无线传感器网络英文摘要与翻译

合集下载

无线传感器网络测距技术外文翻译文献

无线传感器网络测距技术外文翻译文献

无线传感器网络测距技术外文翻译文献(文档含中英文对照即英文原文和中文翻译)原文:RANGING TECHNIQUES FOR WIRELESS SENSOR NETWORKSThe RF location sensors operating in different environments can measure the RSS, AOA, phase of arrival (POA), TOA, and signature of the delay - power profile as location metrics to estimate the ranging distance [4,7] . The deployment environment (i.e., wireless RF channel) will constrain the accuracy and the performance of each technique. In outdoor open areas, these ranging techniques perform very well. However, as the wireless medium becomes more complex, for example, dense urban or indoor environments, the channel suffers from severe multipath propagation and heavy shadow fading conditions. This finding in turn impacts the accuracy and performance in estimating the range between a pair of nodes. For this reason, this chapter will focus its ranging and localization discussion on indoor environments. This is important because many of the WSN applications are envisioned for deployment in rough terrain and cluttered environments and understanding of the impact of the channel on the performance of ranging and localization is important. In addition, range measurements using POA and AOA in indoor and urban areas are unreliable. Therefore, we will focus our discussion on two practical techniques,TOA and RSS.These two ranging techniques, which have been used traditionally in wirelessnetworks, have a great potential for use in WSN localization.The TOA based ranging is suitable for accurate indoor localization because it only needs a few references and no prior training. By using this technique, however, the hardware is complex and the accuracy is sensitive to the multipath condition and the system bandwidth. This technique has been implemented in GPS, PinPoint, WearNet, IEEE 802.15.3, and IEEE 802.15.4 systems. The RSS based ranging, on the other hand, is simple to implement and is insensitive to the multipath condition and the bandwidth of the system. In addition, it does not need any synchronization and can work with any existing wireless system that can measure the RSS. For accurate ranging, however, a high density of anchors or reference points is needed and extensive training and computationally expensive algorithms are required.The RSS ranging has been used for WiFi positioning in systems, for example, Ekahau, Newbury Networks, PanGo, and Skyhook.This section first introduces TOA based ranging and the limitations imposed by the wireless channel. Then it will be compared with the RSS counterpart focusing on the performance as a function of the channel behavior. What is introduced here is important to the understanding of the underlying issues in distance estimation, which is an important fundamental building block in WSN localization.TOA Based RangingIn TOA based ranging, a sensor node measures the distance to another node by estimating the signal propagation delay in free space, where radio signals travel at the constant speed of light. Figure 8.3 shows an example of TOA based ranging between two sensors. The performance of TOA based ranging depends on the availability of the direct path (DP) signal [4,14] . In its presence, for example, short distance line - of - sight (LOS) conditions, accurate estimates are feasible [14] . The challenge, however, is ranging in non - LOS (NLOS) conditions, which can be characterized as site - specific and dense multipath environments [14,22] . These environments introduce several challenges. The first corrupts the TOA estimatesdue to the multipath components (MPCs), which are delayed and attenuated replicas of the original signal, arriving and combining at the receiver shifting the estimate. The second is the propagation delay caused by the signal traveling through obstacles, which adds a positive bias to the TOA estimates. The third is the absence of the DP due to blockage, also known as undetected direct path (UDP) [14] . The bias imposed by this type of error is usually much larger than the first two and has a significant probability of occurrence due to cabinets, elevator shafts, or doors that are usually cluttering the indoor environment.In order to analyze the behavior of the TOA based ranging, it is best to resort to a popular model used to describe the wireless channel. In a typical indoor environment, the transmitted signal will be scattered and the receiver node will receive replicas of the original signal with different amplitudes, phases, and delays. At the receiver, the signals from all these paths combine and this phenomenon is known as multipath. In order to understand the impact of the channel on the TOA accuracy, we resort to a model typically used to characterize multipath arrivals. For multipath channels, the impulse respons 错误!未找到引用源。

无线红外传感器网络中英文对照外文翻译文献

无线红外传感器网络中英文对照外文翻译文献

中英文资料外文翻译文献外文资料AbstractWireless Sensor Network (WSN) has become a hot research topic recently. Great benefit can be gained through the deployment of the WSN over a wide range ofapplications, covering the domains of commercial, military as well as residential. In this project, we design a counting system which tracks people who pass through a detecting zone as well as the corresponding moving directions. Such a system can be deployed in traffic control, resource management, and human flow control. Our design is based on our self-made cost-effective Infrared Sensing Module board which co-operates with a WSN. The design of our system includes Infrared Sensing Module design, sensor clustering, node communication, system architecture and deployment. We conduct a series of experiments to evaluate the system performance which demonstrates the efficiency of our Moving Object Counting system.Keywords:Infrared radiation,Wireless Sensor Node1.1 Introduction to InfraredInfrared radiation is a part of the electromagnetic radiation with a wavelength lying between visible light and radio waves. Infrared have be widely used nowadaysincluding data communications, night vision, object tracking and so on. People commonly use infrared in data communication, since it is easily generated and only suffers little from electromagnetic interference. Take the TV remote control as an example, which can be found in everyone's home. The infrared remote control systems use infrared light-emitting diodes (LEDs) to send out an IR (infrared) signal when the button is pushed. A different pattern of pulses indicates the corresponding button being pushed. To allow the control of multiple appliances such as a TV, VCR, and cable box, without interference, systems generally have a preamble and an address to synchronize the receiver and identify the source and location of the infrared signal. To encode the data, systems generally vary the width of the pulses (pulse-width modulation) or the width of the spaces between the pulses (pulse space modulation). Another popular system, bi-phase encoding, uses signal transitions to convey information. Each pulse is actually a burst of IR at the carrier frequency.A 'high' means a burst of IR energy at the carrier frequency and a 'low'represents an absence of IR energy. There is no encoding standard. However, while a great many home entertainment devices use their own proprietary encoding schemes, some quasi-standards do exist. These include RC-5, RC-6, and REC-80. In addition, many manufacturers, such as NEC, have also established their own standards.Wireless Sensor Network (WSN) has become a hot research topic recently. Great benefit can be gained through the deployment of the WSN over a wide range ofapplications, covering the domains of commercial, military as well as residential. In this project, we design a counting system which tracks people who pass through a detecting zone as well as the corresponding moving directions. Such a system can be deployed in traffic control, resource management, and human flow control. Our design is based on our self-made cost-effective Infrared Sensing Module board which co-operates with a WSN. The design of our system includes Infrared Sensing Module design, sensor clustering, node communication, system architecture and deployment. We conduct a series of experiments to evaluate the system performance which demonstrates the efficiency of our Moving Object Counting system.1.2 Wireless sensor networkWireless sensor network (WSN) is a wireless network which consists of a vast number of autonomous sensor nodes using sensors tomonitor physical or environmental conditions, such as temperature, acoustics, vibration, pressure, motion or pollutants, at different locations. Each node in a sensor network is typically equipped with a wireless communications device, a small microcontroller, one or more sensors, and an energy source, usually a battery. The size of a single sensor node can be as large as a shoebox and can be as small as the size of a grain of dust, depending on different applications. The cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a few cents, depending on the size of the sensor network and the complexity requirement of the individual sensor nodes. The size and cost are constrained by sensor nodes, therefore, have result in corresponding limitations on available inputs such as energy, memory, computational speed and bandwidth. The development of wireless sensor networks (WSN) was originally motivated by military applications such as battlefield surveillance. Due to the advancement in micro-electronic mechanical system technology (MEMS), embedded microprocessors, and wireless networking, the WSN can be benefited in many civilian application areas, including habitat monitoring, healthcare applications, and home automation.1.3 Types of Wireless Sensor NetworksWireless sensor network nodes are typically less complex than general-purpose operating systems both because of the specialrequirements of sensor network applications and the resource constraints in sensor network hardware platforms. The operating system does not need to include support for user interfaces. Furthermore, the resource constraints in terms of memory and memory mapping hardware support make mechanisms such as virtual memory either unnecessary or impossible to implement. TinyOS [TinyOS] is possibly the first operating system specifically designed for wireless sensor networks. Unlike most other operating systems, TinyOS is based on an event-driven programming model instead of multithreading. TinyOS programs are composed into event handlers and tasks with run to completion-semantics. When an external event occurs, such as an incoming data packet or a sensor reading, TinyOS calls the appropriate event handler to handle the event. The TinyOS system and programs are both written in a special programming language called nesC [nesC] which is an extension to the C programming language. NesC is designed to detect race conditions between tasks and event handlers. There are also operating systems that allow programming in C. Examples of such operating systems include Contiki [Contiki], and MANTIS. Contiki is designed to support loading modules over the network and supports run-time loading of standard ELF files. The Contiki kernel is event-driven, like TinyOS, but the system supports multithreading on a per-application basis. Unlike the event-driven Contiki kernel, the MANTIS kernel is based on preemptivemultithreading. With preemptive multithreading, applications do not need to explicitly yield the microprocessor to other processes.1.4 Introduction to Wireless Sensor NodeA sensor node, also known as a mote, is a node in a wireless sensor network that is capable of performing processing, gathering sensory information and communicating with other connected nodes in the network. Sensor node should be in small size, consuming extremely low energy, autonomous and operate unattended, and adaptive to the environment. As wireless sensor nodes are micro-electronic sensor device, they can only be equipped with a limited power source. The main components of a sensor node include sensors, microcontroller, transceiver, and power source. Sensors are hardware devices that can produce measurable response to a change in a physical condition such as light density and sound density. The continuous analog signal collected by the sensors is digitized by Analog-to-Digital converter. The digitized signal is then passed to controllers for further processing. Most of the theoretical work on WSNs considers Passive and Omni directional sensors. Passive and Omni directional sensors sense the data without actually manipulating the environment with active probing, while no notion of “direction” involved in these measurements. Commonly people deploy sensor for detecting heat (e.g. thermal sensor), light (e.g. infrared sensor), ultra sound (e.g. ultrasonic sensor), or electromagnetism (e.g. magneticsensor). In practice, a sensor node can equip with more than one sensor. Microcontroller performs tasks, processes data and controls the operations of other components in the sensor node. The sensor node is responsible for the signal processing upon the detection of the physical events as needed or on demand. It handles the interruption from the transceiver. In addition, it deals with the internal behavior, such as application-specific computation.The function of both transmitter and receiver are combined into a single device know as transceivers that are used in sensor nodes. Transceivers allow a sensor node to exchange information between the neighboring sensors and the sink node (a central receiver). The operational states of a transceiver are Transmit, Receive, Idle and Sleep. Power is stored either in the batteries or the capacitors. Batteries are the main source of power supply for the sensor nodes. Two types of batteries used are chargeable and non-rechargeable. They are also classified according to electrochemical material used for electrode such as NiCd(nickel-cadmium), NiZn(nickel-zinc), Nimh(nickel metal hydride), and Lithium-Ion. Current sensors are developed which are able to renew their energy from solar to vibration energy. Two major power saving policies used areDynamic Power Management (DPM) and Dynamic V oltage Scaling (DVS). DPM takes care of shutting down parts of sensor node which arenot currently used or active. DVS scheme varies the power levels depending on the non-deterministic workload. By varying the voltage along with the frequency, it is possible to obtain quadratic reduction in power consumption.1.5 ChallengesThe major challenges in the design and implementation of the wireless sensor network are mainly the energy limitation, hardware limitation and the area of coverage. Energy is the scarcest resource of WSN nodes, and it determines the lifetime of WSNs. WSNs are meant to be deployed in large numbers in various environments, including remote and hostile regions, with ad-hoc communications as key. For this reason, algorithms and protocols need to be lifetime maximization, robustness and fault tolerance and self-configuration. The challenge in hardware is to produce low cost and tiny sensor nodes. With respect to these objectives, current sensor nodes usually have limited computational capability and memory space. Consequently, the application software and algorithms in WSN should be well-optimized and condensed. In order to maximize the coverage area with a high stability and robustness of each signal node, multi-hop communication with low power consumption is preferred. Furthermore, to deal with the large network size, the designed protocol for a large scale WSN must be distributed.1.6 Research IssuesResearchers are interested in various areas of wireless sensor network, which include the design, implementation, and operation. These include hardware, software and middleware, which means primitives between the software and the hardware. As the WSNs are generally deployed in the resources-constrained environments with battery operated node, the researchers are mainly focus on the issues of energy optimization, coverage areas improvement, errors reduction, sensor network application, data security, sensor node mobility, and data packet routing algorithm among the sensors. In literature, a large group of researchers devoted a great amount of effort in the WSN. They focused in various areas, including physical property, sensor training, security through intelligent node cooperation, medium access, sensor coverage with random and deterministic placement, object locating and tracking, sensor location determination, addressing, energy efficient broadcasting and active scheduling, energy conserved routing, connectivity, data dissemination and gathering, sensor centric quality of routing, topology control and maintenance, etc.中文译文移动目标点数与红外传感器网络摘要无线传感器网络(WSN)已成为最近的一个研究热点。

Zigbee无线传感器网络英文文献与翻译

Zigbee无线传感器网络英文文献与翻译

Zigbee Wireless Sensor Network in Environmental MonitoringApplicationsI. ZIGBEE TECHNOLOGYZigbee is a wireless standard based on IEEE802.15.4 that was developed to address the unique needs of most wireless sensing and control applications. Technology is low cost, low power, a low data rate, highly reliable, highly secure wireless networking protocol targeted towards automation and remote control applications. It’s depicts two key performance characteristics –wireless radio range and data transmission rate of the wireless spectrum. Comparing to other wireless networking protocols such as Bluetooth, Wi-Fi, UWB and so on, shows excellent transmission ability in lower transmission rate and highly capacity of network. A. Zigbee FrameworkFramework is made up of a set of blocks called layers.Each layer performs a specific set of services for the layer above. As shown in Fig.1. The IEEE 802.15.4 standard defines the two lower layers: the physical (PHY) layer and the medium access control (MAC) layer. The Alliance builds on this foundation by providing the network and security layer and the framework for the application layer.Fig.1 FrameworkThe IEEE 802.15.4 has two PHY layers that operate in two separate frequency ranges: 868/915 MHz and 2.4GHz. Moreover, MAC sub-layer controls access to the radio channel using a CSMA-CA mechanism. Its responsibilities may also include transmitting beacon frames, synchronization, and providing a reliable transmission mechanism.B. Zigbee’s TopologyThe network layer supports star, tree, and mesh topologies, as shown in Fig.2. In a star topology, the network is controlled by one single device called coordinator. The coordinator is responsible for initiating and maintaining the devices on the network. All other devices, knownas end devices, directly communicate with the coordinator. In mesh and tree topologies, the coordinator is responsible for starting the network and for choosing certain key network parameters, but the network may be extended through the use of routers. In tree networks, routers move data and control messages through the network using a hierarchical routing strategy. Mesh networks allow full peer-to-peer communication.Fig.2 Mesh topologiesFig.3 is a network model, it shows that supports both single-hop star topology constructed with one coordinator in the center and the end devices, and mesh topology. In the network, the intelligent nodes are composed by Full Function Device (FFD) and Reduced Function Device (RFD). Only the FFN defines the full functionality and can become a network coordinator. Coordinator manages the network, it is to say that coordinator can start a network and allow other devices to join or leave it. Moreover, it can provide binding and address-table services, and save messages until they can be delivered.Fig.3 Zigbee network modelII.THE GREENHOUSE ENVIRONMENTAL MONITORINGSYSTEM DESIGNTraditional agriculture only use machinery and equipment which isolating and no communicating ability. And farmers have to monitor crops’ growth by themselves. Even if some people use electrical devices, but most of them were restricted to simple communication between control computer and end devices like sensors instead of wire connection, which couldn’t be strictly defined as wireless sens or network. Therefore, by through using sensor networks and, agriculture could become more automation, more networking and smarter.In this project, we should deploy five kinds of sensors in the greenhouse basement. By through these deployed sensors, the parameters such as temperature in the greenhouse, soil temperature, dew point, humidity and light intensity can be detected real time. It is key to collect different parameters from all kinds of sensors. And in the greenhouse, monitoring the vegetables growing conditions is the top issue. Therefore, longer battery life and lower data rate and less complexity are very important. From the introduction about above, we know that meet the requirements for reliability, security, low costs and low power.A. System OverviewThe overview of Greenhouse environmental monitoring system, which is made up by one sink node (coordinator), many sensor nodes, workstation and database. Mote node and sensor node together composed of each collecting node. When sensors collect parameters real time, such as temperature in the greenhouse, soil temperature, dew point, humidity and light intensity, these data will be offered to A/D converter, then by through quantizing and encoding become the digital signal that is able to transmit by wireless sensor communicating node. Each wireless sensor communicating node has ability of transmitting, receiving function.In this WSN, sensor nodes deployed in the greenhouse, which can collect real time data and transmit data to sink node (Coordinator) by the way of multi-hop. Sink node complete the task of data analysis and data storage. Meanwhile, sink node is connected with GPRS/CDMA can provide remote control and data download service. In the monitoring and controlling room, by running greenhouse management software, the sink node can periodically receives the data from the wireless sensor nodes and displays them on monitors.B. Node Hardware DesignSensor nodes are the basic units of WSN. The hardware platform is made up sensor nodes closely related to the specific application requirements. Therefore, the most important work isthe nodes design which can perfect implement the function of detecting and transmission as a WSN node, and perform its technology characteristics. Fig.4 shows the universal structure of the WSN nodes. Power module provides the necessary energy for the sensor nodes. Data collection module is used to receive and convert signals of sensors. Data processing and control module’s functions are node device control, task sche duling, and energy computing and so on. Communication module is used to send data between nodes and frequency chosen and so on.Fig.4 Universal structure of the wsn nodesIn the data transfer unit, the module is embedded to match the MAC layer and the NET layer of the protocol. We choose CC2430 as the protocol chips, which integrated the CPU, RF transceiver, net protocol and the RAM together. CC2430 uses an 8 bit MCU (8051), and has 128KB programmable flash memory and 8KB RAM. It also includes A/D converter, some Timers, AES128 Coprocessor, Watchdog Timer, 32K crystal Sleep mode Timer, Power on Reset, Brown out Detection and 21 I/Os. Based on the chips, many modules for the protocol are provided. And the transfer unit could be easily designed based on the modules.As an example of a sensor end device integrated temperature, humidity and light, the design is shown in Fig. 5.Fig.5 The hardware design of a sensor nodeThe SHT11 is a single chip relative humidity and temperature multi sensor module comprising a calibrated digital output. It can test the soil temperature and humidity. The DS18B20 is a digital temperature sensor, which has 3 pins and data pin can link MSP430 directly. It can detect temperature in greenhouse. The TCS320 is a digital light sensor. SHT11, DS18B20 and TCS320 are both digital sensors with small size and low power consumption. Other sensor nodes can be obtained by changing the sensors.The sensor nodes are powered from onboard batteries and the coordinator also allows to be powered from an external power supply determined by a jumper.C. Node Software DesignThe application system consists of a coordinator and several end devices. The general structure of the code in each is the same, with an initialization followed by a main loop.The software flow of coordinator, upon the coordinator being started, the first action of the application is the initialization of the hardware, liquid crystal, stack and application variables and opening the interrupt. Then a network will be formatted. If this net has been formatted successfully, some network information, such as physical address, net ID, channel number will be shown on the LCD. Then program will step into application layer and monitor signal. If there is end device or router want to join in this net, LCD will shown this information, and show the physical address of applying node, and the coordinator will allocate a net address to this node. If the node has been joined in this network, the data transmitted by this node will be received by coordinator and shown in the LCD.The software flow of a sensor node, as each sensor node is switched on, it scans all channelsand, after seeing any beacons, checks that the coordinator is the one that it is looking for. It then performs a synchronization and association. Once association is complete, the sensor node enters a regular loop of reading its sensors and putting out a frame containing the sensor data. If sending successfully, end device will step into idle state; by contrast, it will collect data once again and send to coordinator until sending successfully.D. Greenhouse Monitoring Software DesignWe use VB language to build an interface for the test and this greenhouse sensor network software can be installed and launched on any Windows-based operating system. It has 4 dialog box selections: setting controlling conditions, setting Timer, setting relevant parameters and showing current status. By setting some parameters, it can perform the functions of communicating with port, data collection and data viewing。

车载无线传感器网络监测系统设计(外文原文+中文翻译)

车载无线传感器网络监测系统设计(外文原文+中文翻译)

Wireless sensor network monitoring system designKang yi-mei,Zhao lei,Hu jiang,Yang en-bo(Study on Beijing University of Aeronautics and Astronautics)Summary: A car wireless sensor network monitoring system based on IEEE 802.15.4 and ZigBee standards. With universal wireless sensor networks, expansion of the scope of monitoring and monitoring functions for in-car system, car data acquisition and condition monitoring of equipment status and the necessary equipment control, topology control, topology query functions. Keywords: wireless sensor networks; monitoring systemIntroductionIn order to satisfy the people to car safety, handling and comfort requirements, vehicle integrated with more and more electronic system .At present, car electronic equipment is widely used 16 or 32-bit microprocessor control. Creating in-vehicle monitoring system based on IEEE 802.15.4 and ZigBee standard for wireless sensor networks, designed to achieve a more optimized wireless sensor networks, the progressive realization of the network of automotive systems, intelligent and controllable to provide high-Car System security.System designIn this paper, the existing vehicle system, the data transmission mode is extended to the wireless transmission mode, the realization of a star network data acquisition system. And can place each data acquisition node of the acquired data is transmitted to the gateway, the gateway through the serial port to upload data to the host computer, in the host data real-time waveform display, and method of database to preserve, for the follow-up data processing. The application of system object is composed of a temperature sensor, pressure sensor, speed sensor, speed sensor, a current sensor, pressure sensor, sensor subsystem. The purpose of this design is to use a monitoring host machine end to the detection of multiple target environment, taking into account the access data throughput and software system complexity, using time-division multiplexing way, one by one on the net terminal collecting point of control and data acquisition.As shown in Figure 1, the system is divided into 3 parts: Vehicle Monitoring Center, gateway and mobile sensor node. Gateway is the whole vehicle system core, and all vehicular sensor node communication. Vehicle monitoring center to the gateway sends a control command by the gateway, the control command is converted to an RF signal and sent to the vehicle sensor node. When the vehicle sensor nodes to transmit data, gateway into the data reception state, and upload data to the monitoring center for further processing. In addition, car between sensor nodes cannot communicate with each other. The monitoring center of the monitoring software and gateway in RS232standard interface for communication.Vehicle sensor node life cycle is active and dormant periods. Nodes in the active phase of the completion of data acquisition, data sent to the gateway, receiving andexecuting gateway command; in the dormant period off the wireless RF module in order to save energy, until the next active period. System through this mechanism of dormancy to reduce energy consumption, extend the time span of the system as a whole.The system used PC as the control center, PC machine monitoring software in VB development environment, is a dialog based application software. In order to improve the communication module of the intelligent level, in the design, its function is not limited to the real-time data display, all of the data collection by the monitoring software by sending a request signal to the trigger. Considering the original data for subsequent processing and in-depth analysis of the vehicle system, can accurately judge, software has also added data preservation of the document and data file display function.Generally speaking, the whole network are controlled by the host monitoring software, the working process of every node of the network is the need of human participation.2 hardware system design2.1application chip introductionMC13192with IEEE802.15.4 standard, the operating frequency is2.405~2.480 GHz, data transmission rate of 250kbps, using 0-QPSK debugging mode. This feature-rich two-way 2.4GHz transceiver with a data modem which can be in the ZigBee technology application. It also has an optimized digital core, helps to reduce the MCU processing power, shorten the cycle of execution.The main control MCU choose HCS08series of low power, high performance microprocessor MC9S08GB60. The processor has a 60Application of KB programmable Flash、4 KB RAM,10 ADC,8 channel2 asynchronous serial communication interface ( SCI ),1 synchronous serial interface ( SPI ) and I2C bus module, can fully meet the requirement of vehicle gateway and node processor requirements.2.2 MCl3192and MC9S08GB60hardware connectionMC13192and MC9S08GB60 hardware connection diagram as shown in figure 2. The MC13192control and data transmission on 4 wire serial peripheral interface ( SPI ) is completed, the4interface signals were MOS-I, MISO,, SPICLK. The main control MCU through the control signal exiting sleep mode or hibernation mode, through to reset the transceiver, through the RXTXEN to control the data sending and receiving, or force the transceiver into idle mode. The sensor output analog signal through MCU 8 Channel10 bit ADC conversion input to MCU. MCU via SPI MC13192to read and write operation, and the sensor to collect the signal processed by MC13192launch out. The MC13192 interrupt IRQ interrupt register through the pins and to judge the type of interrupt. MC908GB60 pin to control the MC13192 into a different mode of operation .Control of the sensor signal from the MC13192receiving antenna in, transmitted via SPI to MCU, after MCU judgment after processingthrough the GPIO port is transmitted to the sensor, complete control of the sensor. At the same time, MCU MC13192transceiver control and the MAC layer operation. The 3system software design3.1of overall software designThe software design is the design of the core, the key lies in the overall framework of software and data structure design. An important factor to consider is a efficiency, another is to design the clarity.System software consists of the gateway node and the sensor node is composed of two parts, the two parts are needed to complete the SMAC protocol transplantation, and according to the different needs for the upper communication applications with API interface function. Because the SMAC protocol stack programming model using hierarchical design, only the underlying PHY and MAC program level and related hardware, and network layer and application layer procedures is not affected by hardware effects. SMAC in different hardware platform transplantation only need to modify the PHY and MAC layer, each layer can shield the hardware differences directly run.As shown in Figure 3, the design of the software for system platform layer, protocol layer and application layer 3layer. At the same time, defines 3API interface: system layer interface, protocol layer and application layer interface. System level interface defines a hardware register mapping, so C language to be able to directly access the hardware registers to control hardware. System platform based on real-time operating system μC/II protocol layer, to provide system services Hardware driving module provides the hardware driver, all of the hardware control through the module to provide services. Platform layer protocol layer interface protocol layer to provide services. Protocol layer is based on the IEEE 802.15.4 physical layer and link layer based on the ZigBee network layer protocol. Application layer through the application layer interface to invoke services provided by the protocol layer, network management and data transfer tasks. Application of configuration module can call protocol layer to provide network services, will direct the system configuration and query, it is mainly through the AT commands to achieve, so the module calls the application layer interface and protocol layer interface to provide services.3.2sensor node software designBased on the long-term use of the functional requirements, sensor nodes in the software design is the key to achieve the required functions, and can minimize the energy consumption of the sensor nodes.It was found, ZigBee module and the energy consumption is much larger than the central processor and the energy consumption of sensor module. Therefore, the sensor node design of application software to try to make each module in a dormant state, and minimizing wakes ZigBee module number. Therefore, the sensor nodes, power of each functional module initialization is completed, and joined the network, enter the Sleep state, the central processor cycles to be timed wake-up to send data tothe gateway, and receives the gateway command. Sensor nodes of the workflow are shown in Figure 4.The 3.3 gateway node software designGateway downward management sensor node, to complete and PC monitoring center of interaction, the need for a complicated task management and scheduling, therefore, based on the uC / OS kernel of embedded operating system to manage the gateway, the application task efficiently provide good software support. According to gateway function demand, the μC / OS-II, SMAC protocol organic union, form a network operating environment, the user can conveniently on the basis of its development and application. Based on μC / OS-II extended gateway software platform structure is shown in figure 5. Based on μC / OS-II operating system, were used to build the system task SYS_task ( ), START_task ( SMAC star network task ), gateway and a sensor node interaction task COMM_task ( ), PC monitoring center port monitoring mission ( SER_task ) applications such as a series of tasks, thus realizing the gateway software application function.The 3.4 host monitoring software designThis system is the ultimate goal of the collected vehicle sensor data is transmitted in real-time to the host, and the host of display and preservation. Display is designed to get on-board sensor node monitoring environment of the initial situation, preservation is designed as an in-depth analysis of the data samples. In addition, the system as a whole the main prosecution and the data acquisition request initiator, need to be able to send the data request signal in accordance with the requirements of. According to the above requirements, VB environment in the development of a dialog based application. This application includes a 4 module:①data waveform display module. The role of the module is a form of waveform data of the node to be displayed in real-time, it is the use of MS Chart and Timer control.②topology display module. When the user wants to know the wireless sensor network topology construction situation, you can view the topological information, understanding of network nodes join and loss.The historical data display module. In vehicle network system to a certain period of the past, may need a certain period of time the original data for subsequent processing and in-depth analysis, so that the vehicle system of accurate judgement. With the aid of historical data display module, the control center from the gateway of the data obtained, according to the different attributes of the nodes, address and time are saved to the database of the corresponding field, and may be will displayed by waveform of historical data, for the user analysis.The controlling module :In vehicle during system operation may be concerned about a vehicle sensor value node, or to a sensor threshold settings, for monitoring environmental exceptions can be promptly reported to the system. These are available through the control module of the system are corresponding to the set, the control module can also be on the system in which one does not need to delete the node.In short, through the host monitoring software users can visually and many aspects ofgeneral wireless sensor network systems to understand and use.4 test and verification4.1 testingTesting equipment:4 MCl3192ZigBee chip node,1as a gateway node, the remaining 3as sensor nodes.Test method: the gateway node power,4 LED and light, scanning channel if the search to the idle channel, the LED goes out and join the free channel for. The sensor node power,4 LED scanning in the channel at the same time, polling light. LED1 flashes once when the sensor nodes receive the allocation address of the gateway node, So far, networking process and address binding process is complete.4.2 Zigbee RF communication testTesting equipment: ZigBee node 4, a computer terminal stationTest method: according to the ZigBee transmission frame format, the actual transmission total bytes for ( n 6), namely ( n 6) bytes for a data packet. According to the set parameters of the software, such as packet loss is the loss number plus 1. If the received data packet, receives the data packet number plus 1, and then sends the data were compared with data, if the data is correct, the number of packets plus 1, and error packets number plus 1. The last statistic results, can know the data packet loss and packet error rate. The 4 node to form a ZigBee network,1 of them as the gateway, the remaining 3 nodes for sensor node. Write a program to set:3nodes and gateway communications, computer terminal and the gateway is connected through RS232, terminal equipment software records from the 3node to receive data, nodes work at 2.4 GHz frequencies, transmission of a byte of data, circular send 100 times. To obtain the final3 node test average as a result of the data analysis. Star network radio frequency communication BER test results as shown in table 1.Experimental analysis of: in a star network for data transmission, the test results significantly worse on a single point to single point transmission mode. This is mainly because, in the transmission process node must exist between the frequency interference and other interference.4.3power testSystem status and hibernation, respectively, using a multimeter to test the gateway node and the power consumption of sensor nodes, the test results listed in Table 2.ConclusionThis paper analyzes the IEEE 802.15.4 and ZigBee protocol, combined with the general development principles of communication systems and embedded systems, IEEE802.15.4 protocol on the μC / OS-II operating system, select the appropriate hardware and software platform, focusing on software support for the platform, the software design of the overall structure of the communication protocol stack, andultimately to achieve a compliant with the ZigBee specification car star wireless data acquisition network. The system has the following advantages:①system easy to install. Wireless interconnection makes the equipment installation location is flexible to meet the requirements of the automation system is installed. It is simply that the power can take equipment. The network system can automatically complete the network configuration.②scalability. Equipment within the coverage of the vehicle gateway, turn on the device, the node will automatically join the network.③network self-healing ability. If the network is a device fails, the vehicle gateway can automatically monitor, issue the command the device reset and re-network.车载无线传感器网络监测系统设计康一梅,赵磊,胡江,杨恩博(就读于北京航天航空大学)摘要:基于IEEE 802.15.4和ZigBee标准实现了一个车载无线传感器网络监测系统。

无线传感器网络中英文对照外文翻译文献

无线传感器网络中英文对照外文翻译文献

(文档含英文原文和中文翻译)中英文对照翻译基于网络共享的无线传感网络设计摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。

在发展中国家,无线传感器网络技术是一种常用的技术模型。

由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。

其主要挑战包括传感器的可携性、快速性。

我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。

我们还讨论了关于孟加拉国和加利尼亚州基于无线传感网络的水质的开发和监测。

关键词:无线传感网络、在线监测1.简介无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。

一个单一的设备应该有一个处理器,一个无线电和多个传感器。

当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。

然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。

这样,无线传感器网络可以对环境中各种变化进行详细的观察。

无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。

比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。

通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。

不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。

许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。

正如在在文献[5]中所指出的,成功的技术依赖于共享技术的原因是个人设备的大量花费。

然而,大多数传感器网络研究是基于一个单一的拥有长期部署的用户,模式不利于分享。

该技术管理的复杂性是另一个障碍。

大多数传感器的应用,有利于这样的共享模型。

我们立足本声明认为传感器可能不需要在一个长时间单一位置的原因包括:(1)一些现象可能出现变化速度缓慢,因此小批量传感器可进行可移动部署,通过测量信号,充分捕捉物理现象(2)可能是过于密集,因此多余的传感器可被删除。

Unit28WirelessSensorNetwork.

Unit28WirelessSensorNetwork.

Unit 28 Wireless Sensor NetworksKey Words and Terms1.w ireless sensor networks 无线传感器网络2.e xponential adj.指数的,含有幂数的3.t hroughout n.生产量,通过量4.i nfrastructure n.基本设施5.o verview n. 概观,概述6.t hermostat n. 自动调温器,恒温器7.d amper n. 风门,节气阀8.i ntriguing adj. 迷人的,有迷惑力的,引起兴趣的9.t ransparently adv. 明亮地,显然地10.symbiotical adj. 共生现象,协作的11.joystick n.操作杆12.sporadically adv.偶发地,零星地13.ranch n.大农场14.estrus n.动情期15.irrigation v.灌溉,修水利bor-intensive n. 劳动密集17.ventilate v.使通风18.transceiver n.无线电收发机,收发器19.mercury n.汞20.microcantilever n.微机械构件,微悬臂梁Notations and TranslationIn recent years, the desire for connectivity has caused an exponential growth in wireless communication. Wireless data networks, in particular, have led this trend due to the increasing exchange of data in Internet services such as the World Wide Web, E-mail, and data file transfers. The capabilities needed to deliver such services are characterized by an increasing need for data throughput in the network; applications now under development, such as wireless multimedia distribution in the home, indicate that this trend will continue. Wireless Local Area Networks (WLANs) provide an example of this phenomenon.Other potential wireless network applications exist, however. These applications, which have relaxed throughput requirements and often measured in a few bits per day, include industrial control and monitoring; home automation and consumer electronics; security and military sensing; asset tracking and supply chain management; intelligent agriculture; and health monitoring. Because most of these low-data-rate applications involve sensing of one form or another, networks supporting them have been called wireless sensor networks, or Low-Rate Wireless Personal Area Networks (LR-WPANs), because they requireshort-range links without a preexisting infrastructure. An overview of application of wireless sensor networks to home automation, consumer electronics, intelligent agriculture and environmental sensing follows.然而,还存在其他潜在的无线网络应用。

通信专业英语之无线传感器网络应用

通信专业英语之无线传感器网络应用

Translation of Texts
环境丨地球监测 环境传感器网络这个术语已逐步包含了无线传感器网络 在地球科学研究领域中的多种应 用。这包括传感火山、 海洋、冰川和森林等。例如,它可以用来监测森林火灾。 网络传感器 节点可以安装在森林中,当火灾开始时就检 测到。配备了传感器的节点可以测量由火突引起 树木或 植物的温度、湿度和气体变化。对于消防队员来说’行动 能否成功’早期侦测至关重 要。通过无线传感器网络, 消防队能够知道火灾是何时发生以及如何传播的。
Environmental/Earth monitoring
The term Environmental Sensor Networks has evolved to cover many applications of WSNs to earth science research. This includes sensing volcanoes, oceans, glaciers, forests, etc. For example, forest fire detection. A network of Sensor Nodes can be installed in a forest to detect when a fire has started. The nodes can be equipped with sensors to measure temperature, humidity and gases which are produced by fire in the trees or vegetation. The early detection is crucial for a successful action of the firefighters; thanks to Wireless Sensor Networks, the fire brigade will be able to know when a fire is started and how it is spreading.

无线传感中英文对照外文翻译文献

无线传感中英文对照外文翻译文献

(文档含英文原文和中文翻译)中英文对照翻译译文:无线传感器网络的实现及在农业上的应用1引言无线传感器网络(Wireless Sensor Network ,WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统。

其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。

“传感器、感知对象和观察者”构成了网络的三个要素。

这里说的传感器,并不是传统意义上的单纯的对物理信号进行感知并转化为数字信号的传感器,它是将传感器模块、数据处理模块和无线通信模块集成在一块很小的物理单元,即传感器节点上,功能比传统的传感器增强了许多,不仅能够对环境信息进行感知,而且具有数据处理及无线通信的功能。

借助传感器节点中内置的形式多样的传感器件,可以测量所在环境中的热、红外、声纳、雷达和地震波信号等信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等等众多我们感兴趣的物质现象。

无线传感器网络是一种全新的信息获取和信息处理模式。

由于我国水资源已处于相当紧缺的程度,加上全国90%的废、污水未经处理或处理未达标就直接排放的水污染,11%的河流水质低于农田供水标准。

水是农业的命脉,是生态环境的控制性要素,同时又是战略性的经济资源,因此采用水泵抽取地下水灌溉农田,实现水资源合理利用,发展节水供水,改善生态环境,是我国目前精确农业的关键,因此采用节水和节能的灌水方法是当今世界供水技术发展的总趋势。

2无线传感器网络概述2.1无线传感器网络的系统架构无线传感器网络的系统架构如图1所示,通常包括传感器节点、汇聚节点和管理节点。

传感器节点密布于观测区域,以自组织的方式构成网络。

传感器节点对所采集信息进行处理后,以多跳中继方式将信息传输到汇聚节点。

然后经由互联网或移动通信网络等途径到达管理节点。

终端用户可以通过管理节点对无线传感器网络进行管理和配置、发布监测任务或收集回传数据。

ZigBee 中文翻译译文 含外文原文

ZigBee 中文翻译译文 含外文原文

毕业设计(论文)译文及原稿免费下载,免费分享。

让论文写得更简单,更舒适。

更容易……译文题目ZigBee:无线技术,低功耗传感器网络原稿题目ZigBee: Wireless Technologyfor Low-Power Sensor Networks原稿出处电子文献ZigBee:无线技术,低功耗传感器网络加里莱格美国东部时间2004年5月6日上午12:00技师(工程师)们在发掘无线传感器的潜在应用方面从未感到任何困难。

例如,在家庭安全系统方面,无线传感器相对于有线传感器更易安装。

而在有线传感器的装置通常占无线传感器安装的费用80%的工业环境方面同样正确(适用)。

而且相比于有线传感器的不切实际甚至是不肯能而言,无线传感器更具应用性。

虽然,无线传感器需要消耗更多能量,也就是说所需电池的数量会随之增加或改变过于频繁。

再加上对无线传感器由空气传送的数据可靠性的怀疑论,所以无线传感器看起来并不是那么吸引人。

一个低功率无线技术被称为ZigBee,它是无线传感器方程重写,但是。

一个安全的网络技术,对最近通过的IEEE802.15.4无线标准(图1)的顶部游戏机,ZigBee的承诺,把无线传感器的一切从工厂自动化系统到家庭安全系统,消费电子产品。

与802.15.4的合作下,ZigBee提供具有电池寿命可比普通小型电池的长几年。

ZigBee设备预计也便宜,有人估计销售价格最终不到3美元每节点,。

由于价格低,他们应该是一个自然适应于在光线如无线交换机,无线自动调温器,烟雾探测器和家用产品。

(图1)虽然还没有正式的规范的ZigBee存在(由ZigBee联盟是一个贸易集团,批准应该在今年年底),但ZigBee的前景似乎一片光明。

技术研究公司In -Stat/MDR在它所谓的“谨慎进取”的预测中预测,802.15.4节点和芯片销售将从今天基本上为零,增加到2010年的165万台。

不是所有这些单位都将与ZigBee结合,但大多数可能会。

无线传感器网络技术

无线传感器网络技术

无线传感器网络技术无线传感器网络(Wireless Sensor Network,WSN)是近年来快速发展起来的一种先进的感知与通信技术。

它由大量分布在监测区域内的无线传感器节点组成,通过无线通信和信息处理技术,可以实现对环境、物体或事件的实时、动态、全面的检测、监测和定位,具有广阔的应用前景。

1. 无线传感器网络的概述无线传感器网络是一种分布式的网络结构,由大量部署在监测区域内的传感器节点组成。

这些传感器节点可以感知、采集、处理和传输环境中的信息,并通过无线通信与其他节点进行交互和协作。

这种分布式的感知与通信方式使得无线传感器网络具备了广泛的应用场景和巨大的潜力。

2. 无线传感器网络的组成与特点无线传感器网络主要包括传感器节点、数据中心和通信网络三个部分。

传感器节点是无线传感器网络的核心,它们通过感知、采集和处理环境中的信息,并通过通信网络将数据传输到数据中心进行进一步的处理和分析。

无线传感器网络具有自组织、自适应、动态调整、灵活部署等特点,可以实现对环境的全面、实时、动态的监测和控制。

3. 无线传感器网络的应用领域无线传感器网络在农业、环境监测、智能交通、智能家居、工业控制等领域都有广泛的应用。

在农业领域,无线传感器网络可以实现对土壤湿度、温度、光照等环境参数的实时检测和控制,提高农作物的产量和质量。

在环境监测领域,无线传感器网络可以对大气污染、水质污染、噪音等环境因素进行实时监测和预警。

在智能交通领域,无线传感器网络可以实现对交通流量、道路状况等信息的实时采集和传输,提高交通管理的效率和安全性。

在智能家居领域,无线传感器网络可以实现对家庭设备、安全系统等的实时监测和控制,提高家庭生活的便捷性和舒适度。

在工业控制领域,无线传感器网络可以实现对工业设备、生产过程等的实时监测和控制,提高生产效率和质量。

4. 无线传感器网络的挑战与发展方向虽然无线传感器网络在应用领域有广泛的前景,但也面临着一些挑战。

无线传感器网络论文 英文版

无线传感器网络论文 英文版

Wireless sensor networksNowadays,the use of wireless communication is more and more widely.Now I will talk about one of the most widely used wireless communication--Blue Tooth.What is Blue Tooth?Blue Tooth is a kind of technology that support short distance wireless communication. It is divided into two kinds.One is class 1 that the transmission distance is 100 meters ,the other is class2 that the transmission distance is 10 meters.Blue Tooth standard is the IEEE802.15.Bluetooth works at 2.4GHz and its bandwidth up to 3 Mb/s.The convenience of bluetooth are as follows:First of all,the use of Blue Tooth makes the transmission very convenient.W e can transmit data wen and where.Secondly,Blue Tooth is wireless.This make us no need to carry data line anymore.Thirdly,the use of greatly convenient the drivers by using the vehicle Blue Tooth system so that they can make calls when drive a car.Blue Tooth also has many advantages over other style of wireless communication. Above all,Blue Tooth has the on-off function and the state of can be found.Secondly,Blue Tooth has security Settings.Bluetooth need to match, after the success of the pairs can transmit data.Thirdly, Blue Tooth transmit very fast. Transmissionrate can reach 2.4GHz.On the other hand,Blue Tooth also has some shortages.In the home automation and industrial telemetry remote sensing, Bluetooth seems too complex, power consumption, from the past, network size is too small.Otherwise,the high price of Bluetooth impact the using will of customers.Bluetooth is widely used in our daily life. As is known to us all,most of the mobile phones,notebooks and some cars have the function of Blue Tooth. I believe most of the youth must have the experience of using Blue Tooth.Every coin has its two sides,Blue Tooth also has its advantages and its disadvantage,too.Bluetooth is most used on mobile phone,computer and other digital devices these years.I think there are many places where Bluetooth can be used.I believe Bluetooth has a broad application prospect.First,Bluetooth can be used on a wireless electronic locks.This kind of lock has a higher security and applicability.I think this kind lock is very suit for cars.People can use Bluetooth remote control to lock or unlock the car. Bluetooth remote control will be more powerful than other remote controls,for exsample infrared remote control.Second,we can use Bluetooth to build our electronic purses.Whenwe go shopping we can pay the bill without pulling out our purses.The cashier desk will detect your credit card and deducted your bill automatically.In this way we can go to a shop,a hotel,a airline company or a restaurant with ease.Third,Bluetooth system can be used in our household electrics.W e can put Bluetooth system into microwave oven's system,washing machine's system,refrigerator's and air-condition's systems.In this way,we can use a remote control to control all the household electrics.And the Bluetooth system of every electric can feedback its information to network at anytime.The mast can know the running state and control his electrics when and where.In summary,Bluetooth has been widely used in our life.And I believe the use of Bluetooth will be more and more widely. I also believe Bluetooth has a broad prospect.Maybe some of us can devoting themselves to study Bluetooth technology in the near future.。

无线传感器网络论文英文版

无线传感器网络论文英文版

无线传感器网络论文英文版Wireless Sensor Networks: A Research PaperAbstract:Wireless Sensor Networks (WSNs) have emerged as a revolutionary technology in the field of wireless communication. This research paper aims to provide an overview of WSNs, their applications, challenges, and future prospects.1. Introduction:Wireless Sensor Networks are interconnected nodes that can communicate with each other through wireless protocols. These nodes, equipped with sensors, provide real-time data from physical environments. WSNs have gained significant attention due to their applicability in various industries such as healthcare, agriculture, environmental monitoring, and surveillance.2. Architecture of Wireless Sensor Networks:The architecture of WSNs consists of three main components: sensor nodes, sinks or base stations, and a network infrastructure. Sensor nodes gather information from the environment and transmit it to the sink or base station via multi-hopping or direct transmission. The network infrastructure manages the routing and data aggregation processes.3. Applications of Wireless Sensor Networks:3.1 Environmental Monitoring:WSNs play a crucial role in monitoring environmental parameters such as temperature, humidity, air quality, and water quality. This data is essential for environmental research, disaster management, and habitat monitoring.3.2 Healthcare:WSNs have revolutionized the healthcare industry by enabling remote patient monitoring, fall detection, and medication adherence. These networks assist in providing personalized and timely healthcare services.3.3 Agriculture:In the agricultural sector, WSNs are deployed for crop monitoring, irrigation management, and pest control. The data collected by these networks help farmers enhance crop productivity and reduce resource wastage.3.4 Surveillance:WSNs are extensively employed in surveillance systems to monitor public areas, monitor traffic congestion, and ensure public safety. These networks provide real-time data for efficient decision-making and threat detection.4. Challenges in Wireless Sensor Networks:4.1 Energy Efficiency:Sensor nodes in WSNs are usually battery-powered, making energy efficiency a critical challenge. Researchers are focused on developing energy-efficient protocols and algorithms to prolong the network's lifespan.4.2 Security and Privacy:As WSNs collect sensitive data, ensuring the security and privacy of transmitted information is crucial. Encryption techniques, intrusion detection systems, and secure routing protocols are being developed to address these concerns.4.3 Scalability:Scalability is a critical challenge in large-scale deployment of WSNs. Designing scalable architectures and protocols enable efficient communication and management of a large number of sensor nodes.5. Future Prospects of Wireless Sensor Networks:The future of WSNs is promising, with advancements in technologies such as Internet of Things (IoT) and Artificial Intelligence (AI). Integration of WSNs with IoT devices will enable seamless communication and data exchange. AI algorithms can facilitate intelligent data analysis and decision-making.Conclusion:Wireless Sensor Networks have shown tremendous potential in various fields and continue to evolve with advancements in technology. Addressing energy efficiency, security, and scalability challenges will contribute to the widespread adoption of WSNs. As researchers continue to explore new possibilities, WSNs will become an integral part of our daily lives, transforming industries and enhancing our quality of life.。

无线传感器网络模型设计-英文文献翻译.doc

无线传感器网络模型设计-英文文献翻译.doc

Model Design of Wireless Sensor Network based on Scale-Free Network TheoryABSTRACTThe key issue of researches on wireless sensor networks is to balance the energy costs across the whole network and to enhance the robustness in order to extend the survival time of the whole sensor network. As a special complex network limited especially by the environment, sensor network is much different from the traditional complex networks, such as Internet network, ecological network, social network and etc. It is necessary to introduce a way of how to study wireless sensor network by complex network theory and analysis methods, the key of which lies in a successful modeling which is able to make complex network theory and analysis methods more suitable for the application of wireless sensor network in order to achieve the optimization of some certain network characteristics of wireless sensor network. Based on generation rules of traditional scale-free networks, this paper added several restrictions to the improved model. The simulation result shows that improvements made in this paper have made the entire network have a better robustness to the random failure and the energy costs are more balanced and reasonable. This improved model which is based on the complex network theory proves more applicable to the research of wireless sensor network.Key-words: Wireless sensor network; Complex network; Scale-free networkI. INTRODUCTIONIn recent years, wireless sensor networks have attracted more and more related researchers for its advantages. Sensor nodes are usually low-power and non-rechargeable. The integrity of the original networks will be destroyed and other nodes will have more business burden for data transmission if the energy of some certain nodes deplete. The key issue of sensor network research is to balance the energy consumption of all sensor nodes and to minimize the impact of random failure of sensor nodes or random attacks to sensor nodes on the entire network [1].Complex network theory has been for some time since first proposed by Barabasi and Albert in 1998, but complex network theory and analysis method applied to wireless sensor networks research is seriously rare and develops in slow progress. As a special complex network limited especially by the environment, sensor network is much different from the traditional complex network, and the existing complex network theory and analysis methods can not be directly applied to analyze sensor networks. Based on scale-free network theory (BA model) [2], (1) this paper added a random damage mechanism to each sensor node when deployed in the generation rule; (2) considering the real statement of wireless sensor networks, a minimum and maxinum restriction on sensor communication radius was added to each sensor node; (3) in order to maintain a balanced energy comsuption of the entire network, this paper added a limited degree of saturation value to each sensor node. This improved scale-free model not only has the mentioned improvements above, but also has lots of advantages of traditional scale-free networks, such as the good ability to resist random attacks, so that the existing theory and analysis methods of complex network will be more suitable for the researches of wireless sensor network.II. PROGRESS OF RELATED RESEARCHHailin Zhu and Hong Luo have proposed two complex networks-based models for wireless sensor networks [3], the first of which named Energy-aware evolution model (EAEM) can organize the networks in an energy-efficient way, and can produce scale-free networks which can improve the networks reliance against random failure of the sensor nodes. In the second model named Energy-balanced evolution model (EBEM), the maximum number of links for each node is introduced into the algorithm, which can make energy consumption more balanced than the previous model (EAEM).CHEN Lijun and MAO Yingchi have proposed a topology control of wireless sensor networks under an average degree constraint [4]. In the precondition of the topology connectivity of wireless sensor networks, how to solve the sparseness of the network topology is a very important problem in a large number of sensor nodes deployed randomly. They proved their proposed scheme can decrease working nodes, guarantee network topology sparseness, predigest routing complexity and prolong network survival period.LEI Ming and LI Deshi have proposed a research on self-organization reliability of wireless sensor network[5], which aiming on the two situations: deficiency of WSN nodes and under external attack, analyzes the error tolerance ability of different topologies of WSN, and eventually obtains optimized self—organized topological models of WSN and proposes a refined routing algorithm based on WSN.III. IMPROVED SCALE-FREE MODEL FOR WSNBecause of the limited energy and the evil application environment, wireless sensor networks may easily collapse when some certain sensor nodes are of energy depletion or destruction by the nature, and even some sensor nodes have been damaged when deployed. There is also a restriction on maxinum and mininum communication radius of sensor nodes rather than the other known scale-free networks such as Internet network, which has no restriction on communication radius. To have a balanced energy consumption, it is necessary to set up a saturation value limited degree of each sensor node [6].In response to these points, based on the traditional scale-free model, this paper has made the following improvements in the process of model establishment:(1) A large number of researches have shown that many complex networks in nature are not only the result from internal forces, but also the result from external forces which should not be ignored to form an entire complex network. Node failure may not only occour by node energy depletion or random attacks to them when sensor networks are in the working progress, but also occour by external forces, such as by the nature, when deployed. In this paper, a mechanism of small probability of random damage has been added to the formation of sensor networks.(2) Unlike Internet network where two nodes are able to connect directly to each other and their connection are never limited by their real location, sensor network, two nodes in which connect to each other by the way of multi-hop, so that each node has a maximum of length restriction on their communication radius. To ensure the sparse of the whole network, there must also be a minimum of length restriction on their communication radius. In this paper, a length restriction on communication radius of sensor nodes has been proposed in the improved model.(3) In sensor network, if there exists a sensor node with a seriously high degree, whose energy consumption is very quickly, it will be seriously bad. The whole sensor network would surely collapse if enough energy were not supported to the certain node. To avoid this situation, this paper has set up a saturation value limited degree of each sensor node. By adding the mentioned restrictions above to the formation of the scale-free model, the new improved model will be more in line with the real statement of sensor network. Complex network theory and analysis methods will be more appropriate when used to research and analyze the sensor network.IV . DESCRIPTION OF THE IMPROVED ALGORITHMThe specific algorithm of the improved model formation are described as follows : (1) A given region (assumed to be square) is divided into HS*HSbig squares (named as BS);(2) Each BS (assumed to be square) is divided into LS*LS small squares (named as SS), and each SS can have only one node in its coverage region;(3) m0 backbone nodes are initially generated as a random graph, and then a new node will be added to the network to connect the existing m nodes with m edges at each time interval. (m< m0, mis a quantity parameter);(4) The newly generated node v, has a certain probability of Peto be damaged directly so that it will never be connected with any existing nodes;(5) The newly generated node vconnects with the existing node i, which obeyes dependent-preference rule and is surely limited by the degree of the certain saturation value .(6) The distance div between the newly generated node v connects and the existing node i shall be shorter than the maximum dmax of the communication radius of sensor nodes.Above all, the probability that the existing node i will be connected with the newly generated node v can be shown as follows:In order to compute it conveniently, here assumed that few nodes had reached the degree of saturation value kimax . That is, N is very minimal in Eqs.(1) so that it can be ignored here. And in Eqs.iNj 1ak Kjπ=≈∑ 0N=m 1t +- (2)With The varying rate with time of ki, we get:m 112i i ii t jj k amk amk m t mt mk δπδ+-====-∑(3)When t→∞,condition: k i (t i )=m, we get the solution: i2,i t k t aββ=(t )=m ()(4) The probability that the degree of node I is smaller than k is:11{k (t)k}P{t }i i m tP kββ<=>(5)The time interval when each newly generated node connected into the network is equal, so that probability density of t i is a constant parameter:01(t )i P m t=+1/β we replace it into Eqs. (5), then we get:11111{k (t)k}P{t }1(t )i m t k i i it m tP P k ββββ=<=>=-∑(6)1101(t m )m tk ββ-+ So we get: 110(k (t)k)21(k).i P m t P k m t k ββδδ<==+ (7)When t →∞, we get:2(k)2m r P k -=(8)In which 12=1+=1+aγβ, and the degree distribution we get and the degree distribution of traditional scale-free network are similar. Approximately, it has nothing to do with the timeparameter t and the quantity of edges m generated at each time interval.max P{d d }iv ≤could be calculated by the max in um restriction dmax on communicationradius of each sensor node and the area of the entire coverage region S, that ismax P{d d }iv ≤=2Sd π Then we replace max P{d d }iv ≤=2S d π and a=max P{d d }iv ≤(1-P )e intoEqs. and eventually we get: 22S21122(k)2m 2e aP km kπ----==(1-P )d .V . SIMULATIONThis paper used Java GUI mode of BRITE topology generator to generate the topology, and parameter settings were as follows:1) N=5000N means the quantity of the sensor nodes at the end of thetopology generation.2) m=m0 =1M means the quantity of the new generated edges by the new generated node at each time interval.3) HS=500HS means the given region was divided into HS*HS big squares.4) .LS=50 LS means each big square was divided into LS*LS small squares.d=105) mind is the mininum restriction on communication radius of each sensor node.mind=1286) maxd is the maxinum restriction on communication radius of each sensor node.max7) PC=1PC means wether preferential connectivity or not.8) .IG=1IG means wether incremental grouth or not.9) e P=0.01, m=1This means that any newly generated node has 1% chance to be node failure and the newly generated node if normal only connect with one existing node .Then we got each degree of the sensor network nodes from BRITE topology generator. To analyze the degree distribution, we use Matlab to calculate datas and draw graph. As can easily be seen from Fig. 1, the distribution of degree k subjected approximately toPower-Law distribution. However, the value of γ is no longer between 2 and 3, but a very large value, which is caused by the random damage probability P e to new generated nodes when deployed and the max in um of communication radius d max of each sensor node. It can be easily seen that the slope of P(k) is very steep and P(k) rears up because sensor node has a limited degree of saturation value by 180. The existence of 0 degree nodes is result from the random damage to new generated nodes when deployed.Fig. 1 Degree distribution of Improved ModelCompared with the degree distribution produced by traditional scale-free network as is shown in Fig. 2, the generation rule proposed in this paper has produced a degree distribution in a relatively low value as is shown in Fig. 1; there are some nodes of 0 degree as is shown in Fig. 1 on the left for the random damage rule; as is shown on the right in Fig. 1, there are no nodes with higher degree than the quantity of 180 while there are some nodes whose degree are of higher degree than the quantity of 180.Fig. 2 Degree distribution of traditional Scale-free ModelVI. CONCLUSIONThis paper has added a random damage to new generated nodes when deployed; considering multi-hop transmission of sensor network, this paper has proposed a maximum restriction on the communication radius of each sensor node; in order to improve the efficiency of energy comsumption and maintain the sparsity of the entire network, this paper has also added a minimum restriction on the communication radius of each sensor node to the improved model; to balance the energy comsuption of the entire network, this paper has proposed a limited degree of saturation value on each sensor node.In this paper, an improved scale-free network model was proposed to introduce the theory of traditional scale-free network and analysis methods into the researches of wireless sensor networks more appropriately, which would be more approximate to the real statement of wireless sensor networks.REFERENCES[1] R. Albert, H. Jeong and A.-L. Barabasi. Error and attack tolerance of complex networks. Nature, 2000; 406: 378-382.[2] Albert R, Barabasi A. Statistical mechanics of complex networks. Rev Mod Phys 2002; 74: 47–97..[3] Zhu HL, Luo H. Complex networks-based energy-efficient evolution model for wireless sensor networks. Chaos, Solitons and Fractals; 2008: 1-4.[4] Chen LJ, Mao YC. Topology Control of Wireless Sensor Networks Under an Average Degree Constraint. Chinese Journal of computers 2007; 30: 1-4.[5] Lei M, Li DS. Research on Self-Organization Reliability of Wireless Sensor Network . Complex system and complexity science ; 2005, 2: 1-4.[6] Chen LJ, Chen DX. Evolution of wireless sensor network . WCNC 2007; 556: 3003–7.[7] Peng J, Li Z. An Improved Evolution Model of Scale-Free Network . Computer application. 2008 , 2; 1: 1-4.基于无范围网络理论的无线传感器网络模型设计张戌源通信工程部通信与信息工程学院上海,中国摘要无线传感器网络的研究的关键问题是是平衡整个网络中的能源成本并且为了延长整个传感器网络的生存时间要增强鲁棒性。

通信专业英语之无线传感器网络

通信专业英语之无线传感器网络

Notes 4
4.The advantage of WSNs over conventional loggers is the "live" data feed that is possible.
译文:无线传感器网络的优点是使“活”的数据传送成 为可能。
Advantage:有利条件,优势,常与介词over连用,指“ 与……相比的长处”,
Translation of Texts
A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature sound, pressure, etc. ,and to cooperatively pass their data through the network to a main location. The more modern networks are bi-directional, also enabling control of sensor activity. The development of wireless sensor network was motivated by military applications such as battlefield surveillance; today as such networks are used in many industrial and consumer applications, such as industrial process monitoring and control, machine health monitoring, and so on.

通信专业英语之无线传感器网络英语拓展

通信专业英语之无线传感器网络英语拓展

Exere spatially distributed in a WSN to monitor physical or environmental conditions
Exercises
2、Nowadays, wireless sensor networks are only used in industrial and consumer applications.
Exercises
1. The WSN is built of "nodes" which is connected to one or several sensors.
2. The topology of the WSNs can be a star network to an advanced multi-hop wireless mesh network (WMN).
Translation of Texts
Data logging Wireless sensor networks are also used for the collection of data for monitoring of environmental information. The statistical information can then be used to show how systems have been working. The advantage of WSNs over conventional loggers is the "live" data feed that is possible.
Translation of Texts
智能家居监控 使用嵌入在日常物品内的无线传感器网络对在 智能家居中的活动进行监视已经实现。物 品因人 为操作而发生状态上的变化被提供活动支持服务 的无线传感器网络捕获。

无线传感器网络

无线传感器网络
Manuscript received July 20, 2005; revised August 30, 2006, March 30, 2007, and June 1, 2007. This work was supported in part by the National Science Council, Taiwan, R.O.C., under Grant NSC 95-2752-E-007-003-PAE and Grant NSC 93-2213-E-007-042. This paper was presented in part at the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC’06), Taichung, Taiwan, June 2006. The review of this paper was coordinated by Dr. Y.-P. E. Wang. The author is with the Department of Electrical Engineering and Institute of Communications Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C. (e-mail: yrtsai@.tw). Digital Object Identifier 10.1109/TVT.2007.905624
I. I NTRODUCTION ENSOR networks have been widely investigated and discussed in recent years, and many emerging applications are under development based on this technology [1]–[4]. If the connectivity among sensor nodes is maintained by wireless communications, it is known as a wireless sensor network (WSN). In some applications, sensors are deployed in a desired area to monitor environmental parameters or to detect some specific events. Some of the fundamental issues involved in sensor networks include node deployment, power management, message routing, node locating, and sensing coverage. In particular, sensபைடு நூலகம்ng coverage is an important factor for a WSN, as it is one of the critical measures of performance or service quality offered by a sensor network. There are many different definitions for sensing coverage. The most popular one defines sensing coverage as the ratio of the sensible area to the entire desired area, which means the percentage of the entire area that can be covered by the sensor network. The achievable sensing coverage strongly depends on the way the sensors are deployed. A well-planned deployment
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Abstract
A1(1)In the recent years, as the rapid development of MEMS, wireless communication network, embedded system, and the interaction of all kinds of new technologies, many new modes of information obtaining and process come into being. A2(2)Wireless sensor network (WSN) is one of them. A2(3)WSN can be used to monitor the environments, the machines and even the people; hence “ubiquitous computing” will come true. A2(4)WSN has wide application fields, so it has been paid high attention by the military, the academes, and the industrial from all over the world. A2(5)Meanwhile, this provides many challenges in the academe foundations and technologies.
A3(6)This dissertation introduces the recent researches on WSN, and analyzes its key technologies:the setup of wireless communication network, the design and implementation of network nodes and the design steps of WSN, in an architecture view.
A4(7)By analyzing and comparing, ZigBee technology is adopted to setup wireless communication network. A4(8)The topology of the network and hierarchical protocol stacks are designed. A4(9)The embedded network nodes are designed and developed, and the hardware and software are implemented. A4(10)An experimental WSN is deployed and the experimental data is collected and analyzed. A5(11)Finally, a typical example of wireless sensor network, personnel
identification and positioning system in mine, is presented. Keywords: Wireless sensor network, Embedded systems, IEEE802.15.4 protocols, ZigBee
摘要
近年来,随着微机电系统(MEMS)、无线通信网络和嵌入式系统等技术的飞速发展,各种新技术的融合,出现了许多信息获取和处理的新模式,无线传感器网络就是其中一例。

无线传感器网络可用来监控环境、机器甚至人类自己,从而真正实现“普适计算”的理念。

无线传感器网络具有十分广阔的应用前景,己经引起了世界许多国家军事界、学术界和工业界的高度重视,同时,在基础理论和工程技术上对课题的研究都是巨大的挑战。

论文介绍了无线传感器网络的研究现状,从体系结构的角度分析了无线传感器网络的关键技术:无线通信网络的构建和网络节点的设计与实现,并给出了无线传感器网络的设计步骤。

通过分析和比较,论文课题选用ZigBee技术构建无线通信网络,设计了网络的拓扑结构以及分层的协议栈。

完成了嵌入式网络节点的设计与开发,并且构建硬件设平台与软件设计。

并对所构建的无线传感器网络进行了部署和试验,对试验数据进行了收集和分析。

最后,给出了一个无线传感器网络的典型应用实例一一矿井下人员识别与定位系统。

关键词: 无线传感器网络、嵌入式系统、EIEE802.15.4协议、ZigBee。

相关文档
最新文档