反激电源变压器设计解析
正激反激式双端开关电源高频变压器设计详解
正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
反激式开关电源变压器设计原理
反激式开关电源变压器设计原理首先是变比选择。
变压器的变比决定了输入电压和输出电压的比值。
通常情况下,开关电源需要将输入交流电压转换为稳定的直流电压,因此输出电压需要较低。
在选择变比时,考虑到电路的复杂性和功率转换效率,一般选择较大的输入电压和较小的输出电压。
变比的选择也需要考虑到负载的要求和功率转换效率的平衡。
其次是磁芯材料。
变压器的磁芯材料直接影响到电路的性能和效率。
一般情况下,磁芯材料需要具备较高的矫顽力和饱和磁场强度,以实现高效率的电力转换。
常用的磁芯材料有硅钢片、铁氧体和钕铁硼等。
在选择磁芯材料时需要综合考虑材料的价格、性能和可用性。
最后是工作频率。
反激式开关电源变压器工作在高频率下,一般在10kHz至1MHz之间。
高频率的工作可以减小变压器的体积和重量,提高电路的效率和响应速度。
但是,高频率也会增加电路的开关损耗和EMI(电磁干扰)噪声。
因此,在设计反激式开关电源变压器时需要对工作频率的选择进行充分的考虑。
此外,还需要注意的是反激式开关电源变压器的绝缘和散热问题。
由于反激式开关电源工作在高压和高频下,变压器绝缘需要特别注意以防止电路失效和安全事故发生。
同时,由于电路的功率转换过程中会产生大量的热量,因此需要设计合适的散热系统来保证电路的正常运行。
总结起来,反激式开关电源变压器的设计原理包括变比选择、磁芯材料和工作频率的选择。
设计人员需要根据具体的应用需求,综合考虑功率转换效率、体积和重量等因素,选择合适的设计方案。
同时,还需要注意绝缘和散热问题,以保证电路的安全和可靠运行。
反激电源变压器的参数设计
开关电源学习漏感:变压器初次级耦合过程中漏掉的那一部分磁通!变压器的漏感应该是线圈所产生的磁力线不能都通过次级线圈,因此产生漏磁的电感称为漏感。
RCD钳位电路的作用:反激式开关电源在开关管断开的瞬间由于漏感不能通过变压器耦合到次级绕组,导致漏感的反激电动势很大,高压很容易导致开关管的损坏,所以用RCD钳位电压到安全的范围,将漏感的能量存储在电容C中,再由电阻R消耗掉。
反激式开关电源:反激电路是由buck-boost拓扑电路演变过来的。
演变的过程把MOS和二极管D1放到下面,与上图等效。
在A B之间增加一个变压器,由于初级和次级的电感上承受的伏秒积是相等的,所以用这个变压器来等效。
由于电感和变压器的初级电感并联,为了直观把电感合二为一,并且调整变压器的同名端得到下图;上面的电路图便是最基本的反激式开关电路图了,由于变压器在开关管导通时储存能量,断开时通过次级绕组释放能量,变压器的实质是耦合电感,耦合电感不仅承担输入与输出的电气隔离,而且实现了电压的变换,而不仅仅是通过改变占空比来实现。
由于此耦合电感并非理想器件,所以存在漏感,而实际线路中也会存在杂散电感。
当MOS关断时,漏感和杂散电感中的能量会在MOS的漏极产生很高的电压尖峰,从而会导致器件的损坏。
故而,我们必须对漏感能量进行处理,最常见的就是增加一个RCD 吸收电路。
用C来暂存漏感能量,用R来耗散之。
二极管的反向恢复电流理想的二极管在承受反向电压时截止,不会有反向电流通过。
而实际二极管正向导通时,PN结内的电荷被积累,当二极管承受反向电压时,PN结内积累的电荷将释放并形成一个反向恢复电流,它恢复到零点的时间与结电容等因素有关。
反向恢复电流在变压器漏感和其他分布参数的影响下将产生较强烈的高频衰减振荡。
因此,输出整流二极管的反向恢复噪声也成为开关电源中一个主要的干扰源。
可以通过在二极管两端并联RC缓冲器,以抑制其反向恢复噪声.。
碳化硅材料的肖特基二极管,恢复电流极小。
反激式开关电源变压器设计参看详解
Npri(V01+VD1)(1-Dmax)
NS1 =
(匝)
Vin(min) Dmax
8. 计算二次其它绕组所需匝数Nsn
Nsn =
(Von+VDn) Ns1 V01 + VD1
(匝)
技术部培训教材
反激式开关电源变压器设计(2)
1.9 检查相应输出端的电压误差
Vsn
δVsn%=(( =
N’sn-Vsn)/Vsn)x100%
0.65(16)
0.5(11)
0.80(20)
1.1(30)
1.1(30)
1.4(35)
1.5(38)
1.8(47)
2.0(51)
2.4(60)
技术部培训教材
反激式开关电源变压器设计(2)
第二种是计算方式,首先假定变压器是单绕组,每增加一个绕组并考 虑安规要求,就需增加绕组面积和磁芯尺寸,用“窗口利用因数”来修整 单绕组电感磁芯尺寸按下式计算:
A’p=Knet.Ap
按照上计算A’P值,加一定裕度,选取相适应的磁芯.
技术部培训教材
反激式开关电源变压器设计(2)
4. 计算一次电感最小值Lpri
Vin(min).Dmax
Lpri =
(H)
Ipk f
式中:f单位为Hz
5. 计算磁芯气隙Lgap
0.4 πLpriIpk . 108
Lgap =
cm2
Iin(MIN)=PINxVIN (MAX) Iin(MAX)=PINxVIN (MIN) 5 估算峰值电流:
K POUT IPK =
VIN (MIN) 其中:K=1.4(Buck 、推挽和全桥电路)
K=2.8(半桥和正激电路) K=5.5(Boost,
反激式变压器设计原理
反激式变压器设计原理
首先,反激式变压器的设计涉及开关电流的控制。
由于开关电流是通过高频开关元件(例如MOSFET)流过的电流,因此开关元件需要能够承受并控制高频开关过程中产生的大电流。
设计师需要确保开关电流在合适的范围内,既不能过小导致电源效率低下,也不能过大影响元件寿命。
其次,反激式变压器通过高频开关实现转换器的工作,常见的工作模式包括连续导通模式(CCM)和间断导通模式(DCM)。
在CCM中,开关元件在整个开关周期内持续导通,保持较小的变压器交流磁通波形,更适合低功率需求。
而在DCM中,开关元件只在一部分开关周期内导通,变压器交流磁通波形变化大,适用于大功率需求。
变压器是反激式变压器的核心部件,负责变换电压。
在设计反激式变压器时,需要确定合适的变压器参数,如匝数比、磁芯材料、磁芯横截面积等。
变压器的匝数比决定了输出电压和输入电压的比例关系,磁芯材料的选择和截面积的确定直接影响变压器的能量传输效率和功率损耗。
最后,反激式变压器还需要控制电路来确保其稳定工作。
控制电路主要包括反馈回路和开关控制电路。
反馈回路可以监测输出电压并将其与设定值进行比较,根据比较结果控制开关元件的导通和断开,以调整输出电压。
开关控制电路则根据设计要求来确定开关元件的工作频率和占空比,以满足输出电压的稳定要求。
总之,反激式变压器设计原理涉及到开关电流控制、转换器工作模式选择、磁元件参数确定和控制电路设计等多个方面。
设计师需要根据具体的应用需求,合理设计这些参数,以实现高效、稳定的电源转换。
一种实用的反激开关电源变压器设计方法
一种实用的反激开关电源变压器设计方法一、引言反激开关电源变压器是现代电子设备中常用的电源供应器件之一,其设计方法对于电源的性能和稳定性具有重要影响。
本文将介绍一种实用的反激开关电源变压器设计方法,旨在提供一种有效的工程实践方案。
二、反激开关电源的基本原理反激开关电源是一种通过开关管的开关动作来实现电能转换的电源,其基本原理是利用变压器和电容器的耦合作用,将输入电源的直流电压转换为需要的输出电压。
反激开关电源主要由输入滤波电路、功率开关器件、变压器、输出整流电路和控制电路等组成。
三、变压器设计方法1. 确定输入输出电压:根据实际需求确定反激开关电源的输入和输出电压,通常输入电压为220V交流电,输出电压可根据设备需求进行选择。
2. 计算变比:变压器的变比决定了输入电压与输出电压之间的比例关系,一般情况下可以根据公式计算得到变比。
例如,若输入电压为Vin,输出电压为Vout,变比为N,则有Vin/Vout = N。
3. 确定功率:根据设备的功率需求,计算出所需的变压器功率。
功率的计算公式为P = V * I,其中P为功率,V为电压,I为电流。
4. 选择磁芯:根据功率计算结果选择合适的磁芯,磁芯的选择要考虑到磁芯的饱和电流、磁导率和温度特性等因素。
5. 计算匝数:根据变比和所选择的磁芯,计算出变压器的匝数。
变压器的匝数与输入输出电压以及变比之间存在一定的关系,可以通过公式计算得到。
6. 计算电流:根据所需的功率和变压器的匝数,计算出变压器的电流。
变压器的电流决定了变压器的导线截面积和绕线的粗细。
7. 设计绕线:根据计算的匝数和电流,设计变压器的绕线方式。
绕线时要考虑到绕线的紧密程度、层数和绝缘等因素。
8. 耦合系数的选择:根据实际需求选择合适的耦合系数,耦合系数的选择影响了变压器的效率和性能。
9. 核心磁通密度的计算:根据变压器的功率和磁芯的型号,计算出核心磁通密度。
核心磁通密度要符合磁芯的设计要求,同时保证变压器的性能稳定。
反激式开关电源变压器的设计方法
反激式开关电源变压器的设计方法反激式开关电源变压器是一种常用于电子设备中的高效率、高频率开关电源变压器。
其设计方法包括了选择合适的变压器参数、计算变压器工作状态、考虑磁芯损耗和温升等方面。
下面将详细介绍反激式开关电源变压器的设计步骤。
首先,确定设计目标和性能要求。
根据所需的输入和输出电压和电流,确定变压器的额定功率和输出功率。
同时,考虑变压器的体积限制以及可用的材料,进行适当的权衡。
第二步是选择磁芯材料。
磁芯的选择对于反激式开关电源变压器来说非常重要,因为磁芯的性能直接影响着变压器的效率和工作频率。
常见的磁芯材料包括铁氧体和软磁合金等,可以根据具体的应用需求和成本进行选择。
第三步是计算变压器的主要参数。
包括主磁链感应系数、匝数比、实际绕组电压和电流等。
根据设计目标和性能要求,以及选择的磁芯材料,可以通过一系列公式和计算来决定这些参数。
第四步是进行磁芯损耗和温升的估算。
反激式开关电源变压器在工作过程中会产生磁芯损耗和温升。
这些损耗会导致变压器的效率下降,甚至导致变压器无法正常工作。
因此,需要根据具体的磁芯材料和使用条件,进行损耗和温升的估算。
第五步是进行变压器的绕组设计。
根据变压器的参数和工作状态,设计变压器的绕组结构和匝数。
通过合理设计绕组,可以提高变压器的效率和性能。
第六步是进行变压器的线径选择和导线布局。
根据所需的电流和损耗,选择合适的线径,并进行合理的导线布局,以提高变压器的效率和散热性能。
最后一步是进行变压器的实际制造和测试。
根据设计图纸和规格要求进行变压器的实际制造,并通过测试来验证设计的正确性和性能。
总之,反激式开关电源变压器的设计是一个复杂的过程,需要考虑多个因素的综合影响。
通过合理选择磁芯材料、计算变压器参数、评估磁芯损耗和温升等步骤,可以设计出性能良好、效率高的变压器。
正激、反激式、双端开关电源高频变压器设计详解
一、正激式开关电源高频变压器:No待求参数项 详细公式1 副边电压Vs Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
2、0.5是考虑输出整流二极管压降的调整值,以下同。
3 临界输出电感Lso Lso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax2/(2*f*Po)1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Lso]}dt = Po2、Ton=θon/f4 实际工作占空比θon 如果输出电感Ls≥Lso:θon=θonmax否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls]}dt = Po2、Ton=θon/f5 导通时间Ton Ton =θon /f6 最小副边电流Ismin Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon2/(2*f*Ls)]/[(Vs-0.5)*θon]1、由能量守恒:(1/T)*∫0ton{Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po2、Ton=θon/f7 副边电流增量ΔIs ΔIs = (Vs-0.5-Vo)* Ton/ Ls8 副边电流峰值Ismax Ismax = Ismin+ΔIs9 副边有效电流Is Is = √[(Ismin2+ Ismin*ΔIs+ΔIs2/3)*θon]1、Is=√[(1/T)*∫0ton(Ismin+ΔIs*t/Ton)2dt]2、θon= Ton/T10 副边电流直流分量Isdc Isdc = (Ismin+ΔIs/2) *θon11 副边电流交流分量Isac Isac = √(Is2- Isdc2)12 副边绕组需用线径Ds Ds = 0.5*√Is电流密度取5A/mm213 原边励磁电流Ic Ic = Vp*Ton / Lp14 最小原边电流Ipmin Ipmin = Ismin*Ns/Np15 原边电流增量ΔIp ΔIp = (ΔIs* Ns/Np+Ic)/η16 原边电流峰值Ipmax Ipmax = Ipmin+ΔIp17 原边有效电流Ip Ip = √[(Ipmin2+ Ipmin*ΔIp+ΔIp2/3)*θon]1、Ip=√[(1/T)*∫0ton(Ipmin+ΔIp*t/Ton)2dt]2、θon= Ton/T18 原边电流直流分量Ipdc Ipdc = (Ipmin+ΔIp/2) *θon19 原边电流交流分量Ipac Ipac = √(Ip2- Ipdc2)20 原边绕组需用线径Dp Dp = 0.55*√Ip电流密度取4.2A/mm221 最大励磁释放圈数Np′ Np′=η*Np*(1-θon) /θon22 磁感应强度增量ΔB ΔB = Vp*θon / (Np*f*Sc)23 剩磁Br Br = 0.1T24 最大磁感应强度Bm Bm = ΔB+Br25标称磁芯材质损耗P Fe(100KHz 100℃ KW/m3)磁芯材质PC30:P Fe = 600磁芯材质PC40:P Fe = 45026 选用磁芯的损耗系数ωω= 1.08* P Fe / (0.22.4*1001.2)1.08为调节系数27 磁芯损耗Pc Pc = ω*Vc*(ΔB/2)2.4*f1.228 气隙导磁截面积Sg 方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 圆形中心柱:Sg= {π*(d/2+δ′/2)2/[π*(d/2)2]} *Sc29 有效磁芯气隙δ′ δ′=μo*(Np2*Sc/Lp-Sc/AL)1、根据磁路欧姆定律:H*l = I*Np 有空气隙时:Hc*lc + Ho*lo = Ip*Np又有:H = B/μ Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp 式中:lc为磁路长度,δ为空气隙长度,Np为初级圈数,Lp为初级电感量,ΔB为工作磁感应强度增量;μo为空气中的磁导率,其值为4π×10-7H/m;2、ΔB=Vp*Ton/Np*Sc3、μc为磁芯的磁导率,μc=μe*μo4、μe为闭合磁路(无气隙)的有效磁导率,μe的推导过程如下:由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo又根据:Bc=Vp*Ton/Np*Sc 代入上式化简 得:μe = Lpo*lc/μo*Np2*Sc5、Lpo为对应Np下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤5代入4,4代入3,3、2 代入1得:Lp =Np2*Sc/(Sc/AL +δ/μo)30 实际磁芯气隙δ如果δ′/lc≤0.005: δ=δ′如果δ′/lc>0.03: δ=μo*Np2*Sc/Lp 否则 δ=δ′*Sg/Sc31 穿透直径ΔD ΔD = 132.2/√f32 开关管反压Uceo Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′33 输出整流管反压Ud Ud = Vo+√2 *Vinmax*Ns/Np′34 副边续流二极管反压Ud′ Ud′=√2 *Vinmax*Ns/Np二、双端开关电源高频变压器设计步骤:No待求参数项 详细公式1 副边电压Vs 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np2 最大占空比θonmax θonmax = Vo/(Vs-0.5)1、θonmax的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
反激电源变压器设计
反激电源变压器设计一、变压器参数的选择反激电源变压器的核心参数包括输入电压、输出电压、输出功率和工作频率。
在设计反激电源变压器时,首先要确定输入电压和输出电压的数值,通常可以根据电子设备的需求进行选择。
然后,根据输出功率计算变压器的功率大小,一般情况下可以按照变压器的负载能力来选择。
最后,确定工作频率,一般常用的工作频率有50Hz和60Hz两种,可以根据具体的应用需求来选择。
二、绕线的计算1.确定绕组的匝数比反激电源变压器通常是多绕组变压器,其中包括输入绕组、输出绕组和反馈绕组。
输入绕组的匝数Np从输入电压和功率的关系中可以计算得到,公式为Np = Vin * Iin / P,其中Vin表示输入电压,Iin表示输入电流,P表示输出功率。
输出绕组的匝数Ns可以由输出电压和功率的关系计算得到,公式为Ns = Vout * Iout / P,其中Vout表示输出电压,Iout表示输出电流,P表示输出功率。
反馈绕组的匝数Nf可以根据设计需求确定,通常取决于反馈网络的设计。
2.计算绕组的截面积绕制反激电源变压器时需要考虑绕组的电流和电阻损耗。
根据电流密度J,可以计算出绕组的截面积A,公式为A=I/J,其中I为电流密度,J为截面积。
电流密度的取值可以根据设计经验或者具体的应用需求来确定。
另外,要考虑绕组的电阻损耗,可以通过计算电阻来确定。
3.确定绕组的材料反激电源变压器的绕组通常采用铜导线,因为铜导线有较好的导电性能和热稳定性。
在选择铜导线时,要考虑导线的直径、长度和截面积等参数,同时还要根据绕组的电流来选择合适的导线规格,以保证导线能够承受相应的电流负荷。
三、设计注意事项1.绕制绕组时要注意匝数的计算和绕线的排列方式,以保证绕组的结构紧凑和电感性能的稳定。
2.反激电源变压器中会产生电磁干扰,因此在设计时要合理布局绕组,减小磁感应强度的泄漏。
3.反激电源变压器的绕组要用绝缘材料进行绝缘处理,以避免电气短路和绝缘击穿现象的发生。
反激变压器设计详解
注意事项
• 选择合适的磁芯材料和绕组结构 • 遵循设计规范和行业标准
CREATE TOGETHER
谢谢观看
THANK YOU FOR WATCHING
反激变压器的分类与特点
反激变压器的分类
• 单端反激变压器:输入输出共用一个绕组 • 双端反激变压器:输入输出各有独立的绕组
反激变压器的特点
• 结构简单,易于集成 • 效率高,损耗较低 • 输出电压稳定,易于调节
反激变压器的主要应用场景
开关电源
• 直流电源转换为稳定直流 • 适用于电子设备、通信设备等
绕组损耗计算
• 根据绕组电阻、绕组电感和工作频率计算绕组损耗 • 考虑绕组绝缘材料和温度影响
反激变压器的效率计算与优化
效率计算
• 根据输入功率、输出功率和损耗计算效率 • 考虑效率计算精度和温度影响
优化方法
• 优化磁芯材料和绕组结构降低损耗 • 提高开关频率和输出电压提高效率
影响反激变压器效率的因素与改进措施
输出电压调整
• 通过改变开关频率或调整输出整流器实现输出电压调整 • 考虑输出电压稳定性和调节精度
输出电流调整
• 通过改变输出滤波器或调整负载实现输出电流调整 • 考虑输出电流稳定性和调节精度
03
反激变压器的损耗与效率计算
磁芯损耗与绕组损耗的计算方法
磁芯损耗计算
• 根据磁通密度、磁芯材料和工作频率计算磁芯损耗 • 考虑磁芯损耗系数和温度影响
• 根据输入电压、输出电压和开关频率计算磁通密度 • 考虑磁芯体积和磁通密度利用率
绕组的结构与匝数设计
绕组结构
• 选择合适的绕组形式,如单层绕组、双层绕组等 • 考虑绕组间距、绕组绝缘和绕组屏蔽
反激电源变压器及关键元件参数设计
反激电源变压器是一种常用的电源变压器,其工作原理是利用变压器的反转作用以实现能量的传递。
在电子设备中广泛应用,特别是在小功率电源供应中,以其高效、小体积、低成本等优势备受青睐。
在设计反激电源变压器时,关键元件参数的选择至关重要,直接影响到变压器的性能与稳定性。
本文将从反激电源变压器的设计要点和关键元件参数的设计角度入手,详细介绍如何合理选择关键元件参数,在保证性能的实现效率和可靠性的最大化。
一、反激电源变压器的设计要点1. 输入输出参数确定反激电源变压器的设计首先需要确定输入和输出的电压、电流参数。
输入参数主要包括输入电压范围、输入电流限制等,而输出参数涉及输出电压、输出电流等。
这些参数的确定需要考虑到实际应用场景和需求,以确保变压器在实际工作中能够稳定可靠地工作。
2. 磁芯选择磁芯是反激电源变压器中重要的材料之一,直接影响到变压器的工作效率和性能。
一般来说,高频电源变压器会选择磁芯材料具有低损耗、高饱和磁感应强度、低磁滞等特点的材料,如磁粉芯、铁氧体磁芯等。
3. 绕线设计绕线是构成变压器的重要组成部分,绕线的设计影响到变压器的电磁特性和功率传输效率。
在反激电源变压器中,需要合理设计绕线的匝数、线径等参数,以降低损耗、提高效率。
4. 开关管选择开关管是反激电源变压器中的关键元件之一,直接影响到变压器的频率、效率和稳定性。
在选择开关管时,需要考虑到其导通压降、开关速度、耐压能力等参数,以确保变压器的可靠工作。
二、关键元件参数设计1. 输入电感元件的参数设计输入端的电感元件是反激电源变压器中的重要元件之一,其参数设计直接关系到变压器的输入电流波形和功率因数。
- 选择电感元件的匝数时,应根据输入输出电压比例和工作频率来确定,一般来说,输入端的电感匝数可以通过输入输出电压比例的平方来估算。
- 选择电感元件的材料时,需要考虑到其导磁性能、损耗、饱和磁感应强度等因素,以确保电感元件能够在高频工作条件下保持良好的性能。
反激式开关电源变压器的设计方法
反激式开关电源变压器的设计方法反激式开关电源变压器的设计方法1引言在开关电源各类拓扑结构中,反激式开关电源以其小体积、低成本的优势,广泛应用在高电压、小功率的场合。
反激式开关电源设计的关键在于其变压器的设计。
由于反激变压器可以工作在断续电流(DCM )和连续电流(CCM )两种模式,因此增加了设计的复杂性。
本文考虑到了两种工作模式下的差异,详细介绍了反激变压器的设计方法和步骤。
2基本原理R1C 1T rN pN sV oV i图1 反激变换器原理图反激变压器实际上是一个耦合电感,首先要存储能量,然后再将磁能转化为电能传输出去[1]。
如图1所示,当开关管r T 导通时,输入电压i V 加在变压器初级线圈上。
由于初级与次级同名端相反,次级二极管1D 截止,能量储存在初级线圈中,初级电流线性上升,变压器作为电感运行。
当r T 关断时,励磁电感的电流使初级和次级绕组电压反向,1D 导通,储存在线圈中的能量传递给负载。
按照电感线圈中电流的特点,可分为断续电流模式(DCM )和连续电流模式(CCM )。
电流波形如图2所示。
初级次级初级次级I p2I p1I s2I s1I p2I p1I s2I s1DCMCCM图2 DCM 和CCM 电流波形DCM 为完全能量转换,在开关管开通时,初级电流从零开始逐渐增加,开关管关断期间,次级电流逐渐下降到零。
CCM 为不完全能量转换,开关管开通时,初级电流有前沿阶梯,开关管关断期间,次级电流为阶梯上叠加的衰减三角波。
3设计步骤(1)各项参数的确定反激式开关电源变压器的设计中涉及到很多参数,因此在计算之前必须要明确已知量和未知量。
已知参数一般由电源的设计要求和特点来确定,包括:直流输入电压iV (i mini i max V V V ≤≤),输出电压o V ,输出功率o P ,效率o iP =P η,工作频率1f=T 。
未知量即所要求的参数包括:磁芯型号,初级线圈匝数p N ,次级线圈匝数s N ,初级导线直径p d ,次级导线直径s d ,气隙长度g l 。
反激式开关电源变压器的设计
反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。
它具有体积小、效率高以及输出电压稳定等优点。
本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。
一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。
在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。
三、设计步骤1.确定输入电压和输出电压的需求。
根据实际应用需求确定输入电压和输出电压的范围。
2.计算变压器的变比。
根据输入电压和输出电压的比例计算变压器的变比N。
3.计算变压器的功率。
根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。
4.确定变压器的工作频率。
根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。
5.计算变压器的参数。
根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。
6.选择合适的磁性材料。
根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。
7.进行原型设计和测试。
根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。
8.进行参数调整和优化。
根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。
9.进行批量生产。
当设计满足要求时,可以进行批量生产并进行产品验证和测试。
总结:。
反激变压器设计
反激变压器设计
反激变压器,也称为反激式开关电源,是一种非绝缘式开关电源拓扑结构。
反激变压器通过在主馈线上产生高频脉冲,经过变压器进行转换,从而实现电能的转换和传递。
反激变压器设计的关键要点包括输入滤波、开关电源控制电路、反激变压器设计等。
首先,输入滤波是为了将输入的交流电源进行滤波处理,阻止高频干扰信号进入开关电源。
一般采用电感和电容的组合进行滤波。
其次,开关电源控制电路是用来控制反激变压器的开关器件(一般为MOS场效应管或IGBT管)的开关频率和占空比。
通过合理的控制开关频率和占空比,可以实现对输出电压的控制。
最关键的是反激变压器的设计。
它包括步进变换器的变形设计、主变压器的设计、辅助电源的设计以及反压电路的设计等。
在设计过程中,需要根据输出电压和输出功率的要求确定变压器的参数,如匝数、电感值和绕组等。
在设计过程中,还需要考虑电路的稳定性和效率。
稳定性包括抗干扰能力和输出电压的稳定性,效率则涉及损耗和转化效率的优化。
总的来说,反激变压器的设计需要综合考虑输入滤波、开关电源控制电路和反激变压器的设计等要素,以实现稳定的电压输出和高效的能量转换。
反激式开关电源变压器设计
反激式开关电源变压器设计反激式开关电源是一种常见的开关电源拓扑结构,具有体积小、效率高、负载适应性强等优点,因此在电子设备中得到广泛应用。
其中重要的组成部分之一是变压器,它起到了转换与隔离功效。
下面将详细介绍如何设计反激式开关电源变压器。
首先,设计反激式开关电源变压器需要确定的参数包括输入电压Vin,输出电压Vout,输出功率Pout,开关频率f,以及变压器变比n。
1.确定变压器的基本参数根据输出功率Pout和输出电压Vout,可以求得输出电流Iout,即Iout=Pout/Vout。
根据变比n,可以求得输入电流Iin,即Iin=Iout/n。
2.计算变压器的工作点电流为了保证变压器工作的稳定性和可靠性,需要计算变压器的工作点电流。
工作点电流最大值的计算公式是Ipk=(1.1-1.2)*Iin,其中1.1-1.2是一个经验系数。
通过计算得到的Ipk,可以计算得到变压器的直流电压Vdc,即Vdc=Vin*(1-1/n)。
3.计算变压器的直流电感为了保证变压器的工作效率和响应速度,需要计算变压器的直流电感。
直流电感的公式是L=Vdc/(f*(1-δ)*Ipk),其中f是开关频率,δ是开关管的占空比。
选择合适的直流电感可以有效降低功率损失。
4.计算变压器的绕组匝数根据变压器的变比n,可以计算得到变压器的绕组匝数。
若变压器的输入绕组匝数是N1,输出绕组匝数是N2,则变比n=N1/N2、根据变比n 和输入电压Vin,可以计算得到输出电压Vout,即Vout=Vin/n。
5.计算变压器的铜损耗和铁损耗变压器的铜损耗和铁损耗是设计中重要的参考因素。
铜损耗的公式是Pcu=Iin^2*R,其中Iin是输入电流,R是变压器的电阻。
铁损耗是根据变压器的磁通密度和磁场强度来计算的。
6.选择合适的变压器尺寸和材料根据以上计算的结果,可以选择适当的变压器尺寸和材料。
变压器的尺寸和材料直接影响着反激式开关电源的体积和效果,需要根据实际需求和设计要求进行选择。
反激式开关电源变压器设计说明
反激式开关电源变压器设计说明反激式开关电源变压器是一种常见的电源变压器,能够将输入电压通过开关转换和变换输出为所需的电压。
它具有多种应用领域,如电子设备、通信设备、医疗设备等。
本文将详细介绍反激式开关电源变压器的设计原理、设计步骤以及注意事项。
一、设计原理开关管是控制开关电路导通和断开的关键元件。
当开关导通时,输入电压通过变压器传递到输出端,当开关断开时,输出端与输入端相隔离。
变压器用于变换电压。
它通常由两个或多个线圈绕制而成,主要包括输入线圈和输出线圈。
输入线圈与开关管相连接,负责将输入电压传递到输出线圈。
输出线圈则负责变换电压。
滤波电路用于对输出信号进行滤波,减小波动和噪音。
二、设计步骤1.确定输入电压和输出电压:首先需要明确所需的输入电压和输出电压。
这将决定变压器的变比。
2.选择合适的变压器:根据所需的变比,选择合适的变压器。
变压器的选取应基于电流容量和功率需求等因素。
3.计算变压器的线圈数:根据变压器的变比和输入输出电压,计算输入线圈和输出线圈的匝数。
同时,考虑变压器的耦合系数和数量线圈相对位置等因素。
4.确定开关管和开关频率:根据输入电压、输出电压和功率需求,确定合适的开关管。
同时,选择合适的开关频率,以避免电磁干扰。
5.设计滤波电路:根据输出电压的要求,设计合适的滤波电路。
滤波电路可以使用电容、电感和抗干扰电路等组成。
6.确定电源保护电路:为了保证电源的稳定性和可靠性,设计合适的保护电路,如过流保护、过压保护、短路保护等。
7.进行仿真分析:使用电路仿真工具,对设计的电源变压器进行仿真分析,检查电源变压器的性能和特性。
8.制作和测试:按照设计的电路图,制作电源变压器,并进行测试。
测试包括输出电压稳定性、效率和波动等。
三、注意事项1.选择适当的变压器:变压器应能满足所需的电流容量和功率需求。
同时,应注意变压器的质量和耐用性。
2.稳定性和可靠性:电源变压器应具有良好的输出电压稳定性和可靠性。
反激式开关电源变压器设计
反激式开关电源变压器设计一、设计原理反激式开关电源变压器基于开关电源的工作原理,利用开关元件(开关管或者MOS管)、变压器、滤波电容和反激电容等组成。
其基本原理为:输入交流电经过整流滤波得到直流电压,然后由开关元件进行开关控制,将直流电压通过变压器变换为所需的输出直流电压,最后通过滤波电容输出稳定的直流电压。
二、关键技术1.变压器设计:反激式开关电源变压器的设计是整个电源设计中最为关键的部分。
在设计变压器时,要考虑输出功率、输入电压范围、输出电压等参数。
通常采用环型铁芯、锥形铁芯或者斜式铁芯,以减小漏电感和磁性损耗,提高效率。
同时,在设计过程中还要考虑绕组的匝数、电流和绝缘等级等方面的因素。
2.开关元件选择:开关元件是实现能量转换和控制的关键部分。
常用的开关元件有开关管、MOS管等。
选择合适的开关元件需要综合考虑电源输出功率、开关频率、开关速度、导通压降以及温升等因素。
3.控制电路设计:控制电路主要负责控制开关元件的导通和关断。
常见的控制电路有单片机控制和集成电路控制两种。
单片机控制的优点是灵活性高、可编程性强,但需要额外增加单片机等硬件,造成成本增加;集成电路控制则更简单,但灵活性较差。
三、注意事项1.确保变压器设计合理:变压器设计要保证核心材料的选取合理,应该选择磁性能好、耐高温的材料。
此外,变压器的绕组要均匀绝缘,并合理设计匝数,以减小漏电感和损耗。
2.开关元件的选择要合适:开关元件选择要根据实际工作条件来确定,如输出功率、输入电压范围、输入电流等。
3.控制电路设计要稳定可靠:控制电路要设计稳定可靠,能够保证开关元件的正常工作。
如果选用单片机控制,还需考虑保护电路的设计,以避免过电流和过压等问题。
4.散热设计要合理:反激式开关电源在工作过程中会产生较多的热量,因此散热设计要合理。
可以采用散热片、散热风扇等降低温度。
总结:反激式开关电源变压器的设计涉及变压器设计、开关元件选择和控制电路设计等多个方面。
反激式电源变压器设计公式新解
反激式电源变压器设计公式新解反激式电源变压器设计公式新解固定周期电流控制型反激式开关电源中,控制电路能使电源能够稳定工作,而其中设计的关键是变压器。
设计开关电源变压器最主要的是考虑三大要素:一是完成电功率的传输;二是初级线圈电感量;三是次级与初级线圈的以Vor为基准的比例关系。
已有的开关电源变压器的计算大多很复杂,然而在搞清楚电感充放电基本原理的基础上,紧紧抓住电感充电放电的本质,应用到功率传输等方面,得到一个新的能量传输关系函数表达式,最后设计出一款比较合理的反激式电源变压器。
一、动态深度和设计深度的关系CCM模式与tor关系图:1.动态深度在电流连续模式下Krp的设置时,动态深度为,从CCM模式tor 示意图的几何关系可以得到,,式中tor为电感不受开关周期约束的最长放电时间,该式把电感放电时间与开关关闭时间和Krp联系在一起,由于Krp是随着输入电压的改变而变化的,所以Krp称动态深度。
2.设计深度设计深度:Kt=tor/T,即电感不受开关周期约束的最长放电时间与开关周期的比值。
此值由设计时确定,是一个固有参数,在运行过程中不会改变,所以Kt称设计深度。
占空比:D=Ton/T=(T-T off)/T由此可得到Krp、Kt与占空比D的关系:------------------------------(1)或假如tor=1.2T,Krp=0.4 则表一:以D为自变量,Kt、D与Krp三者的关系列表:对于CCM模式,Kt越大,Krp就越小,相应的深度就越高。
从上表可以看出Kt设置为1到1.3范围,D从0.1到0.5说明输入电压全程都在不同深度的CCM模式下工作。
二、电功率的传输1.输入电压点确定合适的Krp值以最低输入电压计算电感量: -------(2)以反激电压计算电感量:-------(3)由于(3)式建立反激电压与电感量之间的关系,这样就突破了以往用最低电压来设计电感量的局限性,使电感量计算更为简单方便。
反激式变压器设计介绍
1〕反激式变压器设计介绍反激式电源变换器设计的关键因素之一是变压器的设计。
在此我们所说的变压器不是真正意义上的变压器,而更多的是一个能量存储装置。
在变压器初级导通期间能量存储在磁芯的气隙中,关断期间存储的能量被传送给输出。
初次级的电流不是同时流动的。
因此它更多的被认为是一个带有次级绕组的电感。
反激电路的主要优势是成本,简单和容易得到多路输出。
反激式拓扑对于100W 以内的系统是实用和廉价的。
大于100W 的系统由于着重降低装置的电压和电流,其它诸如正激变换器方式就变得更有成效。
反激式变压器设计是一个反复的过程,因为与它的变量个数有关,但是它不是很困难,稍有经验就可快速和容易的处理。
在变压器设计之前的重点是定义电源参数,诸如输入电压,输出功率,最小工作频率,最大占空比等。
根据这些我们就可以计算出变压器参数,选择合适的磁芯。
如果计算参数没有落在设计范围内,重复计算是必要的。
用网站上的E XCEL 电子表格可以容易的处理这些步骤。
2〕电源设计所需的标准在开始变压器设计之前,根据电源的规范必须定义一些参数如下: 1〕最小工作频率-fmin2〕预计电源效率-η≈0.85~0.9(高压输出 ),0.75~0.85(低压输出)3〕最小直流总线电压-Vmin 如110V 时最小输入电压85Vac,可有10V 抖动)4〕最大占空比-Dm(建议最大值为0.5)5)串联谐振电容值-Cres〔建议取值范围为100pf~1.5nf,见图1〕3〕变压器设计步骤首先计算总输出功率,它包括所有次级输出功率,辅助输出功率和输出二极管的压降。
通常主要输出电流若大于1A 使用肖特基二极管,小于 1A 使用快恢复二极管,当小电流输出时辅助绕组可用1N4148 整流(建议辅助电压为 18V,电流为30mA)输出功率(Po)计算的是总的输出功率。
根据Po 变压器的初级电感可由下式计算出。
图 1 IR40xx系列反激电路典型应用下一步是计算初级,次级和辅助绕组的变比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反激电源变压器设计解析3,反激电源变压器参数设计从今天开始,我们一起来讨论一下反激电源变压器的设计。
其实,反激电源的变压器设计方法有很多种。
条条大路通罗马,我们究竟要选择哪条路呢?我的想法是,选择自己熟悉的路,选择自己能理解的设计方法。
有的设计方法号称是最简单的,有的设计方法号称是最明了的。
但我认为,适合你自己的才是最好的。
更何况,有些设计方法,直接给个公式出来,没有头没有尾的,莫名其妙,就算按照那种方法计算出来你要的变压器,但你理解了吗?你从中学习到了什么?我想,授人以鱼,不如授人以渔,希望我们能够通过讨论反激变压器的设计过程,让大家不仅学会怎么计算反激变压器,更要能通过设计,配合上面的电路原理,把反激的原理搞透。
岳飞不就曾说过:“阵而后战,兵法之常,运用之妙,存乎一心。
” 一旦把原理搞清楚了,那么就不存在什么具体算法了。
将来的运用之妙,就存乎一心了。
可以根据具体的参数细化优化!其实,要设计一个变压器,就是求一个多元方程组的解。
只不过呢,由于未知数的数量比方程数量多,那么只好人为的指定某些参数的数值。
对于一个反激电源而言,需要有输入指标,输出指标。
这些参数,有的是客户的要求,也是我们需要达到的设计目标,还有些参数是我们人为选择的。
一般来说,我们需要这些参数:输入交流电压范围、输出电压、输出电流、效率、开关频率等参数。
对于反激电源来说,其工作模式有很多种,什么DCM,CCM,CRM,BCM,QR等。
这里要作一个说明:CRM和BCM是一种模式,就是磁芯中的能量刚好完全释放,次级整流二极管电流刚好过零的时候,初级侧MOS管开通,开始进行下一个周期。
QR模式,则是磁芯能量释放完毕后,变压器初级电感和MOS结电容进行谐振,MOS结电容放电到最低值时,MOS开通,这样可以实现较低的开通损耗。
也就是说,QR模式是的mos开通时间比CRM模式还要晚一点。
CRM/BCM、QR模式都是变频控制,同时,他们都是属于DCM模式范畴内的。
而CCM模式呢,CCM模式的电源其实也包含着DCM模式,当按照CCM模式设计的反激电源工作在轻载或者高输入电压的时候,就会进入DCM模式。
那么就是说,CRM/BCM,QR模式的反激变压器的设计,可以按照某个特定工作点的时候的DCM 模式来计算。
那么我们下面的计算就只要考虑DCM与CCM两种情况了。
那么我们究竟是选择DCM还是CCM模式呢?这个其实没有定论,DCM的优点是,反馈容易调,次级整流二极管没有反向恢复问题。
缺点是,电流峰值大,RMS值高,线路的铜损和MOS的导通损耗比较大。
而CCM的优缺点和DCM刚好反过来。
特别是CCM的反馈,因为存在从DCM 进入CCM过程,传递函数会发生突变,容易振荡。
另外,CCM模式,如果电感电流斜率不够大,或者占空比太大,容易产生次谐波振荡,这时候需要加斜坡补偿。
所以呢,究竟什么时候选择用什么模式,是没有结论的。
只能是“运用之妙,存乎一心”了。
随着项目经验的增加,对电路理解的深入,慢慢的,你就能有所认识。
还有一个重要的参数,占空比,这个参数既可以人为指定,也可以通过其他数值的确定来限制。
那我们先来看看,占空比受那些因素的影响呢?还记得我们上面仿真的过程中,引入的一个概念性的参数V f吗?就是次级反射到初级的电压。
如果不记得了,赶快看看上面的帖子复习一下哦。
通常,按照DCM来设计电源的时候,一般选择在最低输入电压,最大输出负载的情况下,安排工作点处于CRM状态。
而CCM的最大占空比出现在最低输入电压处,与负载无关,只要是CCM状态,就只和输入输出电压有关系。
那么这样,我们可以用同一个公式,计算两种状态下的最大占空比,我们根据磁通伏秒积的平衡的要求,可以有公式:V in×D max=V f×(1-D max)那么:D max=V f/(V in+V f)这就是说V f越大,D max也就越大。
那为了得到较大的工作占空比,V f能不能取的很大呢?事实上是不行的,我们从前面的分析中知道,MOS管的承受的电压应力,在理想情况下是V in+V f,当输出一定时V f也是一定的,而V in是随着输入电压的变化而变化的。
另外,MOS管的耐压是有限制的。
而且,在实际使用中,还必须预留电压裕量,MOS的电压裕量可以参考这个帖子里的内容:系列之二,元器件降额使用参考我们看到,MOS的电压必须保证10%~20%的电压裕量。
常用的MOS管耐压有600V,800V的,fairchild的集成单片电源耐压有650V,800V的,PI 公司TOP系列的耐压是700V的,VIPER22A的耐压是730V的等等。
而对于全电压输入的85V~265V AC输入电源,整流后的直流电压约为100VDC~370VDC。
那么对于600V的MOS而言,保留20%电压裕量,耐压可以用到480V。
最大电压应力出现在最大输入电压处,所以当最大输入直流电压为370V时,V f取值为480-370=110V。
最大工作占空比出现在最低输入电压处为:D max=V f/(V inmin+V f)=110/(100+110)=0.52以此类推650V的MOS,耐压用到520V,V f取520-370=150V,D max=V f/(V inmin+V f)=150/(100+150)=0.6700V的MOS,耐压用到560V,V f取560-370=190V,D max=V f/(V inmin+V f)=190/(100+190)=0.66 800V的MOS,耐压用到640V,V f取640-370=270V,D max=V f/(V inmin+V f)=270/(100+270)=0.73大的占空比,可以有效降低初级侧的电流有效值,降低初级侧的铜损和MOS的导通损耗。
但是初级侧的占空比过大,必然导致次级的占空比偏小,那么次级的峰值电流会较大,电流有效值会偏大,那么次级线圈铜损会增加。
另外,次级峰值电流大,也会导致输出纹波大。
所以,通常建议,最大占空比取在0.5左右。
我个人的观点呢,对于DCM的机器,在最低输入85VAC电压下,可以考虑取占空比到0.6,那么在110VAC下,占空比约在0.46左右。
而对于CCM的模式,建议全范围内占空比不要超过50%,否则容易出现次谐波振荡。
即便如此,在占空比不超过50%的情况下,也建议增加斜坡补偿,以增加稳定性。
所以,综上所述,占空比的选择,一方面要考虑MOS的耐压,另一方面还要考虑次级的电流有效值等因素。
同时,对于MOS耐压比较低的情况,比如用600V的MOS的时候,占空比适当再取小一点,可以减轻MOS的耐压的压力。
因为变压器总是有漏感的,漏感会形成一个尖峰。
这个尖峰和漏感以及电流峰值的大小等参数有关。
当我们按照百分比来留电压裕量的时候,可能不够。
关于这一点,我后面写RCD吸收电路的时候,还要讨论一下。
还有,当电源的功率比较小的时候,也可以考虑适当降低工作占空比,这样可以让初级电感量小一些,匝数就可以少些,那么分布电容也可以小一点了,或者为了合理安排变压器的绕组结构,占空比都是应该适当再调整的当占空比和反射电压V f确定后,我们就可以开始着手设计变压器的初级电流波形,进而求出初级的电感量。
对于如图所示的两种工作模式,图中所示,是最低输入电压V inmin时变压器初级电流波形。
那么可以知道平均电流为:I avg=(I p1+I p2)×T onmax/(2×T)=(I p1+I p2)×D max/2假如输出功率是P out,效率为η,那么P out/η=V inmin×I avg=V inmin×(I p1+I p2)×D max/2I p1+I p2=2×P out/(V inmin×η×D max)对于DCM模式而言,I p1=0,对于CCM模式而言,有两个未知数,I p1、I p2。
那么该怎么办呢?这里有个经验性的选择了。
一般选择I p2=2~3×I p1,不要让I p2与I p1过于接近。
那样电流的斜率不够,容易产生振荡。
计算出I p2与I p1后,我们就可以算出变压器初级电感量的值了。
根据:(V inmin/L p)T onmax=I p2-I p1,可以得到:L p=(V inmin×D max)/(f s×(I p2-I p1)),其中,f s是开关频率。
下一步,选择磁芯。
磁芯的选择方式有很多种,有些公司会给出一些图表用于选择合适的磁芯。
但大多数公司的数据和图表并不完整。
所以,很多时候,我们需要先选择一个合适的磁芯,然后在这个基础上进行优化。
AP法是最常用的用来选择磁芯的一个公式,450是450A每平方厘米其中,L单位为H,I p为峰值电流,单位为A,ΔB是磁感应强度变化量,单位为T,K0是窗口利用率,取0.2~0.4,具体要看绕组结构等。
比如挡墙胶带会占去一部分空间,而如果磁芯是矮型的,那么挡墙所占部分肯可能就占很大比例了,这时候,磁芯的窗口利用率就要取的低。
而如果,采用了三重绝缘线,那么窗口利用率高,K0就可以取的大一点。
对于铁氧体磁芯来说,考虑到温度升高后,饱和点下移,一般ΔB应该取值小于0.3。
ΔB过大,磁芯损耗大,也容易饱和。
ΔB过小,磁芯体积会很大。
功率小的电源,ΔB可以大一点,因为变压器表面积与体积之比大,散热条件好。
而功率大的电源,ΔB则应该小一些,因为变压器的表面积与体积之比小,散热条件变差了。
开关频率高的,ΔB也要小一点,因为频率高了,磁芯损耗也会变大。
根据计算出来的AP值,我们可以选择到合适的磁芯。
有了磁芯,那么就可以计算初级侧的绕组匝数了。
Ip=Ip2-Ip1其中,L是初级电感量,单位H,I p是初级峰值电流,单位A,ΔB是磁感应强度变化量,单位为T,Ae是磁芯截面积,单位cm2。
因为我们已经确定了反射电压,V f,已经有了初级匝数,那么次级的匝数就可以计算出来了。
不过,计算次级匝数的时候,要考虑到次级输出整流二极管的压降,特别是输出电压很低的时候,二极管的压降要占很大的比例。
对于肖特基整流管,我们可以考虑取正向压降为0.8V 左右,对于快恢复整流管,可以考虑取正向压降为1.0V。
那么,对于常用的次级输出绕组匝数可以按下面的公式计算:N s=(V out+V D)×N p/V fV out是次级某绕组输出电压。
V D是输出整流二极管压降。
肖特基管取0.8V,快恢复管取1.0V。
次级绕组匝数计算出来有,次级整流二极管的电压应力也就出来了:V DR=V inmax×N s/N p+V out实际上的二极管耐压要高于这个数值。