the basic principle of work, and AD9835 89S52 interface, the single chip microcomputer control system, the hardware structure and software design, working principle and touch screen.Key words:SCM;AD9835 chip;DAC0832;TouchScreen目录1 绪论 (1)1.1课题研究的意义与作用 (1)1.2DDS的研究现状与发展趋势 (1)1.3DDS系统简介 (2)1.3.1 DDS的基本原理 (2)1.3.2DDS的性能特点 (3)2 系统设计 (4)2.1系统组成 (4)2.2方案论证与比较 (4)2.2.1 正弦波产生方案论证与选择 (4)2.2.2 幅度和频率控制方案 (6)2.2.3 模拟幅度调制 (7)2.2.4 数字PSK/ASK载波调制 (8)3 硬件电路模块设计 (10)3.1正弦信号产生模块 (10)3.2输出电压幅度控制 (12)3.3模拟和数字调制 (13)3.5触摸屏显示模块 (13)3.5.1 工作原理 (13)3.5.2 硬件设计 (13)4 单片机AT89S52简介 (16)4.1AT89S52的引脚及其功能 (16)4.1.1 I/O口 (18)4.1.2 P3口的第二功能 (19)4.2特殊功能寄存器 (19)5 系统软件设计 (21)5.1如何进行程序设计 (21)5.2流程图 (21)5.5.1 主流程图 (21)5.5.2 初始化AD9835 (22)结论 (24)参考文献 (25)附录一:电路原理图 (26)附录二:源程序 (27)致谢 (36)1 绪论1.1 课题研究的意义与作用1971年,美国学者j. Tierney等人撰写的“A Digital Frequency Synthesizer”文中首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新的频率合成原理。
基于FPGA的DDS信号发生器的研究--毕业论文
第1章绪论1.1 课题背景频率检测是电子测量领域的最基本也是最重要的测量之一,频率信号抗干扰强,易于传输,可以获得较高的测量精度,所以频率方法的研究越来越受到重视[1]。
在频率合成领域中,直接数字合成(Direct Digital Synthesizer,简称:DDS)是近年来新的技术, 它从相位的角度出发直接合成所需波形。
它是由美国人J.Tierncy首先提出来的,是一种以数字信号处理理论为基础,从相位概念出发直接合成所需波形的一种新的全数字技术的频率合成方法[2]。
其主要优点有:频率改变速度快、频率分辨率高、输出相位连续、可编程、全数字化便于集成等,目前使用最广泛的一种DDS频率合成方式是利用高速存储器将正弦波的M个样品存在其中,然后以查找的方式按均匀的速率把这些样品输入到高速数模转换器,变成所设定频率的正弦波信号[3]。
近30年来,随着超大规模集成、现场可编程门阵列(Field Programmable Gate Array,简称:FPGA)、复杂可编程器件(Complex programmable Logic Device,简称:CPLD)等技术的出现以及对DDS理论上的进一步探讨,使得DDS技术得到了飞速的发展。
它已广泛应用于通讯、雷达、遥控测试、电子对抗、以及现代化的仪器仪表工业等许多领域。
DDS的数字部分,即相位累加器和查表,被称为数控振荡器(NCO)[4]。
波形发生器即通常所说的信号发生器是一种常用的信号源,和示波器、电压表、频率计等仪器一样是最普遍、最基本也是应用最广泛的的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。
不论是在生产还是在科研与教学上,波形发生器都是电子工程师信号仿真试验的最佳工具。
随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业论文声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。
除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。
对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。
本人完全意识到本声明的法律结果由本人承担。
2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。
本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。
3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。
4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。
论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。
论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。
学位论文作者(签名):年月关于毕业论文使用授权的声明本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。
本人完全了解大学有关保存,使用毕业论文的规定。
同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。
本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。
如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。
本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。
本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。
在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。
论文作者签名:日期:指导教师签名:日期:毕业论文基于FPGA的DDS信号发生器的研究第1章绪论1.1 课题背景频率检测是电子测量领域的最基本也是最重要的测量之一,频率信号抗干扰强,易于传输,可以获得较高的测量精度,所以频率方法的研究越来越受到重视[1]。
在频率合成领域中,直接数字合成(Direct Digital Synthesizer,简称:DDS)是近年来新的技术, 它从相位的角度出发直接合成所需波形。
它是由美国人J.Tierncy首先提出来的,是一种以数字信号处理理论为基础,从相位概念出发直接合成所需波形的一种新的全数字技术的频率合成方法[2]。
其主要优点有:频率改变速度快、频率分辨率高、输出相位连续、可编程、全数字化便于集成等,目前使用最广泛的一种DDS频率合成方式是利用高速存储器将正弦波的M个样品存在其中,然后以查找的方式按均匀的速率把这些样品输入到高速数模转换器,变成所设定频率的正弦波信号[3]。
近30年来,随着超大规模集成、现场可编程门阵列(Field Programmable Gate Array,简称:FPGA)、复杂可编程器件(Complex programmable Logic Device,简称:CPLD)等技术的出现以及对DDS理论上的进一步探讨,使得DDS技术得到了飞速的发展。
它已广泛应用于通讯、雷达、遥控测试、电子对抗、以及现代化的仪器仪表工业等许多领域。
DDS的数字部分,即相位累加器和查表,被称为数控振荡器(NCO)[4]。
波形发生器即通常所说的信号发生器是一种常用的信号源,和示波器、电压表、频率计等仪器一样是最普遍、最基本也是应用最广泛的的电子仪器之一,几乎所有电参量的测量都要用到波形发生器。
不论是在生产还是在科研与教学上,波形发生器都是电子工程师信号仿真试验的最佳工具。
随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。
而传统波形发生器采用专用芯片,成本高,控制方式不灵活,已经越来越不能满足现代电子测量的需要,正逐步退出历史舞台。
可见,为适应现代电子技术的不断发展和市场要求,研究制作高性能的任意波形发生器十分有必要,而且意义重大。
1.2 国内外波形发生器发展现状1.2.1 波形发生器的发展现状在70年代前,信号发生器主要有两类:正弦波和脉冲波。
这个时期的波形发生器多采用模拟电子技术,而且模拟器件构成的电路存在着尺寸大、价格贵、功耗大等缺点,并且要产生较为复杂的信号波形,则电路结构非常复杂。
在70年代后,微处理器的出现,可以利用处理器、A/D和D/A,硬件和软件使波形发生器的功能扩大,产生更加复杂的波形。
这时期的波形发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。
90年代末,出现几种真正高性能、高价格的波形发生器、但是HP公司推出了型号为HP770S的信号模拟装置系统,它由HP8770A任意波形数字化和HP1776A波形发生软件组成。
HP8770A实际上也只能产生8种波形,而且价格昂贵。
到了二十一世纪,随着集成电路技术的高速发展,出现了多种工作频率可过GHz的DDS芯片,同时也推动了波形发生器的发展,2003年,Agilent的产品33220A能够产生17种波形,最高频率可达到20M,2005年的产品N6030A能够产生高达500MHz的频率,采样的频率可达1.25GHz。
最近几年来,随着集成电路技术和器件水平的提高,国外一些公司先后推出各种各样的DDS专用芯片,如Qualcomm公司的Q2230、Q2334,AD公司的AD9955、AD9850、AD9851、AD9852等[5]。
1.2.2 国内外波形发生器产品比较频率合成器被誉为电子系统的“心脏”,频率源的发展直接关系到电子系统性能的发展。
信号发生器是一种常用的信号源,广泛应用于通信、雷达、测控、电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格技术要求的电信号设备,和示波器、电压表、频率计等仪器一样是最普通、最基本也是应用最广泛的电子仪器之一,几乎所有电参量的测量都要用到波形发生器[6]。
早在1978年,由美国Wavetek公司和日本东亚电波工业公司公布了最高取样频率为5MHz,可以形成256点(存储长度)波形数据,垂直分辨率为8bit,主要用于振动、医疗、材料等领域的第一代高性能信号源,经过将近30年的发展,伴随着电子元器件、电路、及生产设备的高速化、高集成化,波形发生器的性能有了飞速的提高。
变得操作越来越简单而输出波形的能力越来越强。
波形操作方法的好坏,是由波形发生器控制软件质量保证的,编辑功能增加的越多,波形形成的操作性越好。
目前我国已经开始研制信号发生器,并获得了可喜的成果,但总的来说,我国波形发生器还没有形成真正的产业,并且我国目前在波形发生器的的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫[7]。
1.2.3 研究波形发生器的目的及意义波形发生器是信号源的一种,主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数[8]。
多功能波形发生器采用FPGA器件作为核心控制部件,精度高稳定性好,得到波形平滑,特别是由于FPGA的高速度,能实现较高频率的波形[9]。
目前我国己经开始研制波形发生器,并取得了可喜的成果。
但总的来说,我国波形发生器还没有形成真正的产业。
就目前国内的成熟产品来看,多为一些PC仪器插卡,独立的仪器和VXI系统的模块很少,并且我国目前在波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。
1.3 论文的主要工作与章节安排本文主要通过分析DDS的原理,进而得到DDS信号发生器的设计方案,然后通过选材等一系列设计来完成DDS信号发生器的研究。
其中第二章主要介绍DDS的基本原理以及优缺点。
第三章则重点介绍了本次设计所采用的开发平台。
第四章是本问重点介绍的对象,里面主要包含了设计的具体思路包括系统的实现以及系统工作流程情况。
第五章是要是对实验结果进行分析。
第2章DDS波形发生器的理论介绍2.1 DDS的基本原理与特点DDS即直接数字频率合成技术,是由美国学者J.Tiercy,M.Rader和B.Gold 于1971年首次提出,是一种以数字信号处理理论为基础,从相位概念出发直接合成所需波形的一种新的全数字技术的频率合成方法。
从1971年至今,DDS已从一个工程新事物逐渐发展成为一个重要的设计工具。
与大家熟悉的直接式和间接式(PLL)频率合成技术不同,DDS技术完全采用数字技术处理,属于第三代频率合成技术。
DDS的主要优点是它的输出频率、相位和幅度能够在微控制器的控制下精确而快速的变换。
DDS的应用领域包括各类无线通信、有线通信、网络通信,各类需要频率信号的仪器、仪表、遥测、遥感设备、收音机和电视机等[10]。
本节以正弦信号的产生为例,阐述DDS技术的基本原理。
对于一个频谱纯净的单频正弦信号可以用下式来描述:(2-1)其相位为(2-2))π2(sinsinout outtfAtAS==ωtfoutπ2=θ显然,该正弦信号相位和幅值均为连续变量。
为了便于采用数字技术,应对连续的正弦信号进行离散化处理,即把相位和幅值均转化为数字量。
用频率为fclk 的基准时钟对正弦信号进行抽样 ,这样,在一个参考时钟周期T 内,相位的变化量为(2-3)由上式得到的△θ为模拟量,为了将其转化为数字量,将2π切割成2N 等份作为最小量化单位,从而得到△θ的数字量M 为:(2-4)将式(2-3)带入(2-4 (2-5)式(2-5)表明,在参考时钟频f clk 确定的情况下,输出正弦信号的频率f out 决定于M 的大小,并且与M 呈线性关系。
通过改变M 的大小,就可以改变输出正弦信号的频率,因此,M 也称频率控制字。
当参考时钟频率取2N 时,正弦信号的频率就等于频率控制字M 。
当M 取1时,可以得到输出信号的最小频率步进为(2-6)由此可知,只要N 取值足够大,就可以得到非常小的频率步进值。