用Matlab件求常微分方程解(或通解)
matlab解常微分方程组
matlab解常微分方程组摘要:一、引言1.常微分方程组简介2.Matlab 在解常微分方程组中的应用二、Matlab 解常微分方程组的基本步骤1.安装并配置Matlab2.准备常微分方程组模型3.使用Matlab 求解器求解方程组4.分析解的结果三、Matlab 解常微分方程组的常用命令1.初始化常微分方程组2.定义方程组3.使用ode45 等求解器解方程组4.输出结果四、Matlab 解常微分方程组的实际应用1.物理模型中的应用2.工程领域中的应用3.生物学和经济学模型中的应用五、结论1.Matlab 在解常微分方程组方面的优势2.需要注意的问题和技巧3.展望Matlab 在常微分方程组求解领域的发展前景正文:一、引言常微分方程组在自然科学、工程技术和社会科学等领域中有着广泛的应用。
随着科技的发展,Matlab 作为一种功能强大的数学软件,已经成为常微分方程组求解的重要工具。
本文将介绍Matlab 解常微分方程组的基本方法、常用命令以及实际应用。
二、Matlab 解常微分方程组的基本步骤1.安装并配置Matlab:首先需要在计算机上安装Matlab 软件。
安装完成后,需要对Matlab 进行配置,以便更好地使用相关功能。
2.准备常微分方程组模型:根据实际问题,建立相应的常微分方程组模型。
这包括确定变量、方程和边界条件等。
3.使用Matlab 求解器求解方程组:Matlab 提供了丰富的求解器,如ode45、ode23、ode113 等。
根据问题特点选择合适的求解器,调用相关函数求解常微分方程组。
4.分析解的结果:求解完成后,需要对结果进行分析,检查其合理性和准确性。
可以使用Matlab 内置的图形功能绘制解的图像,直观地了解解的变化规律。
三、Matlab 解常微分方程组的常用命令1.初始化常微分方程组:使用`pdsolve`函数可以求解常微分方程组。
首先需要定义微分方程和边界条件,然后调用`pdsolve`函数求解。
使用Matlab进行微分方程求解的方法
使用Matlab进行微分方程求解的方法引言微分方程是数学中非常重要的一部分,广泛应用于物理、经济、工程等领域。
对于大部分微分方程的解析解往往难以求得,而数值解法则成为了一种常用的解决手段。
Matlab作为一种强大的科学计算软件,也提供了丰富的工具和函数用于求解微分方程,本文将介绍一些常见的使用Matlab进行微分方程求解的方法。
一、数值求解方法1. 欧拉方法欧拉方法是最简单的一种数值求解微分方程的方法,它将微分方程的微分项用差分的方式进行近似。
具体的公式为:y(n+1) = y(n) + hf(x(n), y(n))其中,y(n)表示近似解在第n个点的值,h为步长,f(x, y)为微分方程的右端项。
在Matlab中使用欧拉方法进行求解可以使用ode113函数,通过设定不同的步长,可以得到不同精度的数值解。
2. 中点法中点法是较为精确的一种数值求解微分方程的方法,它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)y(n+1) = y(n) + k2中点法通过计算两个斜率的平均值来得到下一个点的值,相较于欧拉方法,中点法能提供更精确的数值解。
3. 4阶龙格库塔法龙格库塔法是一类高阶数值求解微分方程的方法,其中4阶龙格库塔法是最常用的一种。
它的计算公式为:k1 = hf(x(n), y(n))k2 = hf(x(n) + h/2, y(n) + k1/2)k3 = hf(x(n) + h/2, y(n) + k2/2)k4 = hf(x(n) + h, y(n) + k3)y(n+1) = y(n) + (k1 + 2k2 + 2k3 + k4)/64阶龙格库塔法通过计算多个斜率的加权平均值来得到下一个点的值,相较于欧拉方法和中点法,它的精度更高。
二、Matlab函数和工具除了可以使用以上的数值方法进行微分方程求解之外,Matlab还提供了一些相关的函数和工具,方便用户进行微分方程的建模和求解。
matlab欧拉法解常微分方程
matlab欧拉法解常微分方程matlab欧拉法解常微分方程欧拉法是解决微分方程数值计算的一种基本方法,是通过估算函数图像的变化来得到函数的近似值。
而matlab是一种强大的数值计算软件,也能轻易地实现欧拉法解常微分方程的计算。
步骤一:选择解题模型选择合适的数学模型很重要。
对于已经给定的微分方程,需要将它化为标准的形式。
例如,我们有如下的微分方程:y’ = 2y - 3,y(0) = 1将其化为标准的形式:dy/dx = 2y -3 将初始值y(0) = 1带入。
步骤二:确定计算步长确定计算步长h。
步长的大小与计算精度有直接关系,步长太小,计算量将很大,而精度较高;步长太大,精度较低。
步长的计算公式为:h = (b-a)/n其中,a和b是区间限制,n是初始步数。
步骤三:使用欧拉法求解微分方程根据欧拉法的公式,假设在t时刻函数y的值是y(t),求在下一个时刻t+h如何估算y值,公式为:y(t+h) = y(t)+ h * y'(t)将y'(t)=2y-3代入上式,得:y(t+h) = y(t)+ h* (2y(t)-3)接下来,根据初始值y(0) = 1,带入计算步长可得出一系列的近似值。
步骤四:绘制函数图像对于计算结果,应绘制出函数的近似图像。
通过matlab绘制y(x)的图像,也可以通过计算的数据进行近似曲线的绘制。
步骤五:测试计算结果通过计算结果与初始值进行比较,看算法是否正确和有效。
也可以将步长不同的计算结果进行比较,判断精度和计算效率的高低。
欧拉法解常微分方程在matlab中的使用,相较于手工计算,更具有高效、准确、方便的优势。
正因如此,在各类数学、物理、工程等领域中都有着广泛的应用。
MATLAB实验四_求微分方程的解
参数说明
[T,Y] = solver(odefun,tspan,y0)
odefun 为显式常微分方程,可以用命令 inline 定义,或 在函数文件中定义,然后通过函数句柄调用。
dy 2 2 y 2 x 2x 求初值问题 的数值解,求解范 例: dx 围为 [0,0.5] y( 0 ) 1
dsolve的输出个数只能为一个 或 与方程个数相等。
只有很少一部分微分方程(组)能求出解析解。 大部分微分方程(组)只能利用数值方法求数值解。
Matlab函数数值求解
[T,Y] = solver(odefun,tspan,y0)
其中 y0 为初值条件,tspan为求解区间;Matlab在数值求解 时自动对求解区间进行分割,T (列向量) 中返回的是分割点 的值(自变量),Y (数组) 中返回的是这些分割点上的近似解, 其列数等于因变量的个数。
数学实验
实验四
求微分方程的解
问题背景和实验目的
自牛顿发明微积分以来,微分方程在描述事物运 动规律上已发挥了重要的作用。实际应用问题通过 数学建模所得到的方程,绝大多数是微分方程。 由于实际应用的需要,人们必须求解微分方程。 然而能够求得解析解的微分方程十分有限,绝大多 数微分方程需要利用数值方法来近似求解。 本实验主要研究如何用 Matlab 来计算微分方程 (组)的数值解,并重点介绍一个求解微分方程的 基本数值解法--Euler折线法。
Runge-Kutta 方法
Euler 法与 R-K法误差比较
Matlab 解初值问题
用 Maltab自带函数 解初值问题 求解析解:dsolve 求数值解:
ode45、ode23、 ode113、ode23t、ode15s、 ode23s、ode23tb
如何使用MATLAB求解微分方程(组)ppt课件
差,输出参数,事件等,可缺省。 9
使用ODE?时如何编 写微分方程 ?
方式一:带额外参数,使用时需对参数进行赋值
function odefun(t,x,flag,R,L,C) %用flag说明R、L、C为变 量
xdot=zeros(2,1);
%表明其为列向量
xdot(1)=-R/L*x(1)-1/L*x(2)+1/L*f(t);
2
Where ?
工程控制
ODE
医学生理
航空航天
金融分析
3
Where ?
算法开发 数据分析
数值计算 MAT LAB
数据可视化
4
When ?
当对问题进行建模后,有常微分方程 需要求解时。
在生物建模中,经常需要求解常微分 方程。如药物动力学的房室模型的建模 仿真。
5
方法 ode23
ode45
数 ode113
当无法藉由微积分技巧求 得解析解时,这时便只能利 用数值分析的方式来求得其 数值解了。实际情况下,常 微分方程往往只能求解出其
数值解。
在数学中,刚性方程是指一 个微分方程,其数值分析的解 只有在时间间隔很小时才会稳 定,只要时间间隔略大,其解 就会不稳定。
目前很难去精确地去定义哪 些微分方程是刚性方程,但是 大体的想法是:这个方程的解
y(1)=x(2);
y1
y2
y(2)= -t*x(1)+exp(t)*x(2)+3*sin(2*t);
end
1000
求解程序ห้องสมุดไป่ตู้键步骤
[t,y]=ode45('odefun',[3.9 4.0],[2 8])
y
实验二MATLAB 求微分方程的解
实验二 微分方程求解一、问题背景与实验目的实际应用问题通过数学建模所归纳而得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法,既要研究微分方程(组)的解析解法(精确解),更要研究微分方程(组)的数值解法(近似解).对微分方程(组)的解析解法(精确解),Matlab 有专门的函数可以用,本实验将作一定的介绍.本实验将主要研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法.二、相关函数(命令)及简介1.dsolve('equ1','equ2',…):Matlab 求微分方程的解析解.equ1、equ2、…为方程(或条件).写方程(或条件)时用 Dy 表示y 关于自变量的一阶导数,用用 D2y 表示 y 关于自变量的二阶导数,依此类推.2.simplify(s):对表达式 s 使用 maple 的化简规则进行化简. 例如: syms xsimplify(sin(x)^2 + cos(x)^2) ans=13.[r,how]=simple(s):由于 Matlab 提供了多种化简规则,simple 命令就是对表达式 s 用各种规则进行化简,然后用 r 返回最简形式,how 返回形成这种形式所用的规则.例如: syms x[r,how]=simple(cos(x)^2-sin(x)^2) r = cos(2*x) how = combine4.[T,Y] = solver(odefun,tspan,y 0) 求微分方程的数值解. 说明:(1) 其中的 solver 为命令 ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 之一.(2) odefun是显式常微分方程:⎪⎩⎪⎨⎧==00)(),(yt y y t f dt dy(3) 在积分区间 tspan =],[0f t t 上,从0t 到f t ,用初始条件0y 求解.(4) 要获得问题在其他指定时间点 ,210,,t t t 上的解,则令 tspan =],,,[,210f t t t t (要求是单调的).(5) 因为没有一种算法可以有效地解决所有的 ODE 问题,为此,Matlab 提供了多种求解器 Solver ,对于不同的ODE 问题,采用不同的Solver .(6) 要特别的是:ode23、ode45 是极其常用的用来求解非刚性的标准形式的一阶常微分方程(组)的初值问题的解的 Matlab 的常用程序,其中:ode23 采用龙格-库塔2 阶算法,用3 阶公式作误差估计来调节步长,具有低等的精度.ode45 则采用龙格-库塔4 阶算法,用5 阶公式作误差估计来调节步长,具有中等的精度.5.ezplot(x,y ,[tmin,tmax]):符号函数的作图命令.x,y 为关于参数t 的符号函数,[tmin,tmax] 为 t 的取值范围.6.inline():建立一个内联函数.格式:inline('expr', 'var1', 'var2',…) ,注意括号里的表达式要加引号.例:Q = dblquad(inline('y*sin(x)'), pi, 2*pi, 0, pi)三、实验内容1. 几个可以直接用 Matlab 求微分方程精确解的例子: 例1:求解微分方程22xxexy dxdy -=+,并加以验证.求解本问题的Matlab 程序为:syms x y %line1 y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') %line2diff(y ,x)+2*x*y-x*exp(-x^2) %line3 simplify(diff(y ,x)+2*x*y-x*exp(-x^2)) %line4 说明:(1) 行line1是用命令定义x,y 为符号变量.这里可以不写,但为确保正确性,建议写上;(2) 行line2是用命令求出的微分方程的解:1/2*exp(-x^2)*x^2+exp(-x^2)*C1(3) 行line3使用所求得的解.这里是将解代入原微分方程,结果应该为0,但这里给出:-x^3*exp(-x^2)-2*x*exp(-x^2)*C1+2*x*(1/2*exp(-x^2)*x^2+exp(-x^2)*C1)(4) 行line4 用 simplify() 函数对上式进行化简,结果为 0, 表明)(x y y =的确是微分方程的解.例2:求微分方程0'=-+x e y xy 在初始条件e y 2)1(=下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x yy=dsolve('x*Dy+y-exp(x)=0','y(1)=2*exp(1)','x') ezplot(y)微分方程的特解为:y=1/x*exp(x)+1/x* exp (1) (Matlab 格式),即xe e y x+=,解函数的图形如图 1:图1例3:求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++035y x dt dy e y x dtdx t在初始条件0|,1|00====t t y x 下的特解,并画出解函数的图形.求解本问题的 Matlab 程序为: syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t') simple(x); simple(y);ezplot(x,y ,[0,1.3]);axis auto微分方程的特解(式子特别长)以及解函数的图形均略. 2. 用ode23、ode45等求解非刚性的标准形式的一阶常微分方程(组)的初值问题的数值解(近似解).例4:求解微分方程初值问题⎪⎩⎪⎨⎧=++-=1)0(2222y x x y dxdy 的数值解,求解范围为区间[0, 0.5].fun=inline('-2*y+2*x^2+2*x','x','y'); [x,y]=ode23(fun,[0,0.5],1); x'; y';plot(x,y ,'o-') >> x' ans =0.0000 0.0400 0.0900 0.1400 0.1900 0.2400 0.2900 0.3400 0.3900 0.4400 0.4900 0.5000 >> y' ans =1.0000 0.9247 0.8434 0.7754 0.7199 0.6764 0.6440 0.6222 0.6105 0.6084 0.6154 0.6179 图形结果为图 2.图2例 5:求解描述振荡器的经典的 V er der Pol 微分方程.7,0)0(',1)0(,0)1(222====+--μμy y y dtdy y dty d分析:令,,121dtdx x y x ==则.)1(,1221221x x x dtdx x dtdx --==μ先编写函数文件verderpol.m : function xprime = verderpol(t,x) global mu;xprime = [x(2);mu*(1-x(1)^2)*x(2)-x(1)]; 再编写命令文件vdp1.m : global mu; mu = 7; y0=[1;0][t,x] = ode45('verderpol',[0,40],y0); x1=x(:,1);x2=x(:,2); plot(t,x1)图形结果为图3.图33. 用 Euler 折线法求解前面讲到过,能够求解的微分方程也是十分有限的.下面介绍用 Euler 折线法求微分方程的数值解(近似解)的方法.Euler 折线法求解的基本思想是将微分方程初值问题⎪⎩⎪⎨⎧==00)(),,(yx y y x f dx dy化成一个代数方程,即差分方程,主要步骤是用差商hx y h x y )()(-+替代微商dxdy ,于是:⎪⎩⎪⎨⎧==-+)()),(,()()(00x y y x y x f h x y h x y k k k k 记)(,1k k k k x y y h x x =+=+,从而)(1h x y y k k +=+,则有1,,2,1,0).,(,),(1100-=⎪⎩⎪⎨⎧+=+==++n k y x hf y yh x x x y y k k k k k k 例 6:用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=+=1)0(,22y y x y dxdy 的数值解(步长h 取0.4),求解范围为区间[0,2].解:本问题的差分方程为1,,2,1,0).2),( ),(,,4.0,1,021100-=⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+====++n k y x y y x f y x hf y y h x x h y x k k k k k k (其中: 相应的Matlab 程序见附录 1. 数据结果为:0 1.0000 0.4000 1.4000 0.8000 2.1233 1.2000 3.1145 1.6000 4.4593 2.0000 6.3074图形结果见图4:图4特别说明:本问题可进一步利用四阶 Runge-Kutta 法求解,读者可将两个结果在一个图中显示,并和精确值比较,看看哪个更“精确”?(相应的 Matlab 程序参见附录 2).四、自己动手1. 求微分方程0sin 2')1(2=-+-x xy y x 的通解.2. 求微分方程x e y y y x sin 5'2''=+-的通解.3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dtdx在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形. 4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异.5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32y y xy y 的数值解(步长h 取0.1),求解范围为区间[0,2].6. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取0.1),求解范围为区间[0,3].四阶 Runge-Kutta 法的迭代公式为(Euler 折线法实为一阶 Runge-Kutta 法):1,,2,1,0),()2,2()2,2(),()22(6,),(342312143211100-=⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧++=++=++==++++=+==++n k hL y h x f L L h y h x f L L h y h x f L y x f L L L L L hy y h x x x y y k k k k k k k k k k k k 相应的 Matlab 程序参见附录 2.试用该方法求解第5题中的初值问题. 7. 用 ode45 方法求上述第 6 题的常微分方程初值问题的数值解(近似解),从而利用画图来比较两者间的差异.五、附录附录 1:(fulu1.m)clearf=sym('y+2*x/y^2'); a=0; b=2; h=0.4;n=(b-a)/h+1; x=0; y=1;szj=[x,y]; for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y}); x=x+h;szj=[szj;x,y]; end szjplot(szj(:,1),szj(:,2))附录 2:(fulu2.m)clearf=sym('y-exp(x)*cos(x)'); a=0; b=3; h=0.1;n=(b-a)/h+1; x=0; y=1;szj=[x,y];for i=1:n-1l1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2))。
matlab求解常微分方程
matlab求解常微分⽅程本⽂主要介绍matlab中求解常微分⽅程(组)的dsolve和ode系列函数,并通过例⼦加深读者的理解。
⼀、符号介绍D: 微分符号;D2表⽰⼆阶微分,D3表⽰三阶微分,以此类推。
⼆、函数功能介绍及例程1、dsolve 函数dsolve函数⽤于求常微分⽅程组的精确解,也称为常微分⽅程的符号解。
如果没有初始条件或边界条件,则求出通解;如果有,则求出特解。
1)函数格式Y = dsolve(‘eq1,eq2,…’ , ’cond1,cond2,…’ , ’Name’)其中,‘eq1,eq2,…’:表⽰微分⽅程或微分⽅程组;’cond1,cond2,…’:表⽰初始条件或边界条件;‘Name’:表⽰变量。
没有指定变量时,matlab默认的变量为t;2)例程例1.1(dsolve 求解微分⽅程)求解微分⽅程:dsolve('Dy=3*x^2','x')例1.2(加上初始条件)求解微分⽅程:例2(dsolve 求解微分⽅程组)求解微分⽅程组:由于x,y均为t的导数,所以不需要在末尾添加’t’。
2、ode函数在上⽂中我们介绍了dsolve函数。
但有⼤量的常微分⽅程,虽然从理论上讲,其解是存在的,但我们却⽆法求出其解析解,此时,我们需要寻求⽅程的数值解。
ode是Matlab专门⽤于解微分⽅程的功能函数。
该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。
不同类型有着不同的求解器,具体说明如下图。
其中,ode45求解器属于变步长的⼀种,采⽤Runge-Kutta算法;其他采⽤相同算法的变步长求解器还有ode23。
ode45表⽰采⽤四阶-五阶Runge-Kutta算法,它⽤4阶⽅法提供候选解,5阶⽅法控制误差,是⼀种⾃适应步长(变步长)的常微分⽅程数值解法,其整体截断误差为(Δx)^5。
解决的是Nonstiff(⾮刚性)常微分⽅程。
matlab解常微分方程
matlab解常微分⽅程1. ODE常微分⽅程ordinary differential equation的缩写,此种表述⽅式常见于编程,如MATLAB中Simulink求解器solver已能提供了7种微分⽅程求解⽅法:ode45(Dormand-Prince),ode23(Bogacki-Shampine),ode113(Adams),ode15s(stiff/NDF),ode23s(stiff/Mod. Rosenbrock),ode23t(mod.stiff/Trapezoidal),ode23tb(stiff/TR-BDF2)。
微分⽅程、微分⽅程组⾃标量 因变量 ⼀元 多元 函数 映射⼀元:只有⼀个因变量多元:有多个因变量导数 偏导:谁对谁的导数,因变量对⾃变量的导数,默认或缺省⾃变量为t 、x ?⼀元⽅程 多元⽅程 多元⽅程组 n个⽅程解n个未知量微分⽅程 ⼀阶 ⾼阶微分⽅程 ⼀阶微分⽅程组⼀阶常微分⽅程:Dx/dt + x = e^t⾼阶常微分⽅程:d^2x/dt^2+dx/dt+x=e^2t⼀阶微分⽅程组(多元):dy/dt+x=e^2tdx/dt+2y-x=e^t初始条件:dy/dt0=... dx/dt0=... y0=... x0=...可以解出:y=f(t)=.... x=f(t)=.... 两个⽅程解两个未知数(因变量)⼀个N阶(多元)微分⽅程可以写成(分解成)N个⼀阶微分⽅程(即微分⽅程组)如:x.. + 2x. -x = u令x.=x2; x=x1 则...微分⽅程的精确解: r=dsolve('eqn1','eqn2',...,'cond1','cond2',...,'var').数值解: [t,y]=solver('odefun',tspan,y0,options)1. 求精确解1.微分⽅程r=dsolve('eqn1','eqn2',...,'cond1','cond2',...,'var').该命令中可以⽤D表⽰微分符号,其中D2表⽰⼆阶微分,D3表⽰三阶微分,以此类推。
用MATLAB求解微分方程
1. 微分方程的解析解
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
结 果:u = tan(t-c)
解 输入命令:dsolve('Du=1+u^2','t')
STEP2
STEP1
解 输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
导弹追踪问题
设位于坐标原点的甲舰向位于x轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v0(是常数)沿平行于y轴的直线行驶,导弹的速度是5v0,求导弹运行的曲线方程.又乙舰行驶多远时,导弹将它击中? 解法一(解析法)
由(1),(2)消去t整理得模型:
解法二(数值解)
结 果 为:x = (c1-c2+c3+c2e -3t-c3e-3t)e2t y = -c1e-4t+c2e-4t+c2e-3t-c3e-3t+c1-c2+c3)e2t z = (-c1e-4t+c2e-4t+c1-c2+c3)e2t
2、取t0=0,tf=12,输入命令: [T,Y]=ode45('rigid',[0 12],[0 1 1]); plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
3、结果如图
图中,y1的图形为实线,y2的图形为“*”线,y3的图形为“+”线.
Matlab微分方程的解法
-0.5
-0.55
-0.6
-0.65
-0.7
-0.75
-0.8
-0.85
-0.9
-0.95
-1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
time t0=0,tt=1
图3 给定新的初始数据,由函数xprim2定义的ODE解的图形
(d) 求解下面方程组并不难:
x x x x ì ' = - 0.1
在下面的初值问题中,有两个未知函数:x1(t)和x2(t),并用以下式子表达其微... 页码,1/11
Matlab关于微分方程的解法
MATLAB使用龙格-库塔-芬尔格(Runge-Kutta-Fehlberg)方法来解ODE问题。在有限点内计算求解。而 这些点的间距有解的本身来决定。当解比较平滑时,区间内使用的点数少一些,在解变化很快时,区间内应使 用较多的点。 为了得到更多的有关何时使用哪种解法和算法的信息,推荐使用helpdesk。所有求解方程通用的语法或句法在 命令集中头两行给出。时间间隔将以向量t=[t0,tt]给出。 命令ode23可以求解(2,3)阶的常微分方程组,函数ode45使用(4,5)阶的龙格-库塔-芬尔格方法。注意,在这种情 况下x’是x的微分不是x的转置。 在命令集中solver将被诸如ode45函数所取代。
0.6
0.55
0.5
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1
time t0=0,tt=1
图1 由函数xprim1定义的ODE解的图形
(b) 解下面的ODE过程是等价的:
ïíìx' = x2
ïîx(0) = 1
matlab求解常微分方程
用matlab 求解常微分方程在MATLAB 中,由函数dsolve ()解决常微分方程(组)的求解问题,其具体格式如下:r = dsolve('eq1,eq2,...', 'cond1,cond2,...', 'v')'eq1,eq2,...'为微分方程或微分方程组,'cond1,cond2,...',是初始条件或边界条件,'v'是独立变量,默认的独立变量是't'。
函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解。
例1:求解常微分方程1dy dx x y =+的MATLAB 程序为:dsolve('Dy=1/(x+y)','x'),注意,系统缺省的自变量为t ,因此这里要把自变量写明。
其中:Y=lambertw(X)表示函数关系Y*exp(Y)=X 。
例2:求解常微分方程的MATLAB 程序为:2'''0yy y −=Y2=dsolve('y*D2y-Dy^2=0','x')Y2=dsolve('D2y*y-Dy^2=0','x')我们看到有两个解,其中一个是常数0。
例3:求常微分方程组253ttdxx y edtdyx y edt⎧++=⎪⎪⎨⎪−−=⎪⎩通解的MATLAB程序为:[X,Y]=dsolve('Dx+5*x+y=exp(t),Dy-x-3*y=exp(2*t)','t')例4:求常微分方程组2210cos,24,tttdx dyx t xdt dtdx dyy e ydt dt=−=⎧+−==⎪⎪⎨⎪++==⎪⎩2通解的MATLAB程序为:[X,Y]=dsolve('Dx+2*x-Dy=10*cos(t),Dx+Dy+2*y=4*exp(-2*t)','x(0)=2,y(0)=0','t')以上这些都是常微分方程的精确解法,也称为常微分方程的符号解。
matlab解微分方程的通解
matlab解微分方程的通解
一、MATLAB解微分方程的通解
MATLAB有两种不同的函数可以解微分方程,一种是dsolve,另一种是ode45。
1.dsolve函数
dsolve函数是最常用的求解微分方程的函数,它可以求解一阶、二阶及更高阶的常微分方程,它能够得到方程的通解,但是它只能解指定类型的非线性方程,例如:常微分方程的通解,初值问题的解。
使用dsolve函数时应该按照以下步骤:
(1)输入微分方程,将其表示为一个字符串;
(2)调用dsolve函数,并传入字符串;
(3)调用结果,观察输出;
(4)如果输出为“未定义”,则需要检查输入的字符串是否正确;
(5)如果输出正确,则可以根据输出解析得到通解。
例1:解以下微分方程:
y″+2y′+5y=0
解:
首先将微分方程表示为字符串:
syms y
eqn=diff(y,2)+2*diff(y,1)+5*y==0
然后调用dsolve函数:
ySol=dsolve(eqn)
解析输出:
ySol=C1*exp(-3*t)+C2*exp(-2*t)
得到方程的通解为:
y=C1*exp(-3*t)+C2*exp(-2*t)
2.ode45函数
ode45函数是MATLAB中用于求解微分方程的另一种函数,它可以求解一阶、二阶及更高阶的常微分方程,以及积分方程、常系数线性微分方程等。
使用ode45函数时应该按照以下步骤:
(1)创建微分方程的函数;
(2)定义起始点和终止点;
(3)调用ode45函数,并传入函数及起始点和终止点;
(4)观察输出;
(5)根据结果获取通解。
利用MATLAB求解实际问题中的微分方程
、
MA L B简介 T A
常微 分方 程 的解析 解 法仅 限 于一些 典 型方 程 。 对 于实 际问题 中建 立起 来 的微 分方 程模 型 , 般较 一
为 复 杂 , 的没 有 解 析 表 达式 的解 ; 的虽 然 有解 有 有
MA L B是 由美 国 的 Ma w rs 司 推 出 的 TA t ok 公 h
0c. t 20l1
利用 MA L B求解实 际 问题 中的微分方 程 TA
陈智豪
( 苏农 林 职业技 术 学 院 ,江 苏 句容 江 220 ;2安徽 工 业 大学 ,安徽 140 . 马鞍山 230 ) 400
摘
致 。
要 :本文主要讨论 了如何利用 MA L B求解实际问题 中的微分方程 , 中包括常微分方程的解 TA 其
本 文 通 过对 几 个 实 际 问题 建 模 ,利 用 MA — Y
%求微 分 方程组 的特 解 备 注 :q,…en是 微 分 方 程 ,其 中 D el q y表 示
d y
,
Dy n 表
;
初 始或 边 界 条 件 y = l b与 yl d写 成 ya h  ̄ ’ 一: () , =
机 交 互 的数学 环境 ,并 以 矩 阵作 为基 本 的数 据 结
构 ,可 以大大 节省 编程 时 间 , T AB语 法 规则 简 MA L
单 、 易掌 握 、 试 方 便 , 试 过 程 可 以设 置 断点 , 容 调 调
格一库塔算法 备注 : 输入 : F是微分 方程 ( 或微分方程组 ) 的
在 M TA A L B中 ,常微 分 方程 的解 析解 由 函数
do e 计 算 , 常 的调用 格 式为 : sl 来 v 通
matlab求微分方程组的解析解
MATLAB求微分方程组的解析解引言在科学与工程领域,微分方程组是一种常见的数学模型,用于描述各种物理现象和工程问题。
解析解是指能够用公式表达出来的精确解。
本文将介绍如何使用M ATL A B求解微分方程组的解析解。
1.方程组的建立首先,我们需要确定待求解的微分方程组。
假设我们有一个由n个微分方程组成的方程组,可以写为如下形式:d y1/dt=f1(t,y1,y2,...,yn)d y2/dt=f2(t,y1,y2,...,yn)......d y n/dt=f n(t,y1,y2,...,yn)其中`t`是自变量,`y1,y2,...,y n`是因变量,`f1,f2,...,fn`是给定的函数关系。
我们的目标是求解`y1(t),y2(t),...,yn(t)`的解析解。
2.使用MAT LAB求解M A TL AB提供了强大的求解微分方程组的工具,我们可以使用其中的函数来求解上述方程组的解析解。
首先,我们需要在MA T LA B中定义方程组的函数形式。
可以通过定义一个函数或者使用匿名函数来实现。
例如,我们可以定义一个名为`m yE qu at io ns`的函数,其输入参数为`t`和一个向量`y`,输出为一个向量`d y`,代表方程组的左侧和右侧的变量分别。
函数示例如下:f u nc ti on dy=m yE qua t io ns(t,y)%定义方程组d y=z er os(n,1);d y(1)=f1(t,y(1),y(2),...,y(n));d y(2)=f2(t,y(1),y(2),...,y(n));......d y(n)=fn(t,y(1),y(2),...,y(n));e n d然后,我们可以使用M AT LA B的`d so lv e`函数来求解微分方程组的解析解。
示例如下:s y ms ty1(t)y2(t)...yn(t)a s su me(t,'re al')a s su me(y1(t),'rea l')a s su me(y2(t),'rea l')......a s su me(y n(t),'rea l')e q n1=d if f(y1(t),t)==f1(t,y1(t),y2(t),...,y n(t));e q n2=d if f(y2(t),t)==f2(t,y1(t),y2(t),...,y n(t));......e q nn=d if f(yn(t),t)==fn(t,y1(t),y2(t),...,y n(t));e q ns=[eq n1,e qn2,...,eq nn];S=ds ol ve(e qn s);`S`即为方程组的解析解集合。
matlab求解常微分方程的准确解
matlab求解常微分方程的准确解使用Matlab求解常微分方程的准确解一、引言常微分方程是研究自然界现象和工程实际问题中常见的数学工具之一。
求解常微分方程的准确解对于理解问题的本质和性质具有重要意义。
本文将介绍如何使用Matlab来求解常微分方程的准确解,并通过具体的例子进行演示。
二、常微分方程的基本概念常微分方程是指包含未知函数及其导数的方程。
一般形式为:dy/dx = f(x,y)其中,y是未知函数,x是自变量,f(x,y)是已知函数。
常微分方程的解是指能够满足方程的函数y(x)。
三、Matlab的符号计算工具箱Matlab提供了符号计算工具箱,可以对方程进行符号计算。
通过符号计算工具箱,我们可以求解常微分方程的准确解。
四、使用Matlab求解常微分方程的步骤1. 定义未知函数和自变量。
在Matlab中,可以使用符号变量来定义未知函数和自变量。
2. 定义常微分方程。
使用符号变量来定义常微分方程。
3. 求解常微分方程。
使用dsolve函数来求解常微分方程的准确解。
4. 绘制准确解的图像。
使用ezplot函数来绘制准确解的图像。
五、具体例子假设我们要求解一阶线性常微分方程:dy/dx + y = x其中,y是未知函数,x是自变量。
1. 定义未知函数和自变量。
在Matlab中,可以使用符号变量来定义未知函数和自变量。
syms y(x)2. 定义常微分方程。
使用符号变量来定义常微分方程。
eqn = diff(y,x) + y == x3. 求解常微分方程。
使用dsolve函数来求解常微分方程的准确解。
sol = dsolve(eqn)4. 绘制准确解的图像。
使用ezplot函数来绘制准确解的图像。
ezplot(sol)六、总结本文介绍了如何使用Matlab求解常微分方程的准确解。
通过符号计算工具箱,我们可以方便地求解常微分方程,并得到准确解的图像。
使用Matlab求解常微分方程的准确解可以帮助我们更好地理解问题的本质和性质,并为进一步的分析和应用提供基础。
实验七用matlab求解常微分方程(最新整理)
实验七 用matlab 求解常微分方程一、实验目的:1、熟悉常微分方程的求解方法,了解状态方程的概念;2、能熟练使用dsolve 函数求常微分方程(组)的解析解;3、能熟练应用ode45\ode15s 函数分别求常微分方程的非刚性、刚性的数值解;4、掌握绘制相图的方法二、预备知识:1.微分方程的概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。
如果未知函数是一元函数,称为常微分方程。
常微分方程的一般形式为),,",',,()(=n y y y y t F 如果未知函数是多元函数,成为偏微分方程。
联系一些未知函数的一组微分方程组称为微分方程组。
微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。
若方程中未知函数及其各阶导数都是一次的,称为线性常微分方程,一般表示为)()(')()(1)1(1)(t b y t a y t a y t a y n n n n =++++-- 若上式中的系数ni t a i ,,2,1),( =均与t 无关,称之为常系数。
2.常微分方程的解析解有些微分方程可直接通过积分求解.例如,一解常系数常微分方程1+=y dt dy可化为dt y dy=+1,两边积分可得通解为1-=tce y .其中c 为任意常数.有些常微分方程可用一些技巧,如分离变量法,积分因子法,常数变异法,降阶法等可化为可积分的方程而求得解析解.线性常微分方程的解满足叠加原理,从而他们的求解可归结为求一个特解和相应齐次微分方程的通解.一阶变系数线性微分方程总可用这一思路求得显式解。
高阶线性常系数微分方程可用特征根法求得相应齐次微分方程的基本解,再用常数变异法求特解。
一阶常微分方程与高阶微分方程可以互化,已给一个n 阶方程),,",',()1()(-=n n y y y t f y 设)1(21,,',-===n n y y y y y y ,可将上式化为一阶方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧====-),,,,(''''2113221n n nn y y y t f y yy y y y y反过来,在许多情况下,一阶微分方程组也可化为高阶方程。
常微分方程组的MATLAB求解范例
微分方程求解是系统仿真、数学模型实现以及很多工程问题求解的核心部分,应用MATLAB可以方便地对一阶常微分方程组进行求解,这里将对其基本方法进行介绍。
值得注意的是,高阶微分方程组可以通过引进参变量化为一阶常微分方程组,也可以同样方便解决。
若有一个微分方程(组)的参变量为列向量,即,且它参变量随时间变化的微分方程可以有以下方程描述:这里的f函数是一个列向量,即, i=1,2,3…,n,它可以是任意非线性函数。
则一般微分方程可以如此求解:[t,x]=ode45(f,timespan,x0)对于刚性方程,即一些解变化缓慢,一些解变化剧烈,且两者相差较为悬殊的这种方程,通常调用ode15s而非o de45进行求解。
例1:解:编写function或者用匿名函数表达f=y-2*x/y即可;function dy=f(t,y)dy=y-2*t/y;end命令:t=[0,1];%y0=1;[x,y]=ode45('f',t,1);%注意这里的x相当于自变量tplot(x,y,x,sqrt(1+2*x)),legend('数值解','解析解');可见求解效果不错。
例2、解:编写functionfunction dx=f(t,x)%返回值是列向量dx=[-x(2)-x(3);x(1)+0.2*x(2);0.2+(x(1)-5.7)*x(3)];end命令:t=[0,100];y0=[0 0 0]';%注意是列向量[x,y]=ode45('f',t,y0);plot(x,y);例3、这是一个二阶微分方程组,可以引进变量,由此ODE可以化成如下形式可以采用和例2相同的方法求解:function dx=f(t,x)dx=[x(2);-(x(1)^2-1)*x(2)-x(1)];End。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用Matlab件求常微分方程解(或通解)
————————————————————————————————作者:————————————————————————————————日期:
《高等数学》实验报告
实验人员:系(班):
学号:
姓名:
实验地点:电教楼五号机房
实验名称:Matlab 高等数学实验
实验时间:2014-6-3 16:30--18:30
实验名称:用Matlab 软件求常微分方程的解(或通解)
实验目的:熟练掌握Matlab 软件求常微分方程的解(或通解)
实验内容:(给出实验程序与运行结果)
一、求微分方程的特解.
1、⎪⎩
⎪⎨⎧===+-10)0(,6)0(034'22y y y dx dy dx y d 程序:>> dsolve('D2y-4*Dy+3*y','y(0)=6,Dy(0)=10','x')
ans = 4*exp(x)+2*exp(3*x)
吕梁学院《高等数学》实验报告
2、⎪⎩
⎪⎨⎧===++0)0(,2)0(044'22y y y dx dy dx y d 程序:>>dsolve('4*D2y+4*Dy+y','y(0)=2,Dy(0)=0','x')
ans =
2*exp(-1/2*x)+exp(-1/2*x)*x
3、⎪⎩
⎪⎨⎧===++15)0(',0)0(029422y y y dx dy dx y d 程序:>>dsolve('D2y+4*Dy+29*y=0','y(0)=9,Dy(0)=15','x') ans =
33/5*exp(-2*x)*sin(5*x)+9*exp(-2*x)*cos(5*x)
4、⎪⎩
⎪⎨⎧===+-3)0(',0)0(013422y y y dx dy dx y d 程序:>>dsolve('D2y-4*dy+13*y=0','y(0)=0','Dy(0)=3','x') ans =
3/13*sin(13^(1/2)*x)*13^(1/2)-4/13*cos(13^(1/2)*x)*dy+4/13*dy
5、⎪⎩
⎪⎨⎧-===--5)0(',0)0(04322y y y dx dy dx y d 程序:>>dsolve('D2y-3*Dy-4*y','y(0)=0,Dy(0)=-5','x')
ans =
exp(-x)-exp(4*x)
二、求齐次非线性微分方程的通解
1、133222+=--x y dx
dy dx y d 程序:>>dsolve('D2y-2*Dy-3*y=3*x+1','x')
ans =
exp(-x)*C2+exp(3*x)*C1+1/3-x
2、x xe y dx
dy dx y d 22265=+- 程序:>>dsolve('D2y-5*Dy+6*y=x*exp(2*x)','x')
ans =
exp(3*x)*C2+exp(2*x)*C1-1/2*x*exp(2*x)*(2+x)
3、x x y dx
y d cos 422=+ 程序:>>dsolve('D2y+4*y=x*cos(x)','x')
ans =
sin(2*x)*C2+cos(2*x)*C1+2/9*sin(x)+1/3*x*cos(x)
4、x e y dx
y d x cos 22+=+ 程序:>>dsolve('D2y+y=exp(x)','x')
ans =
sin(x)*C2+cos(x)*C1+1/2*exp(x)
>>dsolve('D2y+y=cos(x)','x')
ans =
sin(x)*C2+cos(x)*C1+1/2*cos(x)+1/2*sin(x)*x 则原式=
sin(x)*C2+cos(x)*C1+1/2*exp(x)+sin(x)*C2+cos(x)*C1+1/2*cos(x)+1/2*sin(x)*x
5、x y dx
dy dx y d 2sin 5222=+- 程序:>>dsolve('D2y-2*Dy+5*y=sin(2*x)','x')
ans =
exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
三、微分方程实例
1、试求x y =''的经过点M (0,1)且在此点与直线12+=
x y 相切的积分曲线。
由题意得⎪⎩⎪⎨⎧===21)0(,1)0('"y y x y
程序:>>dsolve('D2y=x','y(0)=1,Dy(0)=1/2','x')
ans =
1/6*x^3+1/2*x+1
实验心得: Matlab 是一个画图和解题的好工具,图的精美与准确让我佩服数学实验课内容简单、易理解,但也有挑战性。
我觉得数学建模很枯燥,很乏味,但是慢慢了解了Matlab 软件基础和功能后,我越发喜
欢这个看似无所不能的软件。
随着对软件的不断深入,我觉得Matlab软件还是很有意思的,即使Matlab软件界面全部是英文,而且有很多专业的词汇,很多地方作为初学者的我还看不太懂,特别是一些细节方面的问题,比如“:”“;”的区别、“.*”和“*”的区别等等,但随着我一边上网查阅相关资料,一边解决老师的上机作业,我体会到在面对不知道的问题的时候要学会自己去寻找方法解决。
同时,通过使用Matlab软件,使我懂得无论做什么事情都应该学会耐心、细致。